Movatterモバイル変換


[0]ホーム

URL:


WO2019000133A1 - E-commerce data processing method - Google Patents

E-commerce data processing method
Download PDF

Info

Publication number
WO2019000133A1
WO2019000133A1PCT/CN2017/089913CN2017089913WWO2019000133A1WO 2019000133 A1WO2019000133 A1WO 2019000133A1CN 2017089913 WCN2017089913 WCN 2017089913WWO 2019000133 A1WO2019000133 A1WO 2019000133A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
product
search engine
year
access data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2017/089913
Other languages
French (fr)
Chinese (zh)
Inventor
李楚斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xiustyle Brand Communication Co Ltd
Original Assignee
Shenzhen Xiustyle Brand Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xiustyle Brand Communication Co LtdfiledCriticalShenzhen Xiustyle Brand Communication Co Ltd
Priority to PCT/CN2017/089913priorityCriticalpatent/WO2019000133A1/en
Publication of WO2019000133A1publicationCriticalpatent/WO2019000133A1/en
Anticipated expirationlegal-statusCritical
Ceasedlegal-statusCriticalCurrent

Links

Classifications

Definitions

Landscapes

Abstract

An e-commerce data processing method, the method comprising: acquiring, from a telecommunication operator, access data of users using Internet services by means of a client (S10); classifying the access data according to a preset age division rule, and extracting access data corresponding to each age group (S11); acquiring, from the access data corresponding to each age group, keywords inputted by users using a search engine (S12); parsing the keywords inputted by users in the each age group using the search engine so as to obtain product keywords inputted by the users using the search engine (S13); calculating the probability of the product keywords inputted by the users in the each age group using the search engine (S14); calculating the product preferences of users in the each age group according to the probability of the product keywords (S15); and sending product information to users according to the product preferences thereof (S16). By using the described method, product information may be sent to users according to the product preferences thereof.

Description

Translated fromChinese

发明名称:电商数据处理方法 Invention Name: E-commerce data processing method

技术领域 Technical field

[0001] 本发明涉及电子商务信息技术领域, 尤其涉及一种电商数据处理方法。 [0001] The present invention relates to the field of electronic commerce information technology, and in particular, to an e-commerce data processing method.

背景技术 Background technique

[0002] 近年来随着互联网、 云计算、 移动通信和物联网等的迅猛发展, 无所不在的移 动设备、 RFID、 无线传感器每分每秒都在产生数据, 数以亿计用户的互联网服 务吋吋刻刻在产生巨量的交互, 要处理的数据量巨大, 数据一直都在以每年 50% 的速度增长, 而业务需求和竞争压力对数据处理的实吋性、 有效性又提出了更 高要求, 传统的常规技术手段根本无法应付, 因此, 大数据技术 (Big Data) 成 为近来的一个技术热点, 引起了广泛的重视。 [0002] In recent years, with the rapid development of the Internet, cloud computing, mobile communications, and the Internet of Things, ubiquitous mobile devices, RFID, and wireless sensors are generating data every minute, and hundreds of millions of users' Internet services吋吋Engraved in the production of huge amounts of interaction, the amount of data to be processed is huge, the data has been growing at a rate of 50% per year, and business demand and competitive pressure put forward higher requirements for the practicality and effectiveness of data processing. Traditional traditional techniques cannot be dealt with at all. Therefore, Big Data has become a recent technology hotspot and has attracted widespread attention.

[0003] 通过大数据技术可以加速搜索对用户有价值的信息。 然而, 现阶段的电商系统 在针对电商数据进行分析处理吋, 并没有考虑用户平吋使用搜索引擎的因素, 在网络大数据吋代, 增加了电商公司的风险。 [0003] Big data technology can speed up the search for information that is valuable to users. However, the current e-commerce system analyzes and processes e-commerce data, and does not consider the factors that users use the search engine. In the era of big data on the network, the risk of e-commerce companies is increased.

技术问题 technical problem

[0004] 本发明的主要目的在于提供一种电商数据处理方法, 旨在解决现有电商系统中 没有基于搜索弓 I擎关键字进行商品推送的技术问题。 [0004] The main object of the present invention is to provide an e-commerce data processing method, which aims to solve the technical problem that the existing e-commerce system does not perform commodity push based on the search engine.

问题的解决方案 Problem solution

技术解决方案 Technical solution

[0005] 为实现上述目的, 本发明提供了一种电商数据处理方法, 应用于数据中心, 所 述数据中心通过网络与电信营运商连接, 所述电信营运商通过所述网络与所述 客户端连接, 该方法包括: [0005] In order to achieve the above object, the present invention provides an e-commerce data processing method, which is applied to a data center, the data center is connected to a telecommunication operator through a network, and the telecommunication operator communicates with the customer through the network. End connection, the method includes:

[0006] 从电信运营商获取用户通过所述客户端使用互联网服务的访问数据;Obtaining, from a telecommunications carrier, access data of a user using an Internet service through the client;

[0007] 根据预设的年齢段划分规则对所述访问数据进行分类, 并提取每个年齢段对应 的访问数据;[0007] classifying the access data according to a preset annual segmentation rule, and extracting access data corresponding to each year segment;

[0008] 从每个年齢段对应的访问数据中获取用户使用搜索引擎所输入的关键字; [0009] 对每个年齢段中用户使用搜索引擎所输入的关键字进行解析, 以获取每个年齢 段中用户使用搜索引擎所输入的商品关键字;[0008] obtaining a keyword input by the user using the search engine from the access data corresponding to each year; [0009] parsing the keyword input by the user in each year segment using the search engine to obtain each year The product keyword entered by the user in the segment using the search engine;

[0010] 计算每个年齢段中用户使用搜索引擎所输入的商品关键字的概率; 及 [0010] calculating a probability of a product keyword entered by a user using a search engine in each year; and

[0011] 根据所述商品关键字的概率计算出每个年齢段中用户的商品喜好;[0011] calculating, according to the probability of the commodity keyword, the user preference of the user in each year segment;

[0012] 根据用户的商品喜好向用户发送商品信息。[0012] The product information is transmitted to the user according to the user's product preferences.

[0013] 优选地, 所述访问数据包括访问吋间、 访问网址、 使用搜索引擎所输入的关键 字、 网络流量及使用互联网服务的用户信息, 其中, 所述用户信息包括用户姓 名、 年齢、 身高、 职业、 学历、 家庭住址、 电话号码及邮箱。 [0013] Preferably, the access data includes an access time, a visiting website, a keyword input by using a search engine, network traffic, and user information using an Internet service, where the user information includes a user name, an age, and a height. , occupation, education, home address, telephone number and email address.

[0014] 优选地, 所述预设的年齢段划分规则是指以预设年齢为起点将人的寿命划分为 多个年齢段。 [0014] Preferably, the preset annual segment division rule refers to dividing a person's life into a plurality of years by using a preset year.

发明的有益效果 Advantageous effects of the invention

有益效果 Beneficial effect

[0015] 本发明所述电商数据处理方法, 结合用户使用搜索引擎所输入的关键字了解用 户的商品喜好, 并根据用户的商品喜好向用户发送商品信息。 [0015] The e-commerce data processing method of the present invention combines the keywords input by the user using the search engine to understand the user's product preferences, and transmits the product information to the user according to the user's product preferences.

对附图的简要说明 Brief description of the drawing

附图说明 DRAWINGS

[0016] 图 1是本发明电商数据处理方法的优选实施例的流程图。 1 is a flow chart of a preferred embodiment of an e-commerce data processing method of the present invention.

实施该发明的最佳实施例 BEST MODE FOR CARRYING OUT THE INVENTION

本发明的最佳实施方式 BEST MODE FOR CARRYING OUT THE INVENTION

[0017] 参照图 1所示, 是本发明电商数据处理方法的优选实施例的流程图。 在本实施 例中, 所述的电商数据处理方法应用于数据中心, 该方法包括以下步骤:[0017] Referring to FIG. 1, a flow chart of a preferred embodiment of the e-commerce data processing method of the present invention is shown. In this embodiment, the e-commerce data processing method is applied to a data center, and the method includes the following steps:

[0018] 步骤 S10: 从电信运营商获取用户通过所述客户端使用互联网服务的访问数据[0018] Step S10: Obtaining, by the telecommunication operator, access data of the user using the Internet service through the client

[0019] 具体而言, 所述电信运营商提供 API接口, 接入该 API接口的设备或系统都可以 从所述电信运营商中获取所述访问数据。 调用所述电信运营商提供的 API接口以 获取所述访问数据。[0019] Specifically, the telecommunication operator provides an API interface, and the device or system that accesses the API interface can obtain the access data from the telecommunication carrier. The API interface provided by the telecommunications carrier is invoked to obtain the access data.

[0020] 需要说明的是, 由于所述访问数据属于隐私信息, 为了确保信息安全, 所述访 问数据发送给数据中心吋, 会通过加解密算法 (例如, MD5加解密算法、 RSA 加解密算法、 DES加解密算法、 DSA加解密算法、 AES加解密算法等) 先对访问 数据进行加密处理, 之后传输给所述数据中心。[0020] It should be noted that, since the access data belongs to private information, in order to ensure information security, the access data is sent to the data center, and the encryption and decryption algorithm is adopted (for example, the MD5 encryption and decryption algorithm, RSA) The encryption and decryption algorithm, the DES encryption and decryption algorithm, the DSA encryption and decryption algorithm, the AES encryption and decryption algorithm, etc.) first encrypt the access data and then transmit it to the data center.

[0021] 步骤 S11 : 根据预设的年齢段划分规则对所述访问数据进行分类, 并提取每个 年齢段对应的访问数据。 所述预设的年齢段划分规则为以预设年齢为起点 (例 如, 18岁) 将人的寿命设划分为多个年齢段。 例如, 在 18岁与为起点进行划分 , 其中, 18-34岁为青年、 35-45岁为壮年、 45-60为中年、 60岁以上为老年。 由 于所述访问数据中包括用户信息, 所述提取模块 210提取用户信息中的年齢, 并 根据预设的年齢段划分规则对所述访问数据进行分类。 [0021] Step S11: classify the access data according to a preset annual segmentation rule, and extract access data corresponding to each year segment. The predetermined year-end division rule is to divide the life of a person into a plurality of years by starting with a preset age (for example, 18 years old). For example, at the age of 18, the starting point is divided. Among them, 18-34 years old are young, 35-45 years old are middle-aged, 45-60 are middle-aged, and 60-year old are old. The extracting module 210 extracts the years in the user information, and classifies the access data according to a preset annual segmentation rule, because the user data is included in the access data.

[0022] 步骤 S12: 从每个年齢段对应的访问数据中获取用户使用搜索引擎所输入的关 键字。 [0022] Step S12: Obtain a keyword input by the user using the search engine from the access data corresponding to each year.

[0023] 步骤 S13: 对每个年齢段中用户使用搜索引擎所输入的关键字进行解析, 以获 取每个年齢段中用户使用搜索引擎所输入的商品关键字。 具体地说, 对每个年 齢段中用户使用搜索引擎所输入的关键字与预设的商品关键字进行比对, 若所 输入的关键字与预设的商品关键字相同, 则该关键字为商品关键字。 [0023] Step S13: Parsing the keywords input by the user in the search engine using the keyword input by the search engine in each year segment to obtain the product keyword input by the user in each year. Specifically, the keywords input by the user in each year segment are compared with the preset product keywords, and if the input keyword is the same as the preset product keyword, the keyword is Product keyword.

[0024] 步骤 S14: 计算每个年齢段中用户使用搜索引擎所输入的商品关键字的概率。 [0024] Step S14: Calculate the probability of the product keyword input by the user in the search engine using the search engine in each year.

[0025] 步骤 S15: 根据所述商品关键字的概率计算出每个年齢段中用户的商品喜好。 [0025] Step S15: Calculate the user preference of the user in each year segment according to the probability of the commodity keyword.

[0026] 步骤 S16: 根据用户的商品喜好向用户发送商品信息。 [0026] Step S16: Send the product information to the user according to the user's product preference.

[0027] 本发明所述电商数据处理方法, 结合用户使用搜索引擎所输入的关键字了解用 户的商品喜好, 并根据用户的商品喜好向用户发送商品信息。 [0027] The e-commerce data processing method of the present invention combines the keywords input by the user using the search engine to understand the user's product preferences, and transmits the product information to the user according to the user's product preferences.

工业实用性 Industrial applicability

[0028] 本发明所述电商数据处理方法, 结合用户使用搜索引擎所输入的关键字了解用 户的商品喜好, 并根据用户的商品喜好向用户发送商品信息。 [0028] The e-commerce data processing method of the present invention combines the keywords input by the user with the search engine to understand the user's product preferences, and transmits the product information to the user according to the user's product preferences.

Claims

Translated fromChinese
权利要求书 Claim [权利要求 1] 一种电商数据处理方法, 应用于数据中心, 其特征在于, 所述数据中 心通过网络与电信营运商连接, 所述电信营运商通过所述网络与所述 客户端连接, 该方法包括: [Claim 1] An e-commerce data processing method is applied to a data center, wherein the data center is connected to a telecommunication operator through a network, and the telecommunication operator connects to the client through the network, The method includes: 从电信运营商获取用户通过所述客户端使用互联网服务的访问数据; 根据预设的年齢段划分规则对所述访问数据进行分类, 并提取每个年 齢段对应的访问数据; Obtaining, by the telecommunication operator, access data of the user using the Internet service by the client; classifying the access data according to a preset annual segmentation rule, and extracting access data corresponding to each year segment; 从每个年齢段对应的访问数据中获取用户使用搜索引擎所输入的关键 字; Obtaining keywords input by the user using the search engine from the access data corresponding to each year; 对每个年齢段中用户使用搜索引擎所输入的关键字进行解析, 以获取 每个年齢段中用户使用搜索引擎所输入的商品关键字; The keywords input by the user in the search engine are used in each year to obtain the keyword of the product input by the user in each year segment using the search engine; 计算每个年齢段中用户使用搜索引擎所输入的商品关键字的概率; 及 根据所述商品关键字的概率计算出每个年齢段中用户的商品喜好; 根据用户的商品喜好向用户发送商品信息。 Calculating the probability of the product keyword input by the user in each year segment using the search engine; and calculating the user preference of the user in each year segment according to the probability of the product keyword; sending the product information to the user according to the user's product preference . [权利要求 2] 如权利要求 1所述的电商数据处理方法, 其特征在于, 所述访问数据 包括访问吋间、 访问网址、 使用搜索引擎所输入的关键字、 网络流量 及使用互联网服务的用户信息, 其中, 所述用户信息包括用户姓名、 年齢、 身高、 职业、 学历、 家庭住址、 电话号码及邮箱。 [Claim 2] The e-commerce data processing method according to claim 1, wherein the access data includes an access time, a visiting web address, a keyword input using a search engine, network traffic, and use of an Internet service. User information, wherein the user information includes a user name, age, height, occupation, education, home address, telephone number, and email address. [权利要求 3] 如权利要求 1所述的电商数据处理方法, 其特征在于, 所述预设的年 齢段划分规则是指以预设年齢为起点将人的寿命划分为多个年齢段。 [Claim 3] The quotient data processing method according to claim 1, wherein the preset annual segmentation rule refers to dividing a person's life into a plurality of years by using a preset year.
PCT/CN2017/0899132017-06-282017-06-28E-commerce data processing methodCeasedWO2019000133A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
PCT/CN2017/089913WO2019000133A1 (en)2017-06-282017-06-28E-commerce data processing method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/CN2017/089913WO2019000133A1 (en)2017-06-282017-06-28E-commerce data processing method

Publications (1)

Publication NumberPublication Date
WO2019000133A1true WO2019000133A1 (en)2019-01-03

Family

ID=64740279

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/CN2017/089913CeasedWO2019000133A1 (en)2017-06-282017-06-28E-commerce data processing method

Country Status (1)

CountryLink
WO (1)WO2019000133A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2025083041A1 (en)2023-10-172025-04-24Dsm Ip Assets B.V.New fucosyltransferases for in vivo synthesis of complex fucosylated human milk oligosaccharides mixtures comprising lnfp-vi or lnfp-v

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102103603A (en)*2009-12-182011-06-22百度在线网络技术(北京)有限公司User behavior data analysis method and device
CN102592116A (en)*2011-12-272012-07-18Tcl集团股份有限公司Cloud computing application method, system and terminal equipment, and cloud computing platform
US20140297658A1 (en)*2007-05-252014-10-02Piksel, Inc.User Profile Recommendations Based on Interest Correlation
CN105574200A (en)*2015-12-292016-05-11成都陌云科技有限公司User interest extraction method based on historical record
CN106021476A (en)*2016-05-182016-10-12成都九十度工业产品设计有限公司Push system of personal information
CN106294087A (en)*2015-05-272017-01-04腾讯科技(深圳)有限公司The statistical method of a kind of operation frequency that business is performed operation and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20140297658A1 (en)*2007-05-252014-10-02Piksel, Inc.User Profile Recommendations Based on Interest Correlation
CN102103603A (en)*2009-12-182011-06-22百度在线网络技术(北京)有限公司User behavior data analysis method and device
CN102592116A (en)*2011-12-272012-07-18Tcl集团股份有限公司Cloud computing application method, system and terminal equipment, and cloud computing platform
CN106294087A (en)*2015-05-272017-01-04腾讯科技(深圳)有限公司The statistical method of a kind of operation frequency that business is performed operation and device
CN105574200A (en)*2015-12-292016-05-11成都陌云科技有限公司User interest extraction method based on historical record
CN106021476A (en)*2016-05-182016-10-12成都九十度工业产品设计有限公司Push system of personal information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2025083041A1 (en)2023-10-172025-04-24Dsm Ip Assets B.V.New fucosyltransferases for in vivo synthesis of complex fucosylated human milk oligosaccharides mixtures comprising lnfp-vi or lnfp-v

Similar Documents

PublicationPublication DateTitle
JP5997379B2 (en) Systems and methods for privacy-protected clustering of user interest profiles
US12309127B2 (en)End-to-end secure operations using a query vector
US12341763B2 (en)Generating bridge match identifiers for linking identifers from server logs
EP2738980B1 (en)Third-party communications to social networking system users using descriptors
CN114218322B (en)Data display method, device, equipment and medium based on ciphertext transmission
US10255371B2 (en)Methods and systems for identifying multiple devices belonging to a single user by merging deterministic and probabilistic data to generate a cross device data structure
CN104750718B (en)The searching method and equipment of a kind of data information
CN113935055A (en) A privacy protection recommendation method and system based on blockchain and homomorphic encryption
CN115618380A (en) Data processing method, device, equipment and medium
WO2019000133A1 (en)E-commerce data processing method
CN103476001B (en) A method and device for obtaining marketing information
CN111988129B (en) Impact maximization data set processing method, apparatus and system
WO2018176715A1 (en)Breast cancer cloud platform prediction system and method
CN111159761B (en) A model training method and device
CN114297701A (en)User data processing method and device
CN116522398A (en)Information pushing method and device and electronic equipment
Gao et al.Private Set Intersection-Based Ad Click Detection
CN119884149A (en)Homomorphic encryption-based data hiding query method, device, equipment and medium
WO2019000121A1 (en)Methods for merchant franchise and securely processing merchandise information

Legal Events

DateCodeTitleDescription
NENPNon-entry into the national phase

Ref country code:DE

122Ep: pct application non-entry in european phase

Ref document number:17916394

Country of ref document:EP

Kind code of ref document:A1


[8]ページ先頭

©2009-2025 Movatter.jp