| |
The paper reviews a number of approaches for handling restricted quantification in relevant logic, and proposes a novel one. This proceeds by introducing a novel kind of enthymematic conditional. | |
We have seen that proofs of soundness of (Boolean) DS, EFQ and of ABS — and hence the legitimation of these inferences — can be achieved only be appealing to the very form of reasoning in question. But this by no means implies that we have to fall back on classical reasoning willy-nilly. Many logical theories can provide the relevant boot-strapping. Decision between them has, therefore, to be made on other grounds. The grounds include the many criteria familiar from the (...) philosophy of science: theoretical integrity (e.g., paucity of ad hoc hypotheses), adequacy to the data (explaining the data of inference —all inferences, not just those chosen from consistent domains!) and so on. This paper has not attempted to address these issues in general. All it demonstrates is that the charge that a dialetheist solution to the semantic paradoxes can be maintained only by making some intelligible notion ineffable cannot be made to stick. The dialetheist has a coherent position, endorsing the T-scheme, but rejecting DS, EFQ (even Boolean DS and EFQ) and ABS. And any argument to the effect that the relevant notions are both ineffable and intelligible begs the question. The case against consistent “solutions” to the semantic paradoxes therefore remains intact. (shrink) | |
I discuss paradoxes of implication in the setting of a proof-conditional theory of meaning for logical constants. I argue that a proper logic of implication should be not only relevant, but also constructive and nonmonotonic. This leads me to select as a plausible candidate LL, a fragment of linear logic that differs from R in that it rejects both contraction and distribution. | |
We investigate the notion of classical negation from a non-classical perspective. In particular, one aim is to determine what classical negation amounts to in a paracomplete and paraconsistent four-valued setting. We first give a general semantic characterization of classical negation and then consider an axiomatic expansion BD+ of four-valued Belnap–Dunn logic by classical negation. We show the expansion complete and maximal. Finally, we compare BD+ to some related systems found in the literature, specifically a four-valued modal logic of Béziau and (...) the logic of classical implication and a paraconsistent de Morgan negation of Zaitsev. (shrink) | |
In this paper, we investigate neighbourhood semantics for modal extensions of relevant logics. In particular, we combine the neighbourhood interpretation of the relevant implication (and related connectives) with a neighbourhood interpretation of modal operators. We prove completeness for a range of systems and investigate the relations between neighbourhood models and relational models, setting out a range of augmentation conditions for the various relations and operations. | |
In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...) the maximal non-classical extension of both daC and Heyting-Brouwer logic HB . Finally, the relationship between daC and Logics of Formal Inconsistency is examined. (shrink) | |
An extension of intuitionism to empirical discourse, a project most seriously taken up by Dummett and Tennant, requires an empirical negation whose strength lies somewhere between classical negation (‘It is unwarranted that. . . ’) and intuitionistic negation (‘It is refutable that. . . ’). I put forward one plausible candidate that compares favorably to some others that have been propounded in the literature. A tableau calculus is presented and shown to be strongly complete. | |
Gentzen-type sequent calculi GBD+, GBDe, GBD1, and GBD2 are respectively introduced for De and Omori’s axiomatic extensions BD+, BDe, BD1, and BD2 of Belnap–Dunn logic by adding classical negation. These calculi are constructed based on a small modification of the original characteristic axiom scheme for negated implication. Theorems for syntactically and semantically embedding these calculi into a Gentzen-type sequent calculus LK for classical logic are proved. The cut-elimination, decidability, and completeness theorems for these calculi are obtained using these embedding theorems. (...) Similar results excluding cut-elimination results are also obtained for alternative Gentzen-type sequent calculi gBD+, gBDe, gBD1, and gBD2 for BD+, BDe, BD1, and BD2, respectively. These alternative calculi are constructed based on the original characteristic axiom scheme for negated implication. (shrink) | |
This paper presents completeness and conservative extension results for the boolean extensions of the relevant logic T of Ticket Entailment, and for the contractionless relevant logics TW and RW. Some surprising results are shown for adding the sentential constant t to these boolean relevant logics; specifically, the boolean extensions with t are conservative of the boolean extensions without t, but not of the original logics with t. The special treatment required for the semantic normality of T is also shown along (...) the way. (shrink) | |
The logic CE (for "Classical E") results from adding Boolean negation to Anderson and Belnap's logic E. This paper shows that CE is not a conservative extension of E. | |
In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem for embedding (...) BD+ into BDi and the McKinsey–Tarski theorem for embedding BDi into BDm. (shrink) | |
It is shown that there are exactly six normal DeMorgan monoids generated by the identity element alone. The free DeMorgan monoid with no generators but the identity is characterised and shown to have exactly three thousand and eighty-eight elements. This result solves the "Ackerman constant problem" of describing the structure of sentential constants in the logic R. | |
Sound and complete semantics for classical propositional logic can be obtained by interpreting sentences as sets. Replacing sets with commuting dense binary relations produces an interpretation that turns out to be sound but not complete for R. Adding transitivity yields sound and complete semantics for RM, because all normal Sugihara matrices are representable as algebras of binary relations. | |
Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...) is demonstrated that any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction. We conclude that our mathematical frame work is inappropriate for Theory of Computation. Furthermore, the result provides us a reason that many problems in Complexity Theory resist to be solved.(This work is completed in 2017 -5- 2, it is in vixra in 2017-5-14, presented in Unilog 2018, Vichy). (shrink) | |
Relevance logics are known to be sound and complete for relational semantics with a ternary accessibility relation. This paper investigates the problem of adequacy with respect to special kinds of dynamic semantics (i.e., proper relation algebras and relevant families of relations). We prove several soundness results here. We also prove the completeness of a certain positive fragment of R as well as of the first-degree fragment of relevance logics. These results show that some core ideas are shared between relevance logics (...) and relation algebras. Some details of certain incompleteness results, however, pinpoint where relevance logics and relation algebras diverge. To carry out these semantic investigations, we define a new tableaux formalization and new sequent calculi (with the single cut rule admissible) for various relevance logics. (shrink) | |
This paper explores early Australasian philosophy in some detail. Two approaches have dominated Western philosophy in Australia: idealism and materialism. Idealism was prevalent between the 1880s and the 1930s, but dissipated thereafter. Idealism in Australia often reflected Kantian themes, but it also reflected the revival of interest in Hegel through the work of ‘absolute idealists’ such as T. H. Green, F. H. Bradley, and Henry Jones. A number of the early New Zealand philosophers were also educated in the idealist tradition (...) and were influential in their communities, but produced relatively little. In Australia, materialism gained prominence through the work of John Anderson, who arrived in Australia in 1927, and continues to be influential. John Anderson had been a student of Henry Jones, who might therefore be said to have influenced both main strands of Australian philosophical thought. (shrink) | |
The logic B+ is Routley and Meyer’s basic positive logic. We define the logics BK+ and BK'+ by adding to B+ the K rule and to BK+ the characteristic S4 axiom, respectively. These logics are endowed with a relatively strong non-constructive negation. We prove that all the logics defined lack the K axiom and the standard paradoxes of consistency. | |
Jc Beall has made several contributions to the theory of restricted quantification in relevant logics. This paper examines these contributions and proposes an alternative account of restricted universals. The alternative is not, however, a theory of relevant restricted universals in any real sense. It is, however, a theory of restricted universals phrased in the most plausible general quantificational theory for relevant logics—Kit Fine’s stratified semantics. The motivation both for choosing this semantic framework and for choosing the particular theory of restricted (...) quantification we use is because they are the best way of dealing with these topics from Beall’s theory-building theory picture of logic, establishing a second point of contact with Beall’s work. (shrink) | |
The logic B M is Sylvan and Plumwood's minimal De Morgan logic. The aim of this paper is to investigate extensions of B M endowed with a quasi-Boolean negation of intuitionistic character included... | |
In relevance logic it has become commonplace to associate with each logic both an algebraic counterpart and a relational counterpart. The former comes from the Lindenbaum construction; the latter, called a model structure, is designed for semantical purposes. Knowing that they are related through the logic, we may enquire after the algebraic relationship between the algebra and the model structure. This paper offers a complete solution for the relevance logic R. Namely, R-algebras and R-model structures can be obtained from each (...) other, and represented in terms of each other, by application of power constructions. (shrink) | |
The basic quasi-Boolean negation expansions of relevance logics included in Anderson and Belnap’s relevance logic R are defined. We consider two types of QB-negation: H-negation and D-negation. The former one is of paraintuitionistic or superintuitionistic character, the latter one, of dual intuitionistic nature in some sense. Logics endowed with H-negation are paracomplete; logics with D-negation are paraconsistent. All logics defined in the paper are given a Routley-Meyer ternary relational semantics. | |
This paper briefly overviews some of the results and research directions. In the area of substructural logics from the last couple of decades. Substructural logics are understood here to include relevance logics, linear logic, variants of Lambek calculi and some other logics that are motivated by the idea of omitting some structural rules or making other structural changes in LK, the original sequent calculus for classical logic. | |
The sentential logic S extends classical logic by an implication-like connective. The logic was first presented by Chellas as the smallest system modelled by contraining the Stalnaker-Lewis semantics for counterfactual conditionals such that the conditional is effectively evaluated as in the ternary relations semantics for relevant logics. The resulting logic occupies a key position among modal and substructural logics. We prove completeness results and study conditions for proceeding from one family of logics to another. | |
The logic B+ is Routley and Meyer's basic positive logic. We show how to introduce a minimal intuitionistic negation and an intuitionistic negation in B+. The two types of negation are introduced in a wide spectrum of relevance logics built up from B+. It is proved that although all these logics have the characteristic paradoxes of consistency, they lack the K rule (and so, the K axioms). |