Movatterモバイル変換


[0]ホーム

URL:


Woszczyk et al., 2010 - Google Patents

Space Builder: An Impulse Response-Based Tool for Immersive 22.2 Channel Ambiance Design

Woszczyk et al., 2010

ViewPDF
Document ID
17881650716689751556
Author
Woszczyk W
Leonard B
Ko D
Publication year
Publication venue
Audio Engineering Society Conference: 40th International Conference: Spatial Audio: Sense the Sound of Space

External Links

Snippet

The convolution based Space Builder employs segments of impulse responses to construct flexible spatial designs using an intuitive graphic interface. The system uses multiple low- latency convolution engines loading data from a library of multi-channel impulse responses …
Continue reading atwww.academia.edu (PDF) (other versions)

Classifications

The classifications are assigned by a computer and are not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the classifications listed.
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/308Electronic adaptation dependent on speaker or headphone connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/265Acoustic effect simulation, i.e. volume, spatial, resonance or reverberation effects added to a musical sound, usually by appropriate filtering or delays
    • G10H2210/295Spatial effects, musical uses of multiple audio channels, e.g. stereo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/04Studio equipment; Interconnection of studios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/003Digital PA systems using, e.g. LAN or internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H1/00Details of electrophonic musical instruments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers

Similar Documents

PublicationPublication DateTitle
JP7033170B2 (en) Hybrid priority-based rendering system and method for adaptive audio content
EP3913931B1 (en)Apparatus for rendering audio, method and storage means therefor.
CA2729744C (en)Methods and systems for improved acoustic environment characterization
JPS63183495A (en)Sound field controller
CN101674512A (en)Method and apparatus to create a sound field
EP2486737A1 (en)System for spatial extraction of audio signals
Abel et al.Recreation of the acoustics of Hagia Sophia in Stanford’s Bing Concert Hall for the concert performance and recording of Cappella Romana
CN111405456A (en)Gridding 3D sound field sampling method and system
CN117043851A (en)Electronic device, method and computer program
Woszczyk et al.Space Builder: An Impulse Response-Based Tool for Immersive 22.2 Channel Ambiance Design
CN113766395A (en)Sound signal processing method, sound signal processing device, and sound signal processing program
JP2001186599A (en)Sound field creating device
JPH0415693A (en)Sound source information controller
Parnell et al.An efficient method for producing binaural mixes of classical music from a primary stereo mix
ReveillacRecording and Voice Processing, Volume 2: Working in the Studio
WO2008008417A2 (en)Microphone bleed simulator
Gozzi et al.Listen to the theatre! exploring florentine performative spaces
JP2005086537A (en) High realistic sound field reproduction information transmitting device, high realistic sound field reproduction information transmitting program, high realistic sound field reproduction information transmitting method and high realistic sound field reproduction information receiving device, high realistic sound field reproduction information receiving program, high realistic sound field reproduction Information receiving method
JP2021131432A (en)Sound signal processing method and sound signal processing device
Peters et al.Sound spatialization across disciplines using virtual microphone control (ViMiC)
Martin3D Spatialisation Technologies and aesthetic practice within electroacoustic composition: A journey through Listening, Composition and Performance
BrümmerCinema for the ears: Technical developments in acoustics and loudspeaker systems
Kim et al.A Study on the implementation of immersive sound using multiple speaker systems according to the location of sound sources in live performance
CA3128118C (en)Methods and systems for improved acoustic environment characterization
WO2024080001A1 (en)Sound processing method, sound processing device, and sound processing program

[8]
ページ先頭

©2009-2025 Movatter.jp