The weakly compact reflection principle\\) states that \ is a weakly compact cardinal and every weakly compact subset of \ has a weakly compact proper initial segment. The weakly compact reflection principle at \ implies that \ is an \-weakly compact cardinal. In this article we show that the weakly compact reflection principle does not imply that \ is \\)-weakly compact. Moreover, we show that if the weakly compact reflection principle holds at \ then there is a forcing extension preserving this in which \ is the least \-weakly compact cardinal. Along the way we generalize the well-known result which states that if \ is a regular cardinal then in any forcing extension by \-c.c. forcing the nonstationary ideal equals the ideal generated by the ground model nonstationary ideal; our generalization states that if \ is a weakly compact cardinal then after forcing with a ‘typical’ Easton-support iteration of length \ the weakly compact ideal equals the ideal generated by the ground model weakly compact ideal.