ANTI-CD44 ANTIBODIES AND USES THEREOF
FIELD OF THE INVENTION:
The present invention is in the field of medicine, in particular oncology.
BACKGROUND OF THE INVENTION:
CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases. CD44 has also been identified as a marker for stem cells of several types. Beside standard CD44 (sCD44), variant (vCD44) isoforms of CD44 have been shown to be created by alternate splicing of the mRNA in several cancer. Addition of new exons into the extracellular domain near the transmembrane of sCD44 increases the tendency for expressing larger size vCD44 isoforms. Expression of certain vCD44 isoforms was linked with progression and metastasis of cancer cells as well as patient prognosis. The expression of CD44 isoforms can be correlated with tumor subtypes and be a marker of cancer stem cells. CD44 cleavage, shedding, and elevated levels of soluble CD44 in the serum of patients is a marker of tumor burden and metastasis in several cancers including colon and gastric cancer. Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells.
In particular, elevated CD44v expression on AML cells has been documented and the expression of certain variants has been associated with poor prognosis in AML. Dick et al tested whether ligation of CD44 alters LSC fate by transplanting human AML cells into NOD/SCID mice followed by regular injection of an activating anti-CD44 mAb (H90) (Jin, Liqing, et al. "Targeting of CD44 eradicates human acute myeloid leukemic stem cells. " Nature medicine 12.10 (2006): 1167-1174). They report that H90 mediated ligation of CD44 efficiently and selectively eradicated AML-LSC in vivo by blocking LSC trafficking to supportive microenvironments and by forcing their differentiation. The demonstration that CD44 is necessary for maintenance of AML-LSC resolves the questions of whether AML-LSC are niche dependent and provides strong support for the development of novel CD44 targeted therapies for AML.
W02005049082 describes two chimeric anti-CD44 antibodies comprising specific amino acid sequence, derived from antibodies A3D8 and H90 and their use, in the preparation of a medicament for eradicating pathological stem cells in cancer therapy, and more specifically in AML therapy.
SUMMARY OF THE INVENTION:
The present invention is defined by the claims. In particular, the present invention relates to anti-CD44 antibodies and uses thereof.
DETAILED DESCRIPTION OF THE INVENTION:
The anti-CD44 antibody of the present invention is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD44 antigen found on the surface of normal and malignant cells. The antibody is an IgG4 immunoglobulin containing murine light- and heavy chain variable region sequences and human constant region sequences. The antibody has an approximate molecular weight of 145 kD. It has a binding affinity for the CD44 antigen of approximately 0.01 nM.
Main Definitions:
As used herein, the terms "a" and "an" refer to one or to more than one (z.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.
As used herein, the term "about" when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or in some instances ±10%, or in some instances ±5%, or in some instances ±1%, or in some instances ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.
As used herein, the term "nucleic acid" or "polynucleotide" refers to a polymer of nucleotides covalently linked by phosphodiester bonds, such as deoxyribonucleic acids (DNA) or ribonucleic acids (RNA), in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).
As used herein, the term "encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as, for example, a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase “nucleotide sequence that encodes a protein or a RNA” may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).
As used herein, the terms "peptide", "polypeptide", and "protein" are used interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds. A polypeptide is not limited to a specific length: it must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a polypeptide's sequence. Peptides, oligopeptides, and proteins are included within the definition of polypeptide, and such terms may be used interchangeably herein unless specifically indicated otherwise. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. In some embodiments, as used herein, the term “peptides” refers to a linear polymer of amino acids linked together by peptide bonds, preferably having a chain length of less than about 50 amino acids residues; a "polypeptide" refers to a linear polymer of at least 50 amino acids linked together by peptide bonds; and a protein specifically refers to a functional entity formed of one or more peptides or polypeptides, optionally glycosylated, and optionally of non-polypeptides cofactors. This term also does exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. A polypeptide may be an entire protein, or a subsequence thereof. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. A polypeptide includes a natural peptide, a recombinant peptide, or a combination thereof. Particular polypeptides of interest in the context of this invention are amino acid subsequences comprising CDRs and being capable of binding an antigen.
As used herein, the “percent identity” between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = number of identical positions/total number of positions x 100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described below. The percent identity between two amino acid sequences can be determined using the Needleman and Wunsch algorithm (Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of Molecular Biology. 48 (3): 443-53.). The percent identity between two nucleotide or amino acid sequences may also be determined using for example algorithms such as EMBOSS Needle (pair wise alignment; available at www.ebi.ac.uk). For example, EMBOSS Needle may be used with a BLOSUM62 matrix, a “gap open penalty” of 10, a “gap extend penalty” of 0.5, a false “end gap penalty”, an “end gap open penalty” of 10 and an “end gap extend penalty” of 0.5. In general, the “percent identity” is a function of the number of matching positions divided by the number of positions compared and multiplied by 100. For instance, if 6 out of 10 sequence positions are identical between the two compared sequences after alignment, then the identity is 60%. The % identity is typically determined over the whole length of the query sequence on which the analysis is performed. Two molecules having the same primary amino acid sequence or nucleic acid sequence are identical irrespective of any chemical and/or biological modification. According to the invention a first amino acid sequence having at least 70% of identity with a second amino acid sequence means that the first sequence has 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95; 96; 97; 98; 99 or 100% of identity with the second amino acid sequence.
As used herein, the term “CD44” has its general meaning in the art and refers to a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromosome 11. CD44 has been referred to as HCAM (homing cell adhesion molecule), Pgp-1 (phagocytic glycoprotein- 1), Hermes antigen, lymphocyte homing receptor, ECM-III, and HUTCH-1. An exemplary amino acid sequence of CD44 is represented by SEQ ID NO:1. The extracellular domain of CD44 ranges from the amino acid residue at position 21 to the amino acid residue at position 649 in SEQ ID NO: 1.
SEQ ID NO : 1 >sp | Pl 6070 | CD44_HUMAN CD44 antigen OS=Homo sapiens OX=9606 GN=CD44 PE=1 SV=3 . The extracellular domain is underlined .
MD K FWWHAAWGL C L VP L S LAQIDLNITCRFAGVFHVEKNGRYSI SRTEAADLCKAFNSTL PTMAQMEKALSIGFETCRYGFIEGHWI PRIHPNSICAANNTGVYILTSNTSQYDTYCFN ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS GSSSERSSTSGGYI FYTFSTVHPI PDEDSPWITDSTDRI PATTLMSTSATATETATKRQE TWDWFSWLFLPSESKNHLHTTTQMAGTSSNTI SAGWEPNEENEDERDRHLSFSGSGIDDD EDFI SSTI STTPRAFDHTKQNQDWTQWNPSHSNPEVLLQTTTRMTDVDRNGTTAYEGNWN PEAHPPLIHHEHHEEEETPHSTSTIQATPSSTTEETATQKEQWFGNRWHEGYRQTPKEDS HSTTGTAAASAHTSHPMQGRTTPSPEDSSWTDFFNPI SHPMGRGHQAGRRMDMDSSHSIT LQPTANPNTGLVEDLDRTGPLSMTTQQSNSQSFSTSHEGLEEDKDHPTTSTLTSSNRNDV TGGRRDPNHSEGSTTLLEGYTSHYPHTKESRTFI PVTSAKTGSFGVTAVTVGDSNSNVNR SLSGDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGPIRTPQI PEW LI ILASLLAL ALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLNGEASKSQEMVHLVNKESSET PDQFMTADETRNLQNVDMKIGV
As used herein, the term "antibody" refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. As such, the term antibody encompasses not only whole antibody molecules, but also antibody fragments as well as variants (including derivatives) of antibodies and antibody fragments. In natural antibodies, two heavy chains are linked to each other by disulfide bonds and each heavy chain is linked to a light chain by a disulfide bond. There are two types of light chain, lambda (1) and kappa (k). There are five main heavy chain classes (or isotypes) which determine the functional activity of an antibody molecule: IgM, IgD, IgG, IgA and IgE. Each chain contains distinct sequence domains. The light chain includes two domains, a variable domain (VL) and a constant domain (CL). The heavy chain includes four domains, a variable domain (VH) and three constant domains (CHI, CH2 and CH3, collectively referred to as CH). The variable regions of both light (VL) and heavy (VH) chains determine binding recognition and specificity to the antigen. The constant region domains of the light (CL) and heavy (CH) chains confer important biological properties such as antibody chain association, secretion, trans-placental mobility, complement binding, and binding to Fc receptors (FcR). The Fv fragment is the N-terminal part of the Fab fragment of an immunoglobulin and consists of the variable portions of one light chain and one heavy chain. The specificity of the antibody resides in the structural complementarity between the antibody combining site and the antigenic determinant. Antibody combining sites are made up of residues that are primarily from the hypervariable or complementarity determining regions (CDRs). Occasionally, residues from nonhypervariable or framework regions (FR) can participate to the antibody binding site or influence the overall domain structure and hence the combining site. Complementarity Determining Regions or CDRs refer to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site. The light and heavy chains of an immunoglobulin each have three CDRs, designated L-CDR1, L-CDR2, L- CDR3 and H-CDR1, H-CDR2, H-CDR3, respectively. An antigen-binding site, therefore, typically includes six CDRs, comprising the CDR set from each of a heavy and a light chain V region. Framework Regions (FRs) refer to amino acid sequences interposed between CDRs. In the context of the invention, the amino acid residues of the antibody of the invention are numbered according to the IMGT numbering system. The IMGT unique numbering has been defined to compare the variable domains whatever the antigen receptor, the chain type, or the species (Lefranc M.-P., "Unique database numbering system for immunogenetic analysis" Immunology Today, 18, 509 (1997) ; Lefranc M.-P., "The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains" The Immunologist, 7, 132-136 (1999).; Lefranc, M.-P., Pommie, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V. and Lefranc, G., "IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains" Dev. Comp. Immunol., 27, 55-77 (2003).). In the IMGT unique numbering, the conserved amino acids always have the same position, for instance cysteine 23, tryptophan 41, hydrophobic amino acid 89, cysteine 104, phenylalanine or tryptophan 118. The IMGT unique numbering provides a standardized delimitation of the framework regions (FR1-IMGT: positions 1 to 26, FR2-IMGT: 39 to 55, FR3-IMGT: 66 to 104 and FR4-IMGT: 118 to 128) and of the complementarity determining regions: CDR1-IMGT: 27 to 38, CDR2-IMGT: 56 to 65 and CDR3-IMGT: 105 to 117. If the CDR3-IMGT length is less than 13 amino acids, gaps are created from the top of the loop, in the following order 111, 112, 110, 113, 109, 114, etc. If the CDR3-IMGT length is more than 13 amino acids, additional positions are created between positions 111 and 112 at the top of the CDR3-IMGT loop in the following order 112.1,111.1, 112.2, 111.2, 112.3, 111.3, etc.
(http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGT-FRCDRdefmition.html)
As used herein, the terms "monoclonal antibody", "monoclonal Ab" “mAb", or the like, as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
As used herein, the term “variable region” or “variable domain” of an antibody refers to the amino-terminal domains of the heavy or light chain of the antibody. The variable domain of the heavy chain may be referred to as “VH”. The variable domain of the light chain may be referred to as “VL”. These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.
As used herein, the term "hypervariable region" when used herein refers to the amino acid residues of an antibody that are responsible for antigen binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g., around about residues 24-34 (LI), 50-56 (L2) and 89-97 (L3) in the VL, and around about 31-35 (Hl), 50-65 (H2) and 95-102 (H3) in the VH when numbered in accordance with the Kabat numbering system; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
As used herein, the term "antibody fragment" refers to at least one portion of an intact antibody, preferably the antigen binding region or variable region of the intact antibody, that retains the ability to specifically interact with e.g., by binding, steric hindrance, stabilizing/destabilizing, spatial distribution) an epitope of an antigen. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, Fv fragments, single chain antibody molecules, in particular scFv antibody fragments, disulfide-linked Fvs (sdFv), a Fd fragment consisting of the VH and CHI domains, linear antibodies, single domain antibodies such as, for example, sdAb (either VL or VH) or camelid VHH domains. An antigen binding fragment can also be incorporated into single domain antibodies, maxibodies, minibodies, nanobodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, Nature Biotechnology 23: 1126-1136, 2005). Antigen binding fragments can also be grafted into scaffolds based on polypeptides such as a fibronectin type III (see U.S. Patent No.: 6,703,199, which describes fibronectin polypeptide minibodies). Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily.
As used herein, the term “Fab” denotes an antibody fragment having a molecular weight of about 50,000 and antigen binding activity, in which about a half of the N-terminal side of H chain and the entire L chain, among fragments obtained by treating IgG with a protease, papaine, are bound together through a disulfide bond.
As used herein, the term “F(ab')2” refers to an antibody fragment having a molecular weight of about 100,000 and antigen binding activity, which is slightly larger than the Fab bound via a disulfide bond of the hinge region, among fragments obtained by treating IgG with a protease, pepsin.
As used herein, the term “Fab'“ refers to an antibody fragment having a molecular weight of about 50,000 and antigen binding activity, which is obtained by cutting a disulfide bond of the hinge region of the F(ab')2. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
As used herein, the term “single chain Fv” or "scFv" refers to a polypeptide is a covalently linked VH::VL heterodimer which is usually expressed from a gene fusion including VH and VL encoding genes linked by a peptide-encoding linker. The scFv fragment of the invention includes CDRs that are held in appropriate conformation, preferably by using gene recombination techniques.
As used herein, a “functional fragment” is a compound having qualitative biological activity in common with a full-length antibody. For example, a functional fragment or analog of an anti- IgE antibody is one that can bind to an IgE immunoglobulin in such a manner so as to prevent or substantially reduce the ability of such molecule from having the ability to bind to the high affinity receptor, Fc[epsilon]RI.
As used herein, the term “Fc region” includes the polypeptides comprising the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM, and the flexible hinge N-terminal to these domains. For IgA and IgM Fc may include the J chain. For IgG, Fc comprises immunoglobulin domains Cgamma2 and Cgamma3 (Cy2 and Cy3) and the hinge between Cgammal (Cyl) and Cgamma2 (Cy2). Although the boundaries of the Fc region may vary, the human IgG heavy chain Fc region is usually defined to comprise residues C226 or P230 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat et al. (1991, NIH Publication 91-3242, National Technical Information Service, Springfield, Va.). The “EU index as set forth in Kabat” refers to the residue numbering of the human IgGl EU antibody as described in Kabat et al. supra. Fc may refer to this region in isolation, or this region in the context of an antibody, antibody fragment, or Fc fusion protein. An Fc variant protein may be an antibody, Fc fusion, or any protein or protein domain that comprises an Fc region. Particularly preferred are proteins comprising variant Fc regions, which are non-naturally occurring variants of an Fc region. The amino acid sequence of a non-naturally occurring Fc region (also referred to herein as a “variant Fc region”) comprises a substitution, insertion and/or deletion of at least one amino acid residue compared to the wild type amino acid sequence. Any new amino acid residue appearing in the sequence of a variant Fc region as a result of an insertion or substitution may be referred to as a non-naturally occurring amino acid residue. Note: Polymorphisms have been observed at a number of Fc positions, including but not limited to Kabat 270, 272, 312, 315, 356, and 358, and thus slight differences between the presented sequence and sequences in the prior art may exist.
As used herein, the term "chimeric antibody" refers to an antibody which comprises a VH domain and a VL domain of a non-human antibody, and a CH domain and a CL domain of a human antibody. In some embodiments, a “chimeric antibody” is an antibody molecule in which (a) the constant region (z.e., the heavy and/or light chain), or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity. Chimeric antibodies also include humanized antibodies. Furthermore, chimeric antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. For further details, see Jones et al., Nature 321 :522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992). (see U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81 :6851-6855 (1984)).
As used herein, the term “binding” as used herein refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogenbond interactions, including interactions such as salt bridges and water bridges. In particular, as used herein, the term "binding" in the context of the binding of an antibody to a predetermined antigen or epitope typically is a binding with an affinity corresponding to a KD of about 10'7 M or less, such as about 10'8 M or less, such as about 10'9 M or less, about IO'10 M or less, or about 10'11 M or even less. Methods for measuring the KD of an antibody are well known in the art and include, without limitation, surface plasmon resonance (SPR) technology in a BIAcore 3000 instrument using a soluble form of the antigen as the ligand and the antibody as the analyte. BIACORE® (GE Healthcare, Piscaataway, NJ) is one of a variety of surface plasmon resonance assay formats that are routinely used to epitope bin panels of monoclonal antibodies. Affinities of antibodies can be readily determined using other conventional techniques, for example, those described by Scatchard et al., (Ann. N.Y. Acad. Sci. USA 51 :660 (1949)). Binding properties of an antibody to antigens, cells or tissues may generally be determined and assessed using immunodetection methods including, for example, immunofluorescence-based assays, such as immunohistochemistry (IHC) and/or fluorescence- activated cell sorting (FACS). Typically, an antibody binds to the predetermined antigen with an affinity corresponding to a KD that is at least ten-fold lower, such as at least 100-fold lower, for instance at least 1,000-fold lower, such as at least 10,000-fold lower, for instance at least 100,000-fold lower than its KD for binding to a non-specific antigen (e.g., BSA, casein), which is not identical or closely related to the predetermined antigen. When the KD of the antibody is very low (that is, the antibody has a high affinity), then the KD with which it binds the antigen is typically at least 10,000-fold lower than its KD for a non-specific antigen. An antibody is said to essentially not bind an antigen or epitope if such binding is either not detectable (using, for example, plasmon resonance (SPR) technology in a BIAcore 3000 instrument using a soluble form of the antigen as the ligand and the antibody as the analyte), or is 100 fold, 500 fold, 1000 fold or more than 1000 fold less than the binding detected by that antibody and an antigen or epitope having a different chemical structure or amino acid sequence.
As used herein, the term “affinity”, as used herein, means the strength of the binding of an antibody to an epitope. The affinity of an antibody is given by the dissociation constant Kd, defined as [Ab] x [Ag] / [Ab-Ag], where [Ab-Ag] is the molar concentration of the antibodyantigen complex, [Ab] is the molar concentration of the unbound antibody and [Ag] is the molar concentration of the unbound antigen. The affinity constant Ka is defined by 1/Kd. Preferred methods for determining the affinity of mAbs can be found in Harlow, et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988), Coligan et al., eds., Current Protocols in Immunology, Greene Publishing Assoc, and Wiley Interscience, N.Y., (1992, 1993), and Muller, Meth. Enzymol. 92:589-601 (1983), which references are entirely incorporated herein by reference. One preferred and standard method well known in the art for determining the affinity of mAbs is the use of Biacore instruments.
As used herein, the terms “Fc receptor” or “FcR” are used to describe a receptor that binds to the Fc region of an antibody. The primary cells for mediating ADCC, NK cells, express FcyRIII, whereas monocytes express FcyRI, FcyRII, FcyRIII and/or FcyRIV. FcR expression on hematopoietic cells is summarized in Ravetch and Kinet, Annu. Rev. Immunol., 9:457-92 (1991). To assess ADCC activity of a molecule, an in vitro ADCC assay, such as that described in U.S. Pat. No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecules of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al., Proc. Natl. Acad. Sci. (USA), 95:652-656 (1998).
As used herein, the term “effector cells” are leukocytes which express one or more FcRs and perform effector functions. The cells express at least FcyRI, FCyRII, FcyRIII and/or FcyRIV and carry out ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils. As used herein the term “antibody-dependent cell-mediated cytotoxicity” or “ADCC” refer to a cell-mediated reaction in which non-specific cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. While not wishing to be limited to any particular mechanism of action, these cytotoxic cells that mediate ADCC generally express Fc receptors (FcRs).
As used herein, the term “complement dependent cytotoxicity” or “CDC” refers to the ability of a molecule to initiate complement activation and lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (Clq) to a molecule (e.g., an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santaro et al., J. Immunol. Methods, 202: 163 (1996), may be performed.
As used herein, the term “antibody-dependent phagocytosis” or “opsonisation” refers to the cell-mediated reaction wherein nonspecific cytotoxic cells that express FcyRs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell.
As used herein, the term "patient" refers to a warm-blooded animal, preferably a mammal (including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc...), and more preferably a human. In some embodiments, a patient may be a “patient”, z.e., a warm-blooded animal, more preferably a human, who/which is awaiting the receipt of, or is receiving medical care or was/is/will be the object of a medical procedure, or is monitored for the development of a disease. In some embodiments, the patient is an adult (for example a patient above the age of 18). In another embodiment, the patient is a child (for example a patient below the age of 18). In some embodiments, the patient is a male. In another embodiment, the patient is a female.
As used herein, the term "cancer" has its general meaning in the art and includes, but is not limited to, solid tumors and blood-borne tumors. The term cancer includes diseases of the skin, tissues, organs, bone, cartilage, blood and vessels. The term "cancer" further encompasses both primary and metastatic cancers.
As used herein, the term "treatment" or "treat" refer to both prophylactic or preventive treatment as well as curative or disease modifying treatment, including treatment of patient at risk of contracting the disease or suspected to have contracted the disease as well as patients who are ill or have been diagnosed as suffering from a disease or medical condition, and includes suppression of clinical relapse. The treatment may be administered to a patient having a medical disorder or who ultimately may acquire the disorder, in order to prevent, cure, delay the onset of, reduce the severity of, or ameliorate one or more symptoms of a disorder or recurring disorder, or in order to prolong the survival of a patient beyond that expected in the absence of such treatment. By "therapeutic regimen" is meant the pattern of treatment of an illness, e.g., the pattern of dosing used during therapy. A therapeutic regimen may include an induction regimen and a maintenance regimen. The phrase "induction regimen" or "induction period" refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the initial treatment of a disease. The general goal of an induction regimen is to provide a high level of drug to a patient during the initial period of a treatment regimen. An induction regimen may employ (in part or in whole) a "loading regimen", which may include administering a greater dose of the drug than a physician would employ during a maintenance regimen, administering a drug more frequently than a physician would administer the drug during a maintenance regimen, or both. The phrase "maintenance regimen" or "maintenance period" refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the maintenance of a patient during treatment of an illness, e.g., to keep the patient in remission for long periods of time (months or years). A maintenance regimen may employ continuous therapy (e.g., administering a drug at a regular interval, e.g., weekly, monthly, yearly, etc.) or intermittent therapy (e.g., interrupted treatment, intermittent treatment, treatment at relapse, or treatment upon achievement of a particular predetermined criteria [e.g., pain, disease manifestation, etc.]).
As used herein, the term "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. A therapeutically effective amount of the active agent may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the active agent to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of drug are outweighed by the therapeutically beneficial effects. The efficient dosages and dosage regimens for the active agent depend on the disease or condition to be treated and may be determined by the persons skilled in the art. A physician having ordinary skill in the art may readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician could start doses of active agent employed in the pharmaceutical composition at levels lower than that required achieving the desired therapeutic effect and gradually increasing the dosage until the desired effect is achieved. In general, a suitable dose of a composition of the present invention will be that amount of the compound, which is the lowest dose effective to produce a therapeutic effect according to a particular dosage regimen. Such an effective dose will generally depend upon the factors described above. For example, a therapeutically effective amount for therapeutic use may be measured by its ability to stabilize the progression of disease. Typically, the ability of a compound to inhibit cancer may, for example, be evaluated in an animal model system predictive of efficacy in human tumors. A therapeutically effective amount of a therapeutic compound may decrease tumor size, or otherwise ameliorate symptoms in a patient. One of ordinary skill in the art would be able to determine such amounts based on such factors as the patient's size, the severity of the patient's symptoms, and the particular composition or route of administration selected. An exemplary, non-limiting range for a therapeutically effective amount of a inhibitor of the present invention is about 0.1-100 mg/kg, such as about 0.1-50 mg/kg, for example about 0.1-20 mg/kg, such as about 0.1-10 mg/kg, for instance about 0.5, about such as 0.3, about 1, about 3 mg/kg, about 5 mg/kg or about 8 mg/kg. An exemplary, non-limiting range for a therapeutically effective amount of a inhibitor of the present invention is 0.02-100 mg/kg, such as about 0.02-30 mg/kg, such as about 0.05-10 mg/kg or 0.1-3 mg/kg, for example about 0.5-2 mg/kg. Administration may e.g. be intravenous, intramuscular, intraperitoneal, or subcutaneous, and for instance administered proximal to the site of the target. Dosage regimens in the above methods of treatment and uses are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. In some embodiments, the efficacy of the treatment is monitored during the therapy, e.g. at predefined points in time. In some embodiments, the efficacy may be monitored by visualization of the disease area, or by other diagnostic methods described further herein, e.g. by performing one or more PET-CT scans, for example using a labeled inhibitor of the present invention, fragment or mini-antibody derived from the inhibitor of the present invention. If desired, an effective daily dose of a pharmaceutical composition may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. In some embodiments, the human monoclonal antibodies of the present invention are administered by slow continuous infusion over a long period, such as more than 24 hours, in order to minimize any unwanted side effects. An effective dose of the antibody of the present invention may also be administered using a weekly, biweekly or triweekly dosing period. The dosing period may be restricted to, e.g., 8 weeks, 12 weeks or until clinical progression has been established. As non-limiting examples, treatment according to the present invention may be provided as a daily dosage of a inhibitor of the present invention in an amount of about 0.1-100 mg/kg, such as 0.2, 0.5, 0.9, 1.0, 1.1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 45, 50, 60, 70, 80, 90 or 100 mg/kg, per day, on at least one of days 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40, or alternatively, at least one of weeks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 after initiation of treatment, or any combination thereof, using single or divided doses every 24, 12, 8, 6, 4, or 2 hours, or any combination thereof.
As used herein, the term “pharmaceutical composition” refers to a composition described herein, or pharmaceutically acceptable salts thereof, with other agents such as carriers and/or excipients. The pharmaceutical compositions as provided herewith typically include a pharmaceutically acceptable carrier.
As used herein, the term “pharmaceutically acceptable carrier” includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical-Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
Antibodies of the present invention:
The first object of the present invention relates to an anti-CD44 monoclonal chimeric antibody or a fragment thereof wherein the heavy chain comprises the VH domain that consists of the amino acid sequence as set forth in SEQ ID NO:2 and the light chain comprises the VL domain that consists of the amino acid sequence as set forth in SEQ ID NO:3.
SEQ ID NO : 2> VH domain / HFR1-HCDR1-HFR2-HCDR2-HFR3-HCDR3-HFR4  QVQLQQSGDELVRPGSSVKI SCKASGYAFSRYWMNWVKQRPGQGLEWIGGIYPGDGDTNYNGKFKGKAT LTADKS S STAYMQLNS LT SEDSAVYFCARRRWSDYFGMDYWGQGT S VTVS S
SEQ ID N0 : 3> VL domain / L FR1 - LCDR1 - L FR2 - LCDR2 - L FR3 - LCDR3 - L FR4 DWMTQTPLTLSVTIGQPASI SCKSSQSLLHSNGKTYLNWLLQRPGQSPKLLIYLVSKLESGVPDRFSG SGSGTEFTLKI SRVEAEDSGVYYCLQATHFPLTFGAGTKLELKRTV
The antibody of the present invention may be of any isotype. The choice of isotype typically will be guided by the desired effector functions, such as ADCC induction. Exemplary isotypes are IgGl, IgG2, IgG3, and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. If desired, the class of a monoclonal antibody of the present invention may be switched by known methods. Typical, class switching techniques may be used to convert one IgG subclass to another, for instance from IgGl to IgG2. Thus, the effector function of the human monoclonal antibodies of the present invention may be changed by isotype switching to, e.g., an IgGl, IgG2, IgG3, IgG4, IgD, IgA, IgE, or IgM antibody for various therapeutic uses. In some embodiments, the antibody of the present invention is a full-length antibody.
In some embodiments, the full-length antibody is an IgG4 antibody. In some embodiments, the IgG4 antibody is a stabilized IgG4 antibody. Examples of suitable stabilized IgG4 antibodies are antibodies wherein arginine at position 409 in a heavy chain constant region of human IgG4, which is indicated in the EU index as in Kabat et al. supra, is substituted with lysine, threonine, methionine, or leucine, preferably lysine (described in W02006033386) and/or wherein the hinge region comprises a Cys-Pro-Pro-Cys sequence. Other suitable stabilized IgG4 antibodies are disclosed in WO2008145142, which is hereby incorporated by reference in its entirety.
In some embodiments, the antibody of the present invention is an IgG4 antibody wherein the heavy chain consists of the amino acid sequence as set forth in SEQ ID NO:4 and the light chain consists of the amino acid sequence as set forth in SEQ ID NO:5.
SEQ ID NO : 4> Heavy chain
QVQLQQSGDELVRPGSSVKI SCKASGYAFSRYWMNWVKQRPGQGLEWIGGIYPGDGDTNYNGKFKGKAT LTADKSSSTAYMQLNSLTSEDSAVYFCARRRWSDYFGMDYWGQGTSVTVSSASTKGPSVFPLAPCSRST SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSWTVPSSSLGTKTYTCNVDH KPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSQEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTYRWSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI SKAKGQPRE PQVYTLPPSQEEMTKNQVSLfTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
SEQ ID NO : 5> Light chain
DWMTQTPLTLSVTIGQPASI SCKSSQSLLHSNGKTYLNWLLQRPGQSPKLLIYLVSKLESGVPDRFSG
SGSGTEFTLKI SRVEAEDSGVYYCLQATHFPLTFGAGTKLELKRTVAAPSVFI FPPSDEQLKSGTASW  CLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLLTSKADYEKHKVYACEVTHQGLS
SPVTKSFNRGEC
In some embodiments, the antibody of the present invention is engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigendependent cellular cytotoxicity. Furthermore, a monoclonal antibody of the present invention may be chemically modified (e.g., one or more chemical moi eties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody.
In some embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody. For example, one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the CI component of complement. This approach is described in further detail in U.S. Patent Nos. 5,624,821 and 5,648,260, both by Winter et al.
In some embodiments, one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered Clq binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Patent Nos. 6,194,551 by Idusogie et al.
In some embodiments, one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al. In some embodiments, the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fc receptor by modifying one or more amino acids. This approach is described further in PCT Publication WO 00/42072 by Presta. Moreover, the binding sites on human IgGI for FcyRI, FcyRII, FcyRIII and FcRn have been mapped and variants with improved binding have been described (see Shields, R. L. et al, 2001 J. Biol. Chen. 276:6591-6604, W02010106180). In some embodiments, the antibody of the present invention comprises a variant Fc region that has an increased affinity for FcyRIA, FcyRIIA, FcyRIIB, FcyRIIIA, FcyRIIIB, and FcyRIV. In some embodiments, the antibody of the present invention comprises a variant Fc region comprising at least one amino acid substitution, insertion or deletion wherein said at least one amino acid residue substitution, insertion or deletion results in an increased affinity for FcyRIA, FcyRIIA, FcyRIIB, FcyRIIIA, FcyRIIIB, and FcyRIV, In some embodiments, the antibody of the present invention comprises a variant Fc region comprising at least one amino acid substitution, insertion or deletion wherein said at least one amino acid residue is selected from the group consisting of: residue 239, 330, and 332, wherein amino acid residues are numbered following the EU index. In some embodiments, the antibody of the present invention comprises a variant Fc region comprising at least one amino acid substitution wherein said at least one amino acid substitution is selected from the group consisting of: S239D, A330L, A330Y, and 1332E, wherein amino acid residues are numbered following the EU index.
In some embodiments, the glycosylation of the antibody of the present invention is modified. For example, an aglycosylated antibody can be made (i.e., the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of the antibody for the antigen. Such carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in further detail in U.S. Patent Nos. 5,714,350 and 6,350,861 by Co et al. Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated or non-fucosylated antibody having reduced amounts of or no fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the present invention to thereby produce an antibody with altered glycosylation. For example, EPl 176195 by Hang et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyl transferase, such that antibodies expressed in such a cell line exhibit hypofucosylation or are devoid of fucosyl residues. Therefore, in some embodiments, the human monoclonal antibodies of the present invention may be produced by recombinant expression in a cell line which exhibit hypofucosylation or non-fucosylation pattern, for example, a mammalian cell line with deficient expression of the FUT8 gene encoding fucosyltransferase. PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, Lecl3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R.L. et al, 2002 J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyl transferases (e.g., beta(l,4)-N acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies (see also Umana et al, 1999 Nat. Biotech. 17: 176-180). Eureka Therapeutics further describes genetically engineered CHO mammalian cells capable of producing antibodies with altered mammalian glycosylation pattern devoid of fucosyl residues (http://www.eurekainc.com/a&boutus/companyoverview.html). Alternatively, the human monoclonal antibodies of the present invention can be produced in yeasts or filamentous fungi engineered for mammalian- like glycosylation pattern and capable of producing antibodies lacking fucose as glycosylation pattern (see for example EP1297172B1)
In some embodiments, the antibody of the present invention does not comprise a Fc region that mediates antibody-dependent cell-mediated cytotoxicity and thus does not comprise an Fc portion that induces antibody dependent cellular cytotoxicity (ADCC). In some embodiments, the antibody of the present invention does not comprise an Fc region that induces CDC or antibody-dependent phagocytosis. In some embodiments the antibody of the present invention does not lead, directly or indirectly, to the depletion of NK cells expressing CD160-TM polypeptides (e.g., do not lead to a 10%, 20%, 50%, 60% or greater elimination or decrease in number of CD160-TM+ NK cells). In some embodiments, the antibody of the present invention does not comprise an Fc domain capable of substantially binding to a FcyRIIIA (CD16) polypeptide. In some embodiments, the antibody of the present invention lacks an Fc domain (e.g., lacks a CH2 and/or CH3 domain) or comprises an Fc domain of IgG2 or IgG4 isotype. In some embodiments, the antibody of the present invention comprises an Fc domain (e.g. of IgGl) with an altered glycosylation profile, resulting in the absence of ADCC activity of the antibody. In some embodiments, the antibody of the present invention consists of or comprises a Fab, Fab', Fab'-SH, F(ab')2, Fv, a diabody, single-chain antibody fragment, or a multispecific antibody comprising multiple different antibody fragments. In some embodiments, the antibody of the present invention is not linked to a toxic moiety. In some embodiments, one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered C2q binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Patent Nos. 6,194,551 by Idusogie et al.
In some embodiments, the fragment is selected from the group of Fab, F(ab')2, Fab' and scFv.
Methods of production and nucleic acids:
The antibodies of the present invention are produced by any technique known in the art, such as, without limitation, any chemical, biological, genetic or enzymatic technique, either alone or in combination. Typically, knowing the amino acid sequence of the desired sequence, one skilled in the art can readily produce said antibodies, by standard techniques for production of polypeptides. For instance, they can be synthesized using well-known solid phase method, preferably using a commercially available peptide synthesis apparatus (such as that made by Applied Biosystems, Foster City, California) and following the manufacturer’s instructions. Alternatively, antibodies of the present invention can be synthesized by recombinant DNA techniques well-known in the art. For example, antibodies can be obtained as DNA expression products after incorporation of DNA sequences encoding the antibodies into expression vectors and introduction of such vectors into suitable eukaryotic or prokaryotic hosts that will express the desired antibodies, from which they can be later isolated using well-known techniques.
Accordingly, a further object of the invention relates to a nucleic acid molecule encoding an antibody according to the invention. More particularly the nucleic acid molecule encodes a heavy chain and/or a light chain of the antibody of the present invention.
Typically, said nucleic acid is a DNA or RNA molecule, which may be included in any suitable vector, such as a plasmid, cosmid, episome, artificial chromosome, phage or a viral vector. As used herein, the terms "vector", "cloning vector" and "expression vector" mean the vehicle by which a DNA or RNA sequence (e.g., a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g., transcription and translation) of the introduced sequence. So, a further object of the invention relates to a vector comprising a nucleic acid of the invention. Such vectors may comprise regulatory elements, such as a promoter, enhancer, terminator and the like, to cause or direct expression of said antibody upon administration to a patient. Examples of promoters and enhancers used in the expression vector for animal cell include early promoter and enhancer of SV40, LTR promoter and enhancer of Moloney mouse leukemia virus, promoter and enhancer of immunoglobulin H chain and the like. Any expression vector for animal cell can be used, so long as a gene encoding the human antibody C region can be inserted and expressed. Examples of suitable vectors include pAGE107, pAGE103, pHSG274, pKCR, pSGl beta d2-4 and the like. Other examples of plasmids include replicating plasmids comprising an origin of replication, or integrative plasmids, such as for instance pUC, pcDNA, pBR, and the like. Other examples of viral vector include adenoviral, retroviral, herpes virus and AAV vectors. Such recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses. Typical examples of virus packaging cells include PA317 cells, PsiCRIP cells, GPenv+ cells, 293 cells, etc. Detailed protocols for producing such replication-defective recombinant viruses may be found for instance in WO 95/14785, WO 96/22378, US 5,882,877, US 6,013,516, US 4,861,719, US 5,278,056 and WO 94/19478.
As used herein, the term “promoter/regulatory sequence” refers to a nucleic acid sequence (such as, for example, a DNA sequence) recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence, thereby allowing the expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
As used herein, the term "operably linked" or "transcriptional control" refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame. A further object of the present invention relates to a host cell which has been transfected, infected or transformed by a nucleic acid and/or a vector according to the invention.
As used herein, the term "transformation" means the introduction of a "foreign" (z.e., extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence. A host cell that receives and expresses introduced DNA or RNA bas been "transformed".
The nucleic acids of the invention may be used to produce an antibody of the present invention in a suitable expression system. The term "expression system" means a host cell and compatible vector under suitable conditions, e.g., for the expression of a protein coded for by foreign DNA carried by the vector and introduced to the host cell. Common expression systems include E. coli host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors. Other examples of host cells include, without limitation, prokaryotic cells (such as bacteria) and eukaryotic cells (such as yeast cells, mammalian cells, insect cells, plant cells, etc.). Specific examples include E.coli, Kluyveromyces or Saccharomyces yeasts, mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.). Examples also include mouse SP2/0-Agl4 cell (ATCC CRL1581), mouse P3X63-Ag8.653 cell (ATCC CRL1580), CHO cell in which a dihydrofolate reductase gene (hereinafter referred to as "DHFR gene") is defective (Urlaub G et al; 1980), rat YB2/3HL.P2.G11.16Ag.2O cell (ATCC CRL1662, hereinafter referred to as "YB2/0 cell"), and the like. The present invention also relates to a method of producing a recombinant host cell expressing an antibody according to the invention, said method comprising the steps of: (i) introducing in vitro or ex vivo a recombinant nucleic acid or a vector as described above into a competent host cell, (ii) culturing in vitro or ex vivo the recombinant host cell obtained and (iii), optionally, selecting the cells which express and/or secrete said antibody. Such recombinant host cells can be used for the production of antibodies of the present invention. Examples of vectors include all those known in the art, including, without limitation, cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide. Antibodies of the present invention are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A- Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
Antibody-drug conjugates:
In some embodiments, the antibody of the present invention is conjugated to a therapeutic moiety, z.e., a drug. The therapeutic moiety can be, e.g., a cytotoxin, a chemotherapeutic agent, a cytokine, an immunosuppressant, an immune stimulator, a lytic peptide, or a radioisotope. Such conjugates are referred to herein as an "antibody-drug conjugates" or "ADCs".
In some embodiments, the antibody of the present invention is conjugated to a cytotoxic moiety. In some embodiments, the antibody of the present invention does not comprise a Fc region mediating ADCC, CDC or antibody-induced phagocytosis and is conjugated to a cytotoxic moiety.
The cytotoxic moiety may, for example, be selected from the group consisting of taxol; cytochalasin B; gramicidin D; ethidium bromide; emetine; mitomycin; etoposide; tenoposide; vincristine; vinblastine; colchicin; doxorubicin; daunorubicin; dihydroxy anthracin dione; a tubulin- inhibitor such as maytansine or an analog or derivative thereof; an antimitotic agent such as monomethyl auristatin E or F or an analog or derivative thereof; dolastatin 10 or 15 or an analogue thereof; irinotecan or an analogue thereof; mitoxantrone; mithramycin; actinomycin D; 1 -dehydrotestosterone; a glucocorticoid; procaine; tetracaine; lidocaine; propranolol; puromycin; calicheamicin or an analog or derivative thereof; an antimetabolite such as methotrexate, 6 mercaptopurine, 6 thioguanine, cytarabine, fludarabin, 5 fluorouracil, decarbazine, hydroxyurea, asparaginase, gemcitabine, or cladribine; an alkylating agent such as mechlorethamine, thioepa, chlorambucil, melphalan, carmustine (BSNU), lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, dacarbazine (DTIC), procarbazine, mitomycin C; a platinum derivative such as cisplatin or carboplatin; duocarmycin A, duocarmycin SA, rachelmycin (CC-1065), or an analog or derivative thereof; an antibiotic such as dactinomycin, bleomycin, daunorubicin, doxorubicin, idarubicin, mithramycin, mitomycin, mitoxantrone, plicamycin, anthramycin (AMC)); pyrrolo[2,l-c][l,4]- benzodiazepines (PDB); diphtheria toxin and related molecules such as diphtheria A chain and active fragments thereof and hybrid molecules, ricin toxin such as ricin A or a deglycosylated ricin A chain toxin, cholera toxin, a Shiga-like toxin such as SLT I, SLT II, SLT IIV, LT toxin, C3 toxin, Shiga toxin, pertussis toxin, tetanus toxin, soybean Bowman-Birk protease inhibitor, Pseudomonas exotoxin, alorin, saporin, modeccin, gelanin, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolacca americana proteins such as PAPI, PAPII, and PAP-S, momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, and enomycin toxins; ribonuclease (RNase); DNase I, Staphylococcal enterotoxin A; pokeweed antiviral protein; diphtherin toxin; and Pseudomonas endotoxin.
In some embodiments, the antibody of the present invention is conjugated to an auristatin or a peptide analog, derivative or prodrug thereof. In some embodiments, the antibody of the present invention does not comprise a Fc region mediating ADCC, CDC or antibody -induced phagocytosis and is conjugated to an auristatin or a peptide analog, derivative or prodrug thereof. Auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis and nuclear and cellular division (Woyke et al (2001) Antimicrob. Agents and Chemother. 45(12): 3580-3584) and have anti-cancer (US5663149) and antifungal activity (Pettit et al., (1998) Antimicrob. Agents and Chemother. 42: 2961-2965. For example, auristatin E can be reacted with para-acetyl benzoic acid or benzoyl valeric acid to produce AEB and AEVB, respectively. Other typical auristatin derivatives include AFP, MMAF (monomethyl auristatin F), and MMAE (monomethyl auristatin E). Suitable auristatins and auristatin analogs, derivatives and prodrugs, as well as suitable linkers for conjugation of auristatins to Abs, are described in, e.g., U.S. Patent Nos. 5,635,483, 5,780,588 and 6,214,345 and in International patent application publications W002088172, W02004010957, W02005081711,
W02005084390, W02006132670, WO03026577, W0200700860, W0207011968 and W0205082023.
In some embodiments, the antibody of the present invention is conjugated to pyrrolo[2,l-c] [1,4]- benzodiazepine (PDB) or an analog, derivative or prodrug thereof. In some embodiments, the antibody of the present invention does not comprise a Fc region mediating ADCC, CDC or antibody-induced phagocytosis and is conjugated to a PDB or an analog, derivative or prodrug thereof. Suitable PDBs and PDB derivatives, and related technologies are described in, e.g., Hartley J. A. et al., Cancer Res 2010; 70(17) : 6849-6858; Antonow D. et al., Cancer J 2008; 14(3) : 154-169; Howard P.W. et al., Bioorg Med Chem Lett 2009; 19: 6463-6466 and Sagnou et al., Bioorg Med Chem Lett 2000; 10(18) : 2083-2086. In some embodiments, the antibody of the present invention is conjugated to a cytotoxic moiety selected from the group consisting of an anthracycline, maytansine, calicheamicin, duocarmycin, rachelmycin (CC-1065), dolastatin 10, dolastatin 15, irinotecan, monomethyl auristatin E, monomethyl auristatin F, a PDB, or an analog, derivative, or prodrug of any thereof. In some embodiments, the antibody of the present invention does not comprise a Fc region mediating ADCC, CDC or antibody-induced phagocytosis and is conjugated to a cytotoxic moiety selected from the group consisting of an anthracycline, maytansine, calicheamicin, duocarmycin, rachelmycin (CC-1065), dolastatin 10, dolastatin 15, irinotecan, monomethyl auristatin E, monomethyl auristatin F, a PDB, or an analog, derivative, or prodrug of any thereof.
In some embodiments, the antibody of the present invention is conjugated to an anthracycline or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to maytansine or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to calicheamicin or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to duocarmycin or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to rachelmycin (CC-1065) or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to dolastatin 10 or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to dolastatin 15 or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to monomethyl auristatin E or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to monomethyl auristatin F or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to pyrrolo[2,l-c][l,4]-benzodiazepine or an analog, derivative or prodrug thereof. In some embodiments, the antibody is conjugated to irinotecan or an analog, derivative or prodrug thereof.
Techniques for conjugating molecule to antibodies, are well-known in the art (See, e.g., Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy,” in Monoclonal Antibodies And Cancer Therapy (Reisfeld et al. eds., Alan R. Liss, Inc., 1985); Hellstrom et al., “Antibodies For Drug Delivery,” in Controlled Drug Delivery (Robinson et al. eds., Marcel Deiker, Inc., 2nd ed. 1987); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review,” in Monoclonal Antibodies '84: Biological And Clinical Applications (Pinchera et al. eds., 1985); “Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody In Cancer Therapy,” in Monoclonal Antibodies For Cancer Detection And Therapy (Baldwin et al. eds., Academic Press, 1985); and Thorpe et al., 1982, Immunol. Rev. 62:119-58. See also, e.g., PCT publication WO 89/12624.) Typically, the nucleic acid molecule is covalently attached to lysines or cysteines on the antibody, through N- hydroxysuccinimide ester or maleimide functionality respectively. Methods of conjugation using engineered cysteines or incorporation of unnatural amino acids have been reported to improve the homogeneity of the conjugate (Axup, J.Y., Bajjuri, K.M., Ritland, M., Hutchins, B.M., Kim, C.H., Kazane, S.A., Halder, R., Forsyth, J.S., Santidrian, A.F., Stafin, K., et al. (2012). Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 109, 16101-16106.; Junutula, J.R., Flagella, K.M., Graham, R.A., Parsons, K.L., Ha, E., Raab, H., Bhakta, S., Nguyen, T., Dugger, D.L., Li, G., et al. (2010). Engineered thio-trastuzumab-DMl conjugate with an improved therapeutic index to target humanepidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res.16, 4769- 4778.). Junutula et al. (2008) developed cysteine-based site-specific conjugation called “THIOMABs” (TDCs) that are claimed to display an improved therapeutic index as compared to conventional conjugation methods. Conjugation to unnatural amino acids that have been incorporated into the antibody is also being explored for ADCs; however, the generality of this approach is yet to be established (Axup et al., 2012). In particular the one skilled in the art can also envisage Fc-containing polypeptide engineered with an acyl donor glutamine-containing tag (e.g., Gin-containing peptide tags or Q- tags) or an endogenous glutamine that are made reactive by polypeptide engineering (e.g., via amino acid deletion, insertion, substitution, or mutation on the polypeptide). Then a transglutaminase, can covalently crosslink with an amine donor agent (e.g., a small molecule comprising or attached to a reactive amine) to form a stable and homogenous population of an engineered Fc-containing polypeptide conjugate with the amine donor agent being site- specifically conjugated to the Fc-containing polypeptide through the acyl donor glutamine- containing tag or the accessible/exposed/reactive endogenous glutamine (WO 2012059882).
Methods of treatment:
Thus a further object of the present invention relates to a method of therapy in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the antibody of the present invention. In particular, the present invention relates to a method of treating a cancer that express CD44 comprising administering a therapeutically effective amount of the antibody of the present invention.
More particularly, the present invention relates to a method of depleting a population of cells that express CD44, in particular a population of malignant cells that express the CD44, or more particularly a population of cancer stem cells that express CD44, in a patient in need thereof comprising delivering to the patient a therapeutically effective amount of the antibody of the present invention.
Typically, the antibody thus comprises an Fc region inducing ADCC, CDC or antibodydependent phagocytosis. The antibody can also typically conjugated to a cytotoxic moiety as described above.
As used herein, the term “deplete” with respect to a population of cells, refers to a measurable decrease in the number of said cells in the patient. The reduction can be at least about 10%, e.g., at least about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or more. In some embodiments, the term refers to a decrease in the number of the cells in a patient or in a sample to an amount below detectable limits.
As used herein, the term “cancer stem cell” or “CSC” has its general meaning in the art and refers to a subpopulation of tumor cells that can drive tumor initiation and can cause relapses.
In some embodiments, the method of the present invention is particularly suitable for treating a hematological malignancy. Hematological malignancies have been most commonly divided by whether the malignancy is mainly located in the blood (leukemia) or in lymph nodes (lymphomas). Leukemias include acute lymphoblastic leukemia, acute mylelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia and acute monocytic leukemia. Lymphomas include Hodgkin's lymphomas and non-hodgkin's lymphoma.
Acute lymphoblastic leukemia (ALL) is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts. Acute myeloid leukemia (AML), also known as acute myelogenous leukemia, is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. Chronic myelogenous (or myeloid) leukemia (CML), also known as chronic granulocytic leukemia (CGL), is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of predominantly myeloid cells in the bone marrow and the accumulation of these cells in the blood. B-cell chronic lymphocytic leukemia (B-CLL), also known as chronic lymphoid leukemia (CLL), is the most common type of leukemia. CLL affects B cell lymphocytes. Acute monocytic leukemia (AMoL, or AML-M5) is considered a type of acute myeloid leukemia. Hodgkin's lymphoma, previously known as Hodgkin's disease, is a type of lymphoma, which is a cancer originating from white blood cells called lymphocytes. The non-Hodgkin lymphomas (NHLs) are a diverse group of blood cancers that include any kind of lymphoma except Hodgkin's lymphomas.
In some embodiments, the method of the present invention is particularly suitable for treating breast cancer.
Pharmaceutical compositions:
The present invention further relates to a composition comprising, consisting of or consisting essentially of the antibody of the present invention.
As used herein, "consisting essentially of", with reference to a composition, means that the at least one antibody of the invention as described hereinabove is the only one therapeutic agent or agent with a biologic activity within said composition.
In some embodiments, the composition of the invention is a pharmaceutical composition and further comprises a pharmaceutically acceptable carrier.
For administration, the antibody of the present invention is formulated as a pharmaceutical composition. A pharmaceutical composition comprising the antibody of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the therapeutic molecule is combined in a mixture with a pharmaceutically acceptable carrier. A composition is said to be a “pharmaceutically acceptable carrier” if its administration can be tolerated by a recipient patient. Sterile phosphate-buffered saline is one example of a pharmaceutically acceptable carrier. Other suitable carriers are well- known to those in the art. (See, e.g., Gennaro (ed.), Remington's Pharmaceutical Sciences (Mack Publishing Company, 19th ed. 1995)) Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, etc. The form of the pharmaceutical compositions, the route of administration, the dosage and the regimen naturally depend upon the condition to be treated, the severity of the illness, the age, weight, and sex of the patient, etc. The pharmaceutical compositions of the invention can be formulated for a topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous or intraocular administration and the like.
Typically, the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
The doses used for the administration can be adapted as a function of various parameters, and in particular as a function of the mode of administration used, of the relevant pathology, or alternatively of the desired duration of treatment.
To prepare pharmaceutical compositions, an effective amount of the antibody may be dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.
The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol ; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. An antibody of the invention can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
The preparation of more, or highly concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small tumor area.
Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the patient being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual patient.
The antibodies of the invention may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses can also be administered.
In addition to the compounds formulated for parenteral administration, such as intravenous or intramuscular injection, other pharmaceutically acceptable forms include, e.g. tablets or other solids for oral administration; time release capsules; and any other form currently used.
In some embodiments, the use of liposomes and/or nanoparticles is contemplated for the introduction of antibodies into host cells. The formation and use of liposomes and/or nanoparticles are known to those of skill in the art.
Nanocapsules can generally entrap compounds in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 pm) are generally designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use in the present invention, and such particles may be are easily made. Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs)). MLVs generally have diameters of from 25 nm to 4 pm. Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core. The physical characteristics of liposomes depend on pH, ionic strength and the presence of divalent cations.
REFERENCES:
Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present disclosure.