Movatterモバイル変換


[0]ホーム

URL:


WO2020092988A1 - Plasma nitriding with pecvd coatings using hollow cathode ion immersion technology - Google Patents

Plasma nitriding with pecvd coatings using hollow cathode ion immersion technology
Download PDF

Info

Publication number
WO2020092988A1
WO2020092988A1PCT/US2019/059511US2019059511WWO2020092988A1WO 2020092988 A1WO2020092988 A1WO 2020092988A1US 2019059511 WUS2019059511 WUS 2019059511WWO 2020092988 A1WO2020092988 A1WO 2020092988A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
workpieces
workpiece
gas
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2019/059511
Other languages
French (fr)
Inventor
Andrew Tudhope
Thomas B. Casserly
Salvatore GENNARO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duralar Technologies LLC
Original Assignee
Duralar Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duralar Technologies LLCfiledCriticalDuralar Technologies LLC
Priority to EP19877691.6ApriorityCriticalpatent/EP3874497A4/en
Publication of WO2020092988A1publicationCriticalpatent/WO2020092988A1/en
Anticipated expirationlegal-statusCritical
Ceasedlegal-statusCriticalCurrent

Links

Classifications

Definitions

Landscapes

Abstract

Rapid plasma nitriding is achieved by harnessing the power and increased density of plasma discharges created by hollow cathodes. When opposing surfaces are maintained at the proper voltage, sub atmospheric pressure, and spacing, a phenomenon known as the hollow cathode effect creates additional hot oscillating electrons capable of multiple ionization events thereby increasing the number of ions and electrons per unit volume (plasma density). The present invention describes the harnessing of this phenomenon to rapidly plasma nitride metal surfaces and optionally rapidly deposit functional coatings in a continuous operation for duplex coatings.

Description

PLASMA NITRIDING WITH PECVD COATINGS USING HOLLOW CATHODE ION
IMMERSION TECHNOLOGY
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims benefit of U.S. Provisional Application No. 62/754,457 filed November 1 , 2018 and claims benefit of U.S. Patent Application No. 16/499,669 filed September 30, 2019, the specification(s) of which is/are incorporated herein in their entirety by reference.
FIELD OF THE INVENTION
[0002] The present invention relates to surface enhancements of metal components for improved performance such as increased hardness, protection against wear and corrosion, and decreased friction, leading to longer component lifetime.
BACKGROUND OF THE INVENTION
[0003] Nitriding of steels is a thermochemical surface enhancement where nitride compounds are formed through diffusion of atomic nitrogen into the surface at elevated temperatures. Three regions are possible: an outermost layer, a diffusion zone, and a transition zone. In the outermost layer, a brittle white (compound) layer forms as nitride compounds increase in concentration and precipitate from the bulk material creating a dual phase layer. While hard, the white layer is brittle and often rough and porous and should be removed for the best working surface of the tool. This is due to its brittle nature, which can cause it to crack and debond from the bulk under high loads. The diffusion zone is a single phase region containing formed nitrides. The transition zone is the end of the diffusion zone where the concentration of formed nitrides drops rapidly and meets the bulk material which remains unchanged.
[0004] Plasma nitriding has been found to overcome the uniformity and difficulty in controlling white (compound) layer formation issues of gas nitriding by controlling the amount of nitrogen at the surface to create bright nitriding which does not have compound layer formation. The low pressure also enhances the uniformity and control of gas concentrations. This bright nitriding process has the advantage of not requiring polishing after processing. Unlike gas nitriding or salt bath nitriding/nitrocarburizing, plasma nitriding is possible at lower temperatures which allows for more control over the type of alloys processed. Plasma nitriding also enables nitriding of aluminum, stainless steels, and other materials with natural protective oxide formation not possible with gas or salt bath nitriding. When plasma nitriding these materials, the oxide layer is first etched, allowing for nitrogen diffusion in the base material. Typically, the time for most plasma nitriding processes is on the order of 6-8 hours. Utilization of hollow cathode ion immersion allows for similar diffusion zone hardness and depth in as little as 30 minutes, dramatically reducing the cost, time, and operating temperature for the material being case hardened.
SUMMARY OF THE INVENTION
[0005] Increased plasma density characterized by hollow cathode discharges enables the rapid heating of parts to nitriding temperatures, uniformly dense plasma, and rich ion bombardment of the surface to enhance diffusion of free nitrogen into the surface. Utilizing the deposition systems, such as those described in commonly owned US7838793 and PCT/US2018/025747, the hollow cathode discharge is controlled to perform rapid plasma nitriding. Additionally, the system is capable of creating coatings using vapor deposition also by hollow cathode discharge at radically faster rates than otherwise possible. When desired, the invention can further apply a hard, chemically inert (corrosion resistant), low friction, low wear diamond-like carbon (DLC) coating to the nitrided surface in the same system without passivation or exposure to atmosphere. Duplex plasma nitriding with DLC is only one of the many useful combinations made possible by this invention.
[0006] Without wishing to limit the invention to any theory or mechanism, it is believed that this technical feature of the present invention advantageously allows for the ability to perform both nitriding and depositing of functional coatings in the same system without exposure to atmosphere, as would be required with traditional systems for duplex coatings, thereby enhancing the adhesion and quality of the finished workpiece. Continuous duplex processes are superior to sequential duplex processes because the activated surface from the first process is not exposed to atmospheric oxygen, water, or other contaminants prior to the deposition of the working surface coating, for example, by plasma enhanced chemical vapor deposition (PECVD). Furthermore, the systems of the present invention can utilize the same platform without additional modification to enable both rapid nitriding and rapid functional coating deposition at rates of >15 microns/hr, unlike other systems that are comparatively complex and have deposition rates for the functional coating on the order of 1 micron/hour. None of the presently known prior references has the inventive technical features of the present invention.
[0007] In some embodiments, this process can be done for internal surfaces of a workpiece by fixturing said workpiece as a vacuum chamber as described in US7838793, “System and Method for treating surfaces of components”, the specifications of which are incorporated herein in its entirety by reference. In other embodiments, this process can treat internal or external surfaces by utilization of the system described in PCT/US2018/025747,“Systems and methods for coating surfaces”, the specifications of which are incorporated herein in its entirety by reference. In still other embodiments, the same system can treat both internal and external surfaces.
[0008] Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
[0010] FIG. 1 shows one embodiment of a deposition system that can perform duplex plasma nitriding and coating onto an interior surface of a workpiece.
[0011] FIG. 2 illustrates the relative positions and interactions between a workpiece and the coupling heads of the system embodiment shown in FIG. 1
[0012] FIG. 3 shows a cross-sectional view of an inlet and outlet coupling head.
[0013] FIG. 4 shows a schematic diagram of cathodes and anodes of the system enabling a hollow cathode condition within an interior space of a chamber.
[0014] FIG. 5 is another embodiment of the deposition system having multiple chambers and that can perform duplex plasma nitriding and coating onto an interior and exterior surface of a workpiece.
[0015] FIG. 6 shows a back interior view of the deposition system according to FIG. 5.
[0016] FIG. 7 shows a chamber of the deposition system with the moveable door ajar for loading and unloading workpieces.
[0017] FIG. 8 shows one chamber of the deposition system with a moveable door ajar for accessing workpieces within the chamber.
[0018] FIG. 9 shows a gas chamber configured to be coupled to a first end of the chamber for delivering gas.
[0019] FIG. 10 shows a vacuum head configured to be coupled to an opposing second end of the chamber.
[0020] FIG. 11 shows a schematic diagram of the deposition system having a gas module, a pressure module, and a power module coupled to one or more processing modules of the deposition system, and further comprising a controller module for controlling each of the aforementioned modules.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0021] Referring to FIGs. 1 -3, the present invention features a system for rapid plasma nitriding of an interior surface of a conductive workpiece. The system preferably utilizes the hollow cathode effect as shown in FIG. 4. In one embodiment, the system comprises a biasing system electrically coupled to the workpiece and an anode so to negatively bias the workpiece relative to an anode, a vacuum source for evacuating an interior of the workpiece that is sealed, while being treated, from an exterior of the workpiece, a gas supply for introducing a gas comprising nitrogen to said interior of the workpiece, a control system for controlling the biasing system, the vacuum source and the gas supply, and one or more coupling heads for sealing the workpiece. Each of the coupling heads may comprise a casing having an inlet for receiving gas from said gas supply and an outlet for connecting with said interior of the workpiece to be treated, and a removable shield at least partially shielding said casing from any gas introduced thereto.
[0022] In some embodiments, the system may further comprise a heat shield for controlling a temperature of the workpiece. In other embodiments, the system may further comprise a second gas supply for introducing a gas comprising reactive gases for coating deposition. The system may be further configured to coat the nitrided workpiece with a coating without venting the interior of the workpiece or exposing the workpiece to any contaminant. In one embodiment, the coating may be a diamond like carbon (DLC), silicon carbide, multilayer DLC with silicon based adhesion layer, or a multi-layer DLC with a metal based adhesion layer. In another embodiment, the coating is doped with N, Ge, Si, 0, V, Cr, W, Ta, Ti, Co, Al, or a combination thereof. In some embodiments, the system may be further configured to deposit crystalline diamond, either in addition to a first plasma nitriding step or directly on the workpiece itself.
[0023] According to some embodiments, the system may be utilized in a method for treating an interior surface of a conductive workpiece. The method may comprise providing the system, cleaning and fixturing the workpiece in preparation for vacuum processing, evacuating an interior of the workpiece to a vacuum pressure, introducing the gas comprising nitrogen and adjusting the pressure for plasma nitriding, and applying a biasing voltage between the workpiece and the anode so as to establish a hollow cathode effect and generate a plasma within said workpiece, thereby plasma nitriding the interior surface of the workpiece. In other embodiments, the method may further comprise depositing a duplex coating onto the nitrided interior surface, comprising introducing a one or more reactive gases for coating deposition, adjusting the pressure, and applying a biasing voltage between the workpiece and the anode so as to establish a hollow cathode effect and generate a plasma within said workpiece, thereby coating the nitrided interior surface.
[0024] Referring now to FIGs. 5-11 , the present invention features a system for rapid plasma nitriding an interior surface, an external surface, or both of one or more conductive workpieces utilizing the hollow cathode effect. In some embodiments, the system may comprise at least one processing module comprising a chamber having a movable door, a gas module comprising one or more gases comprising nitrogen, hydrogen, argon or a combination thereof, the gas module operably coupled to the processing module and configured to deliver gas to the chamber, a pressure module operably coupled to the processing module and configured to apply a vacuum to the chamber, a power module comprising anodes and a DC power supply operably coupled to the processing module, the power module configured to negatively bias the chamber and workpieces therein as cathodes, and a controller module operably coupled to the processing module, the gas module, the pressure module, and the power module. In one embodiment, the controller has memory that stores computer readable instructions that, when executed by the controller, causes the controller to regulate vacuum in the chamber of the processing module, adjust gas flow to the chamber of the processing module, and apply a negative pulse for biasing the one or more workpieces and the chamber as cathodes to establish hollow cathode conditions, thus generating a plasma of the gas to uniformly nitride the workpieces.
[0025] According to other embodiments, the system for rapid plasma nitriding an interior surface, an external surface, or both of one or more conductive workpieces may comprise two or more processing modules, each having a chamber that includes a movable door. Preferably, each processing module may be configured to operate individually such that the chamber of one processing module is independent of the chamber of another processing module. For example, when at least one of the processing modules is processing a set of workpieces positioned within the chamber, the other processing module is available for loading or unloading a second set of workpieces or for receiving maintenance, thereby increasing throughput of the system.
[0026] In other embodiments, the system may further include a gas module operably coupled to each of the processing modules and configured to deliver gas comprising one or more gases comprising nitrogen, hydrogen, argon or a combination thereof to only the chamber being used for processing the workpieces, a pressure module operably coupled to each of the processing modules and configured to apply a vacuum to only the chamber being used for processing the workpieces, a power module comprising anodes operably coupled to each of the processing modules and a DC power supply operably coupled to each of the processing modules, the power module configured to negatively bias the chamber and workpieces therein as cathodes, and a controller module operably coupled to the one or more processing modules, the gas module, the pressure module, and the power module. In one embodiment, the controller has memory that stores computer readable instructions that, when executed by the controller, causes the controller to select which processing module is being used for coating the workpieces, regulate vacuum of the chamber of the selected processing module, adjust gas flow to the chamber of the selected processing module, and apply a negative pulse for biasing the one or more workpieces and the chamber as cathodes to establish hollow cathode conditions, thus generating a plasma of the gas to uniformly nitride the workpieces. [0027] Consistent with the systems described herein, the system may further comprise a heat shield for controlling a temperature of the workpiece. As such, the present advantage has the advantage of processing the workpieces at lower temperatures, for example, plasma nitriding at temperatures less than 700°C, e.g. about 400°C - 650°C.
[0028] In some embodiments, the one or more gases may further comprise reactive gases for coating deposition. In other embodiments, the system may be further configured to coat the nitrided workpieces with a coating without venting the chamber or exposing the workpieces to any contaminant. In one embodiment, the coating may be a diamond like carbon (DLC), silicon carbide, multilayer DLC with silicon based adhesion layer, or a multi-layer DLC with a metal based adhesion layer. In another embodiment, the coating is doped with N, Ge, Si, O, V, Cr, W, Ta, Ti, Co, Al, or a combination thereof. In some embodiments, the system may be further configured to deposit crystalline diamond, either in addition to the plasma nitriding step or directly on the workpieces.
[0029] According to other embodiments, the systems may be used in a method for treating one or more conductive workpieces. The method may comprise providing any of the systems for rapid plasma nitriding an interior surface, an external surface, or both of one or more conductive workpieces, cleaning the workpieces in preparation for vacuum processing, positioning the workpieces inside the chamber, evacuating the chamber to a vacuum pressure, introducing the gas comprising nitrogen into the chamber and adjusting the pressure for plasma nitriding, and applying a biasing voltage between the workpieces and the chamber and the anode so as to establish a hollow cathode effect and generate a plasma, thereby plasma nitriding the surfaces of the workpieces. In some other embodiments, the method may further comprise comprising depositing a duplex coating onto the nitrided surfaces of the workpieces. This duplex coating step may comprise introducing one or more reactive gases for coating deposition, adjusting the pressure, and applying a biasing voltage between the workpieces and the chamber and the anode so as to establish a hollow cathode effect and generate a plasma, thereby coating the nitrided surfaces.
[0030] The present invention has been demonstrated to perform rapid plasma nitriding using hollow cathode discharges created with pulsed DC. Pulsed DC allows for fine control of both peak and average power delivered to the system to enable control over plasma uniformity, substrate temperature, and gas composition during pulsing. While straight DC is possible, pulsed DC is preferred for the reasons stated previously as well as its ability to prevent arcing sometimes associated with DC plasmas. RF and pulsed RF discharges are also relevant activation methods, but the power supply and matching networks required are more costly than pulsed DC units and control of voltage bias is limited without additional bias power supplies. Thus, pulsed DC is the preferred method for activation and control of the plasma.
[0031] In some embodiments, pulse frequencies may vary from about 10 kFIz to about 50 kFIz for high frequency pulsing. In other embodiments, pulse frequencies may vary from about 1 Flz to about 100Flz for low frequency burst of pulse packages or even continuous wave high frequency pulsing. In yet other embodiments, total bias time may vary from about 0.5% and about 75%. For example, common values of total bias time may vary from about 2% and about 50%, or from about 2% and about 25%.
[0032] In some embodiments, operating pressures may be about 50 and about 1000 mTorr. In other embodiments, gas concentrations for plasma nitriding may comprise 100% N2 or mixtures containing FH2, N2, and Argon at various concentrations. In one embodiment, hydrogen concentration is typically 0-50% and is varied to control the concentration of free nitrogen at the surface.
[0033] EXAMPLE 1. The following is provided as a non-limiting example of implementing the present invention.
[0034] Parts are first degreased and typically ultrasonically cleaned to prepare them for vacuum processing. In one embodiment, for coating an internal surface, the parts are fixtured for vacuum processing and are turned into a vacuum chamber and evacuated. In an alternative embodiment, for coating an internal surface, an external surface, or both the internal and external surface simultaneously, the parts are fixtured for vacuum processing and are loaded onto fixtures and into a reusable vacuum chamber and evacuated. After ensuring a good vacuum, the parts are first treated with a plasma containing a mixture of Hydrogen and Argon to clean and activate the surface. The gas composition is then altered to introduce nitrogen and the pressure adjusted to the operating pressure for plasma nitriding. [0035] In some embodiments, if a duplex coating is requested, rather than air or argon quench, the surface is briefly bombarded with Argon plasma before introducing the desired reactive gases for coating deposition. For DLC, this can include a carbon source such as methane, acetylene, or other carbon source. For enhanced adhesion, a silicon containing bridge/adhesion layer may be used through introduction of a gas such as tetramethylsilane, silane, or other. Additionally, metal based adhesion layers can be created using titanium tetrachloride, tetrakis(dimethylamino)titanium(IV), or others.
[0036] According to some embodiments, the present invention may be used to surface harden automotive parts via plasma nitriding. In conjunction, the addition of a duplex DLC coating using the same system can greatly reduce wear and friction, thereby enhancing part lifetime while also increasing the efficiency of the engine. In addition to automotive applications, the present invention may be implemented in the tool cutting industry, aerospace, oil and gas, agriculture, heavy industrial equipment, weapons, etc. According to some other embodiments, the systems of the present invention may be used to create crystalline diamond at higher rates than has previously been achieved.
[0037] As used herein, the term“about” refers to plus or minus 10% of the referenced number.
[0038] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.
[0039] Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. Reference numbers recited in the claims are exemplary and for ease of review by the patent office only, and are not limiting in any way. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase“comprising” includes embodiments that could be described as “consisting of”, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase“consisting of” is met.

Claims

WHAT IS CLAIMED IS:
1. A system for rapid plasma nitriding an interior surface of a conductive workpiece utilizing the hollow cathode effect, comprising:
a. a biasing system electrically coupled to the workpiece and an anode so to negatively bias the workpiece relative to an anode;
b. a vacuum source for evacuating an interior of the workpiece that is sealed, while being treated, from an exterior of the workpiece;
c. a gas supply for introducing a gas comprising nitrogen to said interior of the workpiece;
d. a control system for controlling the biasing system, the vacuum source and the gas supply; and
e. one or more coupling heads for sealing the workpiece, each comprising: i. a casing, having an inlet for receiving gas from said gas supply and an outlet for connecting with said interior of the workpiece to be treated; and
ii. a removable shield, at least partially shielding said casing from any gas introduced thereto.
2. The system of claim 1 further configured to coat the nitrided workpiece with a coating without venting the interior of the workpiece or exposing the workpiece to any contaminant.
3. The system of claim 2, further comprising a second gas supply for introducing a gas comprising reactive gases for coating deposition.
4. The system of claim 2, wherein the coating is a diamond like carbon (DLC), silicon carbide, multilayer DLC with silicon based adhesion layer, or a multi-layer DLC with a metal based adhesion layer.
5. The system of claim 2, wherein the coating is doped with N, Ge, Si, 0, V, Cr, W,
Ta, Ti, Co, Al, or a combination thereof.
6. The system of claim 1 further configured to deposit crystalline diamond either in addition to a first plasma nitriding step or directly on the workpiece itself.
7. The system of claim 1 further comprising a heat shield for controlling a temperature of the workpiece.
8. A method for treating an interior surface of a conductive workpiece comprising: a. providing the system according to claim 1 ;
b. cleaning and fixturing the workpiece in preparation for vacuum processing; c. evacuating an interior of the workpiece to a vacuum pressure;
d. introducing the gas comprising nitrogen and adjusting the pressure for plasma nitriding; and
e. applying a biasing voltage between the workpiece and the anode so as to establish a hollow cathode effect and generate a plasma within said workpiece, thereby plasma nitriding the interior surface of the workpiece.
9. The method of claim 8 further comprising depositing a duplex coating onto the nitrided interior surface, comprising introducing one or more reactive gases for coating deposition, adjusting the pressure, and applying a biasing voltage between the workpiece and the anode so as to establish a hollow cathode effect and generate a plasma within said workpiece, thereby coating the nitrided interior surface.
10. A system for rapid plasma nitriding an interior surface, an external surface, or both of one or more conductive workpieces utilizing the hollow cathode effect, the system comprising:
a. at least one processing module comprising a chamber, wherein the chamber includes a movable door;
b. a gas module comprising one or more gases comprising nitrogen, hydrogen, argon or a combination thereof, the gas module operably coupled to the processing module and configured to deliver gas to the chamber;
c. a pressure module operably coupled to the processing module and configured to apply a vacuum to the chamber;
d. a power module comprising anodes and a DC power supply operably coupled to the processing module, wherein the power module is configured to negatively bias the chamber and workpieces therein as cathodes; and
e. a controller module operably coupled to the processing module, the gas module, the pressure module, and the power module, wherein the controller has memory that stores computer readable instructions that, when executed by the controller, causes the controller to:
i. regulate vacuum in the chamber of the processing module; ii. adjust gas flow to the chamber of the processing module; and iii. apply a negative pulse for biasing the one or more workpieces and the chamber as cathodes to establish hollow cathode conditions, thus generating a plasma of the gas to uniformly nitride the workpieces.
11. A system for rapid plasma nitriding an interior surface, an external surface, or both of one or more conductive workpieces utilizing the hollow cathode effect, the system comprising:
a. two or more processing modules, each comprising a chamber, wherein the chamber includes a movable door, wherein each processing module is configured to operate individually such that the chamber of one processing module is independent of the chamber of another processing module, wherein when at least one of the processing modules is processing a first set of workpieces positioned within the chamber, the other processing module is available for loading or unloading a second set of workpieces or for receiving maintenance, thereby increasing throughput of the system; b. a gas module comprising one or more gases comprising nitrogen, hydrogen, argon or a combination thereof, the gas module operably coupled to each of the processing modules and configured to deliver gas only to the chamber being used for processing the workpieces; c. a pressure module operably coupled to each of the processing modules, configured to apply a vacuum only to the chamber being used for processing the workpieces;
d. a power module comprising anodes operably coupled to each of the processing modules and a DC power supply operably coupled to each of the processing modules, wherein the power module is configured to negatively bias the chamber and workpieces therein as cathodes; and e. a controller module operably coupled to the one or more processing modules, the gas module, the pressure module, and the power module, wherein the controller has memory that stores computer readable instructions that, when executed by the controller, causes the controller to: i. select which processing module is being used for coating the workpieces;
ii. regulate vacuum of the chamber of the selected processing module; iii. adjust gas flow to the chamber of the selected processing module; and iv. apply a negative pulse for biasing the one or more workpieces and the chamber as cathodes to establish hollow cathode conditions, thus generating a plasma of the gas to uniformly nitride the workpieces.
12. The system of claim 10 or 11 further comprising a heat shield for controlling a temperature of the workpieces.
13. The system of claim 10 or 11 further configured to coat the nitrided workpieces with a coating without venting the chamber or exposing the workpieces to any contaminant.
14. The system of claim 13, wherein the one or more gases further comprise reactive gases for coating deposition.
15. The system of claim 13, wherein the coating is a diamond like carbon (DLC), silicon carbide, multilayer DLC with silicon based adhesion layer, or a multi-layer DLC with a metal based adhesion layer.
16. The system of claim 13, wherein the coating is doped with N, Ge, Si, O, V, Cr, W, Ta, Ti, Co, Al, or a combination thereof.
17. The system of claim 10 or 11 further configured to deposit crystalline diamond either in addition to the plasma nitriding step or directly on the workpieces.
18. A method for treating an interior surface, an external surface, or both of one or more conductive workpieces, said method comprising:
a. providing the system according to claim 10 or 11 ;
b. cleaning the workpieces in preparation for vacuum processing; c. positioning the workpieces inside the chamber;
d. evacuating the chamber to a vacuum pressure;
e. introducing the gas comprising nitrogen into the chamber and adjusting the pressure for plasma nitriding; and
f. applying a biasing voltage between the workpieces and the chamber and the anode so as to establish a hollow cathode effect and generate a plasma, thereby plasma nitriding the surfaces of the workpieces.
19. The method of claim 18 further comprising depositing a duplex coating onto the nitrided surfaces of the workpieces, comprising introducing one or more reactive gases for coating deposition, adjusting the pressure, and applying a biasing voltage between the workpieces and the chamber and the anode so as to establish a hollow cathode effect and generate a plasma, thereby coating the nitrided surfaces.
PCT/US2019/0595112018-11-012019-11-01Plasma nitriding with pecvd coatings using hollow cathode ion immersion technologyCeasedWO2020092988A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
EP19877691.6AEP3874497A4 (en)2018-11-012019-11-01Plasma nitriding with pecvd coatings using hollow cathode ion immersion technology

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US201862754457P2018-11-012018-11-01
US62/754,4572018-11-01
US201916499669A2019-09-302019-09-30
US16/499,6692019-09-30

Publications (1)

Publication NumberPublication Date
WO2020092988A1true WO2020092988A1 (en)2020-05-07

Family

ID=70463334

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/US2019/059511CeasedWO2020092988A1 (en)2018-11-012019-11-01Plasma nitriding with pecvd coatings using hollow cathode ion immersion technology

Country Status (2)

CountryLink
EP (1)EP3874497A4 (en)
WO (1)WO2020092988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN118407020A (en)*2024-07-022024-07-30成都中云世纪科技有限责任公司Preparation method of wear-resistant self-lubricating coating for inner hole of undercarriage of aircraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060011468A1 (en)*2004-07-152006-01-19Boardman William JMethod and system for coating internal surfaces of prefabricated process piping in the field
US20060196419A1 (en)2005-03-072006-09-07Tudhope Andrew WMethod and system for coating sections of internal surfaces
WO2008011552A2 (en)2006-07-212008-01-24Sub-One Technology, Inc.System and method for treating surfaces of components
US20090176035A1 (en)*2007-06-282009-07-09Tudhope Andrew WMethod for producing diamond-like carbon coatings using diamondoid precursors on internal surfaces
CN105839046A (en)2016-05-062016-08-10华南理工大学Method for conducting low-temperature efficient rapid ion nitriding on surface of steel workpiece
US20160372140A1 (en)*2015-06-162016-12-22HGST Netherlands B.V.Near field transducer having an adhesion layer coupled thereto
WO2018184023A1 (en)2017-03-312018-10-04Duralar Technologies, LlcSystems and methods for coating surfaces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060011468A1 (en)*2004-07-152006-01-19Boardman William JMethod and system for coating internal surfaces of prefabricated process piping in the field
US20060196419A1 (en)2005-03-072006-09-07Tudhope Andrew WMethod and system for coating sections of internal surfaces
WO2008011552A2 (en)2006-07-212008-01-24Sub-One Technology, Inc.System and method for treating surfaces of components
US20090176035A1 (en)*2007-06-282009-07-09Tudhope Andrew WMethod for producing diamond-like carbon coatings using diamondoid precursors on internal surfaces
US20160372140A1 (en)*2015-06-162016-12-22HGST Netherlands B.V.Near field transducer having an adhesion layer coupled thereto
CN105839046A (en)2016-05-062016-08-10华南理工大学Method for conducting low-temperature efficient rapid ion nitriding on surface of steel workpiece
WO2018184023A1 (en)2017-03-312018-10-04Duralar Technologies, LlcSystems and methods for coating surfaces

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Nitriding", WIKIPEDIA, 2005, pages 1 - 5, XP055582511, Retrieved from the Internet <URL:https://en.wikipedia.org/wiki/Nitriding> [retrieved on 20200217]*
D. LUSK ET AL.: "Thick DLC films deposited by PECVD on the internal surface of cylindrical substrates", DIAMOND AND RELATED MATERIALS, vol. 17, no. 7-10, 26 January 2008 (2008-01-26), pages 1613 - 1621, XP055007021, DOI: 10.1016/j.diamond.2008.01.051
See also references ofEP3874497A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN118407020A (en)*2024-07-022024-07-30成都中云世纪科技有限责任公司Preparation method of wear-resistant self-lubricating coating for inner hole of undercarriage of aircraft

Also Published As

Publication numberPublication date
EP3874497A4 (en)2022-07-20
EP3874497A1 (en)2021-09-08

Similar Documents

PublicationPublication DateTitle
US10704141B2 (en)In-situ CVD and ALD coating of chamber to control metal contamination
US6432256B1 (en)Implanatation process for improving ceramic resistance to corrosion
JP4325301B2 (en) Mounting table, processing apparatus, and processing method
JP2021507513A (en) Exciting coating of chamber components for semiconductor processing
RU2543575C2 (en)Application of coating on metal billets at vacuumising plant (versions)
WO2007034624A1 (en)Method for treating substrate and recording medium
JPH07176524A (en)Material for vacuum processing device and manufacture
US20250011917A1 (en)Method and apparatus for forming a plasma resistant coating, component, and plasma processing apparatus
CN111945111A (en)Composite coating deposited on surface of cubic boron nitride cutter and deposition method
Kilicaslan et al.Hard titanium nitride coating deposition inside narrow tubes using pulsed DC PECVD processes
RU2660502C1 (en)Method for applying a coating to the surface of a steel product
RU2437963C1 (en)Procedure for application of nano-composite coating on surface of steel item
JP5083173B2 (en) Processing method and processing apparatus
KR100868837B1 (en)Film forming method and recording medium
RU2554828C2 (en)Application of protective coating on steel article surface
EP3874497A1 (en)Plasma nitriding with pecvd coatings using hollow cathode ion immersion technology
WO2007069599A1 (en)Method for precoating film forming apparatus
US11339464B2 (en)Plasma nitriding with PECVD coatings using hollow cathode ion immersion technology
JP2006052435A (en)Member of device for processing semiconductor, and manufacturing method therefor
Sagalovych et al.Vacuum-plasma protective coating for turbines blades.
JP2004131820A (en)Method for producing advanced high-speed steel tool
US5927727A (en)Sealing element, particularly for shut-off and regulating valves, and process for its production
JP3971336B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
JPH0770735A (en)Improvement of abrasion resistance of surface of workpiece and workpiece processed thereby
JPH02125861A (en)Formation of coating film on surface of material to be treated

Legal Events

DateCodeTitleDescription
121Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number:19877691

Country of ref document:EP

Kind code of ref document:A1

NENPNon-entry into the national phase

Ref country code:DE

ENPEntry into the national phase

Ref document number:2019877691

Country of ref document:EP

Effective date:20210601


[8]ページ先頭

©2009-2025 Movatter.jp