| |
No categories | |
No categories | |
No categories | |
The event-triggered consensus control for leader-following multiagent systems subjected to external disturbances is investigated, by using the output feedback. In particular, a novel distributed event-triggered protocol is proposed by adopting dynamic observers to estimate the internal state information based on the measurable output signal. It is shown that under the developed observer-based event-triggered protocol, multiple agents will reach consensus with the desired disturbance attenuation ability and meanwhile exhibit no Zeno behaviors. Finally, a simulation is presented to verify the obtained results. No categories | |
No categories | |
No categories | |
No categories | |
Due to the excellent approximation ability, the neural networks based control method is used to achieve adaptive consensus of the fractional-order uncertain nonlinear multiagent systems with external disturbance. The unknown nonlinear term and the external disturbance term in the systems are compensated by using the radial basis function neural networks method, a corresponding fractional-order adaption law is designed to approach the ideal neural network weight matrix of the unknown nonlinear terms, and a control law is designed eventually. According to the (...) designed Lyapunov candidate function and the fractional theory, the systems stability is proved, and the adaptive consensus can be guaranteed by using the designed control law. Finally, two simulations are shown to illustrate the validity of the obtained results. (shrink) No categories | |
No categories |