| |
It's been 41 years since the publication of Ernst Mayr's Cause and Effect in Biology wherein Mayr most clearly develops his version of the influential distinction between ultimate and proximate causes in biology. In critically assessing Mayr's essay I uncover false statements and red-herrings about biological explanation. Nevertheless, I argue to uphold an analogue of the ultimate/proximate distinction as it refers to two different kinds of explanations, one dynamical the other statistical. | |
In this paper, using a multilevel approach, we defend the positive role of natural selection in the generation of organismal form. Despite the currently widespread opinion that natural selection only plays a negative role in the evolution of form, we argue, in contrast, that the Darwinian factor is a crucial (but not exclusive) factor in morphological organization. Analyzing some classic arguments, we propose incorporating the notion of ‘downward causation’ into the concept of ‘natural selection.’ In our opinion, this kind of (...) causation is fundamental to the operation of selection as a creative evolutionary process. (shrink) | |
Thought experiments de facto play many different roles in biology: economical, ethical, technical and so forth. This paper, however, is interested in whether there are any distinctive features of biological TEs as such. The question may be settled in the affirmative because TEs in biology have a function that is intimately connected with the epistemological and methodological status of biology. Peculiar to TEs in biology is the fact that the reflexive, typically human concept of finality may be profitably employed to (...) discover mechanical-experimental causal relations in all living beings—with the obvious caveat that we do not hypostatise and interpret this concept as an ontological quality, since this would land one in an implicitly animistic, pre-Galilean view of nature. From a methodical point of view, the concept of finality is an essential assumption as well as a powerful heuristic tool in the practice of biology, that is, in the investigation of living beings in an intersubjectively testable and reproducible way. (shrink) | |
Research on animal behavior is typically organized according to a combination of two influential frameworks: Ernst Mayr’s distinction between proximate and ultimate causes, and Niko Tinbergen’s “four questions”. My aim is to debunk two common interpretive misconceptions about Mayr’s proximate–ultimate distinction and its relationship to Tinbergen’s four questions, and to offer a new interpretation that avoids both. The first misconception is that the proximate–ultimate distinction maps cleanly onto Tinbergen’s four questions, marking a boundary between Tinbergen’s evolutionary and survival value questions (...) versus developmental and mechanistic questions. The second is that Mayr’s proximate–ultimate distinction is meant to rule out the relevance of proximate causes to evolutionary explanations. I argue that neither is plausible given the text and Mayr’s philosophical aims, namely, to argue that evolutionary biology cannot be reduced to either the physical sciences or to other areas of biology. Through a reconstruction of Mayr’s anti-reductionist argument, I develop an interpretation according to which the proximate–ultimate distinction marks two ways that teleological reasoning can be naturalistically grounded in biology, corresponding to Mayr’s distinction between teleonomic and adapted systems. Mayr distinguishes reduction, which the proximate–ultimate distinction is meant to block, from analysis, through which he allows that proximate causes, causes that are neither proximate nor ultimate, and chance can all contribute to evolutionary explanations. I conclude by suggesting some ways in which the interpretation defended here reframes our understanding of Mayr’s disagreements with some evolutionary-developmental biologists. (shrink) | |
The theory of concepts advanced in the dissertation aims at accounting for a) how a concept makes successful practice possible, and b) how a scientific concept can be subject to rational change in the course of history. Traditional accounts in the philosophy of science have usually studied concepts in terms only of their reference; their concern is to establish a stability of reference in order to address the incommensurability problem. My discussion, in contrast, suggests that each scientific concept consists of (...) three components of content: 1) reference, 2) inferential role, and 3) the epistemic goal pursued with the concept's use. I argue that in the course of history a concept can change in any of these three components, and that change in one component—including change of reference—can be accounted for as being rational relative to other components, in particular a concept's epistemic goal.This semantic framework is applied to two cases from the history of biology: the homology concept as used in 19th and 20th century biology, and the gene concept as used in different parts of the 20th century. The homology case study argues that the advent of Darwinian evolutionary theory, despite introducing a new definition of homology, did not bring about a new homology concept (distinct from the pre-Darwinian concept) in the 19th century. Nowadays, however, distinct homology concepts are used in systematics/evolutionary biology, in evolutionary developmental biology, and in molecular biology. The emergence of these different homology concepts is explained as occurring in a rational fashion. The gene case study argues that conceptual progress occurred with the transition from the classical to the molecular gene concept, despite a change in reference. In the last two decades, change occurred internal to the molecular gene concept, so that nowadays this concept's usage and reference varies from context to context. I argue that this situation emerged rationally and that the current variation in usage and reference is conducive to biological practice.The dissertation uses ideas and methodological tools from the philosophy of mind and language, the philosophy of science, the history of science, and the psychology of concepts. (shrink) | |
Edited by Alessandro Minelli and Thomas Pradeu, Towards a Theory of Development gathers essays by biologists and philosophers, which display a diversity of theoretical perspectives. The discussions not only cover the state of art, but broaden our vision of what development includes and provide pointers for future research. Interestingly, all contributors agree that explanations should not just be gene-centered, and virtually none use design and other engineering metaphors to articulate principles of cellular and organismal organization. I comment in particular on (...) the issue of how to construe the notion of a ‘theory’ and whether developmental biology has or should aspire to have theories, which four of the contributions discuss in detail while taking opposing positions. Beyond construing a theory in terms of its empirical content, my aim is to shift the focus toward the role that theories have for guiding future scientific theorizing and practice. Such a conception of ‘theory’ is particularly important in the context of development, because arriving at a theoretical framework that provides guidance for the discipline of developmental biology as a whole is more plausible than a unified representation of development across all taxa. (shrink) |