








본 발명은 불법호 검출 시스템 및 그 제어방법에 관한 것으로, 보다 상세하게는 기계 학습에 기반한 불법호 검출 시스템 및 그 제어방법에 관한 것이다.The present invention relates to an illegal call detection system and a control method thereof, and more particularly, to an illegal call detection system and a control method based on machine learning.
최근 유선 전화 또는 인터넷 전화를 통해 악의적인 목적으로 호를 발신하고, 그로 인해 불법적인 이득을 취하는 개인 또는 업체들이 증가하고 있다.Recently, an increasing number of individuals or businesses are sending calls for malicious purposes through landline telephones or Internet telephones, and thereby taking illegal gains.
예를 들어 해외에서 국내로 발신을 하여 벨이 울리도록 한 후 짧은 시간 안에 호 연결을 종료하여 착신자가 역으로 해외로 전화를 걸도록 유도하고, 이에 따라 망 접속료를 부당하게 얻는 방식 등이 그것이다.For example, by making a call from overseas to make the bell ring, and then terminating the call connection within a short period of time, induces the called party to make a call abroad in the reverse direction, and thus unfairly obtains a network connection fee. .
이처럼 불법호가 다양한 문제를 유발함으로써, 통신사에서는 이러한 불법호를 검출하는 여러 가지 방안을 모색해왔다.As such illegal calls cause various problems, telecommunication companies have been searching for various ways to detect such illegal calls.
그러나 종래에는 룰 기반으로 즉, 불법호 패턴에 기초하여 관리자들이 설정한 룰을 기반으로 불법호 검출이 이루어져 왔는데, 이 경우 불법호 패턴이 조금만 변해도(예를 들어 발신자 국가 및 지역 번호가 변해도) 검출하지 못하는 문제점이 있다.However, in the past, illegal call detection has been performed based on rules set by administrators based on the illegal call pattern. In this case, even if the illegal call pattern changes slightly (for example, even if the caller country and area code changes). There is a problem that cannot be done.
따라서 불법호 패턴이 변경되더라도 이를 용이하게 검출할 수 있는 방안의 제시가 요망되고 있다.Therefore, even if the illegal call pattern is changed, it is desired to propose a method for easily detecting it.
(선행특허문헌 1) 한국특허공개번호 제10-2011-0079044호(Prior Patent Document 1) Korean Patent Publication No. 10-2011-0079044
본 발명은 상기한 종래의 문제점을 해결하기 위해 안출된 것으로서, 그 목적은 불법호 패턴이 변경되더라도 불법호에 대해 적응적으로 검출이 가능하도록 하는 시스템 및 그 제어방법을 제공하는 것이다.The present invention has been devised to solve the above-described problems in the related art, and an object thereof is to provide a system and a control method for adaptively detecting illegal calls even if the illegal call pattern is changed.
상기한 목적을 달성하기 위해 본 발명에 따른 불법호 검출 시스템은, 기 저장된 호 처리 데이터를 추출 또는 수신하여 필드별로 기 설정된 알고리즘에 따라 동일한 길이가 되도록 정규화 처리를 하는 데이터 정규화 처리부와; 상기 데이터 정규화 처리부에 의해 정규화 처리된 데이터를 입력값으로 하는 기계 학습을 수행하여 인공지능 시스템의 각 파라미터를 결정하는 기계 학습 처리부와; 실시간 호 연결 데이터와 CDR(Call Detail Record) 데이터 중 적어도 어느 하나를 상기 인공지능 시스템에 적용시켜 불법호를 판단하는 판단부를 포함하여 구성된다.In order to achieve the above object, the illegal call detection system according to the present invention includes: a data normalization processing unit for extracting or receiving pre-stored call processing data and performing normalization processing to have the same length according to a preset algorithm for each field; A machine learning processing unit that determines each parameter of an artificial intelligence system by performing machine learning using the data normalized by the data normalization processing unit as an input value; And a determination unit for determining an illegal call by applying at least one of real-time call connection data and call detail record (CDR) data to the artificial intelligence system.
또, 상기한 목적을 달성하기 위해 본 발명에 따른 불법호 검출 시스템의 제어방법은, 기 저장된 호 처리 데이터를 추출 또는 수신하여 필드별로 기 설정된 알고리즘에 따라 동일한 길이가 되도록 정규화 처리를 수행하는 단계와; 상기 단계에서 정규화 처리된 데이터를 입력값으로 하는 기계 학습을 수행하여 인공지능 시스템의 각 파라미터를 결정하는 단계와; 실시간 호 연결 데이터와 CDR 데이터 중 적어도 어느 하나를 상기 인공지능 시스템에 적용시켜 불법호를 판단하는 단계를 포함하여 이루어진다.In addition, in order to achieve the above object, the control method of the illegal call detection system according to the present invention includes the steps of extracting or receiving pre-stored call processing data and performing normalization processing to have the same length according to a preset algorithm for each field; ; Determining each parameter of the artificial intelligence system by performing machine learning using the normalized data as an input value; And determining an illegal call by applying at least one of real-time call connection data and CDR data to the artificial intelligence system.
도 1은 본 발명의 일 실시예에 따른 불법호 검출 시스템을 포함하는 전체 시스템의 개략 구성도이고,1 is a schematic configuration diagram of an entire system including an illegal call detection system according to an embodiment of the present invention,
도 2는 도 1의 불법호 검출 시스템의 기능 블록도이고,2 is a functional block diagram of the illegal call detection system of FIG. 1;
도 3은 인터넷 통화에 대해 실시간 획득 가능한 데이터의 일 예를 나타낸 도면이고,3 is a diagram showing an example of data that can be obtained in real time for an Internet call,
도 4는 도 3의 데이터에 본 발명의 일 실시예에 따른 불법호 검출 시스템이 생성한 통계 데이터가 추가로 반영된 데이터의 일 예를 나타낸 도면이고,4 is a diagram showing an example of data in which statistical data generated by an illegal call detection system according to an embodiment of the present invention is additionally reflected in the data of FIG. 3;
도 5는 PSTN을 통한 통화의 결과 저장되는 CDR 로부터 획득 가능한 데이터의 일 예를 나타낸 도면이고,5 is a diagram showing an example of data obtainable from a CDR stored as a result of a call through a PSTN,
도 6은 도 5의 데이터에 본 발명의 일 실시예에 따른 불법호 검출 시스템이 생성한 통계 데이터가 추가로 반영된 데이터의 일 예를 나타낸 도면이고,6 is a view showing an example of data in which statistical data generated by an illegal call detection system according to an embodiment of the present invention is additionally reflected in the data of FIG. 5;
도 7은 CNN 처리 구조를 나타낸 도면이고,7 is a diagram showing a CNN processing structure,
도 8은 인터넷 통화에 대해 실시간 획득 가능한 데이터를 누적 저장하고 이렇게 누적 저장된 데이터에 기초하여 기계 학습이 이루어지는 과정을 나타낸 도면이고,8 is a diagram illustrating a process of accumulating and storing data that can be obtained in real time for Internet calls and performing machine learning based on the accumulated data.
도 9는 PSTN 통화가 이루어진 후 저장되는 CDR 데이터에서 필요한 데이터를 누적 저장하고 이렇게 누적 저장된 데이터에 기초하여 기계 학습이 이루어지는 과정을 나타낸 도면이다.9 is a diagram illustrating a process in which necessary data is accumulated and stored in CDR data stored after a PSTN call is made, and machine learning is performed based on the accumulated data.
이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
이하 본 발명에 따른 각 실시예는 본 발명의 이해를 돕기 위한 하나의 예에 불과하고, 본 발명이 이러한 실시예에 한정되는 것은 아니다. 특히 본 발명은 각 실시예에 포함되는 개별 구성, 개별 기능, 또는 개별 단계 중 적어도 어느 하나 이상의 조합으로 구성될 수 있다.Hereinafter, each embodiment according to the present invention is only one example for aiding understanding of the present invention, and the present invention is not limited to these embodiments. In particular, the present invention may be configured with a combination of at least one or more of individual configurations, individual functions, or individual steps included in each embodiment.
특히, 편의상 청구 범위의 일부 청구항에는 '(a)'와 같은 알파벳을 포함시켰으나, 이러한 알파벳이 각 단계의 순서를 규정하는 것은 아니다.In particular, for convenience, some claims in the claims include alphabets such as'(a)', but these alphabets do not prescribe the order of each step.
또한 이하 본 발명에 따른 각 실시예에서 언급하는 각 신호는 한 번의 연결 등에 의해 전송되는 하나의 신호를 의미할 수도 있지만, 후술하는 특정 기능 수행을 목적으로 전송되는 일련의 신호 그룹을 의미할 수도 있다. 즉, 각 실시예에서는 소정의 시간 간격을 두고 전송되거나 상대 장치로부터의 응답 신호를 수신한 이후에 전송되는 복수 개의 신호들이 편의상 하나의 신호명으로 표현될 수 있는 것이다.In addition, each signal mentioned in each embodiment according to the present invention may mean one signal transmitted by one connection or the like, but may also mean a series of signal groups transmitted for the purpose of performing a specific function to be described later. . That is, in each embodiment, a plurality of signals transmitted at a predetermined time interval or transmitted after receiving a response signal from a counterpart device may be expressed as one signal name for convenience.
본 발명의 일 실시예에 따른 불법호 검출 시스템을 포함하는 전체 시스템의 개략 구성은 도 1에 도시된 바와 같다.A schematic configuration of an entire system including an illegal call detection system according to an embodiment of the present invention is as shown in FIG. 1.
동 도면에서 발신 단말기는 전화를 상대방에게 거는 단말기이고, 착신 단말기는 상대방으로부터 걸려온 전화를 받는 단말기이다.In the figure, the calling terminal is a terminal that makes a call to the other party, and the called terminal is a terminal that receives a call from the other party.
이처럼 발신 단말기와 착신 단말기의 통신 경로 상의 중간에는 호 처리 시스템이 존재하는데, 호 처리 시스템의 기능은 발신 단말기의 호 연결 요청을 수신하여 이에 대한 검증 처리 및 착신 단말기로의 호 연결 처리를 수행하고, 더 나아가 발신 단말기와 착신 단말기 간의 호 연결 및 통화와 관련된 정보, 즉, 호 처리 데이터를 관리하는 기능을 수행한다.As such, there is a call processing system in the middle of the communication path between the calling terminal and the called terminal, and the function of the call processing system receives a call connection request from the calling terminal and performs verification processing and call connection processing to the called terminal. Furthermore, it performs a function of managing call connection between the calling terminal and the called terminal and information related to the call, that is, call processing data.
이처럼 발신 단말기, 착신 단말기, 호 처리 시스템 간에 발신, 착신, 호 연결 및 호 처리 데이터가 저장되는 과정은 기 공지된 기술에 해당하므로 보다 상세한 설명은 생략한다.As described above, the process of storing origination, destination, call connection, and call processing data between the calling terminal, the called terminal, and the call processing system corresponds to a known technology, and thus a detailed description thereof will be omitted.
한편, 불법호 검출 시스템은 상술한 호 처리 시스템과 통신하여 호 연결 시점 또는 호 연결이 이루어지고 나서 기 설정된 시간이 경과한 후에 각 호에 대해 불법호인지 여부를 판단하는 기능을 수행한다.Meanwhile, the illegal call detection system communicates with the above-described call processing system to determine whether the call is illegal for each call after a call connection time point or a preset time elapses after the call connection is established.
특히, 실시간 불법호 검출을 위해서는 호 처리 시스템과 불법호 검출 시스템 간 패킷 미러링 또는 포트 미러링을 위한 장치가 더 구비될 수 있는데, 이 역시 공지된 기술에 해당하므로 보다 상세한 설명은 생략한다.In particular, for real-time illegal call detection, a device for packet mirroring or port mirroring between the call processing system and the illegal call detection system may be further provided. This also corresponds to a known technique, and thus a detailed description thereof will be omitted.
도 2에는 불법호 검출 시스템의 구체적인 기능 블록의 일 예가 도시되었다.2 illustrates an example of a specific functional block of the illegal call detection system.
동 도면에 도시된 바와 같이 불법호 검출 시스템은 데이터 정규화 처리부, 기계 학습 처리부, 판단부를 포함하여 구성될 수 있다.As shown in the figure, the illegal call detection system may include a data normalization processing unit, a machine learning processing unit, and a determination unit.
데이터 정규화 처리부는 기 저장된 호 처리 데이터를 추출 또는 수신하여 필드별로 기 설정된 알고리즘에 따라 동일한 길이가 되도록 정규화 처리를 수행하는 기능을 수행한다.The data normalization processing unit performs a function of extracting or receiving previously stored call processing data and performing normalization processing to have the same length according to a preset algorithm for each field.
여기서 호 처리 데이터는 호 연결이 발생한 시점의 실시간 데이터일 수도 있고, 또는 호가 종료된 이후 저장된 일종의 CDR(Call Detail Record) 데이터일 수도 있다. 데이터 정규화 처리부는 이러한 호 처리 데이터가 자체 저장되어 있는 경우 이를 추출할 수도 있고, 또는 외부의 서버(200)로부터 수신할 수도 있는 것이다.Here, the call processing data may be real-time data at the time when a call connection occurs, or may be a kind of call detail record (CDR) data stored after the call is terminated. The data normalization processing unit may extract the call processing data if it is stored itself, or may receive it from the
특히, 데이터 정규화 처리부는 호 처리 데이터를 필드별로 정규화 처리를 수행하는데, 예를 들어 발신 전화 필드에 대한 정규화 크기가 15자리이고, 호 처리 데이터에 포함된 발신 전화번호가 '010-5555-1111'인 경우, 이에 대해 15자리를 맞추기 위해 추가로 '0'을 삽입하여 '000001055551111'과 같은 형태로 만들 수 있는 것이다.In particular, the data normalization processing unit normalizes the call processing data for each field. For example, the normalization size for the outgoing telephone field is 15 digits, and the outgoing telephone number included in the call processing data is '010-5555-1111'. In the case of, it can be made into a form such as '000001055551111' by inserting an additional '0' to match 15 digits.
특히 데이터 정규화 처리부는 추출/수신된 호 처리 데이터만을 정규화 처리하는 것이 아니라, 추출/수신된 호 처리 데이터를 기초로 소정의 통계 데이터를 생성한 후, 그 생성된 통계 데이터에 대해서도 정규화 처리를 수행할 수 있다.In particular, the data normalization processing unit does not normalize only the extracted/received call processing data, but generates predetermined statistical data based on the extracted/received call processing data, and then performs normalization processing on the generated statistical data. I can.
예를 들어 데이터 정규화 처리부는 추출/수신된 호 처리 데이터를 이용하여 각 호(call)별 통화 시간 데이터, 발신번호별 1분간 누적콜 횟수, 발신번호별 5분간 누적콜 횟수, 발신번호별 60분간 누적콜 횟수, 발신번호별 5분 동안 통화시간 누적 합, 발신번호별 60분간 통화시간 누적 합, 착신번호별 1분간 누적콜 횟수, 착신번호별 5분간 누적콜 횟수, 착신번호별 60분간 누적콜 횟수, 착신번호별 5분 동안 통화시간 누적 합, 착신번호별 60분간 통화시간 누적 합을 포함하는 통계 데이터를 추출한 후, 해당 통계 데이터에 대한 정규화 처리를 추가로 수행할 수 있는 것이다.For example, the data normalization processing unit uses the extracted/received call processing data to use call time data for each call, 1 minute cumulative number of calls by calling number, 5 minutes cumulative number of calls by calling number, 60 minutes by calling number. Cumulative number of calls, cumulative sum of call time for 5 minutes for each calling number, 60 minutes cumulative sum of call time for each calling number, 1 minute cumulative number of calls for each called number, 5 minutes cumulative number of calls for each called number, 60 minutes cumulative call for each called number After extracting statistical data including the number of times, the cumulative sum of call time for 5 minutes for each called number, and the cumulative sum of call time for 60 minutes for each called number, normalization processing for the corresponding statistical data can be additionally performed.
도 3 내지 도 6에는 데이터 정규화 처리부가 처리하는 데이터에 대한 일 예가 도시되었다.3 to 6 illustrate examples of data processed by the data normalization processing unit.
우선, 도 3 및 도 4는 인터넷 전화와 같이 실시간 호 연결 데이터를 획득할 수 있는 경우를 나타낸 것이고, 도 5 및 도 6은 (공중전화망(PSTN : Public Switched Telephone Network)과 같이 실시간 호 연결 데이터를 획득할 수 없는 경우를 나타낸 것이다.First, FIGS. 3 and 4 show a case in which real-time call connection data can be obtained, such as an Internet phone, and FIGS. 5 and 6 show real-time call connection data as shown in (PSTN: Public Switched Telephone Network). It shows a case that cannot be obtained.
구체적으로 도 3은 세션 개시 프로토콜(SIP: Session Initiation Protocol)을 이용하는 인터넷 전화의 경우 종래에 실시간으로 획득할 수 있는 호 처리 데이터이고, 도 4는 이러한 호 처리 데이터를 기반으로 상술한 소정의 통계 데이터가 추가된 상태를 나타내고 있다.Specifically, FIG. 3 is call processing data that can be obtained in real time in the case of an Internet phone using a session initiation protocol (SIP), and FIG. 4 is a predetermined statistical data described above based on such call processing data. Indicates the added state.
또한 도 5는 PSTN을 통한 통신에 따라 저장된 CDR 데이터의 일 예이고, 도 6은 이러한 CDR 데이터를 기반으로 소정의 상술한 소정의 통계 데이터가 추가된 상태를 나타내고 있다.In addition, FIG. 5 is an example of CDR data stored according to communication through the PSTN, and FIG. 6 shows a state in which predetermined statistical data described above is added based on the CDR data.
기계 학습 처리부는 데이터 정규화 처리부에 의해 정규화 처리된 데이터를 입력값으로 하는 기계 학습을 수행하여 인공지능 시스템의 각 파라미터를 결정 및 반영하는 기능을 수행한다.The machine learning processing unit determines and reflects each parameter of the artificial intelligence system by performing machine learning using the data normalized by the data normalization processing unit as an input value.
즉, 인공지능 시스템 특히, 머신 러닝의 일종인 딥 러닝의 경우에는 신경망 구성을 이루는 각 레이어의 파라미터 값에 의해 그 결과가 달라질 수 있는데, 기계 학습 처리부는 기계 학습을 통해 각 레이어의 파라미터 값을 결정하고 해당 인공지능 시스템에 반영되도록 하는 기능을 수행하는 것이다. 머신 러닝의 과정이 이처럼 인공 지능 시스템의 각 레이어에 있어서의 파라미터 값(일 예로 행렬 값)을 산출하는 과정에 해당하는 것 그 자체는 공지된 기술에 해당하므로 보다 상세한 설명은 생략한다.In other words, in the case of an artificial intelligence system, especially deep learning, which is a kind of machine learning, the result may vary depending on the parameter value of each layer constituting the neural network, and the machine learning processing unit determines the parameter value of each layer through machine learning. It performs the function of reflecting in the corresponding artificial intelligence system. Since the process of machine learning corresponds to the process of calculating parameter values (for example, matrix values) in each layer of the artificial intelligence system as described above, a more detailed description thereof will be omitted.
이때 기계 학습 처리부는 데이터 정규화 처리부에 의해 생성된 모든 정규화된 데이터를 이용하여 기계 학습을 수행할 수 있는데, 특히 앞서 설명한 통계 데이터를 기초로 정규화 된 데이터 역시 포함하여 기계 학습을 수행할 수 있다.In this case, the machine learning processing unit may perform machine learning using all normalized data generated by the data normalization processing unit. In particular, the machine learning may also be performed by including normalized data based on the statistical data described above.
기계 학습 처리부는 기계 학습을 처리함에 있어서 특유의 기능을 수행하는데, 즉, 데이터 정규화 처리부에 의해 정규화된 데이터를 1차원 이미지 데이터로 형성한 후, 해당 1차원 이미지 데이터에 대해 CNN(Convolutional Neural Network)에 의한 기계 학습을 수행하여 그 CNN의 각 파라미터를 결정하여 반영되도록 할 수 있다.The machine learning processing unit performs a unique function in processing machine learning, that is, after forming the data normalized by the data normalization processing unit into 1D image data, CNN (Convolutional Neural Network) for the corresponding 1D image data By performing machine learning, each parameter of the CNN can be determined and reflected.
1차원 이미지로 형성하는 과정에 대해, 도 3(b)의 데이터 중 일부를 이용하는 경우를 일 예로 설명하면, 데이터 정규화 처리부는 발신 아이피(CALLER_IP), 착신 아이피(CALLEE_IP), 해당 발신 아이피의 1분간 누적콜 개수(EXT_CALL_COUNT_1MIN), 해당 발신 아이피의 5분간 누적콜 개수(EXT_CALL_COUNT_5MIN)가 각각 '121.111.0.1', '212.0.0.112', '4', '15'인 경우, 이에 대해 각각 정규화 데이터를 '121111000001', '212000000112', '004', '015'와 같이 생성한 후, 이렇게 정규화 된 데이터를 일렬로 나란히 붙인 데이터 '121111000001212000000112004015'를 생성하고, 이를 1차원 이미지 데이터화 하는 것이다.For the process of forming a one-dimensional image, when some of the data in Fig. 3(b) is used as an example, the data normalization processing unit is a calling IP (CALLER_IP), a called IP (CALLEE_IP), and one minute of the calling IP. If the cumulative number of calls (EXT_CALL_COUNT_1MIN) and the cumulative number of calls for 5 minutes of the outgoing IP (EXT_CALL_COUNT_5MIN) are '121.111.0.1', '212.0.0.112', '4', and '15', respectively, the normalized data is set to '15'. After creating 121111000001', '212000000112', '004', and '015', the data '121111000001212000000112004015' is created by attaching the normalized data in a row, and this is converted into one-dimensional image data.
여기서 1차원 이미지라 함은, 한쪽 방향(일 예로, 가로 방향)으로만 픽셀이 서로 연결되고, 다른 쪽 방향(일 예로, 세로 방향)으로는 픽셀이 연결되지 않는 이미지를 의미한다.Here, the one-dimensional image refers to an image in which pixels are connected to each other in only one direction (for example, in a horizontal direction) and pixels are not connected in the other direction (for example, in a vertical direction).
이렇게 1차원 이미지화 처리를 수행한 기계 학습 처리부는 해당 1차원 이미지를 CNN에 의한 기계 학습을 수행하여 CNN의 각 파라미터를 결정하여 반영시키는 것이다.In this way, the machine learning processing unit that has performed the one-dimensional imaging process determines and reflects each parameter of the CNN by performing machine learning using the CNN.
n 픽셀을 가진 1차원 이미지를 CNN 알고리즘에 적용하여 처리하는 과정이 도 5에 도시되었다.A process of processing a 1-dimensional image having n pixels by applying it to the CNN algorithm is shown in FIG. 5.
도 7을 참조하면, AI(인공지능) 모델인 신경망의 구성은 입력(Input), 층(Layer), 예측(Predict Result), 실제값(Target), 손실함수(Loss Function), 옵티마이저(Optimizer)로 구성될 수 있는데, 여기서 입력(Input)은 앞서 설명한 실시간 데이터와 CDR데이터에 대해 정규화 방식으로 인코딩된 데이터가 입력되는 것을 의미한다.Referring to FIG. 7, the configuration of a neural network that is an AI (artificial intelligence) model is an input, a layer, a prediction result, an actual value, a loss function, and an optimizer. ), where input means inputting data encoded in a normalized manner for real-time data and CDR data described above.
또한, 층(Layer)은 신경망을 구성하는 층으로, 실시간 데이터처리와 CDR 데이터 처리에 적합하도록 Layer 1 Dimension CNN 알고리즘에 최적화하도록 모델링 될 수 있다.In addition, a layer is a layer that composes a neural network, and can be modeled to optimize the Layer 1 Dimension CNN algorithm to suit real-time data processing and CDR data processing.
손실함수(Loss Function)는 학습에 사용할 피드백 신호를 정의하는 중요 구성요소로 deep learning 지침에 의해 2개의 클래스 분류의 경우 이진 크로스 엔트로피(Binary Crossentropy), 여러 클래스 분류의 경우 범주형 크로스 엔트로피(Categorical Crossentropy), 회귀의 경우 평균 제곱 오차, 시퀀스의 경우 CTC(connection TemporlClassification)를 적용하며, 다중 클래스가 존재하므로 주형 크로스 엔트로피(Categorical Crossentropy) 적용이 이루어진 것일 수 있다.The loss function is an important component that defines the feedback signal to be used for learning, and according to the deep learning guideline, binary crossentropy for two class classifications, and categorical crossentropy for multiple class classifications. ), in the case of regression, a mean square error, in the case of a sequence, CTC (connection Temporl Classification) is applied, and since multiple classes exist, categorical crossentropy may be applied.
옵티마이저(Optimizer)는 학습 진행 방식을 결정하는 구성요소로 손실함수를 기반으로 신경망의 가중치 update를 결정하며, 확률적 경사 하강법(SGD: Stochastic Gradient Decent) 적용이 이루어지는 것일 수 있다.The optimizer is a component that determines how to proceed with learning, and determines the weight update of the neural network based on the loss function, and may be applied to the stochastic gradient decent (SGD) method.
상술한 바와 같이 정규화 작업을 마친 데이터는 CNN 모델링이 가능하도록 일차원 이미지 배열로 구성되고, 이미지에 대한 반복적인Convolution 연산을 통하는 기계 학습에 의해 레이어 파라미터에 대한 최적의 값이 도출될 수 있는 것이다.As described above, the normalized data is composed of a one-dimensional image array to enable CNN modeling, and an optimal value for the layer parameter can be derived by machine learning through repetitive convolution operations on the image.
도 7과 같은 구성이 이루어진 경우, CNN 알고리즘에 따라 기계 학습이 이루어지는 과정 그 자체는 공지된 기술에 해당하므로 보다 상세한 설명은 생략한다.When the configuration as shown in FIG. 7 is made, the process in which machine learning is performed according to the CNN algorithm itself corresponds to a known technique, and thus a more detailed description thereof will be omitted.
한편, 판단부는 실시간 호 연결 데이터와 CDR 데이터 중 적어도 어느 하나를 인공지능 시스템에 적용시켜 불법호를 판단하는 기능을 수행한다.Meanwhile, the determination unit applies at least one of real-time call connection data and CDR data to the artificial intelligence system to determine an illegal call.
즉, 앞서 설명한 바와 같이 기계 학습에 의해 인공지능 시스템의 각 파라미터가 결정된 이후, 판단부는 실시간 호 연결 데이터 또는 CDR 데이터를 해당 인공지능 시스템에 입력값으로 전달하여 불법호 여부를 판단토록 하는 것이다.That is, as described above, after each parameter of the artificial intelligence system is determined by machine learning, the determination unit transmits real-time call connection data or CDR data as an input value to the artificial intelligence system to determine whether or not there is an illegal call.
특히, 판단부는 호 연결 방식에 따른 처리를 구분하여 처리할 수 있는데, 호 연결이 인터넷을 통한 연결인 경우 실시간 호 연결 데이터를 추출한 후 해당 호 연결 데이터를 인공지능 시스템에 적용시켜 불법호를 판단하고, 호 연결이 공중전화망(PSTN : Public Switched Telephone Network)을 통한 연결인 경우 해당 호 연결이 종료된 후 저장되는 CDR 정보를 인공지능 시스템에 적용시켜 불법호를 판단할 수 있다.In particular, the determination unit can classify and process the processing according to the call connection method. If the call connection is through the Internet, it extracts real-time call connection data and applies the call connection data to the artificial intelligence system to determine illegal calls. If the call connection is through a public switched telephone network (PSTN), the CDR information stored after the call connection is terminated can be applied to the artificial intelligence system to determine an illegal call.
이처럼 호 연결 방식에 따른 전체적인 처리 방식에 대해서는 도 8 및 도 9에 도시 되었다.As described above, the overall processing method according to the call connection method is illustrated in FIGS. 8 and 9.
도 8은 인터넷을 통해 SIP 호가 발생되는 경우의 처리 과정을 나타낸 것이다.8 shows a processing procedure when a SIP call is generated through the Internet.
동 도면을 참조하면, 불법호 검출 시스템은 호 처리 시스템에 송수신 되는 패킷이 패킷 미러링을 통해 수신되는 경우, 실시간 데이터 추출 블록의 실시간 추출 모듈에서 실시간 호 관련 정보를 추출하여 AI 검출 블록에 전달하는데, AI 검출 블록에서는 이를 기 구축된 AI 모델(즉, 상술한 파라미터가 결정 및 반영된 인공지능 시스템에 해당함)에 적용하여 불법호를 검출함과 아울러, 해당 실시간 데이터에 대한 기계 학습 처리도 추가로 수행한다.Referring to the figure, when a packet transmitted/received to the call processing system is received through packet mirroring, the illegal call detection system extracts real-time call-related information from the real-time extraction module of the real-time data extraction block and delivers it to the AI detection block. In the AI detection block, this is applied to a pre-built AI model (i.e., corresponding to the artificial intelligence system in which the above-described parameters are determined and reflected) to detect illegal calls and additionally perform machine learning processing on the real-time data. .
이러한 기계 학습 처리의 추가 진행은 인공지능 시스템의 파라미터에 대한 갱신을 의미하며, 이에 따라 불법호 패턴이 변경되는 경우에도 지속적으로 추적 관리가 가능해 진다.The additional progress of this machine learning process means updating the parameters of the artificial intelligence system, and accordingly, tracking management is possible even when the illegal call pattern is changed.
도 9는 PSTN을 통해 호가 발생되는 경우의 처리 과정을 나타낸 것이다.9 shows a processing procedure when a call is generated through the PSTN.
동 도면을 참조하면, 불법호 검출 시스템의 CDR 수집 블록은 PSTN 호 발생 후 누적 저장되는 CDR 데이터를 주기적으로 수집하고, 이를 AI 검출 블록에 전달하는데, AI 검출 블록에서는 이러한 CDR 데이터를 기 구축된 AI 모델에 적용하여 불법호를 검출함과 아울러, 해당 CDR 데이터에 대한 기계 학습 처리도 추가로 수행한다.Referring to the figure, the CDR collection block of the illegal call detection system periodically collects and stores CDR data accumulated after the PSTN call is generated, and transmits it to the AI detection block.The AI detection block stores these CDR data. In addition to detecting illegal calls by applying it to the model, machine learning processing for the corresponding CDR data is additionally performed.
한편, 상술한 각 실시예를 수행하는 과정은 소정의 기록 매체(예를 들어 컴퓨터로 판독 가능한)에 저장된 프로그램 또는 애플리케이션에 의해 이루어질 수 있음은 물론이다. 여기서 기록 매체는 RAM(Random Access Memory)과 같은 전자적 기록 매체, 하드 디스크와 같은 자기적 기록 매체, CD(Compact Disk)와 같은 광학적 기록 매체 등을 모두 포함한다.Meanwhile, it goes without saying that the process of performing each of the above-described embodiments may be performed by a program or application stored in a predetermined recording medium (eg, computer-readable). Here, the recording medium includes all of an electronic recording medium such as a random access memory (RAM), a magnetic recording medium such as a hard disk, and an optical recording medium such as a compact disk (CD).
이때, 기록 매체에 저장된 프로그램은 컴퓨터나 스마트폰 등과 같은 하드웨어 상에서 실행되어 상술한 각 실시예를 수행할 수 있다. 특히, 상술한 본 발명에 따른 불법호 검출 시스템의 기능 블록 중 적어도 어느 하나는 이러한 프로그램 또는 애플리케이션에 의해 구현될 수 있다.At this time, the program stored in the recording medium may be executed on hardware such as a computer or a smart phone to perform each of the above-described embodiments. In particular, at least one of the functional blocks of the illegal call detection system according to the present invention described above may be implemented by such a program or application.
또한, 본 발명은 상기한 특정 실시예에 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 변형 및 수정하여 실시할 수 있는 것이다. 이러한 변형 및 수정이 첨부되는 특허청구범위에 속한다면 본 발명에 포함된다는 것은 자명할 것이다.In addition, the present invention is not limited to the specific embodiments described above, but can be implemented by various modifications and modifications without departing from the gist of the present invention. It will be apparent that such modifications and modifications are included in the present invention if they fall within the appended claims.
이상 설명한 바와 같이 본 발명에 따르면, 불법호 검출의 정확도를 높일 수 있을 뿐만 아니라, 불법호 패턴에 대한 기계 학습이 통해 자동화가 이루어짐으로써 불법호의 패턴이 변하는 경우라도 불법호 검출이 가능해진다.As described above, according to the present invention, not only can the accuracy of illegal call detection be improved, but also the illegal call pattern can be detected even when the illegal call pattern changes as automation is performed through machine learning about the illegal call pattern.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN201980004472.5ACN112567720A (en) | 2019-08-22 | 2019-12-18 | Fraud call detection system based on machine learning and control method thereof | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| KR1020190103279AKR102228021B1 (en) | 2019-08-22 | 2019-08-22 | System for detecting illegal call using machine learning and control method thereof | 
| KR10-2019-0103279 | 2019-08-22 | 
| Publication Number | Publication Date | 
|---|---|
| WO2021033851A1true WO2021033851A1 (en) | 2021-02-25 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| PCT/KR2019/017932CeasedWO2021033851A1 (en) | 2019-08-22 | 2019-12-18 | Fraudulent call detection system based on machine learning and control method thereof | 
| Country | Link | 
|---|---|
| KR (1) | KR102228021B1 (en) | 
| CN (1) | CN112567720A (en) | 
| WO (1) | WO2021033851A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN115174745A (en)* | 2022-07-04 | 2022-10-11 | 联通(山东)产业互联网有限公司 | Telephone number fraud pattern recognition method based on graph network and machine learning | 
| US12095628B2 (en) | 2022-10-19 | 2024-09-17 | T-Mobile Usa, Inc. | Machine learning system for predicting network abnormalities | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN113141613B (en)* | 2021-04-27 | 2023-09-26 | 上海淇玥信息技术有限公司 | Communication channel detection method and device and electronic equipment | 
| US12206820B2 (en) | 2022-07-29 | 2025-01-21 | Realnetworks Llc | Detection of unwanted calls or caller intent based on a fusion of acoustic and textual analysis of calls | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| KR20110079044A (en)* | 2009-12-31 | 2011-07-07 | 주식회사 케이티 | Illegal call detection system and method | 
| KR20140003945A (en)* | 2012-07-02 | 2014-01-10 | 주식회사 케이티 | Method and apparatus for providing illegal phishing call blocking services of voip call | 
| KR20150065083A (en)* | 2013-12-04 | 2015-06-12 | 주식회사 케이티 | Message transmission apparatus, message server and message receipt appratus | 
| KR20150129301A (en)* | 2015-11-02 | 2015-11-19 | 주식회사 비즈모델라인 | Method for Authenticating Caller of Voice Network using Data Network | 
| US20160134757A1 (en)* | 2012-07-24 | 2016-05-12 | Twilio, Inc. | Method and system for preventing illicit use of a telephony platform | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| KR20050049028A (en)* | 2003-11-21 | 2005-05-25 | 티플러스테크놀로지스(주) | Hooters | 
| KR101218253B1 (en) | 2011-07-14 | 2013-01-21 | 델피콤주식회사 | Fraud security detection system and method | 
| CN107889111A (en)* | 2016-09-30 | 2018-04-06 | 北京金山安全软件有限公司 | Crank call identification method and device based on deep neural network | 
| CN107222865B (en)* | 2017-04-28 | 2019-08-13 | 北京大学 | Communication swindle real-time detection method and system based on suspicious actions identification | 
| CN107547718B (en)* | 2017-08-22 | 2020-11-03 | 电子科技大学 | Telecommunication fraud identification and defense system based on deep learning | 
| CN109995924A (en)* | 2017-12-30 | 2019-07-09 | 中国移动通信集团贵州有限公司 | Cheat phone recognition methods, device, equipment and medium | 
| CN108924333B (en)* | 2018-06-12 | 2020-09-18 | 阿里巴巴集团控股有限公司 | Fraud telephone identification method, device and system | 
| CN109905282A (en)* | 2019-04-09 | 2019-06-18 | 国家计算机网络与信息安全管理中心 | Fraudulent call prediction technique and forecasting system based on LSTM | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| KR20110079044A (en)* | 2009-12-31 | 2011-07-07 | 주식회사 케이티 | Illegal call detection system and method | 
| KR20140003945A (en)* | 2012-07-02 | 2014-01-10 | 주식회사 케이티 | Method and apparatus for providing illegal phishing call blocking services of voip call | 
| US20160134757A1 (en)* | 2012-07-24 | 2016-05-12 | Twilio, Inc. | Method and system for preventing illicit use of a telephony platform | 
| KR20150065083A (en)* | 2013-12-04 | 2015-06-12 | 주식회사 케이티 | Message transmission apparatus, message server and message receipt appratus | 
| KR20150129301A (en)* | 2015-11-02 | 2015-11-19 | 주식회사 비즈모델라인 | Method for Authenticating Caller of Voice Network using Data Network | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN115174745A (en)* | 2022-07-04 | 2022-10-11 | 联通(山东)产业互联网有限公司 | Telephone number fraud pattern recognition method based on graph network and machine learning | 
| CN115174745B (en)* | 2022-07-04 | 2023-08-15 | 联通(山东)产业互联网有限公司 | Telephone number fraud pattern recognition method based on graph network and machine learning | 
| US12095628B2 (en) | 2022-10-19 | 2024-09-17 | T-Mobile Usa, Inc. | Machine learning system for predicting network abnormalities | 
| Publication number | Publication date | 
|---|---|
| KR20210023284A (en) | 2021-03-04 | 
| KR102228021B1 (en) | 2021-03-16 | 
| CN112567720A (en) | 2021-03-26 | 
| Publication | Publication Date | Title | 
|---|---|---|
| WO2021033851A1 (en) | Fraudulent call detection system based on machine learning and control method thereof | |
| US9729727B1 (en) | Fraud detection on a communication network | |
| US8391445B2 (en) | Caller identification using voice recognition | |
| CN1295753A (en) | Automated and selective authentication in transaction-based networks | |
| RU2763047C2 (en) | System and method for call classification | |
| US11373663B2 (en) | Solution for determining an authenticity of an audio stream of a voice call | |
| US20090086943A1 (en) | Identification of multiple persons on a phone call | |
| CN114339639B (en) | Call identification method, device, storage medium and electronic equipment | |
| CN111901790A (en) | Method, device, electronic device and storage medium for identifying telecommunication fraud | |
| CN110493476B (en) | Detection method, device, server and storage medium | |
| WO2010011075A2 (en) | Method of using prefix and suffix for identifying user of a calling terminal | |
| US5594787A (en) | Call toll processing method and call toll processing apparatus | |
| US8094791B2 (en) | Biometric systems and methods for enhanced caller identification and call intercept | |
| CN1116756C (en) | A system that transmits the subscriber number of a calling subscriber to a subscriber terminal | |
| CN112351429A (en) | Harmful information detection method and system based on deep learning | |
| WO2022065541A1 (en) | Machine-learning-based blocked call detection system and control method thereof | |
| CN107342986A (en) | An early warning system and early warning method for fraudulent calls | |
| CN103873713A (en) | Device and method for the recognition of call numbers for voice-over-ip telephony | |
| KR102135242B1 (en) | Apparatus and method for detecting illegal call | |
| US4147902A (en) | Method of automatic trunk testing | |
| US11323560B2 (en) | Apparatus and method for detecting illegal call | |
| RU2766273C1 (en) | System and method of detecting an unwanted call | |
| TWI729412B (en) | Fraud phone call detecting method and electronic device | |
| EP3633964A1 (en) | Method for assisting a callee with a reputation score of a caller | |
| KR102800516B1 (en) | Apparatus and method for detecting illegal communication device | 
| Date | Code | Title | Description | 
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | Ref document number:19942048 Country of ref document:EP Kind code of ref document:A1 | |
| NENP | Non-entry into the national phase | Ref country code:DE | |
| 122 | Ep: pct application non-entry in european phase | Ref document number:19942048 Country of ref document:EP Kind code of ref document:A1 |