Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs
Switch to: References

Add citations

You mustlogin to add citations.
  1. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei,Mikhail G. Katz &Thomas Mormann -2013 -Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...) Lebesgue measurable, suggesting that Connes views a theory as being “virtual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace −∫ (featured on the front cover of Connes’ magnum opus) and the Hahn–Banach theorem, in Connes’ own framework. We also note an inaccuracy in Machover’s critique of infinitesimal-based pedagogy. (shrink)
    Direct download(6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik &Mikhail G. Katz -2012 -Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...) the seeds of the theory of rates of growth of functions as developed by Paul du Bois-Reymond. One sees, with E. G. Björling, an infinitesimal definition of the criterion of uniform convergence. Cauchy’s foundational stance is hereby reconsidered. (shrink)
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair,Piotr Błaszczyk,Robert Ely,Valérie Henry,Vladimir Kanovei,Karin U. Katz,Mikhail G. Katz,Semen S. Kutateladze,Thomas McGaffey,Patrick Reeder,David M. Schaps,David Sherry &Steven Shnider -2017 -Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...) Bos and Laugwitz seek to explore Eulerian methodology, practice, and procedures in a way more faithful to Euler’s own. Euler’s use of infinite integers and the associated infinite products are analyzed in the context of his infinite product decomposition for the sine function. Euler’s principle of cancellation is compared to the Leibnizian transcendental law of homogeneity. The Leibnizian law of continuity similarly finds echoes in Euler. We argue that Ferraro’s assumption that Euler worked with a classical notion of quantity is symptomatic of a post-Weierstrassian placement of Euler in the Archimedean track for the development of analysis, as well as a blurring of the distinction between the dual tracks noted by Bos. Interpreting Euler in an Archimedean conceptual framework obscures important aspects of Euler’s work. Such a framework is profitably replaced by a syntactically more versatile modern infinitesimal framework that provides better proxies for his inferential moves. (shrink)
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz &Mikhail G. Katz -2012 -Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk,Mikhail G. Katz &David Sherry -2013 -Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...) with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d’Alembert, Cauchy, and others. (shrink)
    Direct download(9 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Stevin Numbers and Reality.Karin Usadi Katz &Mikhail G. Katz -2012 -Foundations of Science 17 (2):109-123.
    We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.Mikhail G. Katz,David M. Schaps &Steven Shnider -2013 -Perspectives on Science 21 (3):283-324.
    Adequality, or παρισóτης (parisotēs) in the original Greek of Diophantus 1 , is a crucial step in Fermat’s method of finding maxima, minima, tangents, and solving other problems that a modern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s collected works (1891, pp. 133–172). The first article, Methodus ad Disquirendam Maximam et Minimam 2 , opens with a summary of an algorithm for finding the maximum or minimum value of an (...) algebraic expression in a variable A. For convenience, we will write such an expression in modern functional notation as f (a). 3 The algorithm can be broken up into six steps in the following way:Introduce an auxiliary .. (shrink)
    Direct download(6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Internality, transfer, and infinitesimal modeling of infinite processes†.Emanuele Bottazzi &Mikhail G. Katz -forthcoming -Philosophia Mathematica.
    ABSTRACTA probability model is underdetermined when there is no rational reason to assign a particular infinitesimal value as the probability of single events. Pruss claims that hyperreal probabilities are underdetermined. The claim is based upon external hyperreal-valued measures. We show that internal hyperfinite measures are not underdetermined. The importance of internality stems from the fact that Robinson’s transfer principle only applies to internal entities. We also evaluate the claim that transferless ordered fields may have advantages over hyperreals in probabilistic modeling. (...) We show that probabilities developed over such fields are less expressive than hyperreal probabilities. (shrink)
    Direct download(2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts.Piotr Błaszczyk,Vladimir Kanovei,Mikhail G. Katz &David Sherry -2017 -Foundations of Science 22 (1):125-140.
    Foundations of Science recently published a rebuttal to a portion of our essay it published 2 years ago. The author, G. Schubring, argues that our 2013 text treated unfairly his 2005 book, Conflicts between generalization, rigor, and intuition. He further argues that our attempt to show that Cauchy is part of a long infinitesimalist tradition confuses text with context and thereby misunderstands the significance of Cauchy’s use of infinitesimals. Here we defend our original analysis of various misconceptions and misinterpretations concerning (...) the history of infinitesimals and, in particular, the role of infinitesimals in Cauchy’s mathematics. We show that Schubring misinterprets Proclus, Leibniz, and Klein on non-Archimedean issues, ignores the Jesuit context of Moigno’s flawed critique of infinitesimals, and misrepresents, to the point of caricature, the pioneering Cauchy scholarship of D. Laugwitz. (shrink)
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk,Vladimir Kanovei,Karin U. Katz,Mikhail G. Katz,Semen S. Kutateladze &David Sherry -2017 -Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...) solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework. (shrink)
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik,Renling Jin &Mikhail G. Katz -2012 -Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...) by Ehrlich (2012) can be obtained in this fashion, albeit not in NBG . In NBG , it can be obtained via a one-step construction by means of a definable ultrapower (modulo a suitable definable class ultrafilter). (shrink)
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Cauchy-Dirac Delta Function.Mikhail G. Katz &David Tall -2013 -Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Direct download(7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk,Vladimir Kanovei,Karin U. Katz,Mikhail G. Katz,Taras Kudryk,Thomas Mormann &David Sherry -2017 -Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...) calculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimal calculus than modern Weierstrassian ones. (shrink)
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz,Mikhail G. Katz &Taras Kudryk -2014 -Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Direct download(5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli,Piotr Błaszczyk,Alexandre Borovik,Vladimir Kanovei,Karin U. Katz,Mikhail G. Katz,Semen S. Kutateladze,Thomas McGaffey,David M. Schaps &David Sherry -2018 -Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz &David Sherry -2013 -Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...) Robinson regards Berkeley’s criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley’s criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz’s infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz’s defense of infinitesimals is more firmly grounded than Berkeley’s criticism thereof. We show, moreover, that Leibniz’s system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz’s strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity. (shrink)
    Direct download(6 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  • Stupne nekonzistentnosti.Ladislav Kvasz -2012 -Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 19:95-115.
  • Ambiguities of Fundamental Concepts in Mathematical Analysis During the Mid-nineteenth Century.Kajsa Bråting -2012 -Foundations of Science 17 (4):301-320.
    In this paper we consider the major development of mathematical analysis during the mid-nineteenth century. On the basis of Jahnke’s (Hist Math 20(3):265–284, 1993 ) distinction between considering mathematics as an empirical science based on time and space and considering mathematics as a purely conceptual science we discuss the Swedish nineteenth century mathematician E.G. Björling’s general view of real- and complexvalued functions. We argue that Björling had a tendency to sometimes consider mathematical objects in a naturalistic way. One example is (...) how Björling interprets Cauchy’s definition of the logarithm function with respect to complex variables, which is investigated in the paper. Furthermore, in view of an article written by Björling (Kongl Vetens Akad Förh Stockholm 166–228, 1852 ) we consider Cauchy’s theorem on power series expansions of complex valued functions. We investigate Björling’s, Cauchy’s and the Belgian mathematician Lamarle’s different conditions for expanding a complex function of a complex variable in a power series. We argue that one reason why Cauchy’s theorem was controversial could be the ambiguities of fundamental concepts in analysis that existed during the mid-nineteenth century. This problem is demonstrated with examples from Björling, Cauchy and Lamarle. (shrink)
    Direct download(4 more)  
     
    Export citation  
     
    Bookmark  

  • [8]ページ先頭

    ©2009-2025 Movatter.jp