Synthese 201 (6):1-29 (
2023)
Copy BIBTEX Abstract
This paper examines racial discrimination and algorithmic bias in predictive policing algorithms (PPAs), an emerging technology designed to predict threats and suggest solutions in law enforcement. We first describe what discrimination is in a case study of Chicago’s PPA. We then explain their causes with Broadbent’s contrastive model of causation and causal diagrams. Based on the cognitive science literature, we also explain why fairness is not an objective truth discoverable in laboratories but has context-sensitive social meanings that need to be negotiated through democratic processes. With the above analysis, we next predict why some recommendations given in the bias reduction literature are not as effective as expected. Unlike the cliché highlighting equal participation for all stakeholders in predictive policing, we emphasize power structures to avoid hermeneutical lacunae. Finally, we aim to control PPA discrimination by proposing a governance solution—a framework of a social safety net.