Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs
Switch to: References

Add citations

You mustlogin to add citations.
  1. Radical anti-realism, Wittgenstein and the length of proofs.Mathieu Marion -2009 -Synthese 171 (3):419 - 432.
    After sketching an argument for radical anti-realism that does not appeal to human limitations but polynomial-time computability in its definition of feasibility, I revisit an argument by Wittgenstein on the surveyability of proofs, and then examine the consequences of its application to the notion of canonical proof in contemporary proof-theoretical-semantics.
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • “Surveyability” in Hilbert, Wittgenstein and Turing.Juliet Floyd -2023 -Philosophies 8 (1):6.
    An investigation of the concept of “surveyability” as traced through the thought of Hilbert, Wittgenstein, and Turing. The communicability and reproducibility of proof, with certainty, are seen as earmarked by the “surveyability” of symbols, sequences, and structures of proof in all these thinkers. Hilbert initiated the idea within his metamathematics, Wittgenstein took up a kind of game formalism in the 1920s and early 1930s in response. Turing carried Hilbert’s conception of the “surveyability” of proof in metamathematics through into his analysis (...) of what a formal system (what a step in a computation) is in “On computable numbers, with an application to the Entscheidungsproblem” (1936). Wittgenstein’s 1939 investigations of the significance of surveyability to the concept of “proof “in Principia Mathematica were influenced, both by Turing’s remarkable everyday analysis of the Hilbertian idea, and by conversations with Turing. Although Turing does not use the word “surveyability” explicitly, it is clear that the Hilbertian idea plays a recurrent role in his work, refracted through his engagement with Wittgenstein’s idea of a “language-game”. This is evinced in some of his later writings, where the “reform” of mathematical notation for the sake of human surveyability (1944/45) may be seen to draw out the Hilbertian idea. For Turing, as for Wittgenstein, the need for “surveyability” earmarks the evolving culture of humans located in an evolving social and scientific world, just as it had for Hilbert. (shrink)
    No categories
    Direct download(3 more)  
     
    Export citation  
     
    Bookmark  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd -2015 -Philosophia Mathematica 23 (2):255-276.

  • [8]ページ先頭

    ©2009-2025 Movatter.jp