| |
We highlight that the connection of well-foundedness and recursive definitions is more than just convenience. While the consequences of making well-foundedness a sufficient condition for the existence of hierarchies have been extensively studied, we point out that well-foundedness is a necessary condition for the existence of hierarchies e.g. that even in an intuitionistic setting α⊢wfwhereα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_\alpha \vdash \mathsf{wf}\, {\rm where}\, _\alpha}$$\end{document} stands for the iteration of Π10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...) \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} comprehension along some ordinal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document} and wf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{wf}}$$\end{document} stands for the well-foundedness of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document}. (shrink) No categories | |
The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...) we prove in this paper that the statement “if X is well-ordered then εX is well-ordered” is equivalent to . This was first proved by Marcone and Montalban [Alberto Marcone, Antonio Montalbán, The epsilon function for computability theorists, draft, 2007] using recursion-theoretic and combinatorial methods. The proof given here is principally proof-theoretic, the main techniques being Schütte’s method of proof search [Kurt Schütte, Proof Theory, Springer-Verlag, Berlin, Heidelberg, 1977] and cut elimination for a fragment of. (shrink) | |
Let n be a positive integer. By a $\beta_{n}-model$ we mean an $\omega-model$ which is elementary with respect to $\sigma_{n}^{1}$ formulas. We prove the following $\beta_{n}-model$ version of $G\ddot{o}del's$ Second Incompleteness Theorem. For any recursively axiomatized theory S in the language of second order arithmetic, if there exists a $\beta_{n}-model$ of S, then there exists a $\beta_{n}-model$ of S + "there is no countable $\beta_{n}-model$ of S". We also prove a $\beta_{n}-model$ version of $L\ddot{o}b's$ Theorem. As a corollary, we obtain (...) a $\beta_{n}-model$ which is not a $\beta_{n+1}-model$. (shrink) | |