本開示の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。一般に、車両の走行安定性は、車幅を大きくすればするほど向上する。しかしながら、小型電気自動車は、小型であるが故に車幅も狭くなることが多い。車幅が狭いと、特に高速走行中の曲線走行時において、車両の走行安定性が損なわれやすい。走行安定性を確保するために、高速走行中の操舵に制限を加える、操舵時に減速する等の構成が設けられた小型電気自動車も存在する。しかしながら、そのような構成により、車両の運転操作の自由度や快適性が損なわれてしまう。また、車幅が大きく、且つ、車長が短いと、特に高速走行中の直線走行時において、車両の走行安定性が損なわれやすい。Prior to the description of the embodiment of the present disclosure, the problems in the prior art will be briefly described. Generally, the running stability of a vehicle is improved as the vehicle width is increased. However, since a small electric vehicle is small, the vehicle width is often narrow. When the vehicle width is narrow, the running stability of the vehicle is likely to be impaired, particularly during curved running during high speed running. In order to ensure running stability, there are also small electric vehicles provided with a configuration such as limiting the steering during high-speed running or decelerating during steering. However, such a configuration impairs the degree of freedom and comfort of driving operation of the vehicle. In addition, when the vehicle width is large and the vehicle length is short, the running stability of the vehicle is likely to be impaired particularly during straight running during high speed running.
以下、本開示の実施の形態について、図面を参照して詳細に説明する。Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
図1は、車幅変更装置1100を有する車両1000の、キャビン1200の平伏状態における斜視図である。車両1000は、車幅変更装置1100と、キャビン1200とを有する。車両1000の走行中は、キャビン1200は平伏状態である。FIG. 1 is a perspective view of avehicle 1000 having a vehiclewidth changing device 1100 in a flat state of acabin 1200. FIG. Thevehicle 1000 includes a vehiclewidth changing device 1100 and acabin 1200. While thevehicle 1000 is traveling, thecabin 1200 is in a flat state.
車幅変更装置1100は、図2を示して後述するように、車幅変更装置1100の縦幅および横幅を変化させることができる。車幅変更装置1100の縦幅および横幅の変化に伴い、車両1000の縦幅(車長)および横幅(車幅)が変化する。なお、車両1000の縦幅(車長)および横幅(車幅)は、後述する車輪を含む幅である。The vehiclewidth changing device 1100 can change the vertical width and the horizontal width of the vehiclewidth changing device 1100 as will be described later with reference to FIG. The vertical width (vehicle length) and the horizontal width (vehicle width) of thevehicle 1000 change with changes in the vertical width and the horizontal width of the vehiclewidth changing device 1100. In addition, the vertical width (vehicle length) and the horizontal width (vehicle width) of thevehicle 1000 are widths including wheels to be described later.
キャビン1200は、乗員または荷物を格納する。キャビン1200は、カバー1210と、座席1220と、ハンドル1230とを有する。Thecabin 1200 stores passengers or luggage. Thecabin 1200 includes acover 1210, aseat 1220, and ahandle 1230.
カバー1210は、車両1000の運転手を外界から遮断し、車両1000の走行時に前方からの風から運転手を保護する。一例において、カバー1210は、その一部または全部が透明である。透明な部分において、車両1000の運転手の視界が確保される。カバー1210の材料は、これらの機能が確保される限りにおいて、特に制限されないが、例えば強化プラスチックである。Thecover 1210 blocks the driver of thevehicle 1000 from the outside world, and protects the driver from the wind from the front when thevehicle 1000 travels. In one example, thecover 1210 is partially or entirely transparent. The visibility of the driver of thevehicle 1000 is ensured in the transparent portion. The material of thecover 1210 is not particularly limited as long as these functions are ensured, but is, for example, reinforced plastic.
座席1220は、車両1000の運転手が座ることができる。図1に示した車両1000は定員が2名であり、座席1220は2つ設けられている。車両1000の定員は1名であってもよく、その場合は1つの座席1220が中央部に設けられてもよい。The driver of thevehicle 1000 can sit on theseat 1220. Thevehicle 1000 shown in FIG. 1 has a capacity of two people and twoseats 1220 are provided. The capacity of thevehicle 1000 may be one, and in that case, oneseat 1220 may be provided in the central portion.
ハンドル1230は、車両1000の運転手が車両1000を操舵するのに使用する。一例において、ハンドル1230は、カバー1210に対して固定される。こうすると、車両1000の運転手が車両1000から降車する際に、ハンドル1230が邪魔にならないので都合が良い。ハンドル1230は、キャビン1200の床に対して固定されてもよい。車両1000が運転手による操舵を要しない自動運転車の場合には、ハンドル1230は省略しても構わない。Thehandle 1230 is used by the driver of thevehicle 1000 to steer thevehicle 1000. In one example, thehandle 1230 is fixed relative to thecover 1210. This is convenient because thehandle 1230 does not get in the way when the driver of thevehicle 1000 gets off thevehicle 1000. Thehandle 1230 may be fixed with respect to the floor of thecabin 1200. If thevehicle 1000 is an autonomous driving vehicle that does not require steering by the driver, thehandle 1230 may be omitted.
図2は、本実施の形態による車幅変更装置1100の構造を示す図である。図3は、車幅変更装置1100が有する第1の車軸1110aおよび第2の車軸1110bの中央部分の拡大図である。図4は、車幅変更装置1100が有する車軸交差角度調節部3000のブロック図を示す。FIG. 2 is a diagram showing a structure of the vehiclewidth changing device 1100 according to the present embodiment. FIG. 3 is an enlarged view of a central portion of thefirst axle 1110a and thesecond axle 1110b that the vehiclewidth changing device 1100 has. FIG. 4 is a block diagram of the axle crossingangle adjusting unit 3000 included in the vehiclewidth changing device 1100.
図2には、車幅変更装置1100が有する第1の車軸1110aと、第2の車軸1110bと、車輪1120a,1120bと、車軸交差部1130と、キャビン支持部1135とが示されている。図2において、車輪1120a,1120bは車両1000の進行方向を向いている。FIG. 2 shows afirst axle 1110a, asecond axle 1110b,wheels 1120a and 1120b, anaxle intersection 1130, and acabin support 1135 that the vehiclewidth changing device 1100 has. In FIG. 2, thewheels 1120 a and 1120 b face the traveling direction of thevehicle 1000.
第1の車軸1110aおよび第2の車軸1110bは、それぞれ両端に車輪1120a,1120bが接続される。そして、第2の車軸1110bは、第1の車軸1110aに交差して第1の車軸1110aに対して水平面内で回転可能であるように設けられる。Wheels 1120a and 1120b are connected to both ends offirst axle 1110a andsecond axle 1110b, respectively. Thesecond axle 1110b is provided so as to intersect thefirst axle 1110a and be rotatable in a horizontal plane with respect to thefirst axle 1110a.
第1の車軸1110aと第2の車軸1110bとは、車軸交差部1130において交差し、車軸交差部1130において中央モータ1140(図4参照)に接続される。車軸交差部1130は、好ましくは第1の車軸1110aと第2の車軸1110bの長軸方向の中心部分に設けられる。Thefirst axle 1110a and thesecond axle 1110b intersect at anaxle intersection 1130 and are connected to a central motor 1140 (see FIG. 4) at theaxle intersection 1130. Theaxle crossing portion 1130 is preferably provided at a central portion in the major axis direction of thefirst axle 1110a and thesecond axle 1110b.
中央モータ1140は、第1の車軸1110aおよび第2の車軸1110bを回転させて、第1の車軸1110aおよび第2の車軸1110bが交差する角度θを調節する。角度θは、中央モータ1140の駆動により増減する。角度θが小さくなると、車幅変更装置1100の縦幅が広がり、車両1000の横幅が狭まる。角度θが大きくなると、車幅変更装置1100の横幅が広がり、車両1000の縦幅が狭まる。角度θを変化させることにより、車幅変更装置1100および車両1000の縦幅および横幅を変化させることができる。Thecentral motor 1140 rotates thefirst axle 1110a and thesecond axle 1110b to adjust the angle θ at which thefirst axle 1110a and thesecond axle 1110b intersect. The angle θ is increased or decreased by driving thecentral motor 1140. When the angle θ decreases, the vertical width of the vehiclewidth changing device 1100 increases and the horizontal width of thevehicle 1000 decreases. As the angle θ increases, the lateral width of the vehiclewidth changing device 1100 increases and the vertical width of thevehicle 1000 decreases. By changing the angle θ, the vertical width and the horizontal width of the vehiclewidth changing device 1100 and thevehicle 1000 can be changed.
一例において、第1の車軸1110aと中央モータ1140とが第1のギア機構(図示せず)を介して接続され、第2の車軸1110bと中央モータ1140とが第2のギア機構(図示せず)を介して接続される。中央モータ1140が第1の車軸1110aをキャビン1200に対してθ/2だけ回転させ、第2の車軸1110bをキャビン1200に対して第1の車軸1110aの回転方向と反対方向にθ/2だけ回転させる。なお、例えば、第1の車軸1110aと中央モータ1140とが固定されており、中央モータ1140の駆動により、第2の車軸1110bが回転する構成であってもよい。この場合は、第2の車軸1110bをθだけ回転させればよい。In one example, thefirst axle 1110a and thecentral motor 1140 are connected via a first gear mechanism (not shown), and thesecond axle 1110b and thecentral motor 1140 are connected to a second gear mechanism (not shown). ). Thecentral motor 1140 rotates thefirst axle 1110a with respect to thecabin 1200 by θ / 2, and thesecond axle 1110b rotates with respect to thecabin 1200 by θ / 2 in a direction opposite to the rotation direction of thefirst axle 1110a. Let For example, thefirst axle 1110a and thecentral motor 1140 may be fixed, and thesecond axle 1110b may be rotated by driving thecentral motor 1140. In this case, thesecond axle 1110b may be rotated by θ.
一例において、車輪1120a,1120bは、それぞれ第1の車軸1110aおよび第2の車軸1110bと、インホイールモータを介して接続される。当該インホイールモータは、車輪1120a,1120bを回転駆動することにより車両1000を推進する。インホイールモータを使用することにより、車輪1120a,1120bを個別に駆動することができ、曲線走行時における車両1000の走行安定性を確保することができる。また、車両1000の停車時にインホイールモータを回生ブレーキとして動作させることにより、車輪1120a,1120bに車両1000を制動するためのブレーキディスクを別途設ける必要がなくなり、車両1000を軽量化することができる。In one example, thewheels 1120a and 1120b are connected to thefirst axle 1110a and thesecond axle 1110b, respectively, via an in-wheel motor. The in-wheel motor propels thevehicle 1000 by rotationally driving thewheels 1120a and 1120b. By using the in-wheel motor, thewheels 1120a and 1120b can be individually driven, and traveling stability of thevehicle 1000 during curved traveling can be ensured. Further, by operating the in-wheel motor as a regenerative brake when thevehicle 1000 is stopped, it is not necessary to separately provide a brake disc for braking thevehicle 1000 on thewheels 1120a and 1120b, and thevehicle 1000 can be reduced in weight.
車輪1120a,1120bは、それぞれ第1の車軸1110aおよび第2の車軸1110bの端部に設けられた回転中心の周りに角度を変更可能に設けられる。一例において、第1の車軸1110aおよび第2の車軸1110bの両端部にアクチュエータが設けられる。車両1000の直線走行時は、車輪1120a,1120bを車両1000の進行方向を向くように、アクチュエータが車輪1120a,1120bの角度を変更する。車両1000の曲線走行時は、車両の車輪1120a,1120bの回転軸の延長が車両1000の走行軌跡の曲率中心を通るように、アクチュエータが車輪1120a,1120bの角度を個別に変更する。アクチュエータに代えて、車輪1120a,1120bが一定の方向を向くように、中央モータ1140の駆動に連動して車輪1120a,1120bの角度を変更するギア機構を有してもよい。Wheels 1120a and 1120b are provided such that the angles can be changed around the rotation centers provided at the ends of thefirst axle 1110a and thesecond axle 1110b, respectively. In one example, actuators are provided at both ends of thefirst axle 1110a and thesecond axle 1110b. When thevehicle 1000 travels in a straight line, the actuator changes the angles of thewheels 1120a and 1120b so that thewheels 1120a and 1120b face the traveling direction of thevehicle 1000. When thevehicle 1000 travels in a curved line, the actuator individually changes the angles of thewheels 1120a and 1120b so that the extension of the rotation shafts of thewheels 1120a and 1120b of the vehicle passes through the center of curvature of the travel locus of thevehicle 1000. Instead of the actuator, a gear mechanism may be provided that changes the angles of thewheels 1120a and 1120b in conjunction with the driving of thecentral motor 1140 so that thewheels 1120a and 1120b are directed in a certain direction.
一例において、車両1000の停車時には、アクチュエータは、車輪1120a,1120bの向きを、車両1000の横幅方向に向ける。こうすると、車両1000の停車時に、車両1000が横幅方向に移動することができ、特に縦列駐車の際に、より狭いスペースに車両1000を容易に駐車することができる。In one example, when thevehicle 1000 is stopped, the actuator directs the directions of thewheels 1120a and 1120b in the lateral width direction of thevehicle 1000. If it carries out like this, when thevehicle 1000 stops, thevehicle 1000 can move to a horizontal width direction, and when carrying out parallel parking especially, thevehicle 1000 can be parked easily in a narrower space.
一例において、車輪1120a,1120bは、空気タイヤで構成される。こうすると、車両1000の他の車両または障害物への衝突時に、車輪1120a,1120bが衝突のキャビン1200への衝撃を緩和するバンパーとして働き、車両1000の安全性を高めることができる。In one example, thewheels 1120a and 1120b are composed of pneumatic tires. In this way, when thevehicle 1000 collides with another vehicle or an obstacle, thewheels 1120a and 1120b function as bumpers that reduce the impact of the collision on thecabin 1200, and the safety of thevehicle 1000 can be improved.
一例において、キャビン1200の底面の一部が、第1の車軸1110a上に設けられた第1の摺動面(図示せず)および第2の車軸1110b上に設けられた第2の摺動面(図示せず)において面接触する。キャビン1200は、第1の摺動面および第2の摺動面の上で、摺動可能に支持される。そして、中央モータ1140を駆動して、第1の車軸1110aおよび第2の車軸1110bが交差する角度θを大きくし、キャビン1200を第1の車軸1110aおよび第2の車軸1110bに対して摺動させる。こうすると、キャビン1200の前部を第1の車軸1110aおよび第2の車軸1110bの上部から車軸1110aおよび第2の車軸1110bの間に移動させることにより、キャビン1200を平伏状態から起立状態に遷移させることができる(図8参照)。また、中央モータ1140を駆動して、第1の車軸1110aおよび第2の車軸1110bが交差する角度θを小さくし、キャビン1200を第1の車軸1110aおよび第2の車軸1110bに対して摺動させる。こうすると、キャビン1200の前部を第1の車軸1110aおよび第2の車軸1110bの間からそれらの上部に移動させることにより、キャビン1200を起立状態から平伏状態に遷移させることができる。したがって、キャビン1200を平伏状態から起立状態に遷移させるために独立したモータを有する必要がなく、車両1000の構成を簡素化することができる。第1の摺動面および第2の摺動面は、第1の車軸1110aおよび第2の車軸1110bに設けられた切欠部(図示せず)の表面を、例えばフッ素樹脂加工することにより形成する。面接触に代えて、第1の車軸1110aおよび第2の車軸1110bの上部にベアリングを設け、そのベアリングを介してキャビン1200が底面において第1の車軸1110aおよび第2の車軸1110bに点接触あるいは線接触してもよい。In one example, a part of the bottom surface of thecabin 1200 includes a first sliding surface (not shown) provided on thefirst axle 1110a and a second sliding surface provided on thesecond axle 1110b. Surface contact occurs (not shown). Thecabin 1200 is slidably supported on the first sliding surface and the second sliding surface. Then, thecentral motor 1140 is driven to increase the angle θ at which thefirst axle 1110a and thesecond axle 1110b intersect, and thecabin 1200 is slid with respect to thefirst axle 1110a and thesecond axle 1110b. . Thus, thecabin 1200 is shifted from the flat state to the standing state by moving the front part of thecabin 1200 from the upper part of thefirst axle 1110a and thesecond axle 1110b to theaxle 1110a and thesecond axle 1110b. (See FIG. 8). Further, thecentral motor 1140 is driven to reduce the angle θ at which thefirst axle 1110a and thesecond axle 1110b intersect, and thecabin 1200 is slid with respect to thefirst axle 1110a and thesecond axle 1110b. . In this way, thecabin 1200 can be shifted from the standing state to the flat state by moving the front part of thecabin 1200 from between thefirst axle 1110a and thesecond axle 1110b to the upper part thereof. Therefore, it is not necessary to have an independent motor for causing thecabin 1200 to transition from the flat state to the standing state, and the configuration of thevehicle 1000 can be simplified. The first sliding surface and the second sliding surface are formed by processing, for example, fluororesin on the surfaces of notches (not shown) provided on thefirst axle 1110a and thesecond axle 1110b. . Instead of surface contact, bearings are provided on the upper portions of thefirst axle 1110a and thesecond axle 1110b, and thecabin 1200 is point-contacted or lined with thefirst axle 1110a and thesecond axle 1110b on the bottom surface via the bearings. You may touch.
キャビン支持部1135は、上部に搭載されるキャビン1200を支持する。キャビン支持部1135は、上部においてキャビン1200を支持する限りにおいて、その構造に制限はなく、例えば、キャビン支持部1135は、キャビン1200の底部に設けられた凸部を摺動可能に受容する貫通孔1132a,1132b(図3参照)である。車軸交差部1130の上部とキャビン1200の底面とが接する場合、例えば接する面をフッ素樹脂加工することにより、または車軸交差部1130の上部に設けられたベアリングを介して、互いに滑動可能であるように形成する。Thecabin support part 1135 supports thecabin 1200 mounted on the upper part. The structure of thecabin support portion 1135 is not limited as long as it supports thecabin 1200 at the upper portion. For example, thecabin support portion 1135 has a through hole that slidably receives a convex portion provided at the bottom of thecabin 1200. 1132a and 1132b (see FIG. 3). When the upper portion of theaxle crossing portion 1130 and the bottom surface of thecabin 1200 are in contact with each other, for example, the contacted surface can be slid with each other by processing a fluororesin or via a bearing provided on the upper portion of theaxle crossing portion 1130. Form.
一例において、キャビン支持部1135は、平伏状態のキャビン1200を落ちないように支えて固定するロック部材(図示せず)を有する。こうすると、例えば車両1000の走行中に第1の車軸1110aおよび第2の車軸1110bが交差する角度θが変化しても、キャビン1200を平伏状態に維持することができる。In one example, thecabin support 1135 has a lock member (not shown) that supports and fixes theflat cabin 1200 so as not to fall. In this way, for example, even when the angle θ at which thefirst axle 1110a and thesecond axle 1110b intersect while thevehicle 1000 is traveling, thecabin 1200 can be maintained in a flat state.
図3に示すように、一例において、第1の車軸1110aおよび第2の車軸1110bは、同一形状を有する。第1の車軸1110aおよび第2の車軸1110bは、それぞれ中央部分に円環形状の台座部1130aおよび台座部1130bを有する。台座部1130aおよび台座部1130bの中心部分には、キャビン1200の底部に設けられた凸部を摺動可能に受容するために、それぞれ円環の中心軸に沿って貫通孔1132aおよび貫通孔1132bが設けられている。As shown in FIG. 3, in one example, thefirst axle 1110a and thesecond axle 1110b have the same shape. Thefirst axle 1110a and thesecond axle 1110b have anannular pedestal 1130a andpedestal 1130b, respectively, at the center. In the central part of thepedestal part 1130a and thepedestal part 1130b, a through-hole 1132a and a through-hole 1132b are respectively provided along the central axis of the ring to slidably receive the convex part provided at the bottom of thecabin 1200. Is provided.
第1の車軸1110aの台座部1130aの上部には、上下をひっくり返した第2の車軸1110bの台座部1130bが嵌合するように、窪みが設けられる。上下をひっくり返した第2の車軸1110bの台座部1130bの下部にも、同様に第1の車軸1110aの台座部1130aが嵌合するように、窪みが設けられる。A recess is provided on the upper portion of thepedestal portion 1130a of thefirst axle 1110a so that thepedestal portion 1130b of thesecond axle 1110b turned upside down is fitted. A recess is provided in the lower portion of thepedestal portion 1130b of thesecond axle 1110b turned upside down so that thepedestal portion 1130a of thefirst axle 1110a is similarly fitted.
台座部1130a,1130bの上面部は、互いに滑動可能であるように形成される。台座部1130a,1130bの側面部と窪みの側面部1134a,1134bとも、互いに滑動可能であるように形成される。例えば、当該上面部および側面部をフッ素樹脂加工することにより、互いに滑動可能であるように形成する。また、台座部1130a,1130bの上表面にボールベアリングを設け、そのボールベアリングを介して台座部1130a,1130bを互いに滑動可能であるように接続してもよい。The upper surface portions of thepedestal portions 1130a and 1130b are formed so as to be slidable with respect to each other. The side surface portions of thepedestal portions 1130a and 1130b and theside surface portions 1134a and 1134b of the depressions are formed to be slidable with respect to each other. For example, the upper surface portion and the side surface portion are formed so as to be slidable with each other by processing a fluororesin. Further, ball bearings may be provided on the upper surfaces of thepedestal portions 1130a and 1130b, and thepedestal portions 1130a and 1130b may be connected to be slidable with each other via the ball bearings.
第1の車軸1110aおよび第2の車軸1110bは、必ずしも同一形状を有さなくてもよい。例えば、第1の車軸1110aの中心部に貫通孔1132aに代えて凸部(図示せず)を設け、第2の車軸1110bの貫通孔1132bが当該凸部を摺動可能に受容してもよい。さらに、キャビン1200の底部に凹部を設け、当該凹部がさらに当該凸部を摺動可能に受容してもよい。この場合、当該凸部が、キャビン支持部1135として働く。Thefirst axle 1110a and thesecond axle 1110b do not necessarily have the same shape. For example, a convex portion (not shown) may be provided at the center of thefirst axle 1110a instead of the throughhole 1132a, and the throughhole 1132b of thesecond axle 1110b may be slidably received. . Further, a recess may be provided at the bottom of thecabin 1200, and the recess may further receive the protrusion so as to be slidable. In this case, the convex portion functions as thecabin support portion 1135.
図4に示すように、車軸交差角度調節部3000は、第1の車軸1110aおよび第2の車軸1110bが交差する角度θを調節する。車軸交差角度調節部3000は、中央モータ1140および中央モータ制御部3010を有する。As shown in FIG. 4, the axle crossingangle adjusting unit 3000 adjusts the angle θ at which thefirst axle 1110a and thesecond axle 1110b intersect. The axle crossingangle adjusting unit 3000 includes acentral motor 1140 and a centralmotor control unit 3010.
中央モータ制御部3010は、中央モータ1140の駆動を制御する。中央モータ制御部3010は、中央モータ1140を制御できる限りにおいて、その構成に特に制限はなく、例えば車載コンピュータである。Centralmotor control unit 3010 controls driving ofcentral motor 1140. The centralmotor control unit 3010 is not particularly limited in its configuration as long as thecentral motor 1140 can be controlled, and is, for example, an in-vehicle computer.
一例において、中央モータ制御部3010は、中央モータ1140をショートブレーキとして動作させる。これにより、車両1000の衝突時に、衝突による衝撃力が吸収されるように中央モータ1140が第1の車軸1110aおよび第2の車軸1110bに抗力を加えることができる。また、車両1000の停車時に、第1の車軸1110a、第2の車軸1110bおよびキャビン支持部1135により支持されているキャビン1200の起立動作の速度を低下させることができる。In one example, the centralmotor control unit 3010 operates thecentral motor 1140 as a short brake. Thereby, at the time of the collision of thevehicle 1000, thecentral motor 1140 can apply a drag force to thefirst axle 1110a and thesecond axle 1110b so that the impact force due to the collision is absorbed. Further, when thevehicle 1000 is stopped, the speed of the standing operation of thecabin 1200 supported by thefirst axle 1110a, thesecond axle 1110b, and thecabin support portion 1135 can be reduced.
車両位置検出部3020は、車両の位置を検出する。車両位置検出部3020は、車両の位置を検出することができる限りにおいて、その構成に特に制限はなく、例えば公知のGPS(Global Positioning System)装置である。Vehicleposition detection unit 3020 detects the position of the vehicle. The vehicleposition detection unit 3020 is not particularly limited in its configuration as long as the position of the vehicle can be detected. For example, the vehicleposition detection unit 3020 is a known GPS (Global Positioning System) device.
地図情報保持部3030は、地図情報を保持する。地図情報保持部3030は、地図情報を保持することができる限りにおいて、その構成に特に制限はなく、例えば公知のカーナビゲーションシステムである。The mapinformation holding unit 3030 holds map information. The mapinformation holding unit 3030 is not particularly limited in its configuration as long as map information can be held, and is a known car navigation system, for example.
一例において、中央モータ制御部3010は、車両位置検出部3020から車両の位置を示す情報の入力を受け付け、地図情報保持部3030から地図情報の入力を受け付ける。次いで、中央モータ制御部3010は、当該位置と、当該地図情報に基づいて、車両1000が直線走行するか曲線走行するかを予測する。中央モータ制御部3010は、車両1000の高速走行時において、車両1000が直線走行すると予測した場合、車幅変更装置1100の縦幅を広げるように中央モータ1140の駆動を制御する。こうすると、特に車両1000の自動運転時または半自動運転時において、直線走行する車両1000の走行安定性を高めることができる。中央モータ制御部3010は、車両1000の高速走行時において、車両1000が曲線走行すると予測した場合、車幅変更装置1100の横幅を広げるように中央モータ1140の駆動を制御する。こうすると、特に車両1000の自動運転時または半自動運転時において、曲線走行する車両1000の走行安定性を高めることができる。In one example, the centralmotor control unit 3010 receives input of information indicating the position of the vehicle from the vehicleposition detection unit 3020, and receives input of map information from the mapinformation holding unit 3030. Next, the centralmotor control unit 3010 predicts whether thevehicle 1000 travels in a straight line or a curve based on the position and the map information. The centralmotor control unit 3010 controls the driving of thecentral motor 1140 so as to widen the vertical width of the vehiclewidth changing device 1100 when thevehicle 1000 is predicted to travel in a straight line when thevehicle 1000 is traveling at high speed. In this way, it is possible to improve the running stability of thevehicle 1000 that travels in a straight line, particularly during the automatic operation or semi-automatic operation of thevehicle 1000. The centralmotor control unit 3010 controls the driving of thecentral motor 1140 so as to widen the lateral width of the vehiclewidth changing device 1100 when thevehicle 1000 is predicted to travel in a curved line when thevehicle 1000 is traveling at high speed. In this way, it is possible to improve the running stability of thevehicle 1000 that travels in a curved line, particularly during the automatic operation or semi-automatic operation of thevehicle 1000.
前後方衝突検出部3040は、車両1000の前方または後方における他の車両または障害物への衝突を検出または予測する。前後方衝突検出部3040は、車両1000の前方または後方における他の車両または障害物への衝突を検出または予測できる限りにおいて、その構成に特に制限はない。例えば、前後方衝突検出部3040は、車両1000の前方および後方に設けられた赤外線レーダーまたは超音波ソナーを含み、赤外線レーダーまたは超音波ソナーによって測定された他の車両または障害物への距離が所定の閾値以下である場合、衝突を検出する。ここで、当該所定の閾値は、衝突を検出することができる限り、任意に定めることができる。また、前後方衝突検出部3040は、当該赤外線レーダーまたは超音波ソナーによって測定された他の車両または障害物への距離が所定の閾値以下であり、かつ距離が減少している場合、衝突を予測する。ここで、当該所定の閾値は、衝突を予測することができる限り、任意に定めることができる。The front / rearcollision detection unit 3040 detects or predicts a collision with another vehicle or an obstacle in front of or behind thevehicle 1000. The configuration of the front-rearcollision detection unit 3040 is not particularly limited as long as it can detect or predict a collision with another vehicle or an obstacle in front of or behind thevehicle 1000. For example, the front-rearcollision detection unit 3040 includes infrared radar or ultrasonic sonar provided in front and rear of thevehicle 1000, and a distance to another vehicle or obstacle measured by the infrared radar or ultrasonic sonar is predetermined. If it is less than the threshold value, a collision is detected. Here, the predetermined threshold value can be arbitrarily determined as long as a collision can be detected. The front-rearcollision detection unit 3040 predicts a collision when the distance to another vehicle or obstacle measured by the infrared radar or ultrasonic sonar is less than a predetermined threshold and the distance is decreased. To do. Here, the predetermined threshold value can be arbitrarily determined as long as a collision can be predicted.
一例において、中央モータ制御部3010は、前後方衝突検出部3040から車両1000の前方または後方における他の車両または障害物への衝突を検出したことを示す情報または当該衝突を予測したことを示す情報の入力を受け付ける。次いで、中央モータ制御部3010は、衝突を検出したまたは予測したと判定した場合、車幅変更装置1100の縦幅を広げるように中央モータ1140の駆動を制御する。こうすると、前方または後方における他の車両または障害物への衝突によるキャビン1200への衝撃をより緩和することができるので、車両1000の安全性を高めることができる。In one example, the centralmotor control unit 3010 is information indicating that a collision with another vehicle or an obstacle in front or rear of thevehicle 1000 is detected from the front / rearcollision detection unit 3040 or information indicating that the collision is predicted. Accepts input. Next, when it is determined that the collision has been detected or predicted, the centralmotor control unit 3010 controls the driving of thecentral motor 1140 so as to increase the vertical width of the vehiclewidth changing device 1100. In this way, the impact on thecabin 1200 due to a collision with another vehicle or obstacle ahead or behind can be further mitigated, and thus the safety of thevehicle 1000 can be improved.
側方衝突検出部3050は、車両1000の側方における他の車両または障害物への衝突を検出または予測する。側方衝突検出部3050は、車両1000の側方における他の車両または障害物への衝突を検出または予測できる限りにおいて、その構成に特に制限はない。例えば、側方衝突検出部3050は、車両1000の側方に設けられた赤外線レーダーまたは超音波ソナーを含み、赤外線レーダーまたは超音波ソナーによって測定された他の車両または障害物への距離が所定の閾値以下である場合、衝突を検出する。ここで、当該所定の閾値は、衝突を検出することができる限り、任意に定めることができる。また、側方衝突検出部3050は、当該赤外線レーダーまたは超音波ソナーによって測定された他の車両または障害物への距離が所定の閾値以下であり、かつ距離が減少している場合、衝突を予測する。ここで、当該所定の閾値は、衝突を予測することができる限り、任意に定めることができる。Sidecollision detection unit 3050 detects or predicts a collision with another vehicle or obstacle on the side ofvehicle 1000. The sidecollision detection unit 3050 is not particularly limited in its configuration as long as a collision with another vehicle or an obstacle on the side of thevehicle 1000 can be detected or predicted. For example, the sidecollision detection unit 3050 includes an infrared radar or ultrasonic sonar provided on the side of thevehicle 1000, and a distance to another vehicle or obstacle measured by the infrared radar or ultrasonic sonar is predetermined. If it is below the threshold, a collision is detected. Here, the predetermined threshold value can be arbitrarily determined as long as a collision can be detected. In addition, the sidecollision detection unit 3050 predicts a collision when the distance to another vehicle or obstacle measured by the infrared radar or ultrasonic sonar is less than a predetermined threshold and the distance is decreased. To do. Here, the predetermined threshold value can be arbitrarily determined as long as a collision can be predicted.
一例において、中央モータ制御部3010は、側方衝突検出部3050から車両1000の側方における他の車両または障害物への衝突を検出したことを示す情報または当該衝突を予測したことを示す情報の入力を受け付ける。次いで、中央モータ制御部3010は、衝突を検出したまたは予測したと判定した場合、車幅変更装置1100の横幅を広げるように中央モータ1140の駆動を制御する。こうすると、側方における他の車両または障害物への衝突によるキャビン1200への衝撃をより緩和することがでるので、車両1000の安全性を高めることができる。In one example, the centralmotor control unit 3010 receives information indicating that a collision with another vehicle or an obstacle on the side of thevehicle 1000 from the sidecollision detection unit 3050 has been detected or information indicating that the collision has been predicted. Accept input. Next, when it is determined that the collision has been detected or predicted, the centralmotor control unit 3010 controls the driving of thecentral motor 1140 so as to widen the lateral width of the vehiclewidth changing device 1100. In this way, the impact on thecabin 1200 due to a collision with another vehicle or an obstacle on the side can be further reduced, so that the safety of thevehicle 1000 can be improved.
横風検出部3060は、横風の強度を検出する。横風検出部3060は、横風の強度を検出できる限りにおいて、その構成に特に制限はない。例えば、横風検出部3060は、車両の前方、側方、および後方に設けられた圧力計を含み、それらの圧力計の値に基づいて、横風の強度を検出する。The crosswind detection unit 3060 detects the strength of the cross wind. The configuration of the crosswind detection unit 3060 is not particularly limited as long as the cross wind intensity can be detected. For example, thecrosswind detection unit 3060 includes pressure gauges provided at the front, side, and rear of the vehicle, and detects the strength of the crosswind based on the values of these pressure gauges.
一例において、中央モータ制御部3010は、横風検出部3060から、横風の強度を示す情報の入力を受け付ける。次いで、中央モータ制御部3010は、横風の強度が所定の閾値以上であると判定した場合に、強い横風を検出したと判断し、車幅変更装置1100の横幅を広げるように中央モータ1140の駆動を制御する。ここで、当該所定の閾値は、強い横風を検出することができる限り、任意に定めることができる。こうすると、強い横風が吹いている場合であっても、車両1000の走行安全性を高めることができる。In one example, the centralmotor control unit 3010 receives input of information indicating the strength of the cross wind from the crosswind detection unit 3060. Next, when the centralmotor control unit 3010 determines that the cross wind intensity is equal to or greater than a predetermined threshold, the centralmotor control unit 3010 determines that a strong cross wind has been detected, and drives thecentral motor 1140 so as to increase the lateral width of the vehiclewidth changing device 1100. To control. Here, the predetermined threshold value can be arbitrarily determined as long as a strong cross wind can be detected. In this way, even when a strong crosswind is blowing, the traveling safety of thevehicle 1000 can be improved.
速度検出部3070は、車両の走行速度を検出する。速度検出部3070は、車両の走行速度を検出することができる限りにおいて、その構成に特に制限はなく、例えば車輪1120a,1120bの回転速度から車両の走行速度を検出する速度計である。Speed detector 3070 detects the traveling speed of the vehicle. Thespeed detection unit 3070 is not particularly limited in its configuration as long as the travel speed of the vehicle can be detected. For example, thespeed detection unit 3070 is a speedometer that detects the travel speed of the vehicle from the rotational speeds of thewheels 1120a and 1120b.
一例において、中央モータ制御部3010は、速度検出部3070から車両1000の速度を示す情報の入力を受け付ける。次いで、中央モータ制御部3010は、車両1000の速度に基づいて、車両1000の高速走行時か否かを判定する。例えば、中央モータ制御部3010は、車両1000の速度が所定の速度より高い場合、車両1000の高速走行時と判定する。In one example, the centralmotor control unit 3010 receives input of information indicating the speed of thevehicle 1000 from thespeed detection unit 3070. Next, centralmotor control unit 3010 determines whether or notvehicle 1000 is traveling at a high speed based on the speed ofvehicle 1000. For example, the centralmotor control unit 3010 determines that thevehicle 1000 is traveling at a high speed when the speed of thevehicle 1000 is higher than a predetermined speed.
操舵角検出部3080は、車両1000の操舵角を検出する。操舵角検出部3080は、車両1000の操舵角を検出できる限りにおいて、その構成に特に制限はなく、ハンドル1230に設けられた操舵角センサである。Steeringangle detection unit 3080 detects the steering angle of thevehicle 1000. As long as the steering angle of thevehicle 1000 can be detected, the configuration of the steeringangle detection unit 3080 is not particularly limited, and is a steering angle sensor provided on thehandle 1230.
一例において、中央モータ制御部3010は、操舵角検出部3080から車両1000の操舵角を示す情報の入力を受け付け、当該操舵角に基づき、車両1000が直線走行しているか曲線走行しているかを判定する。次いで、中央モータ制御部3010は、車両1000の高速走行時において、車両1000が直線走行していると判定した場合、車幅変更装置1100の縦幅を広げるように中央モータ1140の駆動を制御する。こうすると、直線走行する車両1000の走行安定性を高めることができる。また、中央モータ制御部3010は、車両1000の高速走行時において、車両1000が曲線走行していると判定した場合、車幅変更装置1100の横幅を広げるように中央モータ1140の駆動を制御する。こうすると、曲線走行する車両1000の走行安定性を高めることができる。In one example, the centralmotor control unit 3010 receives input of information indicating the steering angle of thevehicle 1000 from the steeringangle detection unit 3080, and determines whether thevehicle 1000 is traveling straight or curved based on the steering angle. To do. Next, the centralmotor control unit 3010 controls the driving of thecentral motor 1140 so as to widen the vertical width of the vehiclewidth changing device 1100 when it is determined that thevehicle 1000 is traveling in a straight line when thevehicle 1000 is traveling at high speed. . This can improve the running stability of thevehicle 1000 that travels in a straight line. Further, centralmotor control unit 3010 controls driving ofcentral motor 1140 so as to increase the lateral width of vehiclewidth changing device 1100 when it is determined thatvehicle 1000 is traveling in a curved line whenvehicle 1000 is traveling at a high speed. In this way, traveling stability of thevehicle 1000 traveling in a curve can be improved.
一例において、車両1000が直線走行する場合、中央モータ制御部3010は、車両1000の速度に応じて、車両1000の車幅を変化させる。こうすると、直線走行する車両1000の走行安定性を高めることができる。In one example, when thevehicle 1000 travels linearly, the centralmotor control unit 3010 changes the vehicle width of thevehicle 1000 according to the speed of thevehicle 1000. This can improve the running stability of thevehicle 1000 that travels in a straight line.
一例において、中央モータ制御部3010は、車両1000のアクセルペダル(図示せず)の踏下状態に応じて、車両1000の車幅を変化させる。こうすると、車両1000がアクセルペダルの踏下に応答して加速を始める前に車両1000の車幅を変化させることができるので、車両1000の走行安定性がより向上する。In one example, the centralmotor control unit 3010 changes the vehicle width of thevehicle 1000 according to a stepping state of an accelerator pedal (not shown) of thevehicle 1000. In this way, thevehicle 1000 can change the vehicle width before thevehicle 1000 starts accelerating in response to the depression of the accelerator pedal, so that the running stability of thevehicle 1000 is further improved.
一例において、中央モータ制御部3010は、車両1000の速度および操舵角から、リアルタイムに最適な車幅を計算し、車両1000の車幅が計算された車幅に一致するように、中央モータ1140の駆動を制御する。計算式は、実験またはシミュレーション等で適宜決定してもよい。こうすると、車両1000の走行安定性をより向上することができる。In one example, the centralmotor control unit 3010 calculates an optimal vehicle width in real time from the speed and steering angle of thevehicle 1000, and thecentral motor 1140 is configured so that the vehicle width of thevehicle 1000 matches the calculated vehicle width. Control the drive. The calculation formula may be appropriately determined by experiment or simulation. In this way, the running stability of thevehicle 1000 can be further improved.
図5は、車軸交差角度調節部3000の動作フローチャートである。ステップS1010において、中央モータ制御部3010は、前後方衝突検出部3040が前方または後方からの衝突を検出または予測したか否かを判定する。前方または後方からの衝突を検出または予測したと判定した場合(S1010:YES)、ステップS1020に進み、中央モータ制御部3010は、車幅変更装置1100の縦幅を広げるまたは広げた状態を維持する。そうでない場合(S1010:NO)、ステップS1030に進む。FIG. 5 is an operation flowchart of the axle crossingangle adjusting unit 3000. In step S1010, the centralmotor control unit 3010 determines whether the front / rearcollision detection unit 3040 has detected or predicted a collision from the front or rear. When it is determined that a collision from the front or the rear is detected or predicted (S1010: YES), the process proceeds to step S1020, and the centralmotor control unit 3010 maintains the state in which the vertical width of the vehiclewidth changing device 1100 is widened or widened. . Otherwise (S1010: NO), the process proceeds to step S1030.
ステップS1030において、中央モータ制御部3010は、側方衝突検出部3050が側方からの衝突を検出または予測したか否かを判定する。側方からの衝突を検出または予測したと判定した場合(S1030:YES)、ステップS1040に進み、中央モータ制御部3010は、車幅変更装置1100の横幅を広げるまたは広げた状態を維持する。そうでない場合(S1030:NO)、ステップS1050に進む。In step S1030, the centralmotor control unit 3010 determines whether the sidecollision detection unit 3050 has detected or predicted a side collision. When it is determined that a side collision has been detected or predicted (S1030: YES), the process proceeds to step S1040, and the centralmotor control unit 3010 maintains the state in which the lateral width of the vehiclewidth changing device 1100 is widened or widened. Otherwise (S1030: NO), the process proceeds to step S1050.
ステップS1050において、中央モータ制御部3010は、横風検出部3060が強い横風を検出したか否かを判定する。強い横風を検出したと判定した場合(S1050:YES)、ステップS1040に進み、中央モータ制御部3010は、車幅変更装置1100の横幅を広げるまたは広げた状態を維持する。そうでない場合(S1050:NO)、ステップS1060に進む。In step S1050, the centralmotor control unit 3010 determines whether the crosswind detection unit 3060 has detected a strong cross wind. When it is determined that a strong cross wind has been detected (S1050: YES), the process proceeds to step S1040, and the centralmotor control unit 3010 widens or widens the lateral width of the vehiclewidth changing device 1100. Otherwise (S1050: NO), the process proceeds to step S1060.
ステップS1060において、中央モータ制御部3010は、車両1000が曲線走行しているか否かを判定する。曲線走行していると判定した場合(S1060:YES)、ステップS1070に進む。そうでない場合(S1060:NO)、ステップS1080に進む。In step S1060, centralmotor control unit 3010 determines whethervehicle 1000 is traveling along a curve. If it is determined that the vehicle is traveling on a curve (S1060: YES), the process proceeds to step S1070. Otherwise (S1060: NO), the process proceeds to step S1080.
ステップS1070において、中央モータ制御部3010は、車両1000が高速走行中か否かを判定する。高速走行中であると判定した場合(S1070:YES)、ステップS1040に進み、中央モータ制御部3010は、車幅変更装置1100の横幅を広げるまたは広げた状態を維持する。そうでない場合(S1070:NO)、ステップS1090に進む。In step S1070, centralmotor control unit 3010 determines whether or notvehicle 1000 is traveling at a high speed. If it is determined that the vehicle is traveling at a high speed (S1070: YES), the process proceeds to step S1040, and the centralmotor control unit 3010 increases the lateral width of the vehiclewidth changing device 1100 or maintains the expanded state. Otherwise (S1070: NO), the process proceeds to step S1090.
ステップS1080において、中央モータ制御部3010は、曲線走行を予測した否かを判定する。曲線走行を予測したと判定した場合(S1080:YES)、ステップS1070に進む。そうでない場合(S1080:NO)、ステップS1090に進む。In step S1080, the centralmotor control unit 3010 determines whether or not a curve run is predicted. When it determines with having predicted curve driving | running | working (S1080: YES), it progresses to step S1070. Otherwise (S1080: NO), the process proceeds to step S1090.
ステップS1090において、中央モータ制御部3010は、車両1000が、乗員が車両1000から乗り降り可能である乗降モードに移行するか否かを判定する。乗降モードに移行すると判定した場合(S1090:YES)、ステップS1040に進み、車幅変更装置1100の横幅を広げるまたは広げた状態を維持する。そうでない場合(S1090:NO)、ステップS1020に進み、車幅変更装置1100の縦幅を広げるまたは広げた状態を維持する。また、乗降モードに移行する際には、平伏状態のキャビン1200を落ちないように支えて固定するロック部材(図示せず)を解除する。In step S1090, centralmotor control unit 3010 determines whether or notvehicle 1000 shifts to a boarding / alighting mode in which an occupant can get on and offvehicle 1000. If it is determined to shift to the getting-on / off mode (S1090: YES), the process proceeds to step S1040, and the width of the vehiclewidth changing device 1100 is increased or maintained. When that is not right (S1090: NO), it progresses to step S1020 and maintains the state which extended the vertical width of the vehiclewidth change apparatus 1100, or was extended. Further, when shifting to the getting on / off mode, a lock member (not shown) that supports and fixes theflat cabin 1200 so as not to fall is released.
図6Aは、車幅変更装置1100を有する車両1000の、キャビン1200の平伏状態における横面図である。図6Bは、車幅変更装置1100を有する車両1000の、キャビン1200の平伏状態における上面図である。図6Cは、車幅変更装置1100を有する車両1000の、キャビン1200の平伏状態における正面図である。図6A~Cに示された車幅変更装置1100は、縦幅が広がっている。キャビン1200の平伏状態は、後述するキャビン1200の起立状態よりも横に伏した状態である。FIG. 6A is a side view of thevehicle 1200 having the vehiclewidth changing device 1100 in the flat state of thecabin 1200. FIG. FIG. 6B is a top view of thevehicle 1000 having the vehiclewidth changing device 1100 in the flat state of thecabin 1200. FIG. 6C is a front view of thevehicle 1000 having the vehiclewidth changing device 1100 in the flat state of thecabin 1200. The vehiclewidth changing apparatus 1100 shown in FIGS. 6A to 6C has an increased vertical width. The flat state of thecabin 1200 is a state in which thecabin 1200 is laid sideways relative to a standing state of thecabin 1200 described later.
図6Aに示される車両1000において、車両1000の重心は車両1000の前側にあり、できるだけ低い位置にあるのが好ましい。こうすると、車両1000の走行安定性がより向上する。車両1000の重心を低くするために、第1の車軸1110aおよび第2の車軸1110bは、車両1000の中心部における高さが、第1の車軸1110aおよび第2の車軸1110bの端部の高さより低くなっていてもよい。第1の車軸1110aおよび第2の車軸1110bの形状を、台座部1130a,1130bの周囲に亘って下側に向かって窪ませてもよい。6A, the center of gravity of thevehicle 1000 is on the front side of thevehicle 1000, and is preferably as low as possible. In this way, the running stability of thevehicle 1000 is further improved. In order to lower the center of gravity of thevehicle 1000, the height of thefirst axle 1110a and thesecond axle 1110b at the center of thevehicle 1000 is higher than the height of the ends of thefirst axle 1110a and thesecond axle 1110b. It may be lower. The shapes of thefirst axle 1110a and thesecond axle 1110b may be recessed downwards around thepedestals 1130a and 1130b.
一例において、座席1220は、乗員が座った場合に当該乗員の重心の高さが当該乗員の足の高さと一致するように配置される。座席1220をこのように配置することにより、走行中の車両1000の走行中に乗員がより楽な姿勢を維持することができる。座席1220の位置は、乗員により調節可能であってもよい。In one example, theseat 1220 is arranged so that the height of the center of gravity of the occupant coincides with the height of the occupant's legs when the occupant sits. By disposing theseat 1220 in this manner, the occupant can maintain a more comfortable posture while the travelingvehicle 1000 is traveling. The position of theseat 1220 may be adjustable by the occupant.
図7は、車幅変更装置1100が車両1000の横幅が広がった場合の、キャビン1200の平伏状態における上面図である。例えば、車両1000が高速走行時に曲線走行する場合、車幅変更装置1100は、図7に示されたように変形する。このように車両1000の横幅が広がることにより、曲線走行する場合や横風が強い場合等、車両1000に横向きの力が加わる場合にも、車両1000の走行安定性を確保することができる。FIG. 7 is a top view of thecabin 1200 in the flat state when the width of thevehicle 1000 is increased by the vehiclewidth changing device 1100. For example, when thevehicle 1000 travels in a curved line when traveling at a high speed, the vehiclewidth changing device 1100 is deformed as shown in FIG. As described above, the lateral width of thevehicle 1000 increases, so that the traveling stability of thevehicle 1000 can be ensured even when a lateral force is applied to thevehicle 1000, such as when the vehicle travels in a curved line or when the crosswind is strong.
図8Aは、車幅変更装置1100を有する車両1000の、キャビン1200の起立状態における横面図である。図8Bは、車幅変更装置1100を有する車両1000の、キャビン1200の起立状態における上面図である。図8Cは車幅変更装置1100を有する車両1000の、キャビン1200の起立状態における正面図である。図8Dは、車幅変更装置1100を有する車両1000の、キャビン1200の起立状態における斜視図である。図8Aに示すように、カバー1210は開閉可能に設けられる。簡潔を旨として、図8B~図8Dにおいては、カバー1210は省略されている。起立状態のキャビン1200からは、乗員が乗降可能であり、荷物を出し入れ可能である。図8A~図8Dに示された車幅変更装置1100は、横幅が広がっている。FIG. 8A is a lateral view of thevehicle 1000 having the vehiclewidth changing device 1100 in a standing state of thecabin 1200. FIG. FIG. 8B is a top view of thevehicle 1000 having the vehiclewidth changing device 1100 in the standing state of thecabin 1200. FIG. 8C is a front view of thevehicle 1000 having the vehiclewidth changing device 1100 in a standing state of thecabin 1200. FIG. 8D is a perspective view of thevehicle 1000 having the vehiclewidth changing device 1100 in a standing state of thecabin 1200. As shown in FIG. 8A, thecover 1210 is provided to be openable and closable. For simplicity, thecover 1210 is omitted in FIGS. 8B-8D. An occupant can get on and off from the standingcabin 1200, and can load and unload luggage. The vehiclewidth changing device 1100 shown in FIGS. 8A to 8D has a wider width.
一例において、キャビン1200の起立状態における座席1220は、キャビン1200の平伏状態における座席1220よりも、キャビン1200内において前方に位置する。こうすると、キャビン1200の起立状態において、乗員は座席1220上で自分の体を移動させることなく、座席1220に降車可能である。また、乗員は、車両1000に乗車した後に、座席1220上で自分の体を移動させる必要がない。In one example, theseat 1220 in the standing state of thecabin 1200 is positioned forward in thecabin 1200 relative to theseat 1220 in the flat state of thecabin 1200. Thus, in the standing state of thecabin 1200, the occupant can get off theseat 1220 without moving his / her body on theseat 1220. In addition, the passenger does not need to move his / her body on theseat 1220 after getting on thevehicle 1000.
図8Bに示されるように、キャビン1200の起立状態においては、車幅変更装置1100の横幅が広がっている。キャビン1200が第1の摺動面および第2の摺動面の上で摺動可能に支持されている場合、キャビン1200は、底面において第1の摺動面および第2の摺動面上を摺動して、平伏状態から起立状態に遷移する。中央モータ制御部3010が中央モータ1140をショートブレーキとして動作させる場合、例えばショート回路が有する抵抗の値を中央モータ制御部3010が調節することにより、キャビン1200が平伏状態から起立状態に遷移する速度を調節することができる。As shown in FIG. 8B, in the standing state of thecabin 1200, the lateral width of the vehiclewidth changing device 1100 is widened. When thecabin 1200 is slidably supported on the first sliding surface and the second sliding surface, thecabin 1200 moves on the first sliding surface and the second sliding surface at the bottom surface. Slide to transition from the flat state to the standing state. When the centralmotor control unit 3010 operates thecentral motor 1140 as a short brake, for example, the centralmotor control unit 3010 adjusts the resistance value of the short circuit so that the speed at which thecabin 1200 transitions from the flat state to the standing state is increased. Can be adjusted.
一例において、図8Cに示されるように、キャビン1200の起立状態においては、座席1220に座った状態の乗員の足裏の高さが、車輪1120a,1120bの接地面の高さと略同じになる。こうすると、乗員は、楽に車両1000に乗り降りすることができる。In one example, as shown in FIG. 8C, in the standing state of thecabin 1200, the height of the soles of the occupants sitting on theseat 1220 is substantially the same as the height of the ground contact surfaces of thewheels 1120a and 1120b. In this way, the occupant can easily get on and off thevehicle 1000.
車幅変更装置1100の横幅を変化させることにより、車両1000の駐車時における駐車スペースの形状の選択自由度が広がり、駐車場をより省スペース化することができる。By changing the width of the vehiclewidth changing device 1100, the degree of freedom in selecting the shape of the parking space when thevehicle 1000 is parked is increased, and the parking space can be further saved.
車幅変更装置1100は、電気自動車の車両1000において、車幅変更装置1100の横幅を独立に可変させることで、乗降時、直線走行時、曲線走行時、および駐車時のそれぞれに対して、車両1000に最適な構造に変化させることできる。これにより、安全に走行ができて、乗降が容易であり、さらに駐車が容易である電気自動車を実現した。The vehiclewidth changing device 1100 can change the width of the vehiclewidth changing device 1100 independently in thevehicle 1000 of an electric vehicle, so that the vehicle width changes when the vehicle gets on / off, during straight running, during curved running, and when parked. The structure can be changed to an optimum value for 1000. As a result, an electric vehicle that can travel safely, is easy to get on and off, and is easy to park is realized.
(その他の実施形態)
上記の実施形態においては、キャビン1200は、第1の摺動面および第2の摺動面の上で、摺動可能に支持されている。キャビン1200は、キャビン支持部1135のみで支持され、キャビン支持部1135に設けた他のモータによって、キャビン1200を平伏状態と起立状態との間で遷移させてもよい。また、車両1000の曲線走行時に、当該モータによってキャビン1200を曲線内輪方向に傾けてもよい。(Other embodiments)
In the above embodiment, thecabin 1200 is slidably supported on the first sliding surface and the second sliding surface. Thecabin 1200 may be supported only by thecabin support portion 1135, and thecabin 1200 may be changed between the flat state and the standing state by another motor provided in thecabin support portion 1135. Further, when thevehicle 1000 is traveling in a curved line, thecabin 1200 may be tilted toward the curved inner ring by the motor.
車両位置検出部3020、地図情報保持部3030、前後方衝突検出部3040、側方衝突検出部3050、横風検出部3060、速度検出部3070、および操舵角検出部3080の機能は、その一部を中央モータ制御部3010が実行してもよい。The functions of the vehicleposition detection unit 3020, the mapinformation holding unit 3030, the front / rearcollision detection unit 3040, the sidecollision detection unit 3050, thecrosswind detection unit 3060, thespeed detection unit 3070, and the steeringangle detection unit 3080 are partially The centralmotor control unit 3010 may execute it.
図5に示したフローチャートにおいては、本開示に記載の特徴を包括的に説明している。フローチャート内のステップを実行する順序を適宜入れ替えてもよく、フローチャート内のいくつかのステップを省略してもよい。The flowchart shown in FIG. 5 comprehensively explains the features described in the present disclosure. The order of executing the steps in the flowchart may be appropriately changed, and some steps in the flowchart may be omitted.