Movatterモバイル変換


[0]ホーム

URL:


WO2020020220A1 - Quantum dot-based long afterglow composite material, preparation method for same, and applications thereof - Google Patents

Quantum dot-based long afterglow composite material, preparation method for same, and applications thereof
Download PDF

Info

Publication number
WO2020020220A1
WO2020020220A1PCT/CN2019/097478CN2019097478WWO2020020220A1WO 2020020220 A1WO2020020220 A1WO 2020020220A1CN 2019097478 WCN2019097478 WCN 2019097478WWO 2020020220 A1WO2020020220 A1WO 2020020220A1
Authority
WO
WIPO (PCT)
Prior art keywords
long afterglow
quantum dots
composite material
zns
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2019/097478
Other languages
French (fr)
Chinese (zh)
Inventor
叶炜浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
Original Assignee
TCL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL CorpfiledCriticalTCL Corp
Publication of WO2020020220A1publicationCriticalpatent/WO2020020220A1/en
Anticipated expirationlegal-statusCritical
Ceasedlegal-statusCriticalCurrent

Links

Classifications

Definitions

Landscapes

Abstract

A quantum dot-based long afterglow composite material, a preparation method for same, and applications thereof. The quantum dot-based long afterglow composite material comprises a long afterglow light-emitting material, a surface modifier, and a quantum dot. The long afterglow light-emitting material is connected with the quantum dot via the surface modifier to form the composite material. The quantum dot-based long afterglow composite material achieves 100% color gamut on the one hand and, on the other hand, has significantly increased light emission intensity, narrowed peak width at half height, and increased quantum dot efficiency, and is suitable as a material for a light-emitting lighting component.

Description

Translated fromChinese
基于量子点的长余辉复合材料及其制备方法和应用Quantum dot-based long afterglow composite material, preparation method and application thereof技术领域Technical field

本发明属于长余辉发光材料技术领域,尤其涉及一种基于量子点的长余辉复合材料及其制备方法和应用。The invention belongs to the technical field of long afterglow luminescent materials, in particular to a long afterglow composite material based on quantum dots, and a preparation method and application thereof.

背景技术Background technique

量子点又称为纳米晶,是一种新型的纳米半导体荧光材料,它是由II-VI族或III-V族元素组成的纳米颗粒,它的晶粒直径只有约2~10nm,由于电子和空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,在受到刺激后可以发射荧光。通过溶液合成法改变量子点的尺寸和其化学组成可以改变分立能级结构,使其发射光谱覆盖整个可见光区。同时,晶粒的形貌均匀性和尺寸单分散性保证了量子点近乎高斯对称的窄带激发特性。因此,量子点作为一种新型的半导体发光材料,具有发光波长连续可调、发光峰尖锐、荧光量子产率高、寿命长等优点。Quantum dots, also known as nanocrystals, are a new type of nano-semiconductor fluorescent material. They are nanoparticles composed of group II-VI or III-V elements, and their grain diameter is only about 2 ~ 10nm. Holes are confined by the quantum, and the continuous band structure becomes a discrete energy level structure with molecular characteristics, which can emit fluorescence after being stimulated. Changing the size and chemical composition of quantum dots by solution synthesis can change the discrete energy level structure so that its emission spectrum covers the entire visible light region. At the same time, the uniformity of the morphology of the grains and the monodispersity of the dimensions ensure the narrow-band excitation characteristics of the quantum dots with nearly Gaussian symmetry. Therefore, quantum dots, as a new type of semiconductor light-emitting material, have the advantages of continuously adjustable emission wavelength, sharp emission peaks, high fluorescence quantum yield, and long life.

由于照明器具彻夜点亮,不仅耗费巨额的能源,而且由于长时间运行导致工作温度偏高,使照明器具的实际使用寿命大大少于预期寿命。长余辉发光材料属于一种蓄光发光材料,它在激发光源的激发下发出可见光,并将获得的部分光能储存起来;激发停止后,它将储存的能量以光能的形式缓慢释放出来,时间长达数天。它在太阳能转换和利用方面具有独特的优势,可以将太阳能白天储存起来,晚上再缓慢地释放,是一类重要的光-光转换材料和节能材料。同时,利用长余辉发光材料的余晖特性,通过控制主动发光光源以一定的周期发光来激发长余辉发光材料,从而可以制备低功耗的长余辉LED等器件。特别是在安全防护中的应用前景更广阔,可利用其制成各种危险标识、警告牌,做成各种安全、逃生标志,在应付突发事件、事故中可以发挥巨大的作用。Because the lighting fixture lights up all night, it not only consumes a huge amount of energy, but also the high operating temperature due to long-term operation, which makes the actual service life of the lighting fixture much shorter than the expected life. Long afterglow luminescent material belongs to a kind of light-storing luminescent material. It emits visible light under the excitation of an excitation light source and stores part of the obtained light energy. After the excitation stops, it slowly releases the stored energy in the form of light energy. Time For several days. It has unique advantages in solar energy conversion and utilization. It can store solar energy during the day and slowly release it at night. It is an important class of light-light conversion materials and energy-saving materials. At the same time, by using the afterglow characteristics of the long afterglow luminescent material, the active afterglow light source is controlled to emit light at a certain period to excite the long afterglow luminescent material, so that devices such as low-power long afterglow LED can be prepared. In particular, it has a broader application prospect in safety protection. It can be used to make various danger signs and warning signs and various safety and escape signs, which can play a huge role in dealing with emergencies and accidents.

目前,长余辉发光材料主要有硫化物、铝酸盐。但是,它们发光强度低、半峰宽较宽,量子效率低,色域范围较窄。这些缺陷限制了它们在显示、标志领域的应用。而且按照Adobe RGB的标准,一般的长余辉发光材料只能达到70%的色域,因此如何改善长余辉发光材料的发光强度、半峰宽度、量子效率以及色域,使其在显示、照明的领域中更加适合应用显得十分关键。At present, long afterglow luminescent materials mainly include sulfide and aluminate. However, they have low luminous intensity, wide half-peak width, low quantum efficiency, and narrow color gamut. These defects limit their application in the field of display and signs. And according to AdobeRGB standard, general long afterglow luminescent materials can only reach 70% of the color gamut, so how to improve the luminous intensity, half-peak width, quantum efficiency, and color gamut of long afterglow luminescent materials, make it more in the field of display and lighting Applicability is critical.

技术问题technical problem

本发明的目的在于提供一种基于量子点的长余辉复合材料及其制备方法,旨在解决现有长余辉发光材料存在的发光强度低、半峰宽较宽、量子效率低以及色域范围窄导致其应用受限等问题。The purpose of the present invention is to provide a long afterglow composite material based on quantum dots and a preparation method thereof, which aim to solve the existing low afterglow luminescent materials with low luminous intensity, wide half-peak width, low quantum efficiency, and narrow color gamut range. Leading to its limited application and other issues.

进一步地,本发明还提供该长余辉复合材料的应用。Further, the invention also provides the application of the long afterglow composite material.

技术解决方案Technical solutions

为了实现上述发明目的,本发明采用的技术方案如下:In order to achieve the above-mentioned object of the invention, the technical solution adopted by the present invention is as follows:

一种基于量子点的长余辉复合材料,所述基于量子点的长余辉复合材料包括长余辉发光材料、表面修饰剂和量子点,所述长余辉发光材料通过所述表面修饰剂与所述量子点连接。A long afterglow composite material based on quantum dots. The long afterglow composite material based on quantum dots includes a long afterglow luminescent material, a surface modifier, and a quantum dot. The long afterglow luminescent material is connected to the quantum through the surface modifier. Click Connect.

对应地,一种基于量子点的长余辉复合材料的制备方法,采用如下三种方式之一进行制备,其中,方式一至少包括以下步骤:Correspondingly, a method for preparing a long afterglow composite material based on quantum dots is prepared by using one of the following three methods, wherein the first method includes at least the following steps:

步骤S11.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S11: Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;

步骤S12.将表面修饰剂改性的所述长余辉发光材料与量子点进行混料处理,使所述表面修饰剂与所述量子点连接,获得长余辉复合材料;Step S12: Mixing the long afterglow luminescent material modified with a surface modifier with a quantum dot, so that the surface modifier is connected with the quantum dot to obtain a long afterglow composite material;

方式二:Method two:

步骤S21.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S21. Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;

步骤S22.将步骤S21获得的长余辉发光材料制成溶液,随后将多孔材料浸泡于所述长余辉发光材料溶液中,使所述长余辉发光材料吸附在所述多孔材料的孔洞内,获得吸附有长余辉发光材料的多孔材料;Step S22. The long afterglow luminescent material obtained in step S21 is made into a solution, and then a porous material is immersed in the long afterglow luminescent material solution, so that the long afterglow luminescent material is adsorbed in the holes of the porous material to obtain adsorption. Porous materials with long afterglow luminescent materials;

步骤S23.将所述吸附有长余辉发光材料的多孔材料浸泡于含有量子点的溶液中,使所述量子点被吸附至所述多孔材料的孔洞中,获得长余辉复合材料;Step S23: immerse the porous material to which the long afterglow luminescent material is adsorbed in a solution containing quantum dots, so that the quantum dots are adsorbed into the holes of the porous material to obtain a long afterglow composite material;

方式三:Way three:

步骤S31.将量子点与表面修饰剂进行混合处理,使所述量子点表面连接有所述表面修饰剂;Step S31: performing a mixing treatment on the quantum dots and the surface modifier, so that the surface of the quantum dot is connected with the surface modifier;

步骤S32.将步骤S31获得的量子点与长余辉发光材料进行混料处理,使得所述表面修饰剂还与所述长余辉发光材料连接;Step S32. Mixing the quantum dot obtained in step S31 with the long afterglow luminescent material, so that the surface modifier is also connected to the long afterglow luminescent material;

步骤S33.调节步骤S32得到的物料的pH至碱性,并加入氧化物前驱体,使所述氧化物前驱体发生水解生成包裹在所述量子点与所述长余辉发光材料表面的氧化物,获得长余辉复合材料。Step S33. Adjust the pH of the material obtained in step S32 to alkaline, and add an oxide precursor to cause the oxide precursor to hydrolyze to generate an oxide wrapped on the surface of the quantum dot and the long afterglow luminescent material, Get long afterglow composites.

相应地,如上所述的基于量子点的长余辉复合材料或者如上所述的基于量子点的长余辉复合材料的制备方法制备的基于量子点的长余辉复合材料在太阳能电池或发光器件领域中的应用。Accordingly, the quantum dot-based long afterglow composite material as described above or the quantum dot-based long afterglow composite material prepared as described above is used in the field of solar cells or light emitting devices. application.

有益效果Beneficial effect

相对于现有技术,本发明提供的基于量子点的长余辉复合材料,量子点与表面具有改性剂的长余辉材料相互混合形成长余辉复合材料时,表面修饰剂的作用使得量子点与长余辉材料相互结合,复合材料中的长余辉发光材料在紫外光或其他射线激发下以可见光的形式释放储存的能量;同时,量子点具有较宽的吸收光谱,覆盖长余辉发光材料的发射波长,在外界激发长余辉发光材料时,能量传递给量子点,最终使量子点发光,一方面该长余辉复合材料的色域达到100%,另一方面,改善了仅有长余辉发光材料发光强度低、半峰宽度宽、量子效率低的问题,获得的长余辉复合材料其发光强度大幅度提高,并且半峰宽度变窄,量子效率提升。Compared with the prior art, the quantum dot-based long afterglow composite material provided by the present invention, when the quantum dots and the long afterglow material with a modifier on the surface are mixed with each other to form a long afterglow composite material, the effect of the surface modifier makes the quantum dots and long Afterglow materials are combined with each other, the long afterglow luminescent material in the composite material releases stored energy in the form of visible light under the excitation of ultraviolet light or other rays; at the same time, the quantum dot has a wide absorption spectrum, covering the emission wavelength of the long afterglow luminescent material, When the long afterglow luminescent material is excited by the outside world, energy is transferred to the quantum dots, which finally makes the quantum dots emit light. On the one hand, the color gamut of the long afterglow composite material reaches 100%; on the other hand, only the long afterglow luminescent material has a low light intensity , Wide half-peak width and low quantum efficiency, the obtained long afterglow composite material has a greatly improved luminous intensity, and the half-peak width is narrowed, and the quantum efficiency is improved.

本发明提供的基于量子点的长余辉复合材料的制备方法,以表面修饰剂对长余辉发光材料进行表面改性,获得的改性长余辉发光材料可以直接与量子点形成长余辉复合材料;或利用多孔材料对改性长余辉发光材料、表面修饰剂和量子点进行吸附,获得长余辉复合材料;或者将长余辉发光材料和表面修饰剂修饰的量子点进行结合后,再通过氧化物进行包裹形成长余辉复合材料,三种方式获得的长余辉复合材料均结合了长余辉发光材料和量子点的优势,使得长余辉复合材料具有发光强度高、色域达到100%、量子效率高等特点。此外,本发明提供的基于量子点的长余辉复合材料的三种制备方法,工艺简单易控,成本低,容易实现产业化生产。The method for preparing a long afterglow composite material based on quantum dots provided by the present invention comprises surface modification of a long afterglow luminescent material with a surface modifier, and the obtained modified long afterglow luminescent material can directly form a long afterglow composite material with a quantum dot; or Porous materials are used to adsorb modified long afterglow luminescent materials, surface modifiers, and quantum dots to obtain long afterglow composite materials; or long afterglow luminescent materials and quantum dots modified by surface modifiers are combined, and then wrapped with oxides Long afterglow composites are formed. The long afterglow composites obtained by the three methods combine the advantages of long afterglow luminescent materials and quantum dots, which make long afterglow composites have the characteristics of high luminous intensity, 100% color gamut, and high quantum efficiency. In addition, the three preparation methods of the long afterglow composite material based on quantum dots provided by the present invention are simple and easy to control, low in cost, and easy to realize industrialized production.

本发明提供的基于量子点的长余辉复合材料,由于具有优异的发光强度、色域值以及量子效率等特点,非常适合用于太阳能电池、发光器件等领域中,尤其在危险标识、警告牌等的方面的应用。The long afterglow composite material based on quantum dots provided by the present invention has excellent luminous intensity, color gamut value, and quantum efficiency, and is very suitable for use in the fields of solar cells, light emitting devices, and the like, especially in danger signs, warning signs, etc. Applications.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. Those of ordinary skill in the art can obtain other drawings according to the drawings without paying creative labor.

图1是本发明提供的表面修饰剂修饰得到的长余辉发光材料结构示意图;FIG. 1 is a schematic structural diagram of a long afterglow luminescent material modified by a surface modifier provided by the present invention; FIG.

图2是本发明提供的基于量子点的长余辉复合材料一种制备方法工艺流程示意图;2 is a schematic process flow diagram of a method for preparing a long afterglow composite material based on quantum dots provided by the present invention;

图3为本发明实施例1提供的基于量子点的长余辉复合材料结构示意图;3 is a schematic structural diagram of a long afterglow composite material based on quantum dots provided in Embodiment 1 of the present invention;

图4是本发明提供的基于量子点的长余辉复合材料另一种制备方法工艺流程示意图;4 is a schematic process flow diagram of another method for preparing a long afterglow composite material based on quantum dots provided by the present invention;

图5是本发明实施例2、3提供的基于量子点的长余辉复合材料另一结构示意图;5 is another schematic structural diagram of a quantum dot-based long afterglow composite material provided in Embodiments 2 and 3 of the present invention;

图6是本发明提供的基于量子点的长余辉复合材料又一种制备方法工艺流程示意图;6 is a schematic process flow diagram of another method for preparing a long afterglow composite material based on quantum dots provided by the present invention;

图7是本发明实施例4提供的基于量子点的长余辉复合材料又一结构示意图;FIG. 7 is another schematic structural diagram of a quantum dot-based long afterglow composite material according to Embodiment 4 of the present invention; FIG.

其中,10-长余辉发光材料;20-表面修饰剂;30-量子点;40-多孔材料;50-氧化物包覆层。Among them, 10-long afterglow luminescent materials; 20- surface modifiers; 30- quantum dots; 40- porous materials; 50- oxide coatings.

本发明的实施方式Embodiments of the invention

为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions, and beneficial effects of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments and the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.

请参阅图1,本发明实施例提供一种基于量子点的长余辉复合材料。所述基于量子点的长余辉复合材料包括长余辉发光材料10、表面修饰剂20和量子点30,所述长余辉发光材料通过所述表面修饰剂20与所述量子点30连接。Referring to FIG. 1, an embodiment of the present invention provides a long afterglow composite material based on quantum dots. The quantum dot-based long afterglow composite material includes a long afterglow luminescent material 10, a surface modifier 20, and a quantum dot 30. The long afterglow luminescent material is connected to the quantum dots 30 through the surface modifier 20.

本发明的基于量子点的长余辉复合材料,长余辉发光材料10经过表面修饰剂20进行修饰后,与量子点30相互混合,由表面修饰剂20一端连接长余辉发光材料10,另一端连接量子点30,形成既具有长余辉发光材料10又具有量子点30的复合材料。该长余辉复合材料中的长余辉发光材料10在紫外光或者其他射线激发下以可见光的形式释放储存的能量,同时量子点30具有较宽的吸收光谱,覆盖长余辉发光材料10的发射波长,在外界激发长余辉发光材料10时,能量传递给量子点30,最终使得量子点30发光。有这两种材料形成的复合材料,一方面其色域达到100%,另一方面,改善了仅有长余辉发光材料发光强度低、半峰宽度宽、量子效率低的问题。该长余晖复合材料具有发光强度高、半峰宽度变窄、量子效率有所提高等特点。In the long afterglow composite material based on quantum dots of the present invention, the long afterglow luminescent material 10 is modified with the surface modifier 20 and then mixed with the quantum dots 30. The one end of the surface modifier 20 is connected to the long afterglow luminescent material 10 and the other end is connected to the quantum. Point 30 forms a composite material having both long afterglow luminescent material 10 and quantum dots 30. The long afterglow luminescent material 10 in the long afterglow composite material releases stored energy in the form of visible light under the excitation of ultraviolet light or other rays, and the quantum dot 30 has a wide absorption spectrum, covering the emission wavelength of the long afterglow luminescent material 10, When the long afterglow luminescent material 10 is excited outside, energy is transferred to the quantum dots 30, which eventually makes the quantum dots 30 emit light. The composite material formed by these two materials, on the one hand, has a color gamut of 100%, and on the other hand, it improves the problems that only long afterglow luminescent materials have low luminous intensity, wide half-peak width, and low quantum efficiency. The long afterglow composite has the characteristics of high luminous intensity, narrowed half-peak width, and improved quantum efficiency.

优选地,所述长余辉发光材料10为ZnS:Cu2+、CaS:Bi3+、SrAl4O7:Eu2+,Dy3+、Sr4Al14O25:Eu2+,Dy3+、SrAl2O4:Eu2+、Sr2MgSi2O7:Eu2+,Dy3+、CaS:Eu3+,Tm3+、CdSiO3:Mn2+、Ca12Al14O33:Eu2+,Nd3+、SrMgAl10O17:Eu2+,Dy3+、Cd3Al2GeO12:Pr3+、CdSiO3:Sm3+、CaWO4:Eu3+、CaS:Eu2+,Tm3+、CaAl2O4:Eu2+,Nd3+、SrAl2O4:Eu2+,Dy3+中的任一种。这些长余辉发光材料10在室温下能可以热释放发光,并且在外界激发光的激发下,由内产生自由电子或者空穴,其中一部分被陷阱俘获,储存在其中,当晶体受热升温时,被俘获的电子热激发成为自由载流子,当与电离的发光中心复合时,即可发出光。与量子点30结合形成复合材料时,长余辉发光材料10在紫外光或者其他射线激发下以可见光的形式释放储存的能量,同时,量子点30具有较宽的吸收光谱,覆盖长余辉发光材料10的发射波长,在外界激发长余辉发光材料10的时候能量传递给量子点30,最终使得量子点30发光。Preferably, the long afterglow luminescent material 10 is ZnS: Cu2+ , CaS: Bi3+ , SrAl4 O7 : Eu2+ , Dy3+ , Sr4 Al14 O25 : Eu2+ , Dy3+ , SrAl2 O4 : Eu2+ , Sr2 MgSi2 O7 : Eu2+ , Dy3+ , CaS: Eu3+ , Tm3+ , CdSiO3 : Mn2+ , Ca12 Al14 O33 : Eu2+ , Nd3+ , SrMgAl10 O17 : Eu2+ , Dy3+ , Cd3 Al2 GeO12 : Pr3+ , CdSiO3 : Sm3+ , CaWO4 : Eu3+ , CaS: Eu2+ , Tm3+ , CaAl2 O4 : Eu2+ , Nd3+ , SrAl2 O4 : Eu2+ , Dy3+ . These long afterglow luminescent materials 10 can release heat and emit light at room temperature, and under the excitation of external excitation light, free electrons or holes are generated from the inside, and some of them are captured by traps and stored therein. When the crystal is heated and heated, it is The captured electrons are thermally excited to become free carriers, which can emit light when recombined with the ionizing luminous center. When combined with the quantum dot 30 to form a composite material, the long afterglow luminescent material 10 releases stored energy in the form of visible light under the excitation of ultraviolet light or other rays. At the same time, the quantum dot 30 has a wide absorption spectrum and covers the long afterglow luminescent material 10 When the long afterglow luminescent material 10 is excited by the outside, energy is transferred to the quantum dots 30, which eventually makes the quantum dots 30 emit light.

优选地,本发明涉及的量子点30为Au、Ag、Cu、Pt、C、Si、Ge、CdSe、ZnSe、PbSe、CdTe、ZnO、InP、GaN、GaP、AlP、InN、ZnTe、InAs、GaAs、CaF2、Cd1-xZnxS、Cd1-xZnxSe、CdSeyS1-y、PbSeyS1-y、ZnXCd1-XTe、CdS/ZnS、Cd1-xZnxS/ZnS、Cd1-xZnxSe/ZnSe、CdSe1-xSx/CdSeyS1-y/CdS、InP/ZnS、CdSe/ZnS、Cd1-xZnxSe/CdyZn1-ySe/ZnSe、NaYF4、CdSe/ZnSe/ZnS、Cd1-xZnxSe/CdyZn1-yS/ZnS、CdSe/Cd1-xZnxSe/CdyZn1-ySe/ZnSe、CdS/Cd1-xZnxS/CdyZn1-yS/ZnS、Cd1-xZnxSeyS1-y、Cd1-xZnxSe/ZnS、CdSe/CdS/ZnS、NaCdF4中的任一种。Preferably, the quantum dot 30 according to the present invention is Au, Ag, Cu, Pt, C, Si, Ge, CdSe, ZnSe, PbSe, CdTe, ZnO, InP, GaN, GaP, AlP, InN, ZnTe, InAs, GaAs , CaF2 , Cd1-x Znx S, Cd1-x Znx Se, CdSeyS1-y , PbSeyS1-y , ZnXCd1-X Te, CdS / ZnS, Cd1-x Znx S / ZnS, Cd1-x Znx Se / ZnSe, CdSe1-x Sx / CdSey S1-y / CdS, InP / ZnS, CdSe / ZnS, Cd1-x Znx Se / CdyZn1-y Se / ZnSe, NaYF4 、 CdSe / ZnSe / ZnS, Cd1-x Znx Se / Cdy Zn1-y S / ZnS, CdSe / Cd1-x Znx Se / CdyZn1-y Se / ZnSe, CdS / Cd1- Any ofx Znx S / Cdy Zn1-y S / ZnS, Cd1-x ZnxSeyS1-y , Cd1-x Znx Se / ZnS, CdSe / CdS / ZnS, or NaCdF4 .

在一般情况下,量子点30本身包含配体,但是包含配体的量子点30无法有效地与长余辉发光材料10进行连接复合,无法获得基于量子点的长余辉复合材料。因此可以通过采用表面修饰剂20对长余辉发光材料10进行表面修饰,使其能够与量子点30发生连接复合成复合材料,或者采用表面修饰剂20对量子点30进行修饰再与长余辉发光材料10复合得到复合材料。优选地,表面修饰剂20为苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。In general, the quantum dots 30 themselves include ligands, but the quantum dots 30 containing the ligands cannot be effectively combined with the long afterglow luminescent material 10, and a long afterglow composite material based on quantum dots cannot be obtained. Therefore, the surface modification agent 20 can be used to surface-modify the long afterglow luminescent material 10 so that it can be connected to the quantum dot 30 to form a composite material, or the surface modifier 20 can be used to modify the quantum dot 30 and then be combined with the long afterglow luminescent material. 10 composites to obtain composite materials. Preferably, the surface modifier 20 is benzyl mercaptan, mercaptoacetic acid, mercaptopropionic acid, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium lauryl sulfate, ethylenediamine, octadecane -P-vinylbenzyl-dimethylammonium chloride, N, N-dimethylbenzylamine, methylhexahydro o-benzyl dianhydride, o-benzyl dianhydride, sodium polyacrylate, polydimethyl silicon Any of oxane, polyethyleneimine, and amino-terminated polyethylene glycol.

请参阅图5,优选地,在本发明提供的包括长余辉发光材料10、表面配体20和量子点30形成的长余辉复合材料中,该长余辉复合材料还进一步包括多孔材料40。包括多孔材料40的长余辉复合材料其具体结构为,表面具有表面修饰剂20的长余辉发光材料10与量子点30均通过吸附作用吸附在多孔材料40的孔洞内,并且长余辉发光材料表面的表面修饰剂20与量子点30表面的表面配体通过化学吸附作用,固定在多孔材料40孔洞的内壁面上,当然,长余辉发光材料的表面修饰剂20与量子点30表面的表面配体也相互有化学吸附作用,从而获得长余辉复合材料,因此,多孔材料孔洞内可以有多种形式,如可以有表面具有表面修饰剂的长余辉发光材料,或者量子点,或者基于量子点的长余辉复合材料,或者前述两种或两种以上。通过多孔材料40的作用,不仅可以将长余辉发光材料10和量子点30两者的优势发挥出来,而且还可以提高长余辉陷阱深度,有利于提高长余辉时间,同时提高发光效率。Referring to FIG. 5, preferably, in the long afterglow composite material formed by the present invention and including the long afterglow luminescent material 10, the surface ligand 20 and the quantum dot 30, the long afterglow composite material further includes a porous material 40. The specific structure of the long afterglow composite material including the porous material 40 is that the long afterglow luminescent material 10 and the quantum dots 30 with the surface modifier 20 are adsorbed in the pores of the porous material 40 through adsorption, and the surface of the long afterglow luminescent material The surface modifier 20 and the surface ligands on the surface of the quantum dot 30 are fixed on the inner wall surface of the pores of the porous material 40 through chemical adsorption. Of course, the surface modifier 20 of the long afterglow luminescent material and the surface ligands on the surface of the quantum dot 30 are also fixed. They have chemical adsorption on each other to obtain long afterglow composites. Therefore, there can be multiple forms in the pores of porous materials, such as long afterglow luminescent materials with surface modifiers on the surface, or quantum dots, or long afterglows based on quantum dots. Composite materials, or two or more of the foregoing. Through the function of the porous material 40, not only the advantages of both the long afterglow luminescent material 10 and the quantum dot 30 can be brought into play, but also the depth of the long afterglow trap can be increased, which is beneficial to increase the long afterglow time and increase the light emission efficiency.

进一步优选地,所述多孔材料40为多孔硅、多孔铝、多孔银中的任一种。其中,当多孔材料40为多孔硅时,由于多孔硅表面态的量子限制效应,产生一些新的能级,同时多孔硅局部发生氧化,形成Si-O网络状结构,这种网络状结构的基本单元是一个由硅氧原子组成的四面体,硅原子位于四面体的中心,氧原子居于四个角顶,两个相邻的四面体通过一个桥键的氧原子连接起来构成网络状结构,某些位置氧原子的缺失造成氧空位,形成硅氧缺陷发光中心,这些表面态的新能级和硅氧缺陷更易俘获载流子。当长余辉发光材料10受到外界紫外光激发时,电子更容易被多孔硅上的陷阱、能级俘获,从而使更多电子储存在陷阱中,增强长余辉发光材料10的余辉时间。同时,由于多孔硅的多孔结构,有利于量子点30充分吸收长余辉发光材料10的能量,提高量子点30的发光效率。Further preferably, the porous material 40 is any one of porous silicon, porous aluminum, and porous silver. Among them, when the porous material 40 is porous silicon, due to the quantum confinement effect of the surface state of the porous silicon, some new energy levels are generated, and at the same time, the porous silicon is locally oxidized to form a Si-O network structure. The basic structure of this network structure The unit is a tetrahedron composed of silicon and oxygen atoms. The silicon atom is located in the center of the tetrahedron. The oxygen atom is at the top of the four corners. Two adjacent tetrahedrons are connected by a bridged oxygen atom to form a network structure. The absence of oxygen atoms at these positions causes oxygen vacancies to form silicon-oxygen defect luminous centers. These new energy levels and silicon-oxygen defects in surface states are more likely to trap carriers. When the long afterglow luminescent material 10 is excited by external ultraviolet light, electrons are more easily captured by traps and energy levels on the porous silicon, so that more electrons are stored in the traps, and the afterglow time of the long afterglow luminescent material 10 is enhanced. At the same time, due to the porous structure of the porous silicon, the quantum dots 30 can fully absorb the energy of the long afterglow luminescent material 10 and improve the luminous efficiency of the quantum dots 30.

请参阅图7,优选地,在本发明提供的包括长余辉发光材料10、表面修饰剂20和量子点30形成的长余辉复合材料中,该长余辉复合材料还进一步包括氧化物包覆层50,氧化物包覆层50包覆在长余辉发光材料10和量子点30连接成的复合物的外表面,其具体是氧化物包覆层50将长余辉发光材料和量子点包裹起来,形成结构示意图可以如图7所示的基于量子点的长余辉复合材料,也就是长余辉发光材料10通过表面修饰剂20与量子点30连接后,氧化物包覆层50再进行包覆,从而得到基于量子点的长余辉复合材料。Referring to FIG. 7, preferably, in the long afterglow composite material formed by the present invention and including the long afterglow luminescent material 10, the surface modifier 20 and the quantum dot 30, the long afterglow composite material further includes an oxide coating 50 The oxide coating layer 50 covers the outer surface of the composite of the long afterglow luminescent material 10 and the quantum dots 30. Specifically, the oxide coating layer 50 wraps the long afterglow luminescent material and the quantum dots to form a structure The schematic diagram can be based on a quantum dot-based long afterglow composite material, that is, the long afterglow luminescent material 10 is connected to the quantum dots 30 through a surface modifier 20, and then the oxide coating layer 50 is coated to obtain Long afterglow composites of quantum dots.

进一步优选地,所述氧化物包覆层50的材料为二氧化硅、二氧化铝、二氧化钛、氧化铁中的任一种;这些材料将量子点30包裹在长余辉发光材料的表面,从而获得含有量子点的长余辉复合材料,同样可以发挥量子点30和长余辉发光材料10这两种材料的优势,获得具有良好发光强度和色域特性。其中的氧化物包覆层50则起到将量子点30、长余辉发光材料10与外界进行隔绝的作用,以维持长余辉复合材料的稳定性,避免在外界作用下发生分解。在形成氧化物包覆层50时,采用正硅酸丁酯、钛酸丁酯、硝酸锌、硝酸铁等氧化物前驱体与长余辉发光材料、量子点进行混合,随后经过水解反应,是氧化物前驱体转变成氧化物并作为包覆层。Further preferably, the material of the oxide coating layer 50 is any one of silica, alumina, titania, and iron oxide; these materials wrap the quantum dots 30 on the surface of the long afterglow luminescent material, thereby obtaining The long afterglow composite material containing quantum dots can also take advantage of the two materials of quantum dots 30 and long afterglow luminescent materials 10 to obtain good luminous intensity and color gamut characteristics. The oxide coating layer 50 functions to isolate the quantum dots 30 and the long afterglow luminescent material 10 from the outside, so as to maintain the stability of the long afterglow composite and avoid decomposition under the influence of the outside. When the oxide coating layer 50 is formed, oxide precursors such as butyl orthosilicate, butyl titanate, zinc nitrate, and iron nitrate are mixed with long afterglow luminescent materials and quantum dots, followed by hydrolysis reaction, which is oxidation. The precursor is converted into an oxide and serves as a coating.

相应地,本发明在提供上述基于量子点的长余辉复合材料的基础上,进一步提供了该基于量子点的长余辉复合材料的制备方法。也就是说,上述基于量子点的长余辉复合材料,可以由以下三种制备方法的任一种进行制备。Accordingly, the present invention further provides a method for preparing the quantum dot-based long afterglow composite material on the basis of providing the quantum dot-based long afterglow composite material. That is, the above-mentioned quantum dot-based long afterglow composite material can be prepared by any one of the following three preparation methods.

方式一,请参阅图2:所述基于量子点的长余辉复合材料的制备方法,至少包括以下步骤:Method one, please refer to FIG. 2: The method for preparing the quantum dot-based long afterglow composite material includes at least the following steps:

步骤S11.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S11: Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;

步骤S12.将表面修饰剂改性的所述长余辉发光材料与量子点进行混料处理,使所述表面修饰剂与所述量子点连接,获得长余辉复合材料;Step S12: Mixing the long afterglow luminescent material modified with a surface modifier with a quantum dot, so that the surface modifier is connected with the quantum dot to obtain a long afterglow composite material;

其中,步骤S11中,长余辉发光材料与表面修饰剂进行混合处理的过程具体是将长余辉发光材料与表面修饰剂一起溶解于丙酮等有机溶剂中,获得表面负载有表面修饰剂的长余辉发光材料溶液。具体地,表面负载有表面修饰剂的长余辉发光材料其结构示意图如图1所示,其中10表示长余辉发光材料,20表示表面修饰剂,这里的表面修饰剂可以是苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。Wherein, in step S11, the process of mixing the long afterglow luminescent material and the surface modifier is specifically to dissolve the long afterglow luminescent material together with the surface modifier in an organic solvent such as acetone to obtain a long afterglow luminescence with the surface modifier on the surface. Material solution. Specifically, the structure of a long afterglow luminescent material with a surface modifier on its surface is shown in FIG. 1, where 10 is a long afterglow luminescent material and 20 is a surface modifier. The surface modifier here may be benzyl mercaptan and mercaptoacetic acid. , Mercaptopropionic acid, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium dodecyl sulfate, ethylenediamine, octadecyl-p-vinylbenzyl-dimethylammonium chloride, N, N-dimethylbenzylamine, methylhexahydroo-benzyl dianhydride, o-benzyl dianhydride, sodium polyacrylate, polydimethylsiloxane, polyethyleneimine, amino terminated polyethylene Any of alcohols.

步骤S12中,具体是先将量子点溶解于四氢呋喃等有机溶剂中,随后再将步骤S11得到的长余辉发光材料加入,一起混料处理,获得结构示意图如图3所示的基于量子点的长余辉复合材料。In step S12, the quantum dots are first dissolved in an organic solvent such as tetrahydrofuran, and then the long afterglow luminescent material obtained in step S11 is added and mixed together to obtain a schematic structure diagram of the quantum dot-based Afterglow composites.

上述方式一的制备方法以表面修饰剂对长余辉发光材料进行表面改性,获得的改性长余辉发光材料可以直接与量子点形成长余辉复合材料,获得的长余辉复合材料均结合了长余辉发光材料和量子点的优势,使得长余辉复合材料具有发光强度高、色域达到100%、量子效率高等特点。此外,本方式一基于量子点的长余辉复合材料的制备方法,工艺简单易控,成本低,容易实现产业化生产。In the preparation method of the first manner, the surface modification agent is used to modify the surface of the long afterglow luminescent material. The obtained modified long afterglow luminescent material can directly form a long afterglow composite material with the quantum dots, and the obtained long afterglow composite material combines long afterglow. The advantages of luminescent materials and quantum dots make long afterglow composites with high luminous intensity, 100% color gamut, and high quantum efficiency. In addition, in the first method for preparing a long afterglow composite material based on quantum dots, the process is simple and easy to control, the cost is low, and it is easy to realize industrialized production.

方式二,请参阅图4:所述基于量子点的长余辉复合材料的制备方法,至少包括以下步骤:Method two, please refer to FIG. 4: The method for preparing the quantum dot-based long afterglow composite material includes at least the following steps:

步骤S21.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S21. Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;

步骤S22.将步骤S21获得的长余辉发光材料制成溶液,随后将多孔材料浸泡于所述长余辉发光材料溶液中,使所述长余辉发光材料吸附在所述多孔材料的孔洞内,获得吸附有长余辉发光材料的多孔材料;Step S22. The long afterglow luminescent material obtained in step S21 is made into a solution, and then a porous material is immersed in the long afterglow luminescent material solution, so that the long afterglow luminescent material is adsorbed in the holes of the porous material to obtain adsorption. Porous materials with long afterglow luminescent materials;

步骤S23.将所述吸附有长余辉发光材料的多孔材料浸泡于含有量子点的溶液中,使所述量子点被吸附至所述多孔材料的孔洞中,获得长余辉复合材料;Step S23: immerse the porous material to which the long afterglow luminescent material is adsorbed in a solution containing quantum dots, so that the quantum dots are adsorbed into the holes of the porous material to obtain a long afterglow composite material;

方式二的制备方法中,步骤S21的长余辉发光材料与表面修饰剂进行混合处理的过程具体是将长余辉发光材料与表面修饰剂一起溶解于丙酮等有机溶剂中,获得表面负载有表面修饰剂的长余辉发光材料溶液。In the preparation method of the second method, the process of mixing the long afterglow luminescent material and the surface modifier in step S21 is specifically dissolving the long afterglow luminescent material and the surface modifier together in an organic solvent such as acetone to obtain a surface with a surface modifier. Long afterglow luminescent material solution.

具体地,表面负载有表面修饰剂的长余辉发光材料其结构示意图如图1所示,其中10表示长余辉发光材料,20表示表面修饰剂,这里的表面修饰剂为苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。Specifically, the structure of a long afterglow luminescent material with a surface modifier on its surface is shown in FIG. 1, where 10 is a long afterglow luminescent material and 20 is a surface modifier. The surface modifiers here are benzyl mercaptan, thioglycolic acid, Mercaptopropionic acid, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium dodecylsulfate, ethylenediamine, octadecyl-p-vinylbenzyl-dimethylammonium chloride, N , N-dimethylbenzylamine, methylhexahydroo-benzyl dianhydride, o-benzyl dianhydride, sodium polyacrylate, polydimethylsiloxane, polyethyleneimine, amino-terminated polyethylene glycol Any of them.

步骤S22中,将多孔材料浸泡于步骤S21获得的所述长余辉发光材料溶液中,浸泡时间为5~10h,使长余辉发光材料通过物理吸附作用吸附在多孔材料的孔洞中,并且被吸附在多孔材料孔洞中的长余辉发光材料其表面的表面修饰剂通过化学吸附作用,吸附在多孔材料孔洞的壁面上,获得稳定的吸附效果,由此即可使得长余辉发光材料充分地吸附在多孔材料的孔洞中,浸泡结束采用乙醇等有机溶剂清洗未发生吸附的长余辉发光材料。In step S22, the porous material is immersed in the long afterglow luminescent material solution obtained in step S21 for a immersion time of 5 to 10 hours, so that the long afterglow luminescent material is adsorbed in the pores of the porous material through physical adsorption, and is adsorbed in The surface modifier of the surface of the long afterglow luminescent material in the hole of the porous material is adsorbed on the wall of the hole of the porous material by chemical adsorption to obtain a stable adsorption effect, so that the long afterglow luminescent material can be fully absorbed in the porous material. In the holes, the long afterglow luminescent material that has not been adsorbed is washed with an organic solvent such as ethanol after the immersion.

步骤S23中,将量子点溶解于氯仿中,获得量子点氯仿溶液,量子点氯仿溶液的浓度为1~2mol/L,随后将步骤S22获得的吸附有长余辉发光材料的多孔材料浸泡于其中,浸泡时间为10~20h,使得量子点通过吸附作用被吸附在多孔材料的孔洞内,被吸附至多孔材料孔洞内的量子点,其表面的表面配体通过化学吸附作用,吸附在多孔材料孔洞壁面或者长余辉发光材料表面,使得量子点吸附的牢固度极大的提高,浸泡结束使用乙醇等有机溶剂去除未被吸附的量子点和多余的表面修饰剂,即可获得结构示意图如图5所示的长余辉复合材料。In step S23, the quantum dots are dissolved in chloroform to obtain a quantum dot chloroform solution. The concentration of the quantum dot chloroform solution is 1 to 2 mol / L, and then the porous material adsorbed with the long afterglow luminescent material obtained in step S22 is immersed therein. The immersion time is 10 to 20 hours, so that the quantum dots are adsorbed into the holes of the porous material through adsorption, and the quantum dots are adsorbed into the holes of the porous material. The surface ligands on the surface are adsorbed on the wall surface of the porous material through chemical adsorption. Or the surface of the afterglow luminescent material is long, which makes the adhesion of quantum dots greatly improved. After soaking, the organic solvent such as ethanol is used to remove the non-adsorbed quantum dots and excess surface modifiers. Long afterglow composite.

优选地,所述多孔材料为多孔硅、多孔铝、多孔银中的任一种。Preferably, the porous material is any one of porous silicon, porous aluminum, and porous silver.

其中,多孔材料可以使用硅片、铝片、银片进行制备。其具体制备方法如下,以丙酮溶液浸泡硅片或铝片或银片以除去表面的油脂,再用去离子水超声清洗,电吹风吹干备用。在室温下,以上清洗过的硅片或铝片或银片作为阳极,铂丝为阴极,电解液由体积比为1:5~10的酸和无水乙醇混合配制而成。通过20~60V恒定电压对原片进行阳极氧化。Among them, the porous material can be prepared by using a silicon wafer, an aluminum wafer, or a silver wafer. The specific preparation method is as follows. A silicon wafer, an aluminum wafer, or a silver wafer is immersed in an acetone solution to remove surface oil, and then ultrasonically cleaned with deionized water, and blow dried with a hair dryer for later use. At room temperature, the silicon wafer, aluminum wafer or silver wafer cleaned above is used as the anode, platinum wire is used as the cathode, and the electrolytic solution is prepared by mixing an acid and absolute ethanol with a volume ratio of 1: 5 ~ 10. The original sheet was anodized by a constant voltage of 20 to 60V.

氧化结束后,用去离子水冲洗,除去表面和孔径中残留的酸性溶液,室温下在空气中自然干燥,即可获得多孔材料。After the oxidation, rinse with deionized water to remove the acidic solution remaining on the surface and pore diameter, and then dry naturally in air at room temperature to obtain a porous material.

方式二的制备方法利用多孔材料对表面修饰剂修饰改性的长余辉发光材料和量子点进行吸附,获得长余辉复合材料。此方法获得的长余辉复合材料均结合了长余辉发光材料和量子点的优势,使得长余辉复合材料具有发光强度高、色域达到100%、量子效率高、长余辉时间可达到2000min及以上等特点。此外,本方式二基于量子点的长余辉复合材料的制备方法,工艺简单易控,成本低,容易实现产业化生产。The preparation method of the second method uses a porous material to adsorb a long afterglow luminescent material modified by a surface modifier and quantum dots to obtain a long afterglow composite material. The long afterglow composites obtained by this method combine the advantages of long afterglow luminescent materials and quantum dots, making the long afterglow composites have high luminous intensity, 100% color gamut, high quantum efficiency, long afterglow time of 2000min and above, etc. Features. In addition, in the second method for preparing a long afterglow composite material based on quantum dots, the process is simple and easy to control, the cost is low, and it is easy to realize industrialized production.

方式三,请参阅图6,所述基于量子点的长余辉复合材料的制备方法,至少包括以下步骤:Method 3: Please refer to FIG. 6. The method for preparing a quantum dot-based long afterglow composite material includes at least the following steps:

步骤S31.将量子点与表面修饰剂进行混合处理,使所述量子点表面连接有所述表面修饰剂;Step S31: performing a mixing treatment on the quantum dots and the surface modifier, so that the surface of the quantum dot is connected with the surface modifier;

步骤S32.将步骤S31获得的量子点与长余辉发光材料进行混料处理,使得所述表面修饰剂还与所述长余辉发光材料连接;Step S32. Mixing the quantum dot obtained in step S31 with the long afterglow luminescent material, so that the surface modifier is also connected to the long afterglow luminescent material;

步骤S33.调节步骤S32得到的物料的pH至碱性,并加入氧化物前驱体,使所述氧化物前驱体发生水解生成包裹在所述量子点与所述长余辉发光材料表面的氧化物,获得结构示意图如图7所示的长余辉复合材料。Step S33. Adjust the pH of the material obtained in step S32 to alkaline, and add an oxide precursor to cause the oxide precursor to hydrolyze to generate an oxide wrapped on the surface of the quantum dot and the long afterglow luminescent material, A long afterglow composite material having a structure diagram as shown in FIG. 7 was obtained.

当然,方式三中并不局限于上述制备过程,也可以先将长余辉发光材料与表面修饰剂进行混合处理,再与量子点进行混合,使得修饰在长余辉发光材料表面的表面修饰剂与量子点发生连接,最后经过调解pH值,加入氧化物前驱体,使得氧化物前驱体发生水解,最终也可以获得如图7的示意图所示的长余辉复合材料。当以长余辉发光材料与表面修饰剂进行混合处理时,具体是将长余辉发光材料与表面修饰剂一起溶解于丙酮等有机溶剂中,获得表面负载有表面修饰剂的长余辉发光材料溶液。Of course, the third method is not limited to the above preparation process, and the long afterglow luminescent material may be mixed with the surface modifier first, and then mixed with the quantum dots, so that the surface modifier and the quantum modified on the surface of the long afterglow luminescent material are mixed. At the point of connection, after adjusting the pH value and adding the oxide precursor, the oxide precursor is hydrolyzed, and finally a long afterglow composite material as shown in the schematic diagram of FIG. 7 can be obtained. When the long afterglow luminescent material and the surface modifier are mixed, specifically, the long afterglow luminescent material and the surface modifier are dissolved together in an organic solvent such as acetone to obtain a long afterglow luminescent material solution having a surface modifier on the surface.

具体地,表面负载有表面修饰剂的长余辉发光材料其结构示意图如图1所示,其中10表示长余辉发光材料,20表示表面修饰剂,这里的表面修饰剂可以是苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。Specifically, the structure of a long afterglow luminescent material with a surface modifier on its surface is shown in FIG. 1, where 10 is a long afterglow luminescent material and 20 is a surface modifier. The surface modifier here may be benzyl mercaptan and mercaptoacetic acid. , Mercaptopropionic acid, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium dodecyl sulfate, ethylenediamine, octadecyl-p-vinylbenzyl-dimethylammonium chloride, N, N-dimethylbenzylamine, methylhexahydroo-benzyl dianhydride, o-benzyl dianhydride, sodium polyacrylate, polydimethylsiloxane, polyethyleneimine, amino terminated polyethylene Any of alcohols.

量子点、氧化物前驱体及表面具有表面修饰剂的长余辉发发光材料混合时,可以以异丙醇等有机溶剂作为溶剂,经过溶解,获得的混合溶剂呈酸性,通过向其中加入碱,调节pH值至碱性,使氧化物前驱体发生水解,经过水解的氧化物前驱体生成氧化物,并附着在长余辉发光材料和量子点混合物表面,形成长余辉发光材料和量子点混合物的包覆层。When quantum dots, oxide precursors, and long afterglow luminescent materials with surface modifiers are mixed, an organic solvent such as isopropyl alcohol can be used as a solvent. After dissolution, the obtained mixed solvent is acidic. By adding an alkali to it, it can be adjusted. The pH value is alkaline, which causes the oxide precursor to hydrolyze. The hydrolyzed oxide precursor generates oxides and attaches to the surface of the long afterglow luminescent material and the quantum dot mixture, forming a coating of the long afterglow luminescent material and the quantum dot mixture. Floor.

一般地,加入的碱可以是氢氧化钠、氢氧化钾等强碱,也可以是氨水。不过由于强碱不容易控制,因此优选氨水。Generally, the added base may be a strong base such as sodium hydroxide or potassium hydroxide, or ammonia water. However, since strong alkali is not easy to control, ammonia is preferred.

优选地,加入的氨水的质量浓度为20~30%,浓度过大,不易控制pH。Preferably, the mass concentration of the added ammonia water is 20-30%, the concentration is too large, and it is difficult to control the pH.

上述方式三的制备方法,在实验室可以按照如下步骤:For the preparation method of the third method, the following steps can be performed in a laboratory:

将表面修饰剂与量子点进行混合,使得表面修饰剂与量子点连接;将长余辉发光材料放入盛有一定量异丙醇的锥形瓶中,超声使其完全分散,然后将锥形瓶转移到40~60℃的恒温水浴中,磁力搅拌下加入前述表面连接有表面修饰剂的量子点、氨水,获得具有碱性的溶液,并用移液管准确量取的氧化物前驱体,缓慢加入,反应进行30-60min,获得反应产物,以去离子水对反应产物进行若干次清洗,离心分离,100~115℃烘干5~10h,得到基于量子点的长余辉复合产物。Mix the surface modifier with the quantum dots so that the surface modifier is connected to the quantum dots; place the long afterglow luminescent material in a conical flask containing a certain amount of isopropanol, disperse it completely with ultrasound, and then transfer the conical flask In a constant temperature water bath at 40 ~ 60 ° C, add the aforementioned quantum dots with surface modifiers and ammonia water under magnetic stirring to obtain a basic solution, and accurately measure the oxide precursor with a pipette, and slowly add it. The reaction proceeds for 30-60 minutes to obtain the reaction product. The reaction product is washed several times with deionized water, centrifuged, and dried at 100 to 115 ° C for 5 to 10 hours to obtain a long afterglow composite product based on quantum dots.

优选地,所述氧化物前驱体为正硅酸丁酯、钛酸丁酯、硝酸锌、硝酸铁中的任一种。Preferably, the oxide precursor is any one of butyl orthosilicate, butyl titanate, zinc nitrate, and iron nitrate.

方式三中,量子点、长余辉发光材料、碱的加入顺序没有特别的要求,只要碱最后使氧化物前驱体发生水解即可。In the third method, the order of adding the quantum dots, the long afterglow luminescent material, and the base is not particularly required, as long as the base finally hydrolyzes the oxide precursor.

方式三的制备方法通过氧化物将长余辉发光材料和量子点进行包裹形成长余辉复合材料。此方法获得的长余辉复合材料均结合了长余辉发光材料和量子点的优势,使得长余辉复合材料具有发光强度高、色域达到100%、量子效率高、稳定性好等特点。此外,本方式三基于量子点的长余辉复合材料的制备方法,工艺简单易控,成本低,容易实现产业化生产。In the third method, a long afterglow luminescent material and a quantum dot are wrapped by an oxide to form a long afterglow composite material. The long afterglow composites obtained by this method combine the advantages of long afterglow luminescent materials and quantum dots, which make long afterglow composites have the characteristics of high luminous intensity, 100% color gamut, high quantum efficiency, and good stability. In addition, in the third method for preparing a long afterglow composite material based on quantum dots, the process is simple and easy to control, the cost is low, and it is easy to realize industrialized production.

优选地,上述三种制备方式中,所述长余辉发光材料均为ZnS:Cu2+、CaS:Bi3+、SrAl4O7:Eu2+,Dy3+、Sr4Al14O25:Eu2+,Dy3+、SrAl2O4:Eu2+、Sr2MgSi2O7:Eu2+,Dy3+、CaS:Eu3+,Tm3+、CdSiO3:Mn2+、Ca12Al14O33:Eu2+,Nd3+、SrMgAl10O17:Eu2+,Dy3+、Cd3Al2GeO12:Pr3+、CdSiO3:Sm3+、CaWO4:Eu3+、CaS:Eu2+,Tm3+、CaAl2O4:Eu2+,Nd3+、SrAl2O4:Eu2+,Dy3+中的任一种。Preferably, in the above three preparation methods, the long afterglow luminescent materials are all ZnS: Cu2+ , CaS: Bi3+ , SrAl4 O7 : Eu2+ , Dy3+ , Sr4 Al14 O25 : Eu2+ , Dy3+ , SrAl2 O4 : Eu2+ , Sr2 MgSi2 O7 : Eu2+ , Dy3+ , CaS: Eu3+ , Tm3+ , CdSiO3 : Mn2+ , Ca12 Al14 O33 : Eu2+ , Nd3+ , SrMgAl10 O17 : Eu2+ , Dy3+ , Cd3 Al2 GeO12 : Pr3+ , CdSiO3 : Sm3+ , CaWO4 : Eu3 + , CaS: Eu2+ , Tm3+ , CaAl2 O4 : Eu2+ , Nd3+ , SrAl2 O4 : Eu2+ , Dy3+ .

优选地,上述三种制备方式中,用于制备长余辉复合材料的所述量子点均可以为Au、Ag、Cu、Pt、C、Si、Ge、CdSe、ZnSe、PbSe、CdTe、ZnO、InP、GaN、GaP、AlP、InN、ZnTe、InAs、GaAs、CaF2、Cd1-xZnxS、Cd1-xZnxSe、CdSeyS1-y、PbSeyS1-y、ZnXCd1-XTe、CdS/ZnS、Cd1-xZnxS/ZnS、Cd1-xZnxSe/ZnSe、CdSe1-xSx/CdSeyS1-y/CdS、InP/ZnS、CdSe/ZnS、Cd1-xZnxSe/CdyZn1-ySe/ZnSe、NaYF4、CdSe/ZnSe/ZnS、CdSe/Cd1-xZnxSe/CdyZn1-ySe/ZnSe、CdS/Cd1-xZnxS/CdyZn1-yS/ZnS、Cd1-xZnxSeyS1-y、Cd1-xZnxSe/ZnS、CdSe/CdS/ZnS、Cd1-xZnxSe/CdyZn1-yS/ZnS、NaCdF4中的任一种。Preferably, in the above three preparation methods, the quantum dots used to prepare the long afterglow composite material may all be Au, Ag, Cu, Pt, C, Si, Ge, CdSe, ZnSe, PbSe, CdTe, ZnO, InP , GaN, GaP, AlP, InN, ZnTe, InAs, GaAs, CaF2 , Cd1-x Znx S, Cd1-x Znx Se, CdSeyS1-y , PbSeyS1-y , ZnXCd1-X Te, CdS / ZnS, Cd1-x Znx S / ZnS, Cd1-x Znx Se / ZnSe, CdSe1-x Sx / CdSey S1-y / CdS, InP / ZnS, CdSe / ZnS, Cd1 -x Znx Se / CdyZn1-y Se / ZnSe, NaYF4 , CdSe / ZnSe / ZnS, CdSe / Cd1-x Znx Se / CdyZn1-y Se / ZnSe, CdS / Cd1-x Znx S / Cdy Zn1-y S / ZnS, Cd1-x ZnxSeyS1-y , Cd1-x Znx Se / ZnS, CdSe / CdS / ZnS, Cd1-x Znx Se / Cdy Zn1-y Any of S / ZnS and NaCdF4 .

本发明提供的基于量子点的长余辉复合材料,由于具有优异的发光强度、色域值以及量子效率等特点,非常适合用于太阳能电池、发光器件等领域中,尤其在危险标识、警告牌等的方面的应用。The long afterglow composite material based on quantum dots provided by the present invention has excellent luminous intensity, color gamut value, and quantum efficiency, and is very suitable for use in the fields of solar cells, light emitting devices, and the like, especially in danger signs, warning signs, etc. Applications.

为了更好的说明本发明的技术方案,下面结合具体实施例进行说明。In order to better illustrate the technical solution of the present invention, the following description is made in combination with specific embodiments.

实施例1Example 1

一种基于量子点的长余辉复合材料的制备方法,所述基于量子点的长余辉复合材料的制备过程包括以下步骤:A method for preparing a long afterglow composite material based on quantum dots. The preparation process of the long afterglow composite material based on quantum dots includes the following steps:

S11.将0.3mol十二烷基硫酸钠与1.3mol CdSiO3:Sm3+溶于20mL正己烷中,超声分散30min,然后加热至80℃反应1.5h,最后用乙醇清洗,待用:S11. Dissolve 0.3 mol of sodium lauryl sulfate and 1.3 mol of CdSiO3 : Sm3+ in 20 mL of n-hexane, disperse by ultrasound for 30 min, then heat to 80 ° C. for 1.5 h, and then wash with ethanol.

S12.将表面修饰后的CdSiO3:Sm3+与0.6mol Cd1-xZnxS/ZnS和10mL四氢呋喃加入至50mL烧瓶中,常温下搅拌反应16h,然后用乙醇清洗,得到Cd1-xZnxS/ZnS/CdSiO3:Sm3+复合发光材料,材料结构如图3的示意图所示。经检测,获得的长余辉复合材料长余辉时间达到67min,并且其发光效率达到64%,色域达到100%。S12. Add CdSiO3 : Sm3+ with 0.6 mol Cd1-x Znx S / ZnS and 10 mL tetrahydrofuran into the 50 mL flask, stir the reaction at room temperature for 16 h, and then wash with ethanol to obtain Cd1-x. The Znx S / ZnS / CdSiO3 : Sm3+ composite light-emitting material has a material structure as shown in the schematic diagram of FIG. 3. After inspection, the long afterglow time of the obtained long afterglow composite material reached 67min, and its luminous efficiency reached 64% and the color gamut reached 100%.

实施例2Example 2

一种基于量子点的长余辉复合材料的制备方法,所述基于量子点的长余辉复合材料的制备过程包括以下步骤:A method for preparing a long afterglow composite material based on quantum dots. The preparation process of the long afterglow composite material based on quantum dots includes the following steps:

S21.将硅片放置在丙酮溶液中浸泡10h,除去表面的油脂,再用去离子水超声清洗,电吹风吹干备用。S21. The silicon wafer is immersed in an acetone solution for 10 hours to remove surface grease, and then ultrasonically cleaned with deionized water, and blow dried with a hair dryer for later use.

S22.在室温下,以上述硅片作为阳极,铂丝为阴极,电解液由体积比为1:6的氢氟酸和无水乙醇混合配制而成,通过40V恒定电压对硅片进行阳极氧化。氧化结束后,用去离子水冲洗硅片,除去表面和孔径中残留的酸性溶液,室温下在空气中自然干燥,得到多孔硅。S22. At room temperature, the above silicon wafer is used as the anode, platinum wire is used as the cathode, and the electrolyte is prepared by mixing hydrofluoric acid and absolute ethanol with a volume ratio of 1: 6, and the silicon wafer is anodized by a constant voltage of 40V. . After the oxidation is completed, the silicon wafer is rinsed with deionized water to remove the acidic solution remaining on the surface and the pore diameter, and then dried naturally in the air at room temperature to obtain porous silicon.

S23.在丙酮中,0.6mol巯基丙酸对1mol CaAl2O4:Eu2+,Nd3+进行表面修饰;然后将多孔硅浸泡在上述含有CaAl2O4:Eu2+,Nd3+颗粒的丙酮溶液中7h,使CaAl2O4:Eu2+,Nd3+颗粒充分吸附在孔中,结束后用乙醇浸泡除去未吸附的颗粒;S23. Surface modification of 1 mol CaAl2 O4 : Eu2+ , Nd3+ in 0.6 mol mercaptopropionic acid in acetone; and then immerse porous silicon in the particles containing CaAl2 O4 : Eu2+ , Nd3+ The CaAl2 O4 : Eu2+ , Nd3+ particles were fully adsorbed in the pores in the acetone solution for 7 h, and the unadsorbed particles were removed by soaking in ethanol after the end;

S24.将上述吸附发光材料的多孔硅浸泡在浓度为1mol/L的CdSe量子点氯仿溶液中,浸泡12h,使量子点吸附在多孔材料中,结束后用乙醇浸泡除去多余的量子点,烘干后即可获得基于量子点的长余辉复合材料,具体如图5的示意图所示。经检测,其长余辉时间为2053min,发光效率为65%,色域达到100%。S24. The porous silicon adsorbing the luminescent material is immersed in a CdSe quantum dot chloroform solution with a concentration of 1 mol / L, soaked for 12 hours, so that the quantum dots are adsorbed in the porous material. After the end, the extra quantum dots are removed by soaking in ethanol, and dried. After that, a long afterglow composite material based on quantum dots can be obtained, as shown in the schematic diagram of FIG. 5. After testing, the long afterglow time is 2053min, the luminous efficiency is 65%, and the color gamut reaches 100%.

实施例3Example 3

一种基于量子点的长余辉复合材料的制备方法,所述基于量子点的长余辉复合材料的制备过程包括以下步骤:A method for preparing a long afterglow composite material based on quantum dots. The preparation process of the long afterglow composite material based on quantum dots includes the following steps:

S31.将铝片放置在丙酮溶液中浸泡12h,以除去表面的油脂,再用去离子水超声清洗,电吹风吹干备用。S31. Soak the aluminum sheet in an acetone solution for 12 hours to remove surface grease, and then use ultrasonic cleaning with deionized water, and blow dry with a hair dryer for later use.

S32.在室温下,以上述铝片作为阳极,铂丝为阴极,电解液由体积比为1:8的高氯酸和无水乙醇混合配制而成。通过30V恒定电压对铝片进行阳极氧化。氧化结束后,用去离子水冲洗,除去表面和孔径中残留的酸性溶液,室温下在空气中自然干燥,得到多孔铝。S32. At room temperature, the aluminum sheet is used as an anode, and the platinum wire is used as a cathode. The electrolyte is prepared by mixing perchloric acid and absolute ethanol with a volume ratio of 1: 8. The aluminum sheet was anodized by a constant voltage of 30V. After the oxidation, rinse with deionized water to remove the acidic solution remaining on the surface and pore diameter, and then dry naturally in air at room temperature to obtain porous aluminum.

S33.在丙酮中,0.8mol邻笨二甲酸酐对1mol SrAl2O4:Eu2+,Dy3+进行表面修饰;然后将多孔结构材料浸泡在上述含有SrAl2O4:Eu2+,Dy3+颗粒的丙酮溶液中9h,使发光材料充分吸附在孔中,结束后用乙醇浸泡除去未吸附的颗粒。S33. Surface-modify 1 mol of SrAl2 O4 : Eu2+ , Dy3+ in 0.8 mol of o-benzenedicarboxylic acid anhydride in acetone; then immerse the porous structure material in the above-mentioned SrAl2 O4 : Eu2+ , DyIn the acetone solution of3+ particles for 9 hours, the luminescent material is fully adsorbed in the pores. After the end, the non-adsorbed particles are removed by soaking in ethanol.

S34.将上述吸附发光材料的多孔铝浸泡在浓度为1.5mol/L的PbSe量子点氯仿溶液中,浸泡13h,使量子点吸附在多孔材料中,结束后用乙醇浸泡除去多余的量子点,烘干后即可获得基于量子点的长余辉复合材料,材料结构如图5所示。经检测,其长余辉时间达到2126min,并且其发光效率达到68%,色域达到100%。S34. Immerse the porous aluminum adsorbing the luminescent material in a PbSe quantum dot chloroform solution with a concentration of 1.5mol / L, and soak for 13 hours, so that the quantum dots are adsorbed in the porous material. After the end, immerse in ethanol to remove the excess quantum dots, and bake. After drying, long afterglow composites based on quantum dots can be obtained. The material structure is shown in Figure 5. After testing, its long afterglow time reached 2126min, and its luminous efficiency reached 68%, and its color gamut reached 100%.

实施例4Example 4

一种基于量子点的长余辉复合材料的制备方法,所述基于量子点的长余辉复合材料的制备过程包括以下步骤:A method for preparing a long afterglow composite material based on quantum dots. The preparation process of the long afterglow composite material based on quantum dots includes the following steps:

S41.将1mol Cd3Al2GeO12:Pr3+放入盛有一定量异丙醇的锥形瓶中,超声30min使其完全分散。S41. Put 1 mol Cd3 Al2 GeO12 : Pr3+ into a conical flask containing a certain amount of isopropanol, and sonicate for 30 minutes to completely disperse it.

S42.将CdSe/CdS/ZnS量子点与十二烷基苯磺酸钠表面修饰剂进行混合处理,获得表面连接有表面修饰剂的量子点。S42. Mix the CdSe / CdS / ZnS quantum dots with a sodium dodecylbenzenesulfonate surface modifier to obtain a quantum dot with a surface modifier attached to the surface.

S43.将步骤S41的锥形瓶转移到50℃恒温水浴中,磁力搅拌下加入10mL的25%氨水,同时加入步骤S42修饰得到的量子点(制成氯仿溶液,1mol/L,共计加入1mL)。10min后用移液管准确量取2mL的正硅酸丁酯和1mL,缓慢加入,反应进行40min。将得到的物水洗数次,离心分离,110℃烘干10h,得到CdSe/CdS/ZnS/Cd3Al2GeO12:Pr3+复合产物,材料结构如图7的示意图所示。经检测,其长余辉时间达到61min,并且其发光效率达到68%,色域达到100%。S43. Transfer the conical flask of step S41 to a 50 ° C constant temperature water bath, add 10 mL of 25% ammonia water under magnetic stirring, and simultaneously add the quantum dots modified in step S42 (to make a chloroform solution, 1 mol / L, add 1 mL in total) . After 10 min, accurately measure 2 mL of butyl orthosilicate and 1 mL with a pipette, slowly add them, and the reaction proceeds for 40 min. The obtained material was washed several times with water, centrifuged, and dried at 110 ° C. for 10 hours to obtain a CdSe / CdS / ZnS / Cd3 Al2 GeO12 : Pr3+ composite product. The material structure is shown in the schematic diagram of FIG. 7. After testing, its long afterglow time reached 61min, and its luminous efficiency reached 68%, and its color gamut reached 100%.

通过以上四个具体实施例的实验测试结果表明:相对于发光效率只有40%左右的常见的量子点,本发明获得的基于量子点的长余辉复合材料发光效率均超过60%,由此可见,本发明的长余辉复合材料的发光效率有大幅度提高,而且发光的色域相较普通的长余辉发光材料的发光色域也由70%提升到100%。更为重要的是,除了有发光特性,还具有余晖特性,且其特性不同于普通的量子点发光的短暂性特点,表现的最为明显的是在实施例2和3中,其长余辉特性甚至达到2000min以上,特别适用于低功耗的长余辉LED发光、显示等器件中。The experimental test results of the above four specific embodiments show that: relative to the common quantum dots with a luminous efficiency of only about 40%, the luminous efficiencies of the long afterglow composite materials based on the quantum dots obtained by the present invention all exceed 60%. The luminous efficiency of the long afterglow composite material of the present invention is greatly improved, and the luminous color gamut is also increased from 70% to 100% compared to the ordinary long afterglow luminescent material. More importantly, in addition to the light emission characteristics, it also has afterglow characteristics, and its characteristics are different from the transient characteristics of ordinary quantum dots. The most obvious performance is in Examples 2 and 3, the long afterglow characteristics are even Over 2000min, especially suitable for low power consumption long-glow LED lighting, display and other devices.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only the preferred embodiments of the present invention, and is not intended to limit the present invention. Any modification, equivalent replacement, and improvement made within the spirit and principle of the present invention shall be included in the protection of the present invention. Within range.

Claims (15)

Translated fromChinese
一种基于量子点的长余辉复合材料,其特征在于,所述长余辉复合材料包括长余辉发光材料、表面修饰剂和量子点,所述长余辉发光材料通过所述表面修饰剂与所述量子点连接。A long afterglow composite material based on quantum dots, characterized in that the long afterglow composite material includes a long afterglow luminescent material, a surface modifier, and a quantum dot, and the long afterglow luminescent material is connected with the quantum through the surface modifier. Click Connect.如权利要求1所述的基于量子点的长余辉复合材料,其特征在于,所述表面修饰剂为苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。The long afterglow composite material based on quantum dots according to claim 1, wherein the surface modifier is benzyl mercaptan, mercaptoacetic acid, mercaptopropionic acid, sodium dodecylbenzenesulfonate, dodecyl Sodium sulfonate, sodium lauryl sulfate, ethylenediamine, octadecyl-p-vinylbenzyl-dimethylammonium chloride, N, N-dimethylbenzylamine, methylhexahydroo-benzyldimethylamine Any of basic acid anhydride, o-benzoic acid anhydride, sodium polyacrylate, polydimethylsiloxane, polyethyleneimine, and amino-terminated polyethylene glycol.如权利要求1所述的基于量子点的长余辉复合材料,其特征在于,所述长余辉复合材料还包括多孔材料,所述长余辉发光材料和量子点中的至少一种吸附在多孔材料的孔洞内。The long afterglow composite material based on quantum dots according to claim 1, wherein the long afterglow composite material further comprises a porous material, and at least one of the long afterglow luminescent material and the quantum dot is adsorbed on the porous material. Inside the hole.如权利要求3所述的基于量子点的长余辉复合材料,其特征在于,所述多孔材料为多孔硅、多孔铝、多孔银中的任一种。The long afterglow composite material based on quantum dots according to claim 3, wherein the porous material is any one of porous silicon, porous aluminum, and porous silver.如权利要求1所述的基于量子点的长余辉复合材料,其特征在于,所述长余辉复合材料还包括氧化物,所述长余辉发光材料通过所述表面修饰剂与所述量子点相互连接后为所述氧化物所包裹。The long afterglow composite material based on quantum dots according to claim 1, wherein the long afterglow composite material further comprises an oxide, and the long afterglow luminescent material is connected to the quantum dots through the surface modifier. It is then covered by the oxide.如权利要求5所述的基于量子点的长余辉复合材料,其特征在于,所述氧化物为二氧化硅、二氧化铝、二氧化钛、氧化铁中的任一种。The long afterglow composite material based on quantum dots according to claim 5, wherein the oxide is any one of silica, alumina, titania, and iron oxide.如权利要求1所述的基于量子点的长余辉复合材料,其特征在于,所述长余辉发光材料为ZnS:Cu2+、CaS:Bi3+、SrAl4O7:Eu2+,Dy3+、Sr4Al14O25:Eu2+,Dy3+、SrAl2O4:Eu2+、Sr2MgSi2O7:Eu2+,Dy3+、CaS:Eu3+,Tm3+、CdSiO3:Mn2+、Ca12Al14O33:Eu2+,Nd3+、SrMgAl10O17:Eu2+,Dy3+、Cd3Al2GeO12:Pr3+、CdSiO3:Sm3+、CaWO4:Eu3+、CaS:Eu2+,Tm3+、CaAl2O4:Eu2+,Nd3+、SrAl2O4:Eu2+,Dy3+中的任一种。The long afterglow composite material based on quantum dots according to claim 1, wherein the long afterglow luminescent materials are ZnS: Cu2+ , CaS: Bi3+ , SrAl4 O7 : Eu2+ , Dy3 + , Sr4 Al14 O25 : Eu2+ , Dy3+ , SrAl2 O4 : Eu2+ , Sr2 MgSi2 O7 : Eu2+ , Dy3+ , CaS: Eu3+ , Tm3+ , CdSiO3 : Mn2+ , Ca12 Al14 O33 : Eu2+ , Nd3+ , SrMgAl10 O17 : Eu2+ , Dy3+ , Cd3 Al2 GeO12 : Pr3+ , CdSiO3 : Any of Sm3+ , CaWO4 : Eu3+ , CaS: Eu2+ , Tm3+ , CaAl2 O4 : Eu2+ , Nd3+ , SrAl2 O4 : Eu2+ , Dy3+ Species.如权利要求1所述的基于量子点的长余辉复合材料,其特征在于,所述量子点为Au、Ag、Cu、Pt、C、Si、Ge、CdSe、ZnSe、PbSe、CdTe、ZnO、InP、GaN、GaP、AlP、InN、ZnTe、InAs、GaAs、CaF2、Cd1-xZnxS、Cd1-xZnxSe、CdSeyS1-y、PbSeyS1-y、ZnXCd1-XTe、CdS/ZnS、Cd1-xZnxS/ZnS、Cd1-xZnxSe/ZnSe、CdSe1-xSx/CdSeyS1-y/CdS、InP/ZnS、CdSe/ZnS、Cd1-xZnxSe/CdyZn1-ySe/ZnSe、NaYF4、CdSe/ZnSe/ZnS、Cd1-xZnxSe/CdyZn1-yS/ZnS、NaCdF4、Cd1-xZnxSe/ZnS、CdSe/CdS/ZnS、CdSe/Cd1-xZnxSe/CdyZn1-ySe/ZnSe、CdS/Cd1-xZnxS/CdyZn1-yS/ZnS、Cd1-xZnxSeyS1-y中的任一种。The long afterglow composite material based on quantum dots according to claim 1, wherein the quantum dots are Au, Ag, Cu, Pt, C, Si, Ge, CdSe, ZnSe, PbSe, CdTe, ZnO, InP , GaN, GaP, AlP, InN, ZnTe, InAs, GaAs, CaF2 , Cd1-x Znx S, Cd1-x Znx Se, CdSeyS1-y , PbSeyS1-y , ZnXCd1-X Te, CdS / ZnS, Cd1-x Znx S / ZnS, Cd1-x Znx Se / ZnSe, CdSe1-x Sx / CdSey S1-y / CdS, InP / ZnS, CdSe / ZnS, Cd1 -x Znx Se / CdyZn1-y Se / ZnSe, NaYF4 , CdSe / ZnSe / ZnS, Cd1-x Znx Se / Cdy Zn1-y S / ZnS, NaCdF4 , Cd1-x Znx Se / ZnS, CdSe / CdS / ZnS, CdSe / Cd1-x Znx Se / CdyZn1-y Se / ZnSe, CdS / Cd1-x Znx S / Cdy Zn1-y S / ZnS, Cd1 -x Anyone of ZnxSeyS1-y .一种基于量子点的长余辉复合材料的制备方法,其特征在于,采用如下三种方式之一进行制备,其中,方式一至少包括以下步骤:A method for preparing a long afterglow composite material based on quantum dots is characterized in that it is prepared in one of the following three ways, wherein way one includes at least the following steps:步骤S11.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S11: Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;步骤S12.将表面修饰剂改性的所述长余辉发光材料与量子点进行混料处理,使所述表面修饰剂与所述量子点连接,获得长余辉复合材料;Step S12: Mixing the long afterglow luminescent material modified with a surface modifier with a quantum dot, so that the surface modifier is connected with the quantum dot to obtain a long afterglow composite material;方式二:Method two:步骤S21.将长余辉发光材料与表面修饰剂进行混合处理,获得表面修饰剂修饰改性的长余辉发光材料;Step S21. Mix the long afterglow luminescent material with the surface modifier to obtain a long afterglow luminescent material modified by the surface modifier;步骤S22.将步骤S21获得的长余辉发光材料制成溶液,随后将多孔材料浸泡于所述长余辉发光材料溶液中,使所述长余辉发光材料吸附在所述多孔材料的孔洞内,获得吸附有长余辉发光材料的多孔材料;Step S22. The long afterglow luminescent material obtained in step S21 is made into a solution, and then a porous material is immersed in the long afterglow luminescent material solution, so that the long afterglow luminescent material is adsorbed in the holes of the porous material to obtain adsorption. Porous materials with long afterglow luminescent materials;步骤S23.将所述吸附有长余辉发光材料的多孔材料浸泡于含有量子点的溶液中,使所述量子点被吸附至所述多孔材料的孔洞中,获得长余辉复合材料;Step S23: immerse the porous material to which the long afterglow luminescent material is adsorbed in a solution containing quantum dots, so that the quantum dots are adsorbed into the holes of the porous material to obtain a long afterglow composite material;方式三:Way three:步骤S31.将量子点与表面修饰剂进行混合处理,使所述量子点表面连接有所述表面修饰剂;Step S31: performing a mixing treatment on the quantum dots and the surface modifier, so that the surface of the quantum dot is connected with the surface modifier;步骤S32.将步骤S31获得的量子点与长余辉发光材料进行混料处理,使得所述表面修饰剂还与所述长余辉发光材料连接;Step S32. Mixing the quantum dot obtained in step S31 with the long afterglow luminescent material, so that the surface modifier is also connected to the long afterglow luminescent material;步骤S33.调节步骤S32得到的物料的pH至碱性,并加入氧化物前驱体,使所述氧化物前驱体发生水解生成包裹在所述量子点与所述长余辉发光材料表面的氧化物,获得长余辉复合材料。Step S33. Adjust the pH of the material obtained in step S32 to alkaline, and add an oxide precursor to cause the oxide precursor to hydrolyze to generate an oxide wrapped on the surface of the quantum dot and the long afterglow luminescent material, Get long afterglow composites.如权利要求9所述的基于量子点的长余辉复合材料的制备方法,其特征在于,所述表面修饰剂可以是苄硫醇、巯基乙酸、巯基丙酸、十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠、乙二胺、十八烷基-对乙烯苄基-二甲基氯化铵、N,N-二甲基苄胺、甲基六氢邻笨二甲基酸酐、邻笨二甲酸酐、聚丙烯酸钠、聚二甲基硅氧烷、聚乙烯亚胺、氨基封端的聚乙二醇中的任一种。The method of claim 9, wherein the surface modifier is benzyl mercaptan, mercaptoacetic acid, mercaptopropionic acid, sodium dodecylbenzenesulfonate, Sodium dodecylsulfate, sodium dodecyl sulfate, ethylenediamine, octadecyl-p-vinylbenzyl-dimethylammonium chloride, N, N-dimethylbenzylamine, methylhexahydro Any of phthalic anhydride, phthalic anhydride, sodium polyacrylate, polydimethylsiloxane, polyethyleneimine, and amino-terminated polyethylene glycol.如权利要求9所述的基于量子点的长余辉复合材料的制备方法,其特征在于,所述长余辉发光材料为ZnS:Cu2+、CaS:Bi3+、SrAl4O7:Eu2+,Dy3+、Sr4Al14O25:Eu2+,Dy3+、SrAl2O4:Eu2+、Sr2MgSi2O7:Eu2+,Dy3+、CaS:Eu3+,Tm3+、CdSiO3:Mn2+、Ca12Al14O33:Eu2+,Nd3+、SrMgAl10O17:Eu2+,Dy3+、Cd3Al2GeO12:Pr3+、CdSiO3:Sm3+、CaWO4:Eu3+、CaS:Eu2+,Tm3+、CaAl2O4:Eu2+,Nd3+、SrAl2O4:Eu2+,Dy3+中的任一种。The method for preparing a long afterglow composite material based on quantum dots according to claim 9, wherein the long afterglow luminescent material is ZnS: Cu2+ , CaS: Bi3+ , SrAl4 O7 : Eu2+ , Dy3+ , Sr4 Al14 O25 : Eu2+ , Dy3+ , SrAl2 O4 : Eu2+ , Sr2 MgSi2 O7 : Eu2+ , Dy3+ , CaS: Eu3+ , Tm3+ , CdSiO3 : Mn2+ , Ca12 Al14 O33 : Eu2+ , Nd3+ , SrMgAl10 O17 : Eu2+ , Dy3+ , Cd3 Al2 GeO12 : Pr3+ , CdSiO3 : Sm3+ , CaWO4 : Eu3+ , CaS: Eu2+ , Tm3+ , CaAl2 O4 : Eu2+ , Nd3+ , SrAl2 O4 : Eu2+ , Dy3+ Either.如权利要求9所述的基于量子点的长余辉复合材料的制备方法,其特征在于,所述量子点为Au、Ag、Cu、Pt、C、Si、Ge、CdSe、ZnSe、PbSe、CdTe、ZnO、InP、GaN、GaP、AlP、InN、ZnTe、InAs、GaAs、CaF2、Cd1-xZnxS、Cd1-xZnxSe、CdSeyS1-y、PbSeyS1-y、ZnXCd1-XTe、CdS/ZnS、Cd1-xZnxS/ZnS、Cd1-xZnxSe/ZnSe、CdSe1-xSx/CdSeyS1-y/CdS、InP/ZnS、CdSe/ZnS、Cd1-xZnxSe/CdyZn1-ySe/ZnSe、NaYF4、CdSe/ZnSe/ZnS、Cd1-xZnxSe/CdyZn1-yS/ZnS、NaCdF4、Cd1-xZnxSe/ZnS、CdSe/CdS/ZnS、CdSe/Cd1-xZnxSe/CdyZn1-ySe/ZnSe、CdS/Cd1-xZnxS/CdyZn1-yS/ZnS、Cd1-xZnxSeyS1-y中的任一种。The method of claim 9, wherein the quantum dots are Au, Ag, Cu, Pt, C, Si, Ge, CdSe, ZnSe, PbSe, CdTe, ZnO, InP, GaN, GaP, AlP, InN, ZnTe, InAs, GaAs, CaF2 , Cd1-x Znx S, Cd1-x Znx Se, CdSeyS1-y , PbSeyS1-y , ZnXCd1- X Te, CdS / ZnS, Cd1-x Znx S / ZnS, Cd1-x Znx Se / ZnSe, CdSe1-x Sx / CdSey S1-y / CdS, InP / ZnS, CdSe / ZnS , Cd1-x Znx Se / CdyZn1-y Se / ZnSe, NaYF4 , CdSe / ZnSe / ZnS, Cd1-x Znx Se / Cdy Zn1-y S / ZnS, NaCdF4 , Cd1- x Znx Se / ZnS, CdSe / CdS / ZnS, CdSe / Cd1-x Znx Se / CdyZn1-y Se / ZnSe, CdS / Cd1-x Znx S / Cdy Zn1-y S / ZnS , Cd1-x ZnxSeyS1-y .如权利要求9所述的基于量子点的长余辉复合材料的制备方法,其特征在于,所述多孔材料为多孔硅、多孔铝、多孔银中的任一种。The method according to claim 9, wherein the porous material is any one of porous silicon, porous aluminum, and porous silver.如权利要求9所述的基于量子点的长余辉复合材料的制备方法,其特征在于,所述氧化物前驱体为正硅酸丁酯、钛酸丁酯、硝酸锌、硝酸铁中的任一种。The method of claim 9, wherein the oxide precursor is any one of butyl orthosilicate, butyl titanate, zinc nitrate, and iron nitrate Species.如权利要求1所述的基于量子点的长余辉复合材料或者如权利要求9所述的基于量子点的长余辉复合材料的制备方法制备的基于量子点的长余辉复合材料在太阳能电池或发光器件领域中的应用。The quantum dot-based long afterglow composite material according to claim 1 or the quantum dot-based long afterglow composite material according to claim 9 is used in a solar cell or a light emitting device. Applications in the field.
PCT/CN2019/0974782018-07-242019-07-24Quantum dot-based long afterglow composite material, preparation method for same, and applications thereofCeasedWO2020020220A1 (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
CN201810820252.7ACN110746957B (en)2018-07-242018-07-24Long-afterglow composite material based on quantum dots and preparation method and application thereof
CN201810820252.72018-07-24

Publications (1)

Publication NumberPublication Date
WO2020020220A1true WO2020020220A1 (en)2020-01-30

Family

ID=69180381

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/CN2019/097478CeasedWO2020020220A1 (en)2018-07-242019-07-24Quantum dot-based long afterglow composite material, preparation method for same, and applications thereof

Country Status (2)

CountryLink
CN (1)CN110746957B (en)
WO (1)WO2020020220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP4086937A4 (en)*2020-03-182022-12-28BOE Technology Group Co., Ltd. QUANTUM DOT LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF, AND MANUFACTURING METHOD FOR QUANTUM DOT DISPLAY PANEL

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN111690400B (en)*2019-03-132021-12-14中国科学院福建物质结构研究所Quantum dot-rare earth long afterglow composite luminescent material and preparation method and application thereof
CN114316942B (en)*2020-09-292025-07-29Tcl科技集团股份有限公司Composite material, preparation method thereof and light-emitting diode
CN112251224A (en)*2020-10-262021-01-22陕西科技大学Long afterglow luminescent material surface loaded CsPbX3Preparation method of (1)
CN114045165A (en)*2021-12-032022-02-15福州大学 A method for realizing multicolor variable patterns of long afterglow/quantum dot composite luminescent materials
CN116814253B (en)*2023-06-192024-05-10华北水利水电大学Hydrophobically modified long afterglow fluorescent powder and application thereof in self-luminous high-strength cement-based material
CN119217759B (en)*2024-11-282025-04-01宁波长阳科技股份有限公司 A quantum dot reflective film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060157686A1 (en)*2005-01-202006-07-20Samsung Electronics Co., Ltd.Quantum dot phosphor for light emitting diode and method of preparing the same
KR20060086128A (en)*2005-01-262006-07-31삼성전자주식회사 Luminescent material and manufacturing method thereof
CN1908114A (en)*2005-08-012007-02-07安华高科技Ecbuip(新加坡)私人有限公司Phosphor based on a combination of quantum dot and conventional phosphors
CN104830325A (en)*2015-04-232015-08-12华南农业大学 Preparation method of fluorescent carbon quantum dot/SiO2/inorganic phosphor ternary composite temperature sensing material
CN105086993A (en)*2015-09-112015-11-25天津市中环量子科技有限公司Fluorescent quantum dot micro-nano encapsulated composite material structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2534402C (en)*2003-08-042013-06-25Emory UniversityPorous materials embedded with nanospecies, methods of fabrication thereof, and methods of use thereof
JP2011187646A (en)*2010-03-082011-09-22Seiko Epson CorpOptical converter and electronic apparatus including the same
WO2013001685A1 (en)*2011-06-292013-01-03パナソニック株式会社Composite phosphor and light-emitting device
KR101492015B1 (en)*2012-05-082015-02-10한국세라믹기술원Nano hybrid composite as phosphor of display and preparation method thereof
JP5720837B2 (en)*2014-07-072015-05-20セイコーエプソン株式会社 Optical conversion device and electronic device including the same
CN105112044B (en)*2015-08-062017-04-05华南农业大学Fluorescent carbon quantum dot composite luminescent material and its preparation and the application on LED
CN106928997A (en)*2015-12-292017-07-07有研稀土新材料股份有限公司Light-emitting particles and the luminescent device comprising it
CN107955597A (en)*2016-10-192018-04-24苏州星烁纳米科技有限公司Quantum dot film and its application
CN107163930A (en)*2017-06-122017-09-15上海科润光电技术有限公司A kind of white light infrared up conversion composite luminescent material with core shell structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060157686A1 (en)*2005-01-202006-07-20Samsung Electronics Co., Ltd.Quantum dot phosphor for light emitting diode and method of preparing the same
KR20060086128A (en)*2005-01-262006-07-31삼성전자주식회사 Luminescent material and manufacturing method thereof
CN1908114A (en)*2005-08-012007-02-07安华高科技Ecbuip(新加坡)私人有限公司Phosphor based on a combination of quantum dot and conventional phosphors
CN104830325A (en)*2015-04-232015-08-12华南农业大学 Preparation method of fluorescent carbon quantum dot/SiO2/inorganic phosphor ternary composite temperature sensing material
CN105086993A (en)*2015-09-112015-11-25天津市中环量子科技有限公司Fluorescent quantum dot micro-nano encapsulated composite material structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP4086937A4 (en)*2020-03-182022-12-28BOE Technology Group Co., Ltd. QUANTUM DOT LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF, AND MANUFACTURING METHOD FOR QUANTUM DOT DISPLAY PANEL
US12127464B2 (en)2020-03-182024-10-22Boe Technology Group Co., Ltd.Preparation methods of quantum dot light emitting device and quantum dot display panel using stacked sacrificial layer and photoresist layer

Also Published As

Publication numberPublication date
CN110746957A (en)2020-02-04
CN110746957B (en)2021-02-05

Similar Documents

PublicationPublication DateTitle
WO2020020220A1 (en)Quantum dot-based long afterglow composite material, preparation method for same, and applications thereof
CN108624317B (en)Core-shell quantum dot and preparation method and application thereof
CN100532496C (en) Method for Enhancing the Fluorescence Intensity of Rare Earth Three Primary Color Phosphors
CN102533266A (en)Europium-activated tungsten molybdate red fluorescent powder for white LED (Light Emitting Diode) and preparation method of europium-activated tungsten molybdate red fluorescent powder
CN101962542A (en)Niobate-based red fluorescent powder for white LED as well as preparation method and application thereof
CN104629765B (en)Method for preparing multilayer fluorescence film by using hydrophobic semiconductor quantum dots
CN106947485A (en)A kind of synthetic method of quantum dot photonic crystal laminated film
CN103346246B (en)The preparation method of the efficient white light mixed luminescence diode based on photonic crystal
CN114716996B (en) Preparation method of mesoporous alumina-confined narrow-band green carbon dot composite phosphor and its application in liquid crystal backlight
CN105969348A (en)Carbon nano-point fluorescent powder, preparation method and LED lamp bead
CN102154009B (en)SiO2: RE light-emitting film taking TiO2 nanotube array as carrier and preparation method thereof
CN103194233A (en)Preparation method of blue/purple long-distance triggered LED (Light Emitting Diode) white-light emitting illumination material
CN104232080B (en)Single matrix panchromatic fluorescent powder material for white light LED (light emitting dioxide) and preparation method thereof
CN105255489B (en) Red fluorescent powder excited by blue-green light and preparation method thereof
CN103367613A (en)Method for preparing white light source with dual-band-gap photonic crystals
CN110467913B (en)Coating method of large-particle-size LED fluorescent powder
CN110257065B (en) A kind of red phosphor with waterproof performance and preparation method thereof
JP5707505B2 (en) Halogen silicate luminescent material and preparation method thereof
CN110157425A (en) A kind of manganese ion activated oxyfluoride phosphor and preparation method thereof
CN101555405B (en) A kind of photochromic tunable fluorescent powder, fluorescent film and its preparation method and application
CN107841306A (en)A kind of divalent europium activation glassy state fluorescent material and its preparation method and application
CN108531174A (en)A kind of Eu3+Niobate red illuminating material of doping and preparation method thereof
CN103694988B (en)Preparation method of II-VI group quantum dot substituted rare earth ion fluorescent material
CN114874774A (en)Manganese ion activated tantalum-based oxyfluoride red luminescent material and preparation method thereof
CN108441213B (en) A kind of red phosphor and preparation method thereof

Legal Events

DateCodeTitleDescription
121Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number:19842270

Country of ref document:EP

Kind code of ref document:A1

NENPNon-entry into the national phase

Ref country code:DE

122Ep: pct application non-entry in european phase

Ref document number:19842270

Country of ref document:EP

Kind code of ref document:A1


[8]ページ先頭

©2009-2025 Movatter.jp