| |
In this study, falsification-aware semantics and sequent calculi for first-order classical logic are introduced and investigated. These semantics and sequent calculi are constructed based on a falsification-aware setting for first-order Nelson constructive three-valued logic. In fact, these semantics and sequent calculi are regarded as those for a classical variant of N3. The completeness and cut-elimination theorems for the proposed semantics and sequent calculi are proved using Schütte’s method. Similar results for the propositional case are also obtained. | |
A unified and modular falsification-aware single-succedent Gentzen-style framework is introduced for classical, paradefinite, paraconsistent, and paracomplete logics. This framework is composed of two special inference rules, referred to as the rules of explosion and excluded middle, which correspond to the principle of explosion and the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s LK for classical logic, these rules are admissible in cut-free LK. A falsification-aware single-succedent Gentzen-style sequent calculus fsCL for classical logic is formalized based (...) on the proposed framework. The calculus fsCL is obtained from the existing falsification-aware single-succedent Gentzen-style sequent calculus GN4 for Nelson’s paradefinite (or paraconsistent) four-valued logic N4 by adding the rules of explosion and excluded middle. A falsification-aware single-succedent Gentzen-style sequent calculus GN3 for Nelson’s paracomplete three-valued logic N3 is also obtained from GN4 by adding the rule of explosion. The cut-elimination theorems for fsCL, GN3, and some of their neighbors as well as the Glivenko theorem for fsCL are proved. (shrink) | |
The Craig interpolation theorem is shown for an extended LJ with strong negation. A new simple proof of this theorem is obtained. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |