Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs
Switch to: References

Add citations

You mustlogin to add citations.
  1. (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach -1996 -Archive for Mathematical Logic 36 (1):31-71.
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer -2012 -Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...) refinement of Howard's ordinal analysis of bar recursion that $\text{WKL}_0^\omega+\text{CAC}$ is $\Pi^0_2$-conservative over PRA and that one can extract primitive recursive realizers for such statements. Moreover, our proof is finitary in the sense of Hilbert's program. CAC implies that every sequence of $\mathbb{R}$ has a monotone subsequence. This Bolzano-Weierstraß}-like principle is commonly used in proofs. Our result makes it possible to extract primitive recursive terms from such proofs. We also discuss the Erdős-Moser principle, which—taken together with CAC—is equivalent to $\text{RT}^2_2$. (shrink)
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik &Ulrich Kohlenbach -2010 -Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...) sequences in Πi ∈ℕ[–ki, ki]. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Local stability of ergodic averages.Jeremy Avigad -unknown
    We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesgue measure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0, 1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, (...) we show that, for any nonexpansive linear operator T on a separable Hilbert space and any element f , it is possible to compute a bound on the rate of convergence of Anf from T , f , and the norm f ∗ of the limit. In particular, if T is the Koopman operator arising from a computable ergodic measure preserving transformation of a probability space X and f is any computable element of L2 (X ), then there is a computable bound on the rate of convergence of the sequence Anf. (shrink)
    Direct download(3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer &Ulrich Kohlenbach -2009 -Notre Dame Journal of Formal Logic 50 (4):427-444.
    This paper addresses the strength of Ramsey's theorem for pairs ($RT^2_2$) over a weak base theory from the perspective of 'proof mining'. Let $RT^{2-}_2$ denote Ramsey's theorem for pairs where the coloring is given by an explicit term involving only numeric variables. We add this principle to a weak base theory that includes weak König's Lemma and a substantial amount of $\Sigma^0_1$-induction (enough to prove the totality of all primitive recursive functions but not of all primitive recursive functionals). In the (...) resulting theory we show the extractability of primitive recursive programs and uniform bounds from proofs of $\forall\exists$-theorems. There are two components of this work. The first component is a general proof-theoretic result, due to the second author, that establishes conservation results for restricted principles of choice and comprehension over primitive recursive arithmetic PRA as well as a method for the extraction of primitive recursive bounds from proofs based on such principles. The second component is the main novelty of the paper: it is shown that a proof of Ramsey's theorem due to Erdős and Rado can be formalized using these restricted principles. So from the perspective of proof unwinding the computational content of concrete proofs based on $RT^2_2$ the computational complexity will, in most practical cases, not go beyond primitive recursive complexity. This even is the case when the theorem to be proved has function parameters f and the proof uses instances of $RT^2_2$ that are primitive recursive in f. (shrink)
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-principal ultrafilters, program extraction and higher-order reverse mathematics.Alexander P. Kreuzer -2012 -Journal of Mathematical Logic 12 (1):1250002-.
    We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher-order arithmetic. Let [Formula: see text] be the statement that a non-principal ultrafilter on ℕ exists and let [Formula: see text] be the higher-order extension of ACA0. We show that [Formula: see text] is [Formula: see text]-conservative over [Formula: see text] and thus that [Formula: see text] is conservative over PA. Moreover, we provide a program extraction method and show that from a proof of a strictly (...) [Formula: see text] statement ∀ f ∃ g A qf in [Formula: see text] a realizing term in Gödel's system T can be extracted. This means that one can extract a term t ∈ T, such that ∀ f A qf). (shrink)
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Term extraction and Ramsey's theorem for pairs.Alexander P. Kreuzer &Ulrich Kohlenbach -2012 -Journal of Symbolic Logic 77 (3):853-895.
    In this paper we study with proof-theoretic methods the function(al) s provably recursive relative to Ramsey's theorem for pairs and the cohesive principle (COH). Our main result on COH is that the type 2 functional provably recursive from $RCA_0 + COH + \Pi _1^0 - CP$ are primitive recursive. This also provides a uniform method to extract bounds from proofs that use these principles. As a consequence we obtain a new proof of the fact that $WKL_0 + \Pi _1^0 - (...) CP + COH$ is $\Pi _1^0 $ -conservative over PRA. Recent work of the first author showed that $\Pi _1^0 + CP + COH$ is equivalent to a weak variant of the Bolzano-Weierstraß principle. This makes it possible to use our results to analyze not only combinatorial but also analytical proofs. For Ramsey's theorem for pairs and two colors $\left( {RT_2^2 } \right)$ we obtain the upper bounded that the type 2 functionals provable recursive relative to $RCA_0 + \sum\nolimits_2^0 {IA + RT_2^2 } $ are in T₁. This is the fragment of Gödel's system T containing only type 1 recursion—roughly speaking it consists of functions of Ackermann type. With this we also obtain a uniform method for the extraction of T₁-bounds from proofs that use RT2..... Moreover, this yields a new proof of the fact that $WKL_0 + \sum\nolimits_2^0 {IA} + RT_2^2 $ is $\Pi _1^0 $ -conservative over $RCA_0 + \sum\nolimits_2^0 { - IA} $ . The results are obtained in two steps: in the first step a term including Skolem functions for the above principles is extracted from a given proof. This is done using Gödel's functional interpretation. After this the term is normalized, such that only specific instances of the Skolem functions are used. In the second step this term is interpreted using $\Pi _1^0 $ -comprehension. The comprehension is then eliminated in favor of induction using either elimination of monotone Skolem functions (for COH) or Howard's ordinal analysis of bar recursion (for $RT_2^2 $. (shrink)
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach -1998 -Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining faithfully the arithmetical (...) content of the former. This is achieved using the method of elimination of Skolem functions for monotone formulas which was introduced by the author in a previous paper.As corollaries we obtain new conservation results for fragments of analysis over fragments of arithmetic which strengthen known purely first-order conservation results.We also characterize the provably recursive functions of type 2 of the extensions of Tnω based on these fragments of arithmetical comprehension, choice and uniform boundedness. (shrink)
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Program extraction for 2-random reals.Alexander P. Kreuzer -2013 -Archive for Mathematical Logic 52 (5-6):659-666.
    Let ${2-\textsf{RAN}}$ be the statement that for each real X a real 2-random relative to X exists. We apply program extraction techniques we developed in Kreuzer and Kohlenbach (J. Symb. Log. 77(3):853–895, 2012. doi:10.2178/jsl/1344862165), Kreuzer (Notre Dame J. Formal Log. 53(2):245–265, 2012. doi:10.1215/00294527-1715716) to this principle. Let ${{\textsf{WKL}_0^\omega}}$ be the finite type extension of ${\textsf{WKL}_0}$ . We obtain that one can extract primitive recursive realizers from proofs in ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN}}$ , i.e., if ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN} (...) \, {\vdash} \, \forall{f}\, {\exists}{x} A_{qf}(f,x)}$ then one can extract from the proof a primitive recursive term t(f) such that ${A_{qf}(f,t(f))}$ . As a consequence, we obtain that ${{\textsf{WKL}_0}+ \Pi^0_1 - {\textsf{CP}} + 2-\textsf{RAN}}$ is ${\Pi^0_3}$ -conservative over ${\textsf{RCA}_0}$. (shrink)
    Direct download(3 more)  
     
    Export citation  
     
    Bookmark  

  • [8]ページ先頭

    ©2009-2025 Movatter.jp