基于共存的发射功率确定方法、 频谱协调器及数据库 Method for determining transmit power based on coexistence, spectrum coordinator and database
技术领域Technical field
 本发明涉及发射功率的确定领域, 尤其涉及认知无线电技术、 次级系统 用户设备发射功率的确定方法、 频谱协调器及数据库。 The present invention relates to the field of determining transmit power, and more particularly to cognitive radio technology, a method for determining the transmit power of a secondary system user equipment, a spectrum coordinator, and a database.
背景技术Background technique
 随着无线电技术的不断进步, 各种各样的无线电业务大量涌现, 而无线 电业务所依托的频谱资源是有限的, 面对人们对带宽需求的不断增加, 频谱 资源表现出极为紧张的局面; 而另一方面在传统的固定频谱分配模式下, 频 谱资源的利用率却不高。 从某种意义上讲, 是这种固定分配给授权系统的频 谱分配制度造成了频谱资源极为紧张的局面。 而认知无线电技术就打破了传 统意义上的频谱固定分配制度, 将频谱在系统间动态分配, 提高了频谱的利 用效率。 典型的, 如随着人们日常通信需求的不断提高, 已经不满足于简单 的语音数据通信, 视频流媒体业务在人们通信生活中的比重不断增加, 这要 求更大的带宽作为支撑, 国际移动电话( IMT, International Mobile Telecom ) 系统显现出前所未有的频谱紧张局面, 而对于广播电视系统来讲, 频谱资源 在很大程度上存在着可利用的空间, 如某些广播电视系统频谱在某些地区并 未被使用; 某些广播电视系统频谱在某地区虽有覆盖, 但某些时刻没有被使 用, 整体利用率偏低。 而固定的频谱分配方式使得上述未被使用的频谱资源 无法重新利用, 例如, 无法为 IMT系统所用。 通过认知无线电技术 IMT系统 通过对广播电视系统信息的获取, 伺机的占用广电系统在空间和时间上未使 用的频谱资源(TVWS, TV White Space ) , 从而提高广播电视系统频谱的利 用率, 改善了 ΙΜΤ系统频谱紧张的局面。 With the continuous advancement of radio technology, a variety of radio services have emerged, and the spectrum resources supported by the radio service are limited. In the face of increasing demand for bandwidth, spectrum resources are extremely tight; On the other hand, in the traditional fixed spectrum allocation mode, the utilization of spectrum resources is not high. In a sense, this spectrum allocation system that is fixedly assigned to the authorization system creates a situation in which the spectrum resources are extremely tight. Cognitive radio technology breaks the traditional fixed spectrum allocation system, dynamically allocates spectrum between systems, and improves the efficiency of spectrum utilization. Typically, as people's daily communication needs continue to increase, they are not satisfied with simple voice data communication. The proportion of video streaming services in people's communication life is increasing, which requires greater bandwidth as a support, international mobile phones. (IMT, International Mobile Telecom) The system shows an unprecedented spectrum tension, and for broadcast television systems, there is a large amount of available space for spectrum resources, such as the spectrum of some broadcast television systems in certain regions. Not used; Some broadcast TV system spectrums are covered in some areas, but they are not used at certain times, and the overall utilization rate is low. The fixed spectrum allocation method makes the above unused spectrum resources unreusable, for example, cannot be used by the IMT system. Through the cognitive radio technology IMT system, through the acquisition of information of the broadcast television system, opportunistically occupy the spectrum resources (TVWS, TV White Space) of the radio and television system in space and time, thereby improving the utilization rate of the spectrum of the broadcast television system and improving The situation of the system spectrum is tight.
 共存是认知无线电系统要考虑的关键问题, 首先, 次级系统使用主系统 的频谱资源的前提是不对主系统造成有害干扰, 目前标准讨论中引入了一个 逻辑实体, 称为地理位置信息数据库 ( Geo-location database , Geo-location DB ) , 或数据库。 该逻辑实体负责对主系统的保护, 即根据主系统干扰保护 原则要求, 对次级系统用户设备(或空闲频谱用户设备, WSD, White Space  Device ) 的运行参数做出限制, 从而保证主系统不受干扰, 上面所述的问题 也被称作主次系统间共存问题; 又由于多个次级系统的存在, 在借用主系统 空闲频谱资源时, 数据库只能保证多个次级系统用户设备累加干扰满足主次 系统共存条件, 但并不负责次级系统之间的频谱分配, 及彼此间干扰共存问 题(该问题也被称作次级系统间自共存) 。 因此标准讨论中又引入了另一逻 辑实体, 称为频谱协调器(SC, Spectrum Coordinator ) , 或共存实体, 该逻辑 实体用于解决上面提到的次级系统间自共存问题, 即通过限制次级系统的发 射参数, 实现多个次级系统用户设备的共存。Coexistence is a key issue to be considered in cognitive radio systems. First, the premise of the secondary system's use of the spectrum resources of the primary system is that it does not cause harmful interference to the primary system. Currently, a standard entity is introduced in the standard discussion, called the geographic location information database ( Geo-location database , Geo-location DB ) , or database. The logical entity is responsible for the protection of the primary system, that is, according to the primary system interference protection principle, for the secondary system user equipment (or idle spectrum user equipment, WSD, White Space)  The operating parameters of Device are restricted to ensure that the primary system is undisturbed. The above-mentioned problem is also called the co-existence problem between primary and secondary systems; and because of the existence of multiple secondary systems, the primary system idle spectrum resources are borrowed. When the database can only ensure that multiple secondary system user equipments accumulate interference to meet the primary and secondary system coexistence conditions, but it is not responsible for the spectrum allocation between the secondary systems, and the interference coexistence problem between each other (this problem is also called secondary Self-coexistence between systems). Therefore, another logical entity, called the Spectrum Coordinator (SC), or a coexistence entity is introduced in the standard discussion. The logical entity is used to solve the above-mentioned secondary system self-coexistence problem, that is, by limiting the number of times. The transmission parameters of the hierarchical system enable the coexistence of multiple secondary system user equipment.
 可见, WSD的发射功率限制将由两者共同确定, 如图 1所示, WSD使 用参数的确定需要先后经过 Geo-location DB, SC的两次计算: 计算 1 , 计算 It can be seen that the transmission power limitation of WSD will be determined by both. As shown in Figure 1, the determination of WSD usage parameters needs to be performed twice by Geo-location DB, SC: Calculation 1 , Calculation
2。2.
 其中, 计算 1为 DB根据 WSD的位置信息选出其所在位置上的空闲频谱 ( WS, White Space ) , 然后基于主用户的保护准则在所有所述 WS 上为该 WSD分别计算最大发射功率限制, 形成 WS列表, 在运行参数 1消息中发送 给 SC; 当存在多个 WSD时, DB会考虑多个 WSD的累加干扰满足主用户保 护准则, 给出每个 WSD的最大发射功率限制值; The calculation 1 is that the DB selects the idle spectrum (WS, White Space) at the location according to the location information of the WSD, and then calculates the maximum transmit power limit for the WSD on all the WSs based on the protection criteria of the primary user. The WS list is formed and sent to the SC in the running parameter 1 message; when there are multiple WSDs, the DB considers that the accumulated interference of multiple WSDs satisfies the primary user protection criterion, and gives the maximum transmit power limit value of each WSD;
 计算 2为 SC做 WSD间协调管理(包括共存, 优先级分配等原则 ) , 在 DB提供的 WS列表中选择部分 WS, 并调整选出 WS的发射参数限制使之满 足 WSD 间共存要求, 形成新的 WS 列表, 在运行参数 2 消息中发送给 WSD。 Calculate 2 for SC to coordinate management between WSD (including coexistence, priority allocation, etc.), select part of WS in the WS list provided by DB, and adjust the selection of WS's transmission parameters to meet the WSD coexistence requirements, forming a new The WS list is sent to WSD in the Run Parameter 2 message.
 在上述流程中, 两次计算依据的原则不同, 但先后顺序是确定的, 因此 在计算 1中, 由于没有考虑计算 2中所涉及的原则, 而出现计算 1中对某些 WS的发射参数限制计算成为了无用计算, 即计算 1针对 WSD位置上的所有 WS都会分别计算发射参数限制, 但 SC根据共存及优先级分配原则将排除其 中的一部分 WS, 计算 1对于这部分 WS的发射参数限制计算就是无用计算; 另外, 当存在多个 WSD时, 在满足主用户保护的前提下, 所述多个 WSD的 发射功率组合有很多种, Geo-location DB出于主用户保护的原则为 WSD做 的功率分配, 并不一定能符合次级系统设备的意愿。 发明内容 本发明实施例提出一种基于共存的发射功率确定方法、 频谱协调器及数 据库, 以提高数据库实现多个次级系统用户设备共存的效率。In the above process, the principles of the two calculations are different, but the order is determined. Therefore, in the calculation 1, the emission parameter limits for some WS in the calculation 1 occur because the principles involved in the calculation 2 are not considered. The calculation becomes a useless calculation, that is, calculation 1 calculates the emission parameter limit for all WSs at the WSD position, but the SC will exclude some of the WS according to the coexistence and priority allocation principle, and calculate 1 for the transmission parameter limit calculation of this part of WS. In addition, when there are multiple WSDs, under the premise of satisfying the protection of the primary user, there are many combinations of the transmission power of the multiple WSDs, and the Geo-location DB is WSD for the principle of primary user protection. Power distribution does not necessarily match the wishes of the secondary system equipment.  SUMMARY OF THE INVENTION Embodiments of the present invention provide a method for determining a transmit power based on coexistence, a spectrum coordinator, and a database, so as to improve the efficiency of a database to implement coexistence of user equipments of multiple secondary systems.
 为了解决上述问题, 本发明实施例公开了一种基于共存的发射功率确定 方法, 该方法包括: 数据库接收频谱协调器 (SC )发送的次级系统用户设备的共存需求信 息; 以及 所述数据库根据所述共存需求信息确定所述次级系统用户设备的可用频 率及每个可用频率的最大发射功率限制。 In order to solve the above problem, an embodiment of the present invention discloses a method for determining a transmit power based on coexistence, the method comprising: a database receiving coexistence requirement information of a secondary system user equipment sent by a spectrum coordinator (SC); and the database according to the database The coexistence demand information determines an available frequency of the secondary system user equipment and a maximum transmit power limit for each available frequency.
 可选地, 上述方法中, 所述数据库接收 SC发送的次级系统用户设备的 共存需求信息的步骤包括: 所述数据库接收所述 SC发送的共存需求信息, 所述共存需求信息用于限制所述次级系统用户设备的频语使用, 避免所述次 级系统用户设备与其他次级系统用户设备间相互干扰; 其中, 所述共存需求信息包括以下信息中的一项或多项: Optionally, in the foregoing method, the step of the database receiving the coexistence requirement information of the secondary system user equipment sent by the SC includes: the database receiving the coexistence requirement information sent by the SC, where the coexistence requirement information is used to limit the location The frequency usage of the secondary system user equipment is used to avoid interference between the secondary system user equipment and other secondary system user equipments; wherein the coexistence requirement information includes one or more of the following information:
 频语数量需求信息, 频域隔离需求信息, 以及发射参数的限制信息。 可选地, 上述方法中, 所述频域隔离需求信息包括: 禁用频语信息, 或 者, 与预设频段中心频率或频段边缘的频域隔离距离信息。 Frequency quantity requirement information, frequency domain isolation requirement information, and restriction information of transmission parameters. Optionally, in the foregoing method, the frequency domain isolation requirement information includes: disabling frequency information, or a frequency domain isolation distance information from a preset frequency band center frequency or a frequency band edge.
 可选地, 上述方法中, 所述数据库根据所述共存需求信息确定所述次级 系统用户设备的可用频率的步骤包括: 所述数据库选择所述次级系统用户设 备所在位置上, 主系统用户设备未使用的, 且满足所述共存需求信息的频谱 作为所述次级系统用户设备的可用频谱。 Optionally, in the foregoing method, the determining, by the database, the available frequency of the user equipment of the secondary system according to the coexistence requirement information comprises: the database selecting a location of the user equipment of the secondary system, the primary system user The spectrum that is not used by the device and that satisfies the coexistence requirement information is used as the available spectrum of the user equipment of the secondary system.
 可选地, 上述方法中, 所述数据库根据所述共存需求信息确定所述次级 系统用户设备的每个可用频率的最大发射功率限制的步骤包括: 所述数据库 基于每个可用频谱的主系统用户设备保护原则、 传播模型, 及次级系统用户 设备参数分别计算所述次级系统用户设备在每个可用频谱上的最大发射功率 限制。 Optionally, in the foregoing method, the determining, by the database, the maximum transmit power limit of each available frequency of the secondary system user equipment according to the coexistence requirement information comprises: the database is based on a primary system of each available spectrum The user equipment protection principle, the propagation model, and the secondary system user equipment parameters respectively calculate a maximum transmit power limit for each of the available spectrums of the secondary system user equipment.
 可选地, 所述数据库接收 SC发送的次级系统用户设备的共存需求信息 的步骤之前, 该方法还包括:  所述 SC接收次级系统用户设备发起的频谱资源申请, 根据除所述次级 系统用户设备之外的其他次级系统用户设备的空闲频语使用情况分析并确定 所述次级系统用户设备的共存需求信息, 将所确定的次级系统用户设备的共 存需求信息发送给所述数据库。Optionally, before the step of receiving, by the database, the coexistence requirement information of the secondary system user equipment sent by the SC, the method further includes:  Receiving, by the SC, a spectrum resource request initiated by a secondary system user equipment, analyzing and determining, according to idle frequency usage of other secondary system user equipments other than the secondary system user equipment, Coexistence requirement information, and the determined coexistence requirement information of the secondary system user equipment is sent to the database.
 可选地, 上述方法中, 所述 SC将所确定的次级系统用户设备的共存需 求信息发送给所述数据库的步骤包括: Optionally, in the foregoing method, the step of the SC sending the determined coexistence requirement information of the secondary system user equipment to the database includes:
 所述 SC将所确定的共存需求信息包含在空闲频谱申请消息中发送给所 述数据库; 或者 The SC sends the determined coexistence requirement information to the database in an idle spectrum request message; or
 所述 SC将所确定的共存需求信息形成独立的共存需求消息发送给所述 数据库。 The SC sends the determined coexistence requirement information to form a separate coexistence requirement message to the database.
 可选地, 上述方法中, 所述 SC将所确定的共存需求信息形成独立的共 存需求消息发送给所述数据库的步骤包括: 所述 SC 向数据库发出空闲频谱 申请消息的同时发送所述共存需求消息, 或者, 所述 SC接收到数据库反馈 的主系统用户设备未使用频谱列表后, 发送所述共存需求消息。 Optionally, in the foregoing method, the step of the SC sending the determined coexistence requirement information to form the independent coexistence requirement message to the database includes: sending, by the SC, the coexistence requirement while sending a idle spectrum application message to the database The message, or the coexistence requirement message is sent after the SC receives the spectrum list from the primary system user equipment.
 可选地, 上述方法中, 所述 SC接收到数据库反馈的主系统用户设备未 使用频语列表后, 发送所述共存需求消息的步骤包括: Optionally, in the foregoing method, after the primary system user equipment that receives the feedback from the database does not use the frequency list, the step of sending the coexistence requirement message includes:
 所述数据库根据 SC提供的空闲频谱申请消息中的次级系统用户设备的 位置信息, 选出所述位置上主系统用户设备未使用的频谱, 直接发送给所述 The database selects a spectrum that is not used by the user equipment of the primary system at the location according to the location information of the secondary system user equipment in the idle spectrum application message provided by the SC, and directly sends the spectrum to the
SC, 所述 SC根据次级系统用户设备的共存需求, 对未被主系统用户设备使 用的频谱进行限制, 向数据库发送共存需求消息, 供所述数据库确定可用频 谱。SC, the SC limits the spectrum that is not used by the user equipment of the primary system according to the coexistence requirement of the user equipment of the secondary system, and sends a coexistence requirement message to the database for the database to determine the available spectrum.
 可选地, 上述方法还包括: 所述数据库将可用频谱及对应的最大发射功 率限制信息发送给所述 SC, 所述 SC根据所接收到的可用频谱及对应的最大 发射功率限制信息, 再次进行次级系统用户设备间的自共存处理, 确定所述 次级系统用户设备最终的可用频谱及发射功率限制信息。 本发明实施例还公开了一种频谱协调器(SC ) , 包括: 第一单元和第二 单元, 其中, Optionally, the method further includes: sending, by the database, the available spectrum and the corresponding maximum transmit power limit information to the SC, where the SC performs again according to the received available spectrum and the corresponding maximum transmit power limit information. The self-coexistence processing between the secondary system user equipment determines the final available spectrum and transmission power limitation information of the secondary system user equipment. An embodiment of the present invention further discloses a spectrum coordinator (SC), including: a first unit and a second unit, where
 所述第一单元设置成: 收到次级系统用户设备 ( WSD )发起的频谱资源 申请后, 根据除所述次级系统用户设备之外的其他次级系统用户设备的空闲 频语使用情况分析确定所述 WSD的共存需求信息; 以及The first unit is configured to: after receiving a spectrum resource application initiated by a secondary system user equipment (WSD), according to idle of other secondary system user equipments except the secondary system user equipment  Frequency usage analysis to determine coexistence demand information of the WSD;
 所述第二单元设置成: 将所确定的 WSD 的共存需求信息发送给数据 库。 The second unit is configured to: send the determined WSD coexistence requirement information to the database.
 可选地, 上述 SC 中, 其中, 所述第二单元设置成通过如下方式将所确 定的 WSD的共存需求信息发送给所述数据库: Optionally, in the above SC, the second unit is configured to send the determined coexistence requirement information of the WSD to the database by:
 所述第二单元将所确定的共存需求信息包含在空闲频谱申请消息中发送 给所述数据库; 或者 The second unit sends the determined coexistence requirement information to the database in an idle spectrum request message; or
 所述第二单元将所确定的共存需求信息形成独立的共存需求消息发送给 所述数据库。 The second unit sends the determined coexistence requirement information to form a separate coexistence requirement message to the database.
 可选地, 上述 SC 中, 所述第二单元设置成通过如下方式将所确定的共 存需求信息形成独立的共存需求消息发送给所述数据库: 所述第二单元向数 据库发出空闲频谱申请消息的同时发送所述共存需求消息, 或者, 所述第二 单元接收到数据库反馈的主系统用户设备未使用频谱列表后, 发送所述共存 需求消息。 Optionally, in the foregoing SC, the second unit is configured to send, by using the determined coexistence requirement information, an independent coexistence requirement message to the database by: sending, by the second unit, a idle spectrum application message to the database. The coexistence requirement message is sent at the same time, or the coexistence requirement message is sent after the second unit receives the spectrum list from the primary system user equipment that is fed back from the database.
 可选地, 上述 SC还包括: Optionally, the foregoing SC further includes:
 第三单元, 其设置成: 根据数据库发送的可用频谱及对应的最大发射功 率限制信息, 再次进行次级系统用户设备间的自共存处理, 确定所述次级系 统用户设备最终的可用频谱及发射功率限制信息。 本发明实施例还公开了一种数据库, 包括: 第一单元和第二单元, 其 中, The third unit is configured to: perform self-coexistence processing between the user equipment of the secondary system again according to the available spectrum sent by the database and the corresponding maximum transmit power limitation information, and determine the final available spectrum and transmission of the user equipment of the secondary system. Power limit information. The embodiment of the invention further discloses a database, comprising: a first unit and a second unit, wherein
 所述第一单元设置成: 接收频谱协调器(SC )发送的次级系统用户设备 ( WSD ) 的共存需求信息; 以及 The first unit is configured to: receive coexistence requirement information of a secondary system user equipment (WSD) sent by a spectrum coordinator (SC);
 所述第二单元设置成: 根据所述共存需求信息确定所述次级系统用户设 备的可用频率及每个可用频率的最大发射功率限制。 The second unit is configured to: determine an available frequency of the secondary system user equipment and a maximum transmission power limit of each available frequency according to the coexistence demand information.
 可选地, 上述数据库中, 所述第二单元设置成通过如下方式根据所述共 存需求信息确定所述次级系统用户设备的可用频率: Optionally, in the foregoing database, the second unit is configured to determine, according to the coexistence requirement information, an available frequency of the secondary system user equipment by:
 选择次级系统用户设备所在位置上主系统用户设备未使用的, 且满足所 述共存需求信息的频语作为所述次级系统用户设备的可用频谱。  可选地, 上述数据库中, 所述第二单元设置成通过如下方式根据所述共 存需求信息确定所述次级系统用户设备的每个可用频率的最大发射功率限 制:Selecting a frequency spectrum that is not used by the primary system user equipment at the location where the secondary system user equipment is located, and satisfying the coexistence requirement information is used as an available spectrum of the secondary system user equipment.  Optionally, in the foregoing database, the second unit is configured to determine, according to the coexistence requirement information, a maximum transmit power limit of each available frequency of the secondary system user equipment by:
 所述第二单元基于每个可用频谱的主系统用户设备保护原则, 传播模 型, 及次级系统用户设备参数分别计算所述次级系统用户设备在每个可用频 谱上的最大发射功率限制。 The second unit calculates a maximum transmit power limit for each of the available spectrum of the secondary system user equipment based on the primary system user equipment protection principle, the propagation model, and the secondary system user equipment parameters for each available spectrum.
本申请技术方案, 通过频谱协调器向数据库发送共存需求信息, 使得数 据库可以根据需求对空闲频语作筛选。 其获得的有益效果是: 减少了数据库 针对这部分频谱发射功率限制的无用计算; 数据库向频谱协调器提供的可用 频谱及发射功率限制能够满足次级系统的频谱分配意愿。In the technical solution of the present application, the coexistence demand information is sent to the database through the spectrum coordinator, so that the database can filter the idle frequency according to the requirements. The beneficial effects obtained are: Reduced database useless calculations for this part of the spectrum transmit power limit; the available spectrum and transmit power limits provided by the database to the spectrum coordinator can meet the spectrum allocation willingness of the secondary system.
附图概述BRIEF abstract
 图 1为相关技术方案流程示意图; 1 is a schematic flow chart of a related technical solution;
 图 2为本发明实施例的方法流程图; 2 is a flowchart of a method according to an embodiment of the present invention;
 图 3为本发明实施例中场景 1信令流程图; 3 is a flow chart of scenario 1 signaling according to an embodiment of the present invention;
 图 4为本发明实施例中场景 2信令流程图; 4 is a flow chart of scenario 2 signaling according to an embodiment of the present invention;
 图 5为本发明实施例中场景 3信令流程图; FIG. 5 is a flowchart of scenario 3 signaling according to an embodiment of the present invention;
 图 6为本发明实施例中场景 4信令流程图; 6 is a flow chart of scenario 4 signaling according to an embodiment of the present invention;
 图 7为本发明实施例中场景 5信令流程图; FIG. 7 is a flowchart of scenario 5 signaling according to an embodiment of the present invention;
 图 8为本发明实施例中的频谱协调器(SC ) 的结构示意图; FIG. 8 is a schematic structural diagram of a spectrum coordinator (SC) according to an embodiment of the present invention; FIG.
 图 9为本发明实施例中的数据库的结构示意图。 FIG. 9 is a schematic structural diagram of a database in an embodiment of the present invention.
本发明的较佳实施方式Preferred embodiment of the invention
 下文将结合附图对本发明技术方案作详细说明。 需要说明的是, 在不冲 突的情况下, 本申请的实施例和实施例中的特征可以任意相互组合。 The technical solution of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of non-conflict, the features of the embodiments and the embodiments of the present application may be arbitrarily combined with each other.
 实施例 1  本实施例提供一种基于共存的发射功率确定方法, 如图 2所示, 包括如 下操作:Example 1  This embodiment provides a method for determining a transmit power based on coexistence. As shown in FIG. 2, the method includes the following operations:
 步骤 201 : 数据库接收 SC发送的次级系统用户设备的共存需求信息; 步骤 202: 根据所述共存需求信息确定所述次级系统用户设备的可用频 率及每个可用频率的最大发射功率限制。 Step 201: The database receives the coexistence requirement information of the secondary system user equipment sent by the SC. Step 202: Determine, according to the coexistence requirement information, an available frequency of the secondary system user equipment and a maximum transmission power limit of each available frequency.
 在上述方法中, 数据库接收 SC发送的次级系统用户设备的共存需求信 息之前, 是 SC 收到次级系统用户设备发起的频谱资源申请后, 根据除所述 次级系统用户设备之外的其他次级系统用户设备的空闲频语使用情况分析确 定所述次级系统用户设备的共存需求信息, 再将所确定的共存需求信息发送 给数据库。 In the above method, before the database receives the coexistence requirement information of the secondary system user equipment sent by the SC, after the SC receives the spectrum resource application initiated by the secondary system user equipment, according to the other than the secondary system user equipment, The idle frequency usage analysis of the secondary system user equipment determines the coexistence requirement information of the secondary system user equipment, and then sends the determined coexistence demand information to the database.
 上述共存需求信息是对发起空闲频谱申请的次级系统用户设备所使用频 谱的限制信息, 其主要用于限制次级系统用户设备的频语使用, 以避免该次 级系统用户设备与其他次级系统用户设备间相互干扰。 其中, 其他次级系统 用户设备, 指正在使用空闲频谱的次级系统用户设备, 和 /或, 正在申请空闲 频谱的次级系统用户设备。 The foregoing coexistence requirement information is restriction information of the spectrum used by the secondary system user equipment that initiates the idle spectrum application, and is mainly used to limit the frequency usage of the secondary system user equipment to avoid the secondary system user equipment and other secondary System user equipment interferes with each other. Among them, other secondary system user equipments refer to secondary system user equipments that are using idle spectrum, and/or secondary system user equipments that are applying for idle spectrum.
 本实施例中, 共存需求信息包括但不限于以下信息中的一项或多项: 频语数量需求信息, 频域隔离需求信息, 发射参数的限制信息。 In this embodiment, the coexistence requirement information includes but is not limited to one or more of the following information: frequency quantity requirement information, frequency domain isolation requirement information, and restriction information of the transmission parameters.
 其中,频域隔离需求信息具体指根据每个次级系统用户设备的位置信息、 发射参数信息、 传播模型, 分析彼此间干扰关系, 确定次级系统用户设备间 互不干扰时, 所使用频谱的频域隔离距离需求。 频域隔离需求信息可以表示 为: 禁用频谱信息, 或者, 与预设频段中心频率或频段边缘的频域隔离距离 信息。 所述发射参数的限制, 指在某些频谱上的发射功率限制需求。 The frequency domain isolation requirement information specifically refers to the location information, the transmission parameter information, and the propagation model of each secondary system user equipment, analyzes the interference relationship between each other, and determines the spectrum used when the user equipment of the secondary system does not interfere with each other. Frequency domain isolation distance requirements. The frequency domain isolation requirement information can be expressed as: disabling the spectrum information, or separating the distance information from the frequency center of the preset frequency band center frequency or band edge. The limitation of the transmission parameters refers to the transmission power limitation requirement on certain spectrums.
 相应地, 上述共存需求信息可以是在次级系统用户设备向频谱协调器发 起空闲频语请求后,包含在频谱协调器发送给数据库的空闲频谱申请消息中, 或者形成独立的共存需求消息发送给数据库的。 Correspondingly, the foregoing coexistence requirement information may be included in the idle spectrum request message sent by the spectrum coordinator to the database after the secondary system user equipment initiates the idle frequency request to the spectrum coordinator, or an independent coexistence demand message is sent to Database.
 要说明的是, 空闲频语申请消息, 还包含次级系统用户设备参数, 其中 包括以下至少之一: 天线位置, 定位精度, 设备类型, 设备辅射类型, 技术 标识, 设备统一标识, 天线高度, 极化方式, 天线方向角, 天线俯仰角。 It should be noted that the idle frequency application message further includes the secondary system user equipment parameters, including at least one of the following: antenna position, positioning accuracy, device type, device auxiliary type, technical identification, device unified identification, antenna height , polarization mode, antenna direction angle, antenna pitch angle.
 当共存需求信息形成独立的共存需求消息进行发送时, 发送时机包括: 频谱协调器向数据库发出空闲频谱申请消息的同时发送共存需求消息,或者, 接收到数据库反馈的主系统用户设备未使用频谱列表后,发送共存需求消息。When the coexistence demand information forms an independent coexistence demand message for transmission, the sending opportunity includes:  The spectrum coordinator sends a coexistence demand message while sending the idle spectrum request message to the database, or sends a coexistence demand message after the main system user equipment receiving the database feedback does not use the spectrum list.
 接收到数据库反馈的未使用频语列表后, 发送共存需求消息的具体过程 下: After receiving the unused frequency list of the database feedback, the specific process of sending the coexistence demand message is as follows:
 数据库根据频谱协调器提供的空闲频谱申请消息中的次级系统用户设备 的位置信息, 选出所述位置上主系统用户设备未使用的频谱, 不进行最大允 许发射功率的计算, 就直接发送给频谱协调器, 频谱协调器根据次级系统用 户设备的共存需求, 对未被主系统用户设备使用的频谱进行限制, 向数据库 发送共存需求消息, 供所述数据库做可用频谱的确定。 The database selects the unused spectrum of the primary system user equipment at the location according to the location information of the secondary system user equipment in the idle spectrum application message provided by the spectrum coordinator, and directly sends the spectrum to the maximum allowed transmit power. The spectrum coordinator, the spectrum coordinator limits the spectrum that is not used by the user equipment of the primary system according to the coexistence requirement of the user equipment of the secondary system, and sends a coexistence demand message to the database for determining the available spectrum of the database.
 数据库确定次级系统用户设备的可用频谱指, 数据库根据次级系统用户 设备所在位置上主系统用户设备的频语使用情况, 以及共存需求信息, 为次 级系统用户设备确定可用频谱, 即选择次级系统用户设备所在位置上主系统 用户设备未使用的, 且满足所述共存需求的频语作为该次级系统用户设备的 可用频谱。 The database determines the available spectrum of the secondary system user equipment, and the database determines the available spectrum for the secondary system user equipment according to the frequency usage of the primary system user equipment at the location of the secondary system user equipment, and the coexistence demand information, that is, the selected time The frequency system of the primary system user equipment is not used by the primary system user equipment, and the frequency that satisfies the coexistence requirement is used as the available spectrum of the secondary system user equipment.
 上述计算每个可用频谱的最大发射功率限制指, 数据库基于每个可用频 谱的主系统用户设备保护原则, 传播模型, 及次级系统用户设备参数分别计 算该次级系统用户设备在每个可用频谱上的最大发射功率限制。 The above calculation of the maximum transmit power limit of each available spectrum refers to the database based on the primary system user equipment protection principle of each available spectrum, the propagation model, and the secondary system user equipment parameters respectively calculating the secondary system user equipment in each available spectrum Maximum transmit power limit on.
 基于上述方法, 有些方案提出, 数据库将可用频谱及对应的最大发射功 率限制信息发送给频谱协调器后, 频谱协调器还可以再次进行次级系统用户 设备间自共存处理, 确定最终 WSD的可用频谱及发射功率限制信息。 Based on the above method, some solutions propose that after the database sends the available spectrum and the corresponding maximum transmit power limit information to the spectrum coordinator, the spectrum coordinator can perform the self-coexistence processing between the secondary system user equipment again to determine the available spectrum of the final WSD. And transmit power limit information.
 下面结合各附图说明上述方法在不同场景下的具体实现。 The specific implementation of the above method in different scenarios will be described below with reference to the accompanying drawings.
 场景 1 : scene 1 :
 WSD1 发出空闲频谱资源分配请求, 共存需求为 "禁用频率限制" 时, 该 WSD可用频谱及发射功率限制确定的信令流程如图 3所示,下面对其做详 细说明: WSD1 sends out the idle spectrum resource allocation request. When the coexistence requirement is “disabled frequency limit”, the signaling process determined by the available spectrum and transmit power limit of the WSD is shown in Figure 3, which is described in detail below:
 步骤 301 : WSD1向 SC发送 WS频谱资源申请, 并提供设备参数, 其中 包括: 天线位置 (东经 54.2度, 北纬 67度) , 定位精度(100m ) , 设备类 型 ( Fixed WSD ) , 设备辅射类型 (频语模板信息) , 技术标识(LTE ) , 设 备统一标识(如 FCC device ID ) , 天线高度( 10m ) , 极化方式(水平极化 ) , 天线方向角 (全向天线) , 天线俯仰角 (25度) ;Step 301: WSD1 sends a WS spectrum resource request to the SC, and provides device parameters, including: antenna position (54.2 degrees east longitude, 67 degrees north latitude), positioning accuracy (100m), device type (Fixed WSD), device auxiliary type ( Frequency template information), technical identification (LTE), device uniform identification (such as FCC device ID), antenna height (10m), polarization mode (horizontal polarization),  Antenna direction angle (omnidirectional antenna), antenna pitch angle (25 degrees);
 步骤 302: SC收到 WSD1的频谱资源申请后,查找该 WSD1所在位置区 域内及相邻区域内除所述 WSD外的其他 WSD的 TVWS频语使用情况, 分 析共存需求; Step 302: After receiving the application for the spectrum resource of the WSD1, the SC searches for the TVWS frequency usage of the WSDs other than the WSD in the location area of the WSD1 and the adjacent area, and analyzes the coexistence requirement;
 WSD1附近存在 3个 WSD工作在 TVWS资源上,分别为: WSD2、 WSD3、 WSD4。 具体信息如表 1所示。 There are three WSDs working in TVWS resources near WSD1, namely: WSD2, WSD3, WSD4. The specific information is shown in Table 1.
 表 1为 WSD1附近其他 WSD的 TVWS频语使用情况表 Table 1 shows the TVWS frequency usage table of other WSDs near WSD1.
 SC利用传播模型, 计算上述 3个 WSD与 WSD1之间的干扰关系 (这里 需要根据 WSD1的类型来假定其发射功率,本实施例中假定 WSD1发射功率 为 40dBm ) , 确定彼此间的频域隔离距离, 以 WSD2与 WSD1为例考虑, 两 设备的位置是固定的, WSD2 以上表中的工作参数进行工作, WSD1 以假定 的发射功率发射,在各自的发射模板下,计算满足各自小区预置性能需求(如 吞吐量等) 时, 所需频域隔离的距离, 得出: (这种计算过程也可以根据经 验值的积累得到) The SC uses the propagation model to calculate the interference relationship between the above three WSDs and WSD1 (here, the transmission power is assumed according to the type of WSD1, and the WSD1 transmission power is assumed to be 40 dBm in this embodiment), and the frequency domain isolation distance between each other is determined. Taking WSD2 and WSD1 as examples, the location of the two devices is fixed. The working parameters in the above table of WSD2 work. WSD1 transmits with the assumed transmit power. Under the respective transmit templates, the calculation meets the preset performance requirements of the respective cells. (such as throughput, etc.), the distance of the required frequency domain isolation, resulting in: (This calculation process can also be based on the accumulation of empirical values)
 WSD2与 WSD1间频域隔离距离为两个 TV信道,即 WSD2所使用的 TV 信道 34及其第一邻道不能为 WSD1所用, TV信道 33、 34、 35对于 WSD1 为禁用频谱; The frequency separation between WSD2 and WSD1 is two TV channels, that is, the TV channel 34 used by WSD2 and its first adjacent channel cannot be used by WSD1, and TV channels 33, 34, and 35 are disabled for WSD1;
 WSD3与 WSD 1间的频域隔离距离为 1个 TV信道,即不同频即可, WSD3 所使用的信道 40对于 WSD1为禁用频谱; The frequency domain isolation distance between WSD3 and WSD 1 is 1 TV channel, that is, different frequency. The channel 40 used by WSD3 is disabled for WSD1;
 WSD4同样保证不同频即可, 即信道 45对于 WSD1为禁用频谱。 WSD4 also guarantees different frequencies, that is, channel 45 is disabled for WSD1.
 因此, 共存需求为: WSD1禁用信道: 33、 34、 35、 40、 45。  步骤 303: SC向 DB发送 WS频谱申请消息, 其中包含申请 WS资源的 WSD设备参数, 及步骤 2分析中确定的 WSD1禁用信道信息;Therefore, the coexistence requirements are: WSD1 disable channels: 33, 34, 35, 40, 45.  Step 303: The SC sends a WS spectrum application message to the DB, where the WSD device parameter for requesting the WS resource and the WSD1 disabled channel information determined in the step 2 analysis are included;
 步骤 304: DB确定 WSD1的可用频谱; 并计算每个可用频谱上的最大发 射功率限制; Step 304: The DB determines the available spectrum of WSD1; and calculates a maximum transmit power limit on each available spectrum;
 可用频谱的确定: 1、 DB基于 WSD1的位置, 查找 TV系统频语使用情 况, 存在 TV系统在该区域上未使用的 TVWS资源包括: {信道 25、 30、 34、 40、 45、 46、 50}。 2、 考虑共存需求禁用频谱为 {信道 33、 34、 35、 40、 45} , 因此, WSD1的可用频谱为: {信道 25、 30、 46、 50}。 Determination of the available spectrum: 1. The DB searches for the frequency usage of the TV system based on the location of the WSD1. The TVWS resources that are not used by the TV system in the area include: {channels 25, 30, 34, 40, 45, 46, 50 }. 2. Consider the coexistence requirement to disable the spectrum as {channels 33, 34, 35, 40, 45}. Therefore, the available spectrum of WSD1 is: {channels 25, 30, 46, 50}.
 最大允许发射功率的计算: 分别针对上述 4个可用信道进行计算, 根据 WSD1 的设备参数, 主系统用户设备保护准则, 主系统用户设备信息, 传播 模型, 釆用相关技术可以计算得出 WSD1在上述 4个可用信道上的最大允许 发射功率限制值。 计算公式及参数(其中主系统相关参数存储在数据库中) 解释如下: (/J = f + M^s - /J- W + - MI- SiM+ <D + <Drd - g, + LfCalculation of the maximum allowable transmit power: Calculate for the above 4 available channels respectively, according to the WSD1 device parameters, the main system user equipment protection criteria, the main system user equipment information, the propagation model, and the relevant technology can calculate WSD1 in the above The maximum allowable transmit power limit value on the 4 available channels. The calculation formula and parameters (where the main system related parameters are stored in the database) are explained as follows: (/J = f + M^s - /J- W + - MI- SiM+ <D + <Drd - g, + Lf
其中:among them:
 s: 被感知 BS发射机的运行频谱 ( MHz ) s: the operating spectrum of the perceived BS transmitter (MHz)
Λ^: WSD的目标运行频谱 ( MHz )Λ^: WSD target operating spectrum (MHz)
^ D:某 WSD在频率( ^上最大允许 EIRP ( dBm ) -( ,): 上 BS接收机处的最小输入功率; ppWwSD-fBS): 对于频语偏移设置适当的 BS保护比, 以防止 WSD干扰 BS 接收机。 当保护信号级别与接收机灵敏度很接近时(即当 WSD运行接近广 播覆盖边缘时) , 保护比还需要考虑接收机灵敏度衰落而包括 3dB的余量 P ?(G) :同频 BS保护比 '. WSD与 BS接收机的距离 ( m ) 高度为 HWSD的 WSD与天线高度为 HDTT的^ D: a WSD at the frequency( maximum allowable EIRP (dBm) - (,): minimum input power at the BS receiver; pp WwS D-fBS ): Set the appropriate BS for the frequency offset Protection ratio to prevent WSD from interfering with the BS receiver. When the protection signal level is close to the receiver sensitivity (ie, when the WSD is operating close to the broadcast coverage edge), the protection ratio also needs to consider the receiver sensitivity fading and includes a 3 dB margin P? (G ): the same frequency BS protection ratio ' WSD to BS receiver distance ( m ) WSD with height HWSD and antenna height for HDTT BS接收机间距离为6^ 时的传输路径损失( dB )Transmission path loss (dB) at a distance of6 ^ between BS receivers
: BS发射机与 BS接收机间阴影的标准差 ( dB ): Standard deviation of shadow between BS transmitter and BS receiver (dB)
^:WSD与 BS接收间阴影的标准差 ( dB )^: standard deviation of shadow between WSD and BS reception (dB)
 μ:与 BS试图覆盖的目标位置百分比相关的高斯置信因子 μ: Gaussian confidence factor associated with the percentage of target locations that the BS is attempting to cover
 q:与试图保护的目标位置百分比相关的高斯置信因子 /^½:期望信号 (BS) 变化相关的阴影余量 与干扰信号 (WSD) 与期望信号 (BS) 间差别变化相关的 阴影余量 P (JBS + 。BS.fBS :^ BS接收机输入端假定的最小中值 BS功率q: Gaussian confidence factor/^1⁄2 associated with the percentage of target position attempted to protect: shadow margin associated with expected signal (BS) variation and shadow margin associated with differential signal between interference signal (WSD) and expected signal (BS). (J BS + BS .f BS : ^ BS receiver input is assumed that the minimum power value BS
M/ :考虑在一个规定区域上同时工作的多个 WSD (同频和邻频) 的总干 扰时,有 3-6dB (与干扰数量相关)多重干扰余量( 3dB对应于两个干扰, 5dB 对应于 3个干扰, 6dB对应于 4个干扰 )M/ : Considering the total interference of multiple WSDs (same and adjacent) operating simultaneously on a specified area, there are 3-6dB (related to the number of interferences) multiple interference margins (3dB corresponds to two interferences, 5dB Corresponding to 3 interferences, 6dB corresponds to 4 interferences)
 M:安全余量(dB) ; 这个余量用于抵消包括远处 DTT干扰、 脉冲干扰 及其他主系统用户业务干扰在内的现存干扰源的干扰。 需要考虑这个余量的 范围 (如 3到 20dB ) 。 一些管理域考虑将安全余量设置为 0dB。 M: Safety margin (dB); This margin is used to cancel the interference of existing interference sources including remote DTT interference, impulse interference and other main system user interference. The range of this margin (eg 3 to 20 dB) needs to be considered. Some administrative domains consider setting the safety margin to 0dB.
 D^BS接收机天线方向差别 (dB) , 与 WSD信号有关 D^BS receiver antenna direction difference (dB), related to WSD signal
 :BS接收机极化差别 (dB) , 与 WSD信号有关 : BS receiver polarization difference (dB), related to WSD signal
G ': BS接收装置的全向天线增益G ': BS receiving apparatus omnidirectional antenna gain
 :BS接收装置的馈线损失 : feeder loss of BS receiving device
 计算结果如表 2所示: The calculation results are shown in Table 2:
 表 2为 WSD1可用频谱列表 Table 2 shows the list of available spectrum for WSD1.
46 25dBm46 25dBm
50 lOdBm 步骤 305: DB将上述可用频谱列表信息 (运行参数)发送给 SC;50 lOdBm Step 305: The DB sends the above available spectrum list information (operation parameters) to the SC;
 步骤 306: SC进行自共存处理; Step 306: The SC performs self-coexistence processing;
 步骤 302在做共存需求分析时,对 WSD1的发射功率做了假定,即 WSD1 发射功率为 40dBm,从上表中可以看出,信道 30,从主系统用户保护的角度, 其发射功率可以达到 50dBm,因此需要判断如果 WSD1在信道 30上以 50dBm 进行发射是否能满足 WSD间自共存需求,判断结果为不会对其他 WSD造成 干扰; Step 302: In the coexistence demand analysis, the transmission power of WSD1 is assumed, that is, the transmission power of WSD1 is 40 dBm. As can be seen from the above table, the channel 30 can transmit 50 dBm from the perspective of user protection of the main system. Therefore, it is necessary to judge whether the WSD1 can transmit at 50 dBm on the channel 30 to satisfy the self-coexistence requirement between the WSDs, and the judgment result is that it does not cause interference to other WSDs;
 步骤 307: 通过步骤 306的判断可知, 无需对可用频谱列表作调整, 因 此, SC将上述可用频谱列表信息 (运行参数)转发给 WSD1 ; Step 307: According to the judgment of step 306, it is not necessary to adjust the available spectrum list, so the SC forwards the above-mentioned available spectrum list information (operation parameter) to WSD1;
 步骤 308: WSD1根据实际需求选择可用信道确定发射功率; Step 308: WSD1 selects an available channel to determine the transmit power according to actual requirements.
 本实施例选择可用信道 25为其工作频谱, 发射功率为 40dBm; In this embodiment, the available channel 25 is selected as its working spectrum, and the transmission power is 40 dBm;
 步骤 309、 310: 逐层反馈使用参数给 SC、 DB。 Steps 309, 310: Layer-by-layer feedback uses parameters for SC and DB.
场景 2:Scene 2:
 WSD1、 WSD2发出空闲频谱资源分配请求, 共存需求为彼此间频域隔 离限制时, 每个 WSD可用频谱及发射功率限制确定的信令流程如图 4所示, 下面对其#文详细说明: WSD1 and WSD2 send idle spectrum resource allocation requests. When the coexistence requirements are frequency domain isolation restrictions, the signaling flow determined by each WSD available spectrum and transmit power limit is shown in Figure 4.
 步骤 401: WSD1、 WSD2向 SC发送 WS频谱资源申请, 并提供设备参 数, 其中包括: 天线位置 (WSD1 : 东经 54.1度, 北纬 67.5度; WSD2: 东 经 54.2度, 北纬 67度) , 定位精度(100m ) , 设备类型 ( Fixed WSD ) , 设 备辅射类型(频谱模板信息 ) ,技术标识( LTE ) ,设备统一标识(如 FCC device ID ) , 天线高度( 10m ) , 极化方式(水平极化), 天线方向角 (全向天线), 天线俯仰角 (25度) ; Step 401: WSD1 and WSD2 send a WS spectrum resource request to the SC, and provide device parameters, including: antenna position (WSD1: 54.1 degrees east longitude, 67.5 degrees north latitude; WSD2: 54.2 degrees east longitude, 67 degrees north latitude), positioning accuracy (100m) ), device type (Fixed WSD), device auxiliary type (spectral template information), technical identification (LTE), device uniform identification (such as FCC device ID), antenna height (10m), polarization mode (horizontal polarization), Antenna direction angle (omnidirectional antenna), antenna pitch angle (25 degrees);
 步骤 402: SC收到 WSD1、 WSD2的频谱资源申请后, 查找该 WSD1、  WSD2所在位置区域内及相邻区域内除所述 WSD外的其他 WSD的 TVWS 频语使用情况, 分析共存需求;Step 402: After receiving the spectrum resource application of WSD1 and WSD2, the SC searches for the WSD1.  Analysis of coexistence requirements for TVWS frequency usage of WSDs other than the WSD in the location area of WSD2 and adjacent areas;
 相关区域内并没有正在运行的 WSD设备, 但由于 WSD1与 WSD2相距 较近,彼此间存在共存问题: SC利用传播模型,计算上述 2个 WSD1与 WSD2 在各自位置上以预计的发射功率 40dBm进行发射时, 两者间互不干扰的要求 下, 频域隔离的大小。 得出两设备工作频谱中心频率的间隔为 24MHz ( TV 信道为 8MHz ) , 因此两设备工作频率的最小间隔为 3个 TV信道。 There are no running WSD devices in the relevant area, but because WSD1 is close to WSD2, there is a coexistence problem between them: SC uses the propagation model to calculate the above two WSD1 and WSD2 to transmit at the respective positions with the expected transmit power of 40dBm. When the two do not interfere with each other, the size of the frequency domain isolation. It is concluded that the center frequency of the working spectrum of the two devices is 24 MHz (the TV channel is 8 MHz), so the minimum interval between the operating frequencies of the two devices is 3 TV channels.
 步骤 403: SC向 DB发送 WS频谱申请消息, 其中包含申请 WS资源的 WSD设备参数, 及步骤 2分析中确定的 WSD1、 WSD2工作频率的频域间隔 要求; Step 403: The SC sends a WS spectrum application message to the DB, where the WSD device parameter for applying for the WS resource and the frequency domain interval requirement for the WSD1 and WSD2 working frequencies determined in the step 2 analysis are included;
 步骤 404: DB确定 WSD1、 WSD2的可用频谱; 并计算各可用频谱上的 最大发射功率限制; Step 404: The DB determines the available spectrum of WSD1 and WSD2; and calculates a maximum transmit power limit on each available spectrum;
 可用频谱的确定: 1、 DB基于 WSD1、 WSD2的所在位置, 查找 TV系 统频语使用情况,存在 TV系统在该区域上未使用的 TVWS资源包括: {信道 25、 26、 28}。 2、 考虑共存需求, 两设备中心频率最小间隔为 3个 TV信道, 因此, 两设备仅能分别使用信道 25, 信道 28。 Determination of available spectrum: 1. Based on the location of WSD1 and WSD2, DB searches for TV system frequency usage. TVWS resources that are not used by TV system in this area include: {channels 25, 26, 28}. 2. Considering the coexistence requirement, the minimum frequency of the two device center frequencies is 3 TV channels. Therefore, the two devices can only use channel 25 and channel 28 respectively.
 最大允许发射功率的计算: 分别针对上述 2个可用信道进行计算, 根据 WSD1、 WSD2的设备参数, 主系统用户保护准则, 主系统用户信息, 传播模 型, 釆用相关技术(具体方法见方法实施例 1的描述)可以计算得出 WSD1、 WSD2在上述 2个可用信道上的最大允许发射功率限制值。 计算结果如表 3 所示: Calculation of the maximum allowable transmit power: Calculate for the above two available channels respectively, according to the device parameters of WSD1, WSD2, main system user protection criteria, main system user information, propagation model, and related technologies (see the method example for the specific method) The description of 1) can calculate the maximum allowable transmit power limit value of WSD1, WSD2 on the above 2 available channels. The calculation results are shown in Table 3:
 表 3为可用频谱列表 Table 3 is a list of available spectrum
 DB将计算得到的 WSD允许最大发射功率与 WSD自身设备支持最大发 射功率做比较, 取较小的值作为 WSD 的最大允许发射功率, 本实施例中, 两个固定 WSD的发射功率最大值为 45dBm, 因此 WSD2的发射功率限制为 45dBm。  步骤 405: DB将上述可用频谱列表信息 (运行参数)发送给 SC;The DB compares the maximum transmit power allowed by the WSD to the maximum transmit power supported by the WSD device, and takes a smaller value as the maximum allowable transmit power of the WSD. In this embodiment, the maximum transmit power of the two fixed WSDs is 45 dBm. Therefore, the transmit power of WSD2 is limited to 45dBm.  Step 405: The DB sends the above available spectrum list information (operation parameters) to the SC;
 步骤 406: SC进行自共存处理; Step 406: The SC performs self-coexistence processing;
 步骤 402在做共存需求分析时,对 WSD2的发射功率做了假定,即 WSD2 发射功率为 40dBm,从上表中可以看出,信道 28,从主系统用户保护的角度, 其发射功率可以达到 45dBm,因此需要判断如果 WSD2在信道 28上以 45dBm 进行发射是否能满足 WSD间自共存需求,判断结果为不会对其他 WSD造成 干扰; Step 402: In the coexistence demand analysis, the WSD2 transmit power is assumed, that is, the WSD2 transmit power is 40 dBm. As can be seen from the above table, the channel 28 can transmit 45 dBm from the perspective of the main system user protection. Therefore, it is necessary to judge whether the WSD2 can transmit at 45 dBm on the channel 28 to satisfy the self-coexistence requirement between the WSDs, and the judgment result is that it does not cause interference to other WSDs;
 步骤 407: 通过步骤 6的判断可知, 无需对可用频谱列表作调整, 因此, SC将上述可用频谱列表信息 (运行参数)转发给 WSD2; Step 407: According to the judgment of step 6, it is known that there is no need to adjust the available spectrum list, so the SC forwards the above available spectrum list information (operation parameters) to WSD2;
 步骤 408: WSD1、 WSD2根据实际需求选择可用信道确定发射功率; Step 408: WSD1 and WSD2 select an available channel to determine the transmit power according to actual requirements.
WSD1选择可用信道 25为其工作频谱, 发射功率为 40dBm;WSD1 selects available channel 25 as its working spectrum, and the transmit power is 40dBm;
 WSD2选择可用信道 28为其工作频谱, 发射功率为 40dBm WSD2 selects the available channel 28 as its working spectrum, and the transmit power is 40dBm.
 步骤 409、 410: 逐层反馈使用参数给 SC、 DB。 Steps 409, 410: Layer-by-layer feedback uses parameters for SC and DB.
场景 3:Scene 3:
 WSD1、 WSD2发出空闲频谱资源分配请求, 共存需求为 "发射参数限 制"时, 每个 WSD可用频谱及发射功率限制确定的信令流程如图 5所示, 下 面对其做详细说明: WSD1 and WSD2 send idle spectrum resource allocation requests. When the coexistence requirement is “transmission parameter limit”, the signaling flow determined by each WSD available spectrum and transmit power limit is shown in Figure 5, which is described in detail below:
 步骤 501 : WSD1、 WSD2向 SC发送 WS频谱资源申请, 并提供设备参 数, 其中包括: 天线位置 (WSD1 : 东经 55度, 北纬 67.5度; WSD2: 东经 54.2度, 北纬 67度), 定位精度(100m ) , 设备类型 (WSD1 : Fixed WSD; WSD2: portable WSD ) ,设备辅射类型(频语模板信息 ) ,技术标识( LTE ) , 设备统一标识(如 FCC device ID ) , 天线高度(10m ) , 极化方式(水平极 化) , 天线方向角 (全向天线) , 天线俯仰角 (25度) ; Step 501: WSD1 and WSD2 send a WS spectrum resource request to the SC, and provide device parameters, including: antenna position (WSD1: 55 degrees east longitude, 67.5 degrees north latitude; WSD2: 54.2 degrees east longitude, 67 degrees north latitude), positioning accuracy (100m) ), device type (WSD1: Fixed WSD; WSD2: portable WSD), device auxiliary type (frequency template information), technical identification (LTE), device uniform identification (such as FCC device ID), antenna height (10m), pole Mode (horizontal polarization), antenna direction angle (omnidirectional antenna), antenna pitch angle (25 degrees);
 步骤 502: SC收到 WSD1、 WSD2的频谱资源申请后,分析 WSD1、 WSD2 间的共存关系; Step 502: After receiving the application for the spectrum resource of WSD1 and WSD2, the SC analyzes the coexistence relationship between WSD1 and WSD2.
 根据彼此的位置关系, 传播模型, 预期发射参数等信息, 且在本实施例 中, WSD1具有更高的资源分配优先级, 即 WSD1的发射需求是优先满足的, 则假定 WSD1发射功率为 40dBm, 计算 WSD2与 WSD1间基于频域隔离的 发射参数限制。 得出表 4的结果:According to the positional relationship of each other, the propagation model, the expected transmission parameters and the like, and in the embodiment, the WSD1 has a higher resource allocation priority, that is, the transmission requirement of the WSD1 is preferentially satisfied, and the WSD1 transmission power is assumed to be 40 dBm. Calculate frequency domain isolation between WSD2 and WSD1  Transmit parameter limits. The results of Table 4 are derived:
 表 4为共存需求信息表 Table 4 shows the coexistence requirement information table.
 步骤 503: SC向 DB发送 WS频谱申请消息, 其中包含申请 WS资源的 WSD设备参数, 及步骤 502分析中确定的与 WSD1、 WSD2工作频率的频域 间隔相关的发射功率要求; Step 503: The SC sends a WS Spectrum Request message to the DB, where the WSD device parameter for requesting the WS resource, and the transmit power requirement related to the frequency domain interval of the WSD1 and WSD2 operating frequencies determined in the step 502 analysis are included;
 步骤 504: DB确定 WSD1、 WSD2的可用频谱; 并计算每个可用频谱上 的最大发射功率限制; Step 504: The DB determines the available spectrum of WSD1 and WSD2; and calculates a maximum transmit power limit on each available spectrum;
 可用频谱的确定: 1、 DB基于 WSD1、 WSD2的所在位置, 查找 TV系 统频语使用情况,存在 TV系统在该区域上未使用的 TVWS资源包括: {信道 25、 26、 28}。 2、 考虑共存需求, WSD1具有较高的优先级, 因此得到 WSD1 为 40dBm时, 各种组合情况下可用频谱列表: Determination of available spectrum: 1. Based on the location of WSD1 and WSD2, DB searches for TV system frequency usage. TVWS resources that are not used by TV system in this area include: {channels 25, 26, 28}. 2. Considering the coexistence requirement, WSD1 has a higher priority, so when WSD1 is 40dBm, the available spectrum list in various combinations:
 表 5为基于 WSD间共存的可用频谱列表 Table 5 is a list of available spectrum based on coexistence between WSDs.
 Case 3 28 40dBm 25 40dBm Case 3 28 40dBm 25 40dBm  26 30dBm 26 30dBm
 28 lOdBm 28 lOdBm
最大允许发射功率的计算: 基于主系统用户保护计算发射功率限制, 分别针 对上述 3个可用信道进行计算, 根据 WSD1、 WSD2的设备参数, 主系统用 户保护准则, 主系统用户信息, 传播模型, 釆用相关技术(具体方法见方法 实施例 1的描述)可以计算得出 WSD1、 WSD2在可用信道上的最大允许发 射功率限制值。 计算结果如表 6:Calculation of the maximum allowable transmit power: Calculate the transmit power limit based on the primary system user protection, calculate for the above three available channels, according to the WSD1, WSD2 device parameters, the primary system user protection criteria, the primary system user information, the propagation model, 釆The maximum allowable transmit power limit value of WSD1 and WSD2 on the available channels can be calculated by the related art (for details, see the description of Method Embodiment 1). The calculation results are shown in Table 6:
 表 6为可用频谱列表 Table 6 shows the list of available spectrums.
 可见, 为了优先满足 WSD1的 40dBm发射需求, 其不能工作于信道 25 , 将 Case 2与 Case 3形成可用信道列表; It can be seen that in order to preferentially meet the 40 dBm transmission requirement of WSD1, it cannot work on channel 25, and Case 2 and Case 3 form a list of available channels;
 步骤 505: DB将上述可用频谱列表信息 (运行参数)发送给 SC; Step 505: The DB sends the foregoing available spectrum list information (operation parameters) to the SC;
 步骤 506: SC将上述可用频谱列表信息 (运行参数)转发给 WSD1、 Step 506: The SC forwards the above available spectrum list information (operation parameters) to WSD1.
WSD2;WSD2;
 步骤 507: WSD1、 WSD2根据实际需求选择可用信道确定发射功率; WSD1选择可用信道 26为其工作频谱, 发射功率为 40dBm;  WSD2选择可用信道 25为其工作频谱, 发射功率为 30dBm 步骤 508、 509: 逐层反馈使用参数给 SC、 DB。Step 507: WSD1 and WSD2 select an available channel to determine the transmit power according to actual requirements; WSD1 selects available channel 26 as its working spectrum, and the transmit power is 40 dBm;  WSD2 selects available channel 25 as its working spectrum, and the transmit power is 30 dBm. Steps 508 and 509: Layer-by-layer feedback uses parameters to SC and DB.
场景 4:Scene 4:
 WSD1、 WSD2发出空闲频谱资源分配请求, 共存需求为 "频语数量需 求"时,每个 WSD可用频谱及发射功率限制确定的信令流程如图 6所示, 下 面对其做详细说明: WSD1 and WSD2 send out idle spectrum resource allocation requests. When the coexistence requirement is “frequency number requirement”, the signaling flow determined by each WSD available spectrum and transmit power limit is shown in Figure 6, and the details are described below:
 步骤 601 : WSD1、 WSD2向 SC发送 WS频谱资源申请, 并提供设备参 数, 其中包括: 天线位置 (WSD1 : 东经 55度, 北纬 67.5度; WSD2: 东经 54.2度, 北纬 67度), 定位精度(100m ) , 设备类型 (WSD1 : Fixed WSD; WSD2: portable WSD ) ,设备辅射类型(频语模板信息 ) ,技术标识( LTE ) , 设备统一标识(如 FCC device ID ) , 天线高度(10m ) , 极化方式(水平极 化) , 天线方向角 (全向天线) , 天线俯仰角 (25度) ; Step 601: WSD1 and WSD2 send a WS spectrum resource request to the SC, and provide device parameters, including: antenna position (WSD1: 55 degrees east longitude, 67.5 degrees north latitude; WSD2: 54.2 degrees east longitude, 67 degrees north latitude), positioning accuracy (100m) ), device type (WSD1: Fixed WSD; WSD2: portable WSD), device auxiliary type (frequency template information), technical identification (LTE), device uniform identification (such as FCC device ID), antenna height (10m), pole Mode (horizontal polarization), antenna direction angle (omnidirectional antenna), antenna pitch angle (25 degrees);
 步骤 602: SC收到 WSD1、 WSD2的频谱资源申请后,分析 WSD1、 WSD2 的资源需求, 确定每个 WSD的频语数量需求信息; Step 602: After receiving the application for the spectrum resource of the WSD1 and the WSD2, the SC analyzes the resource requirements of the WSD1 and the WSD2, and determines the frequency requirement information of each WSD.
 根据每个 WSD对频谱资源的实际需求(如负载大小等因素) , 评估得 出 WSD1需要带宽为 10MHz, 即需要占用 2个连续 TVWS信道, WSD2需 要带宽 5MHz, 即需要占用 1个 TVWS信道; 频域隔离距离评估, 根据两设 备的类型假定发射功率分别为 WSD1 , 40dBm; WSD2, 20dBm; 通过两者位 置关系, 传播模型评估得到两设备在互干扰情况下, 所需中心频点的频域隔 离 巨离为 24MHz。 According to the actual requirements of spectrum resources (such as load size) of each WSD, it is estimated that WSD1 needs to have a bandwidth of 10MHz, that is, it needs to occupy 2 consecutive TVWS channels, and WSD2 needs a bandwidth of 5MHz, that is, it needs to occupy 1 TVWS channel; Domain isolation distance assessment, according to the type of the two devices, the transmission power is WSD1, 40dBm; WSD2, 20dBm; through the positional relationship between the two, the propagation model is evaluated to obtain the frequency domain isolation of the required center frequency in the case of mutual interference between the two devices. The giant distance is 24MHz.
 步骤 603: SC向 DB发送 WS频谱申请消息, 其中包含申请 WS资源的 WSD设备参数,及步骤 2分析中确定的与 WSD1、 WSD2频语数量需求信息; 步骤 604: DB确定 WSD1、 WSD2的可用频谱; 并计算每个可用频谱上 的最大发射功率限制; Step 603: The SC sends a WS spectrum application message to the DB, where the WSD device parameter of the application WS resource is included, and the WSD1 and WSD2 frequency quantity requirement information determined in the step 2 analysis is performed; Step 604: The DB determines the available spectrum of WSD1 and WSD2. And calculate the maximum transmit power limit on each available spectrum;
 可用频谱的确定: 1、 DB基于 WSD1、 WSD2的所在位置, 查找 TV系 统频语使用情况,存在 TV系统在该区域上未使用的 TVWS资源包括: {信道 25、 26、 28、 30}。 2、 考虑共存需求, WSD1需要两个连续的 TVWS信道, WSD2需要一个 TVWS信道; 因此, WSD1可用频谱为 {信道 25、 26} , WSD2 可用频语为信道 28或 30,且两者之间的频域隔离距离为 24MHz,因此 WSD2 的可用频谱为信道 30:Determination of the available spectrum: 1. The DB searches for the frequency usage of the TV system based on the location of WSD1 and WSD2. The TVWS resources that are not used by the TV system in the area include: {channels 25, 26, 28, 30}. 2. Considering the coexistence requirement, WSD1 requires two consecutive TVWS channels, and WSD2 requires one TVWS channel; therefore, WSD1 available spectrum is {channel 25, 26}, WSD2  The available frequency is channel 28 or 30, and the frequency domain isolation distance between the two is 24 MHz, so the available spectrum of WSD2 is channel 30:
 表 7为基于 WSD需求的可用频谱列表 Table 7 shows the list of available spectrum based on WSD requirements.
 最大允许发射功率的计算: 基于主系统用户保护计算发射功率限制, 分 别针对上述 3个可用信道进行计算, 根据 WSD1、 WSD2的设备参数, 主系 统用户保护准则, 主系统用户信息, 传播模型, 釆用相关技术(具体方法见 方法实施例 1的描述)可以计算得出 WSD1、 WSD2在可用信道上的最大允 许发射功率限制值。 计算结果如表 8所示: Calculation of the maximum allowable transmit power: Calculate the transmit power limit based on the primary system user protection, calculate for the above three available channels, according to the WSD1, WSD2 device parameters, the primary system user protection criteria, the primary system user information, the propagation model, 釆The maximum allowable transmit power limit value of WSD1 and WSD2 on the available channels can be calculated by the related art (for details, see the description of Method Embodiment 1). The calculation results are shown in Table 8:
 表 8为可用频谱列表 Table 8 shows the list of available spectrums.
 步骤 605: DB将上述可用频谱列表信息 (运行参数)发送给 SC; Step 605: The DB sends the foregoing available spectrum list information (operation parameters) to the SC;
 步骤 606: SC将上述可用频谱列表信息 (运行参数)转发给 WSD1、 WSD2; Step 606: The SC forwards the above available spectrum list information (operation parameters) to WSD1 and WSD2.
 步骤 607: WSD1、 WSD2根据实际需求选择可用信道确定发射功率; WSD1选择可用信道 25、 26为其工作频谱, 发射功率为 40dBm; Step 607: WSD1 and WSD2 select an available channel to determine the transmit power according to actual requirements; WSD1 selects available channels 25 and 26 as its working spectrum, and the transmit power is 40 dBm;
 WSD2选择可用信道 30为其工作频谱, 发射功率为 20dBm WSD2 selects available channel 30 as its working spectrum, and the transmit power is 20dBm.
 步骤 608、 609: 逐层反馈使用参数给 SC、 DB。 Steps 608, 609: Layer-by-layer feedback uses parameters to SC and DB.
场景 5:Scene 5:
 WSD1 发出空闲频谱资源分配请求, 共存需求为 "禁用频率限制" 时, 该 WSD可用频谱及发射功率限制确定的信令流程如图 7所示,下面对其做详 细说明:WSD1 sends a free spectrum resource allocation request. When the coexistence requirement is "disabled frequency limit", the signaling process determined by the WSD available spectrum and transmit power limit is shown in Figure 7.  Detailed description:
 步骤 701 : WSD1向 SC发送 WS频谱资源申请, 并提供设备参数, 其中 包括: 天线位置 (东经 54.2度, 北纬 67度) , 定位精度(100m ) , 设备类 型 ( Fixed WSD ) , 设备辅射类型 (频语模板信息) , 技术标识(LTE ) , 设 备统一标识(如 FCC device ID ) , 天线高度( 10m ) , 极化方式(水平极化 ) , 天线方向角 (全向天线) , 天线俯仰角 (25度) ; Step 701: WSD1 sends a WS spectrum resource request to the SC, and provides device parameters, including: antenna position (54.2 degrees east longitude, 67 degrees north latitude), positioning accuracy (100m), device type (Fixed WSD), device auxiliary type ( Frequency template information), technical identification (LTE), device uniform identification (such as FCC device ID), antenna height (10m), polarization mode (horizontal polarization), antenna direction angle (omnidirectional antenna), antenna pitch angle ( 25 degree) ;
 步骤 702: SC收到 WSD1的频谱资源申请后, 向 DB发送 WS频谱申请 消息, 其中包含申请 WS资源的 WSD设备参数。 Step 702: After receiving the application for the spectrum resource of the WSD1, the SC sends a WS spectrum application message to the DB, where the WSD device parameter for requesting the WS resource is included.
 步骤 703: DB确定 WSD1所在位置的主系统用户设备未使用频谱; DB基于 WSD1的位置, 查找 TV系统频语使用情况, 存在 TV系统在该 区域上未使用的 TVWS资源包括: {信道 25、 30、 34、 40、 45、 46、 50}。 Step 703: The DB determines that the primary system user equipment at the location of the WSD1 does not use the spectrum; the DB searches for the frequency usage of the TV system based on the location of the WSD1, and the TVWS resources that are not used by the TV system in the area include: {channel 25, 30 , 34, 40, 45, 46, 50}.
 DB向 SC反馈主系统未使用频谱: {信道 25、 30、 34、 40、 45、 46、 50}。 步骤 704: SC针对 DB反馈的主系统用户设备未使用频谱查找该 WSD1 所在位置区域内及相邻区域内除所述 WSD外的其他 WSD的 TVWS频语使 用情况, 分析共存需求; The DB feeds back to the SC that the primary system is not using the spectrum: {channels 25, 30, 34, 40, 45, 46, 50}. Step 704: The primary system user equipment that the SC feeds back to the DB does not use the spectrum to find the TVWS frequency usage of the WSDs in the location area of the WSD1 and in the adjacent area except the WSD, and analyzes the coexistence requirement;
 WSD1附近存在 3个 WSD工作在 TVWS资源上,分别为: WSD2、 WSD3、 WSD4。 具体信息如下表 9所示。 There are three WSDs working in TVWS resources near WSD1, namely: WSD2, WSD3, WSD4. The specific information is shown in Table 9 below.
 表 9为 WSD1附近的 3个 WSD的资源使用情况表 Table 9 shows the resource usage of three WSDs near WSD1.
 SC利用传播模型, 计算上述 3个 WSD与 WSD1之间的干扰关系 (这里 需要根据 WSD1的类型来假定其发射功率,本实施例中假定 WSD1发射功率 为 40dBm ) , 确定彼此间的频域隔离距离, 得出在满足彼此互不干扰的条件 下: The SC uses the propagation model to calculate the interference relationship between the above three WSDs and WSD1 (here, the transmission power is assumed according to the type of WSD1, and the WSD1 transmission power is assumed to be 40 dBm in this embodiment), and the frequency domain isolation distance between each other is determined. , in the condition that they do not interfere with each other:
 WSD2与 WSD1间频域隔离距离为两个 TV信道, 即 TV信道 33、 34、  35对于 WSDl为禁用频谱;The frequency separation between WSD2 and WSD1 is two TV channels, namely TV channels 33, 34,  35 for WSDl is disabled spectrum;
 WSD3与 WSD1间的频域隔离距离为 1个 TV信道, 即不同频即可, 信 道 40对于 WSD1为禁用频谱; The frequency domain isolation distance between WSD3 and WSD1 is 1 TV channel, that is, different frequency, and channel 40 is disabled spectrum for WSD1;
 WSD4同样保证不同频即可, 即信道 45对于 WSD1为禁用频谱。 WSD4 also guarantees different frequencies, that is, channel 45 is disabled for WSD1.
 因此, 共存需求为: WSD1 禁用信道: 33、 34、 35、 40、 45。 在主系统 用户设备未使用频谱中, 信道 34、 40、 45为禁用频谱。 Therefore, the coexistence requirements are: WSD1 disable channels: 33, 34, 35, 40, 45. In the unused spectrum of the primary system user equipment, channels 34, 40, 45 are disabled spectrum.
 步骤 705: SC向 DB发送共存需求消息, 即信道 34、 40、 45为禁用频谱。 步骤 706: DB确定 WSD1的可用频谱; 并计算每个可用频谱上的最大发 射功率限制; Step 705: The SC sends a coexistence demand message to the DB, that is, the channels 34, 40, and 45 are disabled spectrum. Step 706: The DB determines the available spectrum of WSD1; and calculates a maximum transmit power limit on each available spectrum;
 可用频谱的确定: TV系统在该区域上未使用的 TVWS资源包括: {信道 Determination of available spectrum: TVWS resources that are not used by the TV system in this area include: {channel
25、 30、 34、 40、 45、 46、 50}。 SC反馈的禁用 TVWS资源为 {信道 34、 40、 45} , 因此, WSD1的可用频谱为: {信道 25、 30、 46、 50}。25, 30, 34, 40, 45, 46, 50}. Disabled SC feedback The TVWS resource is {channel 34, 40, 45}. Therefore, the available spectrum of WSD1 is: {channel 25, 30, 46, 50}.
 最大允许发射功率的计算: 分别针对上述 4个可用信道进行计算, 根据 WSD1 的设备参数, 主系统用户保护准则, 主系统用户信息, 传播模型, 釆 用相关技术(具体方法见方法实施例 1的描述)可以计算得出 WSD1在上述 4个可用信道上的最大允许发射功率限制值。 计算结果如表 10所示: Calculation of the maximum allowable transmit power: Calculate for the above four available channels respectively, according to the WSD1 device parameters, the main system user protection criteria, the main system user information, the propagation model, and the related technologies (for the specific method, see Method Embodiment 1). Description) The maximum allowable transmit power limit value of WSD1 on the above 4 available channels can be calculated. The calculation results are shown in Table 10:
 表 10为可用频谱列表 Table 10 shows the list of available spectrums.
 步骤 707: DB将上述可用频谱列表信息 (运行参数)发送给 SC; Step 707: The DB sends the foregoing available spectrum list information (operation parameters) to the SC;
 步骤 708: SC进行自共存处理; Step 708: The SC performs self-coexistence processing;
 步骤 702在做共存需求分析时,对 WSD1的发射功率做了假定,即 WSD1 发射功率为 40dBm,从上表中可以看出,信道 30,从主系统用户保护的角度, 其发射功率可以达到 50dBm,因此需要判断如果 WSDl在信道 30上以 50dBm 进行发射是否能满足 WSD间自共存需求,判断结果为不会对其他 WSD造成 干扰;In step 702, when the coexistence demand analysis is performed, the transmit power of WSD1 is assumed, that is, the transmit power of WSD1 is 40 dBm. As can be seen from the above table, the channel 30 can transmit 50 dBm from the perspective of user protection of the main system. Therefore, it is necessary to judge whether the WSD1 can transmit at 50 dBm on the channel 30 to satisfy the self-coexistence requirement between WSDs, and the judgment result is that it will not cause other WSDs.  Interference
 步骤 709: 通过步骤 706的判断可知, 无需对可用频谱列表作调整, 因 此, SC将上述可用频谱列表信息 (运行参数)转发给 WSD1 ; Step 709: According to the judgment of step 706, it is not necessary to adjust the available spectrum list, so the SC forwards the above available spectrum list information (operation parameters) to WSD1;
 步骤 710: WSD1根据实际需求选择可用信道确定发射功率; Step 710: WSD1 selects an available channel according to actual requirements to determine a transmit power.
 选择可用信道 25为其工作频谱, 发射功率为 40dBm; Select available channel 25 as its working spectrum, and transmit power is 40dBm;
 步骤 711、 712: 逐层反馈使用参数给 SC、 DB。 Steps 711, 712: Layer-by-layer feedback uses parameters for SC and DB.
实施例 2Example 2
 本申请技术方案涉及三个逻辑实体:数据库( DB, Geo-location Database )、 频谱协调器( SC, Spectrum Controller )、次级系统用户设备 ( WSD, White Space Device ) , 具体功能描述如下: The technical solution of the present application relates to three logical entities: a database (DB, Geo-location Database), a spectrum controller (SC, Spectrum Controller), and a secondary system user equipment (WSD, White Space Device). The specific functions are described as follows:
 WSD: 发起空闲频谱资源申请, 接收运行参数列表 ( operational parameter ) , 并根据列表选择确定自身的运行参数。 WSD: Initiates an idle spectrum resource request, receives an operational parameter list, and determines its own operating parameters according to the list selection.
 SC:接收 WSD发送的空闲频谱资源申请,对 WSD使用空闲频谱资源时 所需要满足的 WSD 间共存需求进行评估, 并向数据库发送空闲频谱资源申 请, 及共存需求信息; 接收 DB生成的空闲频谱列表。 可选的, SC还可以执 行 WSD间自共存处理, 并反馈给申请资源的 WSD。 SC: Receives the idle spectrum resource request sent by the WSD, evaluates the WSD coexistence requirement that needs to be satisfied when the WSD uses the idle spectrum resource, and sends the idle spectrum resource request and the coexistence demand information to the database; receives the idle spectrum list generated by the DB. . Optionally, the SC can also perform self-coexistence processing between WSDs and feed back to the WSD of the application resource.
 DB: 根据 SC发送的空闲频谱资源申请, 及共存需求信息, 查找满足需 求的主系统用户未使用频谱, 确定为所述 WSD 的可用频谱; 并根据主系统 用户运行参数, 及主系统用户保护准则, 计算发起资源申请 WSD 的在上述 可用频谱上的发射参数限制; 将相关信息形成的空闲频谱列表发送给 sc。 DB: According to the idle spectrum resource application sent by the SC, and the coexistence requirement information, find the unused spectrum of the primary system user that meets the requirement, and determine the available spectrum of the WSD; and according to the operating parameters of the primary system user, and the protection criteria of the primary system user Calculating a transmission parameter limit on the above-mentioned available spectrum of the initiating resource application WSD; sending a list of the idle spectrum formed by the related information to the sc.
 本实施例提供一种频谱协调器(SC ) 80, 如图 8所示, 包括: This embodiment provides a spectrum coordinator (SC) 80, as shown in FIG. 8, including:
 第一单元 801 , 其设置成: 收到 WSD发起的频谱资源申请后, 根据除所 述 WSD外的其他次级系统用户设备的空闲频语使用情况分析确定所述 WSD 的共存需求信息; 以及 The first unit 801 is configured to: after receiving the application for the spectrum resource initiated by the WSD, determine the coexistence requirement information of the WSD according to the idle frequency usage analysis of the other secondary system user equipment except the WSD;
 第二单元 802, 其设置成: 将所确定的共存需求信息发送给数据库。 上述第二单元 802将所确定的共存需求信息包含在空闲频谱申请消息中 发送给所述数据库; 或者  将所确定的共存需求信息形成独立的共存需求消息发送给所述数据库。 其中, 第二单元 802将所确定的共存需求信息形成独立的共存需求消息 发送给所述数据库时, 向数据库发出空闲频谱申请消息的同时发送共存需求 消息, 或者, 接收到数据库反馈的主系统未使用频谱列表后, 再发送共存需 求消息。The second unit 802 is configured to: send the determined coexistence requirement information to the database. The second unit 802, the determined coexistence requirement information is included in the idle spectrum application message and sent to the database; or  The determined coexistence requirement information is formed into a separate coexistence requirement message and sent to the database. The second unit 802 sends the coexistence requirement message to the database when the determined coexistence requirement information is formed into an independent coexistence requirement message, and the main system does not receive the database feedback. After using the spectrum list, send the coexistence demand message.
 上述 SC还可以包括第三单元 803 , 其设置成: 根据数据库发送的可用频 谱及对应的最大发射功率限制信息, 再次进行次级系统用户设备间自共存处 理, 确定所述次级系统用户设备最终的可用频谱及发射功率限制信息。 The foregoing SC may further include a third unit 803, configured to: perform, according to the available spectrum sent by the database and the corresponding maximum transmit power limit information, the self-coexistence processing between the secondary system user equipments, and determine the final user equipment of the secondary system. Available spectrum and transmit power limit information.
 实际应用中, 上述 SC可能位于网管侧网元(例如 OAM、 EMS, NMS 等), 或者核心网网元(例如 MME、 服务网关、 业务网关等) , 或无线接入 网网元(例如基站等) 中。 In actual applications, the SC may be located on the network element side network element (such as OAM, EMS, NMS, etc.), or the core network element (such as MME, service gateway, service gateway, etc.), or the radio access network element (such as the base station, etc.) ).
 本实施例提供的 SC可实现上述实施例 1 中的方法, 其工作原理的详细 说明可参见上述实施例 1的相应内容, 在此不再赘述。 The SC provided in this embodiment can implement the method in the foregoing Embodiment 1. For the detailed description of the working principle, refer to the corresponding content in the foregoing Embodiment 1, and details are not described herein again.
实施例 3Example 3
 本实施例提供一种数据库 90, 可实现上述实施例 1中的方法, 如图 9所 示, 其至少包括如下两个单元。 This embodiment provides a database 90, which can implement the method in Embodiment 1 above. As shown in FIG. 9, it includes at least the following two units.
 第一单元 901 , 其设置成: 接收频谱协调器(SC )发送的共存需求信息; 第二单元 902 , 其设置成: 根据所述共存需求信息确定所述次级系统用 户设备的可用频率及每个可用频率的最大发射功率限制。 The first unit 901 is configured to: receive the coexistence demand information sent by the spectrum coordinator (SC); the second unit 902 is configured to: determine, according to the coexistence requirement information, an available frequency of the sub system user equipment and each The maximum transmit power limit of the available frequencies.
 上述第二单元 902选择次级系统用户设备所在位置上主系统用户设备未 使用的, 且满足所述共存需求信息的频语作为所述次级系统用户设备的可用 频谱, 并基于每个可用频谱的主系统用户设备保护原则, 传播模型, 及次级 系统用户设备参数分别计算所述次级系统用户设备在每个可用频谱上的最大 发射功率限制。 The second unit 902 selects a frequency spectrum that is not used by the primary system user equipment at the location of the secondary system user equipment, and satisfies the frequency information of the coexistence demand information as the available spectrum of the secondary system user equipment, and is based on each available spectrum. The primary system user equipment protection principle, the propagation model, and the secondary system user equipment parameters respectively calculate the maximum transmit power limit of the secondary system user equipment on each available spectrum.
 实际应用中, 上述数据库可以是一个新建的网元, 由主系统运营商, 或 者主次系统外的第三方运营商来运营。 In actual applications, the above database may be a newly created network element, which is operated by a primary system operator or a third-party operator outside the primary and secondary systems.
 而本实施例提供的数据库的具体工作过程可参见上述实施例 1的相应内 容, 在此不再赘述。For the specific working process of the database provided in this embodiment, refer to the corresponding example in the foregoing Embodiment 1.  Rong, no longer repeat here.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本申请不限制于任 何特定形式的硬件和软件的结合。One of ordinary skill in the art will appreciate that all or a portion of the above steps may be accomplished by a program instructing the associated hardware, such as a read-only memory, a magnetic disk, or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the above embodiment may be implemented in the form of hardware or in the form of a software function module. This application is not limited to any specific form of combination of hardware and software.
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the scope of protection of the present invention. Any modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
工业实用性Industrial applicability
 本申请技术方案, 通过频谱协调器向数据库发送共存需求信息, 使得数 据库可以根据需求对空闲频语作筛选。 其获得的有益效果是: 减少了数据库 针对这部分频谱发射功率限制的无用计算; 数据库向频谱协调器提供的可用 频谱及发射功率限制能够满足次级系统的频谱分配意愿。 因此具有较强的工 业实用性。 In the technical solution of the present application, the coexistence demand information is sent to the database through the spectrum coordinator, so that the database can filter the idle frequency according to the requirements. The beneficial effects obtained are: Reduced database useless calculations for this part of the spectrum transmit power limit; the available spectrum and transmit power limits provided by the database to the spectrum coordinator can meet the spectrum allocation willingness of the secondary system. Therefore, it has strong industrial applicability.