Movatterモバイル変換


[0]ホーム

URL:


Hosney et al., 2020 - Google Patents

Interference mitigation using angular diversity receiver with efficient channel estimation in MIMO VLC

Hosney et al., 2020

ViewPDF
Document ID
13502367396801255417
Author
Hosney M
Selmy H
Srivastava A
Elsayed K
Publication year
Publication venue
IEEE Access

External Links

Snippet

Visible Light Communication (VLC) is a promising solution to meet the ever increasing demand for indoor data connectivity with high bit rates. VLC uses the license-free bands and provides high-speed connections unlike RF wireless communication. However; indoor VLC …
Continue reading atieeexplore.ieee.org (PDF) (other versions)

Classifications

The classifications are assigned by a computer and are not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the classifications listed.
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • H04B7/0606Random or pseudo-random switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1141One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION

Similar Documents

PublicationPublication DateTitle
Hosney et al.Interference mitigation using angular diversity receiver with efficient channel estimation in MIMO VLC
Obeed et al.On optimizing VLC networks for downlink multi-user transmission: A survey
Aboagye et al.RIS-assisted visible light communication systems: A tutorial
Marshoud et al.Non-orthogonal multiple access for visible light communications
Alaka et al.Generalized spatial modulation in indoor wireless visible light communication
Zhang et al.Visible light communications in heterogeneous networks: Paving the way for user-centric design
Ma et al.Coordinated beamforming for downlink visible light communication networks
Marshoud et al.MU-MIMO precoding for VLC with imperfect CSI
Biagi et al.Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication
Yapıcı et al.NOMA for VLC downlink transmission with random receiver orientation
Eldeeb et al.Interference mitigation and capacity enhancement using constraint field of view ADR in downlink VLC channel
Guzman et al.Cooperative optical wireless transmission for improving performance in indoor scenarios for visible light communications
Tavakkolnia et al.Energy-efficient adaptive MIMO-VLC technique for indoor LiFi applications
Eldeeb et al.Optimal resource allocation and interference management for multi-user uplink light communication systems with angular diversity technology
Abdalla et al.Interference in multi-user optical wireless communications systems
Chen et al.Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems
Halawi et al.Performance analysis of circular color shift keying in VLC systems with camera-based receivers
Dehghani SoltaniAnalysis of random orientation and user mobility in LiFi networks
Guzmán et al.Resource allocation for cooperative transmission in optical wireless cellular networks with illumination requirements
Naser et al.Rate-splitting multiple access for indoor visible light communication networks
Panayirci et al.Spatial modulation aided physical layer security for NOMA-VLC systems
Olanrewaju et al.Generalized spatial pulse position modulation for optical wireless communications
Yesilkaya et al.Achieving minimum error in MISO optical spatial modulation
Cai et al.Photodetector selection aided multiuser MIMO optical OFDM imaging visible light communication system
Chen et al.NOMA for MIMO visible light communications: A spatial domain perspective

[8]
ページ先頭

©2009-2025 Movatter.jp