| |
Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...) are fundamental for their philosophical assessment. I argue that simulation models can be distinguished from other forms of models by the many algorithmic structures, representation relations, and new semantic connections involved in their architecture. In this article, I reconstruct a general architecture for a simulation model, one that faithfully captures the complexities involved in most scientific research with computer simulations. Furthermore, I submit that a new methodology capable of conforming such architecture into a fully functional, computationally tractable computer simulation must be in place. I discuss this methodology—what I call recasting—and argue for its philosophical novelty. If these efforts are heading towards the right interpretation of simulation models, then one can show that computer simulations shed new light on the philosophy of science. To illustrate the potential of my interpretation of simulation models, I briefly discuss simulation-based explanations as a novel approach to questions about scientific explanation. (shrink) | |
A chronicled approach to the notion of computer simulations shows that there are two predominant interpretations in the specialized literature. According to the first interpretation, computer simulations are techniques for finding the set of solutions to a mathematical model. I call this first interpretation the problem-solving technique viewpoint. In its second interpretation, computer simulations are considered to describe patterns of behavior of a target system. I call this second interpretation the description of patterns of behavior viewpoint of computer simulations. This (...) article explores these two interpretations of computer simulations from three different angles. First, I collect a series of definitions of computer simulation from the historical record. I track back definitions to the early 1960s and show how each viewpoint shares similar interpretations of computer simulations—ultimately clustering into the two viewpoints aforementioned. This reconstruction also includes the most recent literature. Second, I unpack the philosophical assumptions behind each viewpoint, with a special emphasis on their differences. Third, I discuss the philosophical implications of each viewpoint in the context of the recent discussion on the logic of scientific explanation for computer simulations. (shrink) No categories | |
What is the significance of high-speed computation for the sciences? How far does it result in a practice of simulation which affects the sciences on a very basic level? To offer more historical context to these recurring questions, this paper revisits the roots of computer simulation in the development of the ENIAC computer and the Monte Carlo method. With the aim of identifying more clearly what really changed (or not) in the history of science in the 1940s and 1950s due (...) to the computer, I will emphasize the continuities with older practices and develop a two-fold argument. Firstly, one can find a diversity of practices around ENIAC which tends to be ignored if one focuses only on the ENIAC itself as the originator of Monte Carlo simulation. Following from this, I claim, secondly, that there was no simulation around ENIAC. Not only is the term ‘simulation’ not used within that context, but the analysis also shows how ‘simulation’ is an effect of three interrelated sets of different practices around the machine: (1) the mathematics which the ENIAC users employed and developed, (2) the programs, (3) the physicality of the machine. I conclude that, in the context discussed, the most important shifts in practice are about rethinking existing computational methods. This was done in view of adapting them to the high-speed and programmability of the new machine. Simulation then is but one facet of this process of adaptation, singled out by posterity to be viewed as its principal aspect. (shrink) | |
Le déficit d’explicabilité des techniques d’apprentissage machine (AM) pose des problèmes opérationnels, juridiques et éthiques. Un des principaux objectifs de notre projet est de fournir des explications éthiques des sorties générées par une application fondée sur de l’AM, considérée comme une boîte noire. La première étape de ce projet, présentée dans cet article, consiste à montrer que la validation de ces boîtes noires diffère épistémologiquement de celle mise en place dans le cadre d’une modélisation mathématique et causale d’un phénomène physique. (...) La différence majeure est qu’une méthode d’AM ne prétend pas représenter une causalité entre les paramètres d’entrées, qui peuvent être de plus de haute dimensionnalité, et ceux de sortie. Nous montrons dans cet article l’intérêt de mettre en œuvre les distinctions épistémologiques entre les différentes fonctions épistémiques d’un modèle, d’une part, et entre la fonction épistémique et l’usage d’un modèle, d’autre part. Enfin, la dernière partie de cet article présente nos travaux en cours sur l’évaluation d’une explication, qui peut être plus persuasive qu’informative, ce qui peut ainsi causer des problèmes d’ordre éthique. (shrink) | |
On montre d’abord qu’il est nécessaire de caractériser une simulation informatique à un niveau plus fin que celui des modèles formels : celui des symboles et de leurs divers modes de référer. C’est particulièrement vrai pour celles qui intègrent des modèles et des formalismes hétérogènes. On s’interroge ensuite sur les causes ontologiques qui pourraient expliquer leur succès épistémique. Il est montré qu’elles peuvent s’expliquer commodément si l’on adopte une conception de la nature à la fois discontinuiste et finitiste. Cette dernière (...) thèse se trouve renforcer une position métaphysique naturaliste en invalidant, à sa racine, l’argument formulé par le matérialisme spéculatif à l’encontre d’une approche scientifique du monde physique procédant, comme les simulations, par représentations et opérations finitistes. (shrink) | |
Computer models and simulations have become, since the 1960s, an essential instrument for scientific inquiry and political decision making in several fields, from climate to life and social sciences. Philosophical reflection has mainly focused on the ontological status of the computational modeling, on its epistemological validity and on the research practices it entails. But in computational sciences, the work on models and simulations are only two steps of a longer and richer process where operations on data are as important as, (...) and even more time and energy-consuming than modeling itself. Drawing on two study cases—computational embryology and computational epidemiology—this article contributes to filling the gap by focusing on the operations of producing and re-using data in computational sciences. The different phases of the scientific and artisanal work of modelers include data collection, aggregation, homogenization, assemblage, analysis and visualization. The article deconstructs the ideas that data are self-evident informational aggregates and that data-driven approaches are exempted from theoretical work. More importantly, the paper stresses the fact that data are constructed and theory laden not only in their fabrication, but also in their reusing. (shrink) | |
Berichte zur Wissenschaftsgeschichte, Volume 45, Issue 3, Page 517-523, September 2022. No categories |