| |
The paper offers a historical overview of Einstein's oscillating attitude towards a "phenomenological" and "dynamical" treatment of rods and clocks in relativity theory. Contrary to what it has been usually claimed in recent literature, it is argued that this distinction should not be understood in the framework of opposition between principle and constructive theories. In particular Einstein does not seem to have plead for a "dynamical" explanation for the phenomenon rods contraction and clock dilation which was initially described only "kinematically". (...) On the contrary textual evidence shows that, according to Einstein, a realistic microscopic model of rods and clocks was needed to account for the very existence of measuring devices of "identical construction" which always measure the same unit of time and the same unit of length. In fact, it will be shown that the empirical meaningfulness of both relativity theories depends on what, following Max Born, one might call the "principle of the physical identity of the units of measure". In the attempt to justify the validity of such principle, Einstein was forced by different interlocutors, in particular Hermann Weyl and Wolfgang Pauli, to deal with the genuine epistemological, rather then physical question whether a theory should be able or not to described the material devices that serve to its own verification. (shrink) | |
Faced with the mathematical possibility of non-Euclidean geometries, 19th Century geometers were tasked with the problem of determining which among the possible geometries corresponds to that of our space. In this context, the contribution of the Belgian philosopher-mathematician, Joseph Delboeuf, has been unduly neglected. The aim of this essay is to situate Delboeuf’s ideas within the context of the philosophies of geometry of his contemporaries, such as Helmholtz, Russell and Poincaré. We elucidate the central thesis, according to which Euclidean geometry (...) is given special status on the basis of the relativity of magnitudes, we uncover its hidden history and show that it is defensible within the context of the philosophies of geometry of the epoch. Through this discussion, we also develop various ideas that have some relevance to present-day methods in gravitational physics and cosmology. (shrink) | |
Gerald Holton has famously described Einstein’s career as a philosophical “pilgrimage”. Starting on “the historic ground” of Machian positivism and phenomenalism, following the completion of general relativity in late 1915, Einstein’s philosophy endured (a) a speculative turn: physical theorizing appears as ultimately a “pure mathematical construction” guided by faith in the simplicity of nature and (b) a realistic turn: science is “nothing more than a refinement ”of the everyday belief in the existence of mind-independent physical reality. Nevertheless, Einstein’s mathematical constructivism (...) that supports his unified field theory program appears to be, at first sight, hardly compatible with the common sense realism with which he countered quantum theory. Thus, literature on Einstein’s philosophy of science has often struggled in finding the thread between ostensibly conflicting philosophical pronouncements. This paper supports the claim that Einstein’s dialog with Émile Meyerson from the mid 1920s till the early 1930s might be a neglected source to solve this riddle. According to Einstein, Meyerson shared (a) his belief in the independent existence of an external world and (b) his conviction that the latter can be grasped only by speculative means. Einstein could present his search for a unified field theory as a metaphysical-realistic program opposed to the positivistic-operationalist spirit of quantum mechanics. (shrink) No categories | |
This study reconstructs the 1928–1929 correspondence between Reichenbach and Einstein about the latter’s latest distant parallelism-unified field theory, which attracted considerable public attention at the end of the 1920s. Reichenbach, who had recently become a Professor in Berlin, had the opportunity to discuss the theory with Einstein and therefore sent him a manuscript with some comments for feedback. The document has been preserved among Einstein’s papers. However, the subsequent correspondence took an unpleasant turn after Reichenbach published a popular article on (...) distant parallelism in a newspaper. Einstein directly wrote to the Editorial Board complaining about Reichenbach’s unfair use of off-the-record information. While Reichenbach’s reply demonstrates a sense of personal betrayal at Einstein’s behavior, his published writings of that period point to a sense of intellectual betrayal of their shared philosophical ideals. In his attempts to unify both electricity and gravitation, Einstein had abandoned the physical heuristic that guided him to the relativity theory, to embrace a more speculative, mathematical heuristic that he and Reichenbach had both previously condemned. A decade-long personal and intellectual friendship grew fainter and then never recovered. This study, relying on archival material, aims to revisit the Reichenbach–Einstein relationship in the late 1920s in light of Reichenbach’s neglected contributions to the epistemology of the unified field theory program. Thereby, it hopes to provide a richer account of Reichenbach’s philosophy of space and time. (shrink) No categories | |
A cluster of similar trends emerging in separate fields of science and philosophy points to new opportunities to apply biosemiotic ideas as tools for conceptual integration in theoretical biology. I characterize these developments as the outcome of a “relational turn” in these disciplines. They signal a shift of attention away from objects and things and towards relational structures and processes. Increasingly sophisticated research technologies of molecular biology have generated an enormous quantity of experimental data, sparking a need for relational approaches (...) that could help to find recurrent patterns in the mass of data. Earlier conceptions of relational biology and cybernetics, once deemed too abstract and speculative, are now resurrected and applied by means of new computational and simulation tools. I think this receptivity should be extended to incorporate nets of semiotic relations as heuristic guides for discerning global patterns of interactions in living systems. In this article I review aspects of systems biology and new directions in evolutionary theory, focusing on the role of circular and downward causation in relational structures and dynamical networks. I also indicate promising avenues of integration of some ideas of biosemiotics with those emerging from these new currents in biology. Relational developments in biology bear a telling similarity to a parallel relational turn presently manifest in the philosophy of science, rooted in the philosophy of physics and mathematics and in different varieties of structural and informational realism. The recognition of the relational nature of reality within these disciplines entails a tacit repudiation of nominalistic biases in science that have hindered the reception of semitiotic conceptions in biology. In previous investigations I explored connections between two kinds of relational structures: the networks of self-referential circular loops that appear pervasively in living systems, and the triadic relational structures that Peircean semiotics places at the basis of all semiotic transactions. Current relational views in the sciences seem oblivious to the difference between dyadic and triadic relations. Incorporating this essential distinction from biosemiotics into other fields could be a first step in seizing the opportunities opened by the relational turn for a renewal of biology and of natural philosophy in general, across disciplinary boundaries. (shrink) |