Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs

Dynamic Analysis and FPGA Implementation of New Chaotic Neural Network and Optimization of Traveling Salesman Problem

Complexity 2021:1-10 (2021)
  Copy   BIBTEX

Abstract

A neural network is a model of the brain’s cognitive process, with a highly interconnected multiprocessor architecture. The neural network has incredible potential, in the view of these artificial neural networks inherently having good learning capabilities and the ability to learn different input features. Based on this, this paper proposes a new chaotic neuron model and a new chaotic neural network model. It includes a linear matrix, a sine function, and a chaotic neural network composed of three chaotic neurons. One of the chaotic neurons is affected by the sine function. The network has rich chaotic dynamics and can produce multiscroll hidden chaotic attractors. This paper studied its dynamic behaviors, including bifurcation behavior, Lyapunov exponent, Poincaré surface of section, and basins of attraction. In the process of analyzing the bifurcation and the basins of attraction, it was found that the network demonstrated hidden bifurcation phenomena, and the relevant properties of the basins of attraction were obtained. Thereafter, a chaotic neural network was implemented by using FPGA, and the experiment proved that the theoretical analysis results and FPGA implementation were consistent with each other. Finally, an energy function was constructed to optimize the calculation based on the CNN in order to provide a new approach to solve the TSP problem.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-04-21

Downloads
17 (#1,252,807)

6 months
1 (#1,597,699)

Historical graph of downloads
How can I increase my downloads?

[8]ページ先頭

©2009-2025 Movatter.jp