| |
Starting from the notions of q-entailment and p-entailment, a two-dimensional notion of entailment is developed with respect to certain generalized q-matrices referred to as B-matrices. After showing that every purely monotonic singleconclusion consequence relation is characterized by a class of B-matrices with respect to q-entailment as well as with respect to p-entailment, it is observed that, as a result, every such consequence relation has an inferentially four-valued characterization. Next, the canonical form of B-entailment, a two-dimensional multiple-conclusion notion of entailment based (...) on B-matrices, is introduced, providing a uniform framework for studying several different notions of entailment based on designation, antidesignation, and their complements. Moreover, the two-dimensional concept of a B-consequence relation is defined, and an abstract characterization of such relations by classes of B-matrices is obtained. Finally, a contribution to the study of inferential many-valuedness is made by generalizing Suszko’s Thesis and the corresponding reduction to show that any B-consequence relation is, in general, inferentially four-valued. (shrink) No categories | |
In this paper, a family of paraconsistent propositional logics with constructive negation, constructive implication, and constructive co-implication is introduced. Although some fragments of these logics are known from the literature and although these logics emerge quite naturally, it seems that none of them has been considered so far. A relational possible worlds semantics as well as sound and complete display sequent calculi for the logics under consideration are presented. | |
Suszko’s problem is the problem of finding the minimal number of truth values needed to semantically characterize a syntactic consequence relation. Suszko proved that every Tarskian consequence relation can be characterized using only two truth values. Malinowski showed that this number can equal three if some of Tarski’s structural constraints are relaxed. By so doing, Malinowski introduced a case of so-called mixed consequence, allowing the notion of a designated value to vary between the premises and the conclusions of an argument. (...) In this article we give a more systematic perspective on Suszko’s problem and on mixed consequence. First, we prove general representation theorems relating structural properties of a consequence relation to their semantic interpretation, uncovering the semantic counterpart of substitution-invariance, and establishing that mixed consequence is fundamentally the semantic counterpart of the structural property of monotonicity. We use those theorems to derive maximum-rank results proved recently in a different setting by French and Ripley, as well as by Blasio, Marcos, and Wansing, for logics with various structural properties. We strengthen these results into exact rank results for nonpermeable logics. We discuss the underlying notion of rank, and the associated reduction proposed independently by Scott and Suszko. As emphasized by Suszko, that reduction fails to preserve compositionality in general, meaning that the resulting semantics is no longer truth-functional. We propose a modification of that notion of reduction, allowing us to prove that over compact logics with what we call regular connectives, rank results are maintained even if we request the preservation of truth-functionality and additional semantic properties. (shrink) | |
This paper considers some issues to do with valuational presentations of consequence relations, and the Galois connections between spaces of valuations and spaces of consequence relations. Some of what we present is known, and some even well-known; but much is new. The aim is a systematic overview of a range of results applicable to nonreflexive and nontransitive logics, as well as more familiar logics. We conclude by considering some connectives suggested by this approach. | |
In order to prove the validity of logical rules, one has to assume these rules in the metalogic. However, rule-circular ‘justifications’ are demonstrably without epistemic value. Is a non-circular justification of a logical system possible? This question attains particular importance in view of lasting controversies about classical versus non-classical logics. In this paper the question is answered positively, based on meaning-preserving translations between logical systems. It is demonstrated that major systems of non-classical logic, including multi-valued, paraconsistent, intuitionistic and quantum logics, (...) can be translated into classical logic by introducing additional intensional operators into the language. Based on this result it is argued that classical logic is representationally optimal. In sec. 6 it is investigated whether non-classical logics can be likewise representationally optimal. The answer is predominantly negative but partially positive. Nevertheless the situation is not symmetric, because classical logic has important ceteris paribus advantages as a unifying metalogic. (shrink) | |
This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the (...) particular cases of Łukasiewicz’s many-valued logics and of logics associated with varieties of residuated lattices are also presented. Finally the extension of this paradigm to other, more general situations is discussed, highlighting the need for philosophical or applied motivations in the selection of the truth degrees, due both to the interpretation of the idea of truth degree and to some mathematical difficulties. (shrink) | |
We explore a possibility of generalization of classical truth values by distinguishing between their ontological and epistemic aspects and combining these aspects within a joint semantical framework. The outcome is four generalized classical truth values implemented by Cartesian product of two sets of classical truth values, where each generalized value comprises both ontological and epistemic components. This allows one to define two unary twin connectives that can be called “semi-classical negations”. Each of these negations deals only with one of the (...) above mentioned components, and they may be of use for a logical reconstruction of argumentative reasoning. (shrink) | |
No categories | |
According to logical non-necessitarianism, every inference may fail in some situation. In his defense of logical monism, Graham Priest has put forward an argument against non-necessitarianism based on the meaning of connectives. According to him, as long as the meanings of connectives are fixed, some inferences have to hold in all situations. Hence, in order to accept the non-necessitarianist thesis one would have to dispose arbitrarily of those meanings. I want to show here that non-necessitarianism can stand, without disposing arbitrarily (...) of the meanings of connectives, based on a minimalist view on the meanings of connectives. (shrink) | |
According to truth pluralism, sentences from different areas of discourse can be true in different ways. This view has been challenged to make sense of logical validity, understood as necessary truth preservation, when inferences involving different areas are considered. To solve this problem, a natural temptation is that of replicating the standard practice in many-valued logic by appealing to the notion of designated values. Such a simple approach, however, is usually considered a non-starter for strong versions of truth pluralism, since (...) designation seems to embody nothing but a notion of generic truth. In this paper, I explore the analogy with many-valued logic by comparing the problem of mixed inferences with Suszko’s thesis, and argue that the strong pluralist has room to resist the commitment to a generic property of truth by undermining the semantic significance of Suszko’s reduction. (shrink) | |
Tarski’s conceptual analysis of the notion of logical consequence is one of the pinnacles of the process of defining the metamathematical foundations of mathematics in the tradition of his predecessors Euclid, Frege, Russell and Hilbert, and his contemporaries Carnap, Gödel, Gentzen and Turing. However, he also notes that in defining the concept of consequence “efforts were made to adhere to the common usage of the language of every day life.” This paper addresses the issue of what relationship Tarski’s analysis, and (...) Béziau’s further generalization of it in universal logic, have to reasoning in the everyday lives of ordinary people from the cognitive processes of children through to those of specialists in the empirical and deductive sciences. It surveys a selection of relevant research in a range of disciplines providing theoretical and empirical studies of human reasoning, discusses the value of adopting a universal logic perspective, answers the questions posed in the call for this special issue, and suggests some specific research challenges. (shrink) | |
I highlight the importance of the notion of falsity for a semantical consideration of intuitionistic logic. One can find two principal (and non-equivalent) versions of such a notion in the literature, namely, falsity as non-truth and falsity as truth of a negative proposition. I argue in favor of the first version as the genuine intuitionistic notion of falsity. | |
In 1995 Slater argued both against Priest’s paraconsistent system LP (1979) and against paraconsistency in general, invoking the fundamental opposition relations ruling the classical logical square. Around 2002 Béziau constructed a double defence of paraconsistency (logical and philosophical), relying, in its philosophical part, on Sesmat’s (1951) and Blanche’s (1953) “logical hexagon”, a geometrical, conservative extension of the logical square, and proposing a new (tridimensional) “solid of opposition”, meant to shed new light on the point raised by Slater. By using n-opposition (...) theory (NOT) we analyse Beziau’s anti-Slater move and show both its right intuitions and its technical limits. Moreover, we suggest that Slater’s criticism is much akin to a well-known one by Suszko (1975) against the conceivability of many-valued logics. This last criticism has been addressed by Malinowski (1990) and Shramko and Wansing (2005), who developed a family of tenable logical counter-examples to it: trans-Suszkian systems are radically many-valued. This family of new logics has some strange logical features, essentially: each system has more than one consequence operator. We show that a new, deeper part of the aforementioned geometry of logical oppositions (NOT), the “logical poly-simplexes of dimension m”, generates new logical-geometrical structures, essentially many-valued, which could be a very natural (and intuitive) geometrical counterpart to the “strange”, new, non-Suszkian logics of Malinowski, Shramko and Wansing. By a similar move, the geometry of opposition therefore sheds light both on the foundations of paraconsistent logics and on those of many-valued logics. (shrink) | |
I offer here a critical assessment of Beall and Ficara’s most recent take on Hegelian contradictions. By interpreting differently some key passages of Hegel’s work, I favor, unlike them, a no-gaps approach which leads to a different logic. No categories | |
In this paper, we evaluate Button’s claim that knot is a nasty connective. Knot’s nastiness is due to the fact that, when one extends the set \ with knot, the connective provides counterexamples to a number of classically valid operational rules in a sequent calculus proof system. We show that just as going non-transitive diminishes tonk’s nastiness, knot’s nastiness can also be reduced by dropping Reflexivity, a different structural rule. Since doing so restores all other rules in the system as (...) validity-preserving, we are inclined to conclude that there, knot is not that nasty. However, since motivating non-reflexivity is harder than motivating non-transitivity, we also acknowledge that disagreement with our conclusion is possible. (shrink) | |
This article is about Avicenna’s account of syllogisms comprising opposite premises. We examine the applications and the truth conditions of these syllogisms. Finally, we discuss the relation between these syllogisms and the principle of non-contradiction. | |
According to Suszko's Thesis,any multi-valued semantics for a logical system can be replaced by an equivalent bivalent one. Moreover: bivalent semantics for families of logics can frequently be developed in a modular way. On the other hand bivalent semantics usually lacks the crucial property of analycity, a property which is guaranteed for the semantics of multi-valued matrices. We show that one can get both modularity and analycity by using the semantic framework of multi-valued non-deterministic matrices. We further show that for (...) using this framework in a constructive way it is best to view "truth-values" as information carriers, or "information-values". (shrink) | |