| |
Current views of metaphysical ground suggest that a true conjunction is immediately grounded in its conjuncts, and only its conjuncts. Similar principles are suggested for disjunction and universal quantification. Here, it is shown that these principles are jointly inconsistent: They require that there is a distinct truth for any plurality of truths. By a variant of Cantor’s Theorem, such a fine-grained individuation of truths is inconsistent. This shows that the notion of grounding is either not in good standing, or that (...) natural assumptions about it need to be revised. (shrink) | |
I articulate and defend a necessary and sufficient condition for predication. The condition is that a term or term-occurrence stands in the relation of ascription to its designatum, ascription being a fundamental semantic relation that differs from reference. This view has dramatically different semantic consequences from its alternatives. After outlining the alternatives, I draw out these consequences and show how they favour the ascription view. I then develop the view and elicit a number of its virtues. | |
This paper presents a range of new triviality proofs pertaining to naïve truth theory formulated in paraconsistent relevant logics. It is shown that excluded middle together with various permutation principles such as A → (B → C)⊩B → (A → C) trivialize naïve truth theory. The paper also provides some new triviality proofs which utilize the axioms ((A → B)∧ (B → C)) → (A → C) and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. An (...) overview over various ways to formulate Leibniz’s law in non-classical logics and two new triviality proofs for naïve set theory are also provided. (shrink) | |
Quine maintained that philosophical and scientific theorizing should be conducted in an untyped language, which has just one style of variables and quantifiers. By contrast, typed languages, such as those advocated by Frege and Russell, include multiple styles of variables and matching kinds of quantification. Which form should our theories take? In this article, I argue that expressivity does not favour typed languages over untyped ones. | |
This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...) propositions, and abstraction principles in the philosophy of mathematics; to the modal and hyperintensional profiles of the logic of rational intuition; and to the types of intention, when the latter is interpreted as a hyperintensional mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal and hyperintensional cognitivism and modal and hyperintensional expressivism. Elohim develops a novel, topic-sensitive truthmaker semantics for dynamic epistemic logic, and develops a novel, dynamic two-dimensional semantics grounded in two-dimensional hyperintensional Turing machines. Chapter \textbf{3} provides an abstraction principle for two-dimensional (hyper-)intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal $\mu$-calculus in order to account for the iteration of epistemic states in a single agent, by contrast to availing of modal axiom 4 (i.e. the KK principle). The fixed point operators in the modal $\mu$-calculus are rendered hyperintensional, which yields the first hyperintensional construal of the modal $\mu$-calculus in the literature and the first application of the calculus to the iteration of epistemic states in a single agent instead of the common knowledge of a group of agents. Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's `criterial' identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapters \textbf{2} and \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. -/- Chapters \textbf{8-12} provide cases demonstrating how the two-dimensional hyperintensions of hyperintensional, i.e. topic-sensitive epistemic two-dimensional truthmaker, semantics, solve the access problem in the epistemology of mathematics. Chapter \textbf{8} examines the interaction between Elohim's hyperintensional semantics and the axioms of epistemic set theory, large cardinal axioms, the Epistemic Church-Turing Thesis, the modal axioms governing the modal profile of $\Omega$-logic, Orey sentences such as the Generalized Continuum Hypothesis, and absolute decidability. These results yield inter alia the first hyperintensional Epistemic Church-Turing Thesis and hyperintensional epistemic set theories in the literature. Chapter \textbf{9} examines the modal and hyperintensional commitments of abstractionism, in particular necessitism, and epistemic hyperintensionality, epistemic utility theory, and the epistemology of abstraction. Elohim countenances a hyperintensional semantics for novel epistemic abstractionist modalities. Elohim suggests, too, that higher observational type theory can be applied to first-order abstraction principles in order to make first-order abstraction principles recursively enumerable, i.e. Turing machine computable, and that the truth of the first-order abstraction principle for two-dimensional hyperintensions is grounded in its being possibly recursively enumerable and the machine being physically implementable. Chapter \textbf{10} examines the philosophical significance of hyperintensional $\Omega$-logic in set theory and discusses the hyperintensionality of metamathematics. Chapter \textbf{11} provides a modal logic for rational intuition and provides a hyperintensional semantics. Chapter \textbf{12} avails of modal coalgebras to interpret the defining properties of indefinite extensibility, and avails of hyperintensional epistemic two-dimensional semantics in order to account for the interaction between interpretational and objective modalities and the truthmakers thereof. This yields the first hyperintensional category theory in the literature. Elohim invents a new mathematical trick in which first-order structures are treated as categories, and Vopenka's principle can be satisfied because of the elementary embeddings between the categories and generate Vopenka cardinals in the category of Set in category theory. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Elohim provides a counter-example to epistemic closure for logical deduction. Chapter \textbf{14} examines, finally, the modal and hyperintensional semantics for the different types of intention and the relation of the latter to evidential decision theory. (shrink) | |
Kripke’s theory of truth, 690–716; 1975) has been very successful but shows well-known expressive difficulties; recently, Field has proposed to overcome them by adding a new conditional connective to it. In Field’s theories, desirable conditional and truth-theoretic principles are validated that Kripke’s theory does not yield. Some authors, however, are dissatisfied with certain aspects of Field’s theories, in particular the high complexity. I analyze Field’s models and pin down some reasons for discontent with them, focusing on the meaning of the (...) new conditional and on the status of the principles so successfully recovered. Subsequently, I develop a semantics that improves on Kripke’s theory following Field’s program of adding a conditional to it, using some inductive constructions that include Kripke’s one and feature a strong evaluation for conditionals. The new theory overcomes several problems of Kripke’s one and, although weaker than Field’s proposals, it avoids the difficulties that affect them; at the same time, the new theory turns out to be quite simple. Moreover, the new construction can be used to model various conceptions of what a conditional connective is, in ways that are precluded to both Kripke’s and Field’s theories. (shrink) | |
The paper discusses whether there are strictly inexpressible properties. Three main points are argued for: (i) Two different senses of ‘predicate t expresses property p ’ should be distinguished. (ii) The property of being a predicate that does not apply to itself is inexpressible in one of the senses of ‘express’, but not in the other. (iii) Since the said property is related to Grelling’s Antinomy, it is further argued that the antinomy does not imply the non-existence of that property. | |
We consider notions of truth and logical validity defined in various recent constructions of Hartry Field. We try to explicate his notion of determinate truth by clarifying the path-dependent hierarchies of his determinateness operator. | |
The semantic rules that govern ordinary property discourse appear to give rise to a version of Russell's antinomy. Do we therefore have an inconsistent conception of properties? This paper firstly develops a consistent conception of properties and secondly argues that we may indeed interpret ordinary property discourse as expressing the consistent conception rather than an inconsistent one. | |
There is significant interest in type-free systems that allow flexible self-application. Such systems are of interest in property theory, natural language semantics, the theory of truth, theoretical computer science, the theory of classes, and category theory. While there are a variety of proposed type-free systems, there is a particularly natural type-free system that we believe is prototypical: the logic of recursive algorithms. Algorithmic logic is the study of basic statements concerning algorithms and the algorithmic rules of inference between such statements. (...) As shown in [1], the threat of paradoxes, such as the Curry paradox, requires care in implementing rules of inference in this context. As in any type-free logic, some traditional rules will fail. The first part of the paper develops a rich collection of inference rules that do not lead to paradox. The second part identifies traditional rules of logic that are paradoxical in algorithmic logic, and so should be viewed with suspicion in type-free logic generally. (shrink) | |
According to Satosi Watanabe's "theorem of the ugly duckling", the number of predicates satisfied by any two different particulars is a constant, which does not depend on the choice of the two particulars. If the number of predicates satisfied by two particulars is their number of properties in common, and the degree of resemblance between two particulars is a function of their number of properties in common, then it follows that the degree of resemblance between any two different particulars is (...) also constant, which is absurd. Avoiding this absurd conclusion requires questioning assumptions about infinity in the proof or interpretation of the theorem, adopting a sparse conception of properties, or denying degree of resemblance is a function of number of properties in common. After arguing against both the first two options, this paper argues for a version of the third which analyses degree of resemblance as a function of properties in common, but weighted by their degree of naturalness or importance. (shrink) | |
Call a quantifier ‘unrestricted’ if it ranges over absolutely all objects. Arguably, unrestricted quantification is often presupposed in philosophical inquiry. However, developing a semantic theory that vindicates unrestricted quantification proves rather difficult, at least as long as we formulate our semantic theory within a classical first-order language. It has been argued that using a type theory as framework for our semantic theory provides a resolution of this problem, at least if a broadly Fregean interpretation of type theory is assumed. However, (...) the intelligibility of this interpretation has been questioned. In this paper I introduce a type-free theory of properties that can also be used to vindicate unrestricted quantification. This alternative emerges very naturally by reflecting on the features on which the type-theoretic solution of the problem of unrestricted quantification relies. Although this alternative theory is formulated in a non-classical logic, it preserves the deductive strength of classical strict type theory in a natural way. The ideas developed in this paper make crucial use of Russell’s notion of range of significance. (shrink) | |
Russell is often accused of having a naive ‘Fido’–Fido theory of meaning of the sort Wittgenstein attacked at the beginning of the Philosophical Investigations. In this paper I argue that he never held such a theory though I concede that, prior to 1918, he said various things that might lead a very careless reader to suppose that he had. However, in The Analysis of Mind, a book which we know Wittgenstein studied closely, Russell put forward an account of understanding an (...) utterance which clearly anticipates the use theory of meaning usually attributed to Wittgenstein. The paper concludes with some problems for understanding the use theory of meaning as presented by both Russell and, derivatively, Wittgenstein. (shrink) | |
This paper targets a series of potential issues for the discussion of, and modal resolution to, the alethic paradoxes advanced by Scharp (2013). I proffer four novel extensions of the theory, and detail six issues that the theory faces. I provide a counter-example to epistemic closure for reductio proofs. | |
This book contains a selection of the papers presented at the Logic, Reasoning and Rationality 2010 conference in Ghent. The conference aimed at stimulating the use of formal frameworks to explicate concrete cases of human reasoning, and conversely, to challenge scholars in formal studies by presenting them with interesting new cases of actual reasoning. According to the members of the Wiener Kreis, there was a strong connection between logic, reasoning, and rationality and that human reasoning is rational in so far (...) as it is based on logic. Later, this belief came under attack and logic was deemed inadequate to explicate actual cases of human reasoning. Today, there is a growing interest in reconnecting logic, reasoning and rationality. A central motor for this change was the development of non-classical logics and non-classical formal frameworks. The book contains contributions in various non-classical formal frameworks, case studies that enhance our apprehension of concrete reasoning patterns, and studies of the philosophical implications for our understanding of the notions of rationality. (shrink) | |
This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...) propositions, and abstraction principles in the philosophy of mathematics; to the modal and hyperintensional profiles of the logic of rational intuition; and to the types of intention, when the latter is interpreted as a hyperintensional mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal and hyperintensional cognitivism and modal and hyperintensional expressivism. Elohim develops a novel, topic-sensitive truthmaker semantics for dynamic epistemic logic, and develops a novel, dynamic two-dimensional semantics grounded in two-dimensional hyperintensional Turing machines. Chapter \textbf{3} provides an abstraction principle for two-dimensional (hyper-)intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal $\mu$-calculus in order to account for the iteration of epistemic states in a single agent, by contrast to availing of modal axiom 4 (i.e. the KK principle). The fixed point operators in the modal $\mu$-calculus are rendered hyperintensional, which yields the first hyperintensional construal of the modal $\mu$-calculus in the literature and the first application of the calculus to the iteration of epistemic states in a single agent instead of the common knowledge of a group of agents. Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's `criterial' identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapters \textbf{2} and \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. -/- Chapters \textbf{8-12} provide cases demonstrating how the two-dimensional hyperintensions of hyperintensional, i.e. topic-sensitive epistemic two-dimensional truthmaker, semantics, solve the access problem in the epistemology of mathematics. Chapter \textbf{8} examines the interaction between Elohim's hyperintensional semantics and the axioms of epistemic set theory, large cardinal axioms, the Epistemic Church-Turing Thesis, the modal axioms governing the modal profile of $\Omega$-logic, Orey sentences such as the Generalized Continuum Hypothesis, and absolute decidability. These results yield inter alia the first hyperintensional Epistemic Church-Turing Thesis and hyperintensional epistemic set theories in the literature. Chapter \textbf{9} examines the modal and hyperintensional commitments of abstractionism, in particular necessitism, and epistemic hyperintensionality, epistemic utility theory, and the epistemology of abstraction. Elohim countenances a hyperintensional semantics for novel epistemic abstractionist modalities. Elohim suggests, too, that higher observational type theory can be applied to first-order abstraction principles in order to make first-order abstraction principles recursively enumerable, i.e. Turing machine computable, and that the truth of the first-order abstraction principle for two-dimensional hyperintensions is grounded in its being possibly recursively enumerable and the machine being physically implementable. Chapter \textbf{10} examines the philosophical significance of hyperintensional $\Omega$-logic in set theory and discusses the hyperintensionality of metamathematics. Chapter \textbf{11} provides a modal logic for rational intuition and provides a hyperintensional semantics. Chapter \textbf{12} avails of modal coalgebras to interpret the defining properties of indefinite extensibility, and avails of hyperintensional epistemic two-dimensional semantics in order to account for the interaction between interpretational and objective modalities and the truthmakers thereof. This yields the first hyperintensional category theory in the literature. Elohim invents a new mathematical trick in which first-order structures are treated as categories, and Vopenka's principle can be satisfied because of the elementary embeddings between the categories and generate Vopenka cardinals in the category of Set in category theory. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Elohim provides a counter-example to epistemic closure for logical deduction. Chapter \textbf{14} examines, finally, the modal and hyperintensional semantics for the different types of intention and the relation of the latter to evidential decision theory. (shrink) |