| |
In order to judge whether a theory is empirically adequate one must have epistemic access to reliable records of past measurement results that can be compared against the predictions of the theory. Some formulations of quantum mechanics fail to satisfy this condition. The standard theory without the collapse postulate is an example. Bell's reading of Everett's relative-state formulation is another. Furthermore, there are formulations of quantum mechanics that only satisfy this condition for a special class of observers, formulations whose empirical (...) adequacy could only be judged by an observer who records her measurement results in a special way. Bohm's theory is an example. It is possible to formulate hidden-variable theories that do not suffer from such a restriction, but these encounter other problems. (shrink) | |
We criticize the bare theory of quantum mechanics -- a theory on which the Schrödinger equation is universally valid, and standard way of thinking about superpositions is correct. | |
I argue that a strong mind–body dualism is required of any formulation of quantum mechanics that satisfies a relatively weak set of explanatory constraints. Dropping one or more of these constraints may allow one to avoid the commitment to a mind–body dualism but may also require a commitment to a physical–physical dualism that is at least as objectionable. Ultimately, it is the preferred basis problem that pushes both collapse and no-collapse theories in the direction of a strong dualism in resolving (...) the quantum measurement problem. Addressing this problem illustrates how the construction and evaluation of explanatorily rich physical theories are inextricably tied to the evaluation of traditional philosophical issues. (shrink) | |
There is a long tradition of trying to find a satisfactory interpretation of Everett's relative-state formulation of quantum mechanics. Albert and Loewer recently described two new ways of reading Everett: one we will call the single-mind theory and the other the many-minds theory. I will briefly describe these theories and present some of their merits and problems. Since both are no-collapse theories, a significant merit is that they can take advantage of certain properties of the linear dynamics, which Everett apparently (...) considered to be important, to constrain their statistical laws. (shrink) | |
On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical (...) predictions. Further, if it were false, then there would at least in principle be situations where a particle would approach an eigenstate of having one position but in fact always be somewhere very different. Indeed, we will see how this might happen even if the distribution postulate were true. This will help to show how loose the connection is between the wave-function and the positions of particles in Bohm's theory and what the precise role of the distribution postulate is. Finally, we will briefly consider two attempts to formulate a version of Bohm's theory without the distribution postulate. (shrink) | |
Quantum mechanics without the collapse postulate, the bare theory, was proposed by Albert (1992) as a way of understanding Everett's relative-state formulation of quantum mechanics. The basic idea is to try to account for an observer's beliefs by appealing to a type of illusion predicted by the bare theory. This paper responds to some recent objections to the bare theory by providing a more detailed description of the sense in which it can and the sense in which it cannot account (...) for our experience. (shrink) |