家庭基站标识方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种家庭基站标识方法及装置。 背景技术 第三代移动通讯伙伴计划(3rd Generation partnership project, 简称为 3GPP)长期 演进(Long-Term Evolution, 简称为 LTE)项目是近两年来 3GPP启动的最大的新技术 研发项目, 这种以正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM) /频分多址 (Frequency Division Multiple Addressing, 简称为 FDMA) 为核心 的技术可以被看作"准 4G"技术。 3GPP LTE项目的主要性能目标包括: 在 20MHz频谱 带宽能够提供下行 100Mbps、 上行 50Mbps的峰值速率; 改善小区边缘用户的性能; 提高小区容量; 降低系统延迟, 用户平面内部单向传输时延低于 5ms, 控制平面从睡 眠状态到激活状态迁移时间低于 50ms,从驻留状态到激活状态的迁移时间小于 100ms; 支持 lOOKm半径的小区覆盖; 能够为 350Km/h高速移动用户提供 >100kbps的接入服 务; 支持成对或非成对频谱, 并可灵活配置 1.25MHz到 20MHz多种带宽。 LTE的网络的架构如图 1所示, 其中位于演进型核心网 (Evolved Packet Core, 简 称为 EPC) 的移动性管理实体(Mobility Management Entity, 简称为 MME)与位于无 线接入网 (Radio Access Network, 简称为 RAN) 的演进型基站 (Evolved NodeB, 简 称为 e B) 通过 SI接口相连。 一个 eNB可以建立一个或多个无线小区 (Cell)。 每个 小区都具有在 LTE网络内唯一的全局小区标识 (E-UTRAN Cell Global Identity, 简称 为 E-CGI)。 E-CGI由公共陆地移动网络(Public Land Mobile Network, 简称为 PLMN) 标识以及在空口广播的长度为 28位 (bit) 的小区标识 (Cell Identity, 简称为 CI) 共 同组成。 eNB本身也具有在 LTE网络内唯一的全局 eNB标识(Global eNB ID), 该标 识由 PLMN ID以及 eNB ID两部分组成。 随着无线通信技术的发展, 逐渐出现了家庭基站的概念。 家庭基站是一种小型、 低功率的基站, 部署在家庭及办公室等室内场所, 主要作用是为了给用户提供更高的 业务速率并降低使用高速率服务所需要的费用, 同时弥补已有分布式蜂窝无线通信系 统覆盖的不足。 家庭基站的优点是实惠、 便捷、 低功率输出、 即插即用等。 图 2是根 据相关技术的演进的家用基站 (Home eNodeB, 简称为 He B) 网络结构的示意图, 如图 2所示, 家庭基站用户通过家庭基站接入网 (Home eNodeB Access Network, 简 称为 HeNB AN)连接到核心网网络,其中, HeNB AN由 HeNB和家庭基站网关(Home eNodeB Gateway, 简称为 HeNB GW)共同组成, HeNB GW为可选单元。 如果 HeNB GW存在, HeNB通过 SI接口连接到 HeNB GW, 后者通过 SI接口再连接到 MME; 在直接连接的场景下, HeNB直接通过 S1接口连接到 MME。 另外, 家庭基站管理系 统(Home eNodeB Management System, 简称为 HeMS)会对家庭基站进行运行维护管 理, 根据运营商要求配置和控制家庭基站, 进行参数配置。 由于 HeNB为用户设备, 出于应用场景和成本考虑, 目前协议中规定每个 HeNB 仅支持单小区。 该小区的标识方法与普通小区相同。 同时为了能够快捷的区别设备类 型, HeNB具有与普通 eNB不同的 e B ID:普通的 e B ID为 20位; HeNB的 e B ID 长度为 28 位, 与其所建立小区的 CI 相同。 HeNB 的部署较为动态, 其邻接基站 (Neighboring eNB)可能不具备面向此 HeNB的路由关系, 但邻接基站可以直接通过 空口测量到的小区标识 CI来获得用于信令路由的 HeNB ID。 随着标准技术的推进, 越来越多的场景需要 HeNB也可以支持多小区场景, 例如 干扰控制技术或者载波聚合技术。 但目前所定义的 HeNB的 eNB ID与小区标识 CI相 同却无法支撑 HeNB建立多个小区。 因为这必然造成邻接基站无法正确填写信令路由 中所需要的 HeNB ID, 由此导致信令流程无法正常完成。 发明内容 本发明实施例提供了一种家庭基站标识方法及装置, 以解决上述问题。 根据本发明的一个方面, 提供了一种家庭基站标识方法, 包括: 为一个家庭基站 配置多个基站标识; 根据上述多个基站标识完成该家庭基站在多小区场景下对应的信 令流程。 在为一个家庭基站配置多个基站标识之后, 还包括: 家庭基站建立多个小区, 该 多个小区对应于上述多个基站标识, 每个小区的小区标识与该小区对应的基站标识相 同。 根据上述多个基站标识完成该家庭基站在多小区场景下对应的信令流程包括: 将 上述多个基站标识提供给 MME和 /或关 HeNB GW和 /或邻接基站; 家庭基站与 MME 和 /或 HeNB GW和 /或邻接基站建立多条控制面接口连接。 在家庭基站与 MME和 /或 HeNB GW和 /或邻接基站建立多条控制面接口连接之 后, 还包括: 家庭基站与 MME和 /或 HeNB GW建立一条或多条传输层连接。 上述信令流程包括以下至少之一: 小区切换流程、 S1AP地点报告过程、 X2AP地 点信息过程、 资源状态报告过程、 移动性变更过程、 无线链路失败指示过程、 小区激 活过程。 根据本发明的另一方面, 提供了一种家庭基站标识装置, 包括: 多重标识模块, 设置为为家庭基站配置多个基站标识; 流程完成模块, 设置为根据上述多个基站标识 完成该家庭基站在多小区场景下对应的信令流程。 上述装置还包括: 小区建立模块, 设置为控制家庭基站建立多个小区, 该多个小 区对应于上述多个基站标识, 每个小区的小区标识与该小区对应的基站标识相同。 流程完成模块包括: 标识提供单元, 设置为将上述多个基站标识提供给 MME和 / 或 He B GW和 /或邻接基站;接口连接单元,设置为控制家庭基站与 MME和 /或 He B GW和 /或邻接基站建立多条控制面接口连接。 流程完成模块还包括: 传输连接单元, 设置为控制家庭基站与 MME和 /或 HeNB GW建立一条或多条传输层连接。 上述信令流程包括以下至少之一: 小区切换流程、 S1AP地点报告过程、 X2AP地 点信息过程、 资源状态报告过程、 移动性变更过程、 无线链路失败指示过程、 小区激 活过程。 通过本发明实施例, 采用为一个家庭基站配置多个基站标识以完成该基站在多小 区场景下对应的各项信令流程的方案,解决了现有家庭基站不支持多小区场景的问题, 使家庭基站可以支持多小区场景, 达到了使多小区场景中家庭基站的各项信令流程可 以顺利完成的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 LTE网络系统架构图; 图 2是根据相关技术的演进的 HeNB网络结构的示意图; 图 3是根据本发明实施例的家庭基站标识方法的流程图; 图 4是根据本发明实例一的配置有三个基站标识的 HeNB进行小区切换的流程示 意图; 图 5是根据本发明实例二的配置有三个基站标识的 HeNB进行小区切换的流程示 意图; 图 6是根据本发明实例三的配置有三个基站标识的 HeNB进行小区切换的流程示 意图; 图 7是根据本发明实施例的家庭基站标识装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 3是根据本发明实施例的家庭基站标识方法的流程图。 如图 3所示, 根据本发 明实施例的家庭基站标识方法包括: 步骤 S302, 为一个 HeNB配置多个基站标识; 步骤 S304,根据上述多个基站标识完成该 HeNB在多小区场景下对应的信令流程。 本实施例提供的方法舍弃了现有协议中每个 HeNB仅支持单小区的方式, 为一个The present invention relates to the field of communications, and in particular to a method and apparatus for identifying a home base station. BACKGROUND OF THE INVENTION The 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) project is the largest new technology development project initiated by 3GPP in the past two years. The technology based on Orthogonal Frequency Division Multiplexing (OFDM)/Frequency Division Multiple Addressing (FDMA) can be regarded as a "quasi 4G" technology. The main performance objectives of the 3GPP LTE project include: It can provide downlink 100Mbps and uplink 50Mbps peak rate in 20MHz spectrum bandwidth; Improve cell edge user performance; Improve cell capacity; Reduce system delay, user plane internal one-way transmission delay is less than 5ms The control plane migrates from sleep state to active state for less than 50ms, and the migration time from the resident state to the active state is less than 100ms; cell coverage supporting lOOKm radius; capable of providing >100kbps access service for 350Km/h high-speed mobile users Supports paired or unpaired spectrum and flexible configuration of multiple bandwidths from 1.25MHz to 20MHz. The architecture of the LTE network is shown in Figure 1. The Mobility Management Entity (MME) located in the Evolved Packet Core (EPC) and the Radio Access Network (Radio Access Network) The evolved base station (Evolved NodeB, referred to as e B), which is abbreviated as RAN, is connected through the SI interface. An eNB may establish one or more wireless cells (Cells). Each cell has a unique global cell identifier (E-UTRAN Cell Global Identity, referred to as E-CGI) within the LTE network. The E-CGI is composed of a public land mobile network (PLMN) identifier and a cell identifier (Cell Identity, CI for short) that is broadcast in the air interface. The eNB itself also has a global eNB ID (Global eNB ID), which is composed of a PLMN ID and an eNB ID. With the development of wireless communication technology, the concept of a home base station has gradually emerged. The home base station is a small, low-power base station deployed in indoor places such as homes and offices. Its main function is to provide users with higher service rates and lower the cost of using high-speed services. Insufficient coverage of cellular wireless communication systems. The advantages of home base stations are affordable, convenient, low power output, plug and play, and more. 2 is a schematic diagram of an evolved home eNodeB (He B) network structure according to the related art. As shown in FIG. 2, a home base station user accesses a home eNodeB Access Network (Simplified). The HeNB AN is connected to the core network, where the HeNB AN is composed of a HeNB and a Home eNodeB Gateway (HeNB GW), and the HeNB GW is an optional unit. If the HeNB GW exists, the HeNB is connected to the HeNB GW through the SI interface, and the latter is reconnected to the MME through the SI interface. In the direct connection scenario, the HeNB is directly connected to the MME through the S1 interface. In addition, the Home eNodeB Management System (HeMS) performs operation and maintenance management on the home base station, configures and controls the home base station according to the operator's requirements, and performs parameter configuration. Since the HeNB is a user equipment, the current protocol specifies that each HeNB supports only a single cell for application scenarios and cost considerations. The identification method of the cell is the same as that of the ordinary cell. At the same time, in order to quickly distinguish the device type, the HeNB has a different e B ID than the normal eNB: the normal e B ID is 20 bits; the e B ID length of the HeNB is 28 bits, which is the same as the CI of the established cell. The deployment of the HeNB is relatively dynamic, and the neighboring base station (Neighboring eNB) may not have the routing relationship for the HeNB. However, the neighboring base station may directly obtain the HeNB ID for signaling routing by using the cell identifier CI measured by the air interface. With the advancement of standard technologies, more and more scenarios require HeNBs to support multi-cell scenarios, such as interference control techniques or carrier aggregation techniques. However, the eNB ID of the currently defined HeNB is the same as the cell identity CI but cannot support the HeNB to establish multiple cells. Because this inevitably causes the neighboring base station to fail to correctly fill in the HeNB ID required in the signaling route, the signaling process cannot be completed normally. SUMMARY OF THE INVENTION Embodiments of the present invention provide a method and an apparatus for identifying a home base station to solve the above problems. According to an aspect of the present invention, a method for identifying a home base station is provided, including: configuring a plurality of base station identifiers for a home base station; and completing, according to the plurality of base station identifiers, a signaling procedure corresponding to the home base station in a multi-cell scenario. After the multiple base station identifiers are configured for a home base station, the method further includes: the home base station establishing multiple cells, where the multiple cells correspond to the multiple base station identifiers, and the cell identifier of each cell is the same as the base station identifier corresponding to the cell. Completing the signaling process corresponding to the home base station in the multi-cell scenario according to the foregoing multiple base station identifiers includes: providing the multiple base station identifiers to the MME and/or the HeNB GW and/or the neighboring base station; the home base station and the MME and/or The HeNB GW and/or the neighboring base station establish multiple control plane interface connections. After the home base station establishes multiple control plane interface connections with the MME and/or the HeNB GW and/or the neighboring base station, the method further includes: establishing, by the home base station, one or more transport layer connections with the MME and/or the HeNB GW. The foregoing signaling process includes at least one of the following: a cell handover procedure, an S1AP location reporting procedure, an X2AP location information procedure, a resource status reporting procedure, a mobility change procedure, a radio link failure indication procedure, and a cell activation procedure. According to another aspect of the present invention, a home base station identification apparatus is provided, including: a multiple identity module, configured to configure a plurality of base station identifiers for a home base station; and a process completion module, configured to complete the home base station according to the multiple base station identifiers Corresponding signaling flow in a multi-cell scenario. The device further includes: a cell establishment module, configured to control the home base station to establish a plurality of cells, where the multiple cells correspond to the multiple base station identifiers, and the cell identifier of each cell is the same as the base station identifier corresponding to the cell. The process completion module includes: an identifier providing unit, configured to provide the foregoing multiple base station identifiers to the MME and/or the He B GW and/or the adjacent base station; and an interface connecting unit configured to control the home base station and the MME and/or the He B GW and / or adjacent base stations to establish multiple control plane interface connections. The process completion module further includes: a transmission connection unit configured to control the home base station to establish one or more transport layer connections with the MME and/or the HeNB GW. The foregoing signaling process includes at least one of the following: a cell handover procedure, an S1AP location reporting procedure, an X2AP location information procedure, a resource status reporting procedure, a mobility change procedure, a radio link failure indication procedure, and a cell activation procedure. According to the embodiment of the present invention, a solution for configuring a plurality of base station identifiers for a home base station to complete the signaling processes corresponding to the base station in the multi-cell scenario is adopted, and the problem that the existing home base station does not support the multi-cell scenario is solved. The home base station can support the multi-cell scenario, and achieves the effect that the signaling processes of the home base station in the multi-cell scenario can be successfully completed. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 is a schematic diagram of an LTE network system architecture according to the related art; FIG. 2 is a schematic diagram of an evolved HeNB network structure according to the related art; FIG. 3 is a flowchart of a home base station identification method according to an embodiment of the present invention; 4 is a schematic flowchart of a cell handover performed by a HeNB configured with three base station identifiers according to an example 1 of the present invention; FIG. 5 is a schematic flowchart of a cell handover performed by a HeNB configured with three base station identifiers according to Embodiment 2 of the present invention; A schematic diagram of a flow of a cell handover performed by a HeNB identified by three base stations is provided in the third embodiment of the present invention. FIG. 7 is a structural block diagram of a home base station identification apparatus according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. FIG. 3 is a flowchart of a method for identifying a home base station according to an embodiment of the present invention. As shown in FIG. 3, the method for identifying a home base station according to an embodiment of the present invention includes: Step S302: configuring a plurality of base station identifiers for one HeNB; Step S304, completing, according to the multiple base station identifiers, the corresponding correspondence of the HeNB in a multi-cell scenario Order process. The method provided in this embodiment discards the manner in which each HeNB supports only a single cell in the existing protocol, which is a
HeNB配置了多个基站标识, 使得 HeNB可以以现有的方式建立多个小区, 从而支持 了多小区的场景。 这样, 在应用例如干扰控制技术或者载波聚合技术等需要多小区支 持的技术时,就不会出现像邻接基站无法正确填写信令路由中所需要的 HeNB ID之类 的问题, 使得 HeNB在多小区场景下的各项信令流程都可以顺利的完成, 从而实现更 强大的功能。 优选地, 在为一个 HeNB配置多个基站标识之后, 还可以包括: HeNB建立多个 小区, 该多个小区对应于上述的多个基站标识, 每个小区的小区标识与该小区对应的 基站标识相同。 一个 HeNB配置了多个基站标识之后, 该 HeNB就具备了建立多个小区的基础, 在建立多个小区时要求多个基站标识对应于该基站所建立的多个小区, 即基站标识与 小区一一对应, 每个小区的小区标识与该小区对应的基站标识相同。 这样, 建立的各 个小区就可以以唯一确定的身份参加到后续的各种信令流程中去了。 对应于 HeNB在多小区场景下的不同应用, HeNB会根据多个基站标识完成不同 的流程, 但这些流程的完成都是基于 HeNB配置了多个基站标识这个大前提下的, 而 且不同的流程的完成基础或者说初始的步骤是具有相似性地。 本优选实施例, 给出了 一种流程的初始执行过程。 优选地, 根据多个基站标识完成 HeNB在多小区场景下对 应的信令流程可以包括:将多个基站标识提供给 MME和 /或 HeNB GW和 /或邻接基站; HeNB与 MME和 /或 HeNB GW和 /或邻接基站建立多条控制面接口连接。 在一个 HeNB配置了多个基站标识之后, 一般来说, 应用到该多个基站标识的多 小区场景下的信令流程都需要 HeNB 将该多个基站标识通知流程中的其他功能实体 (主要是指 MME、 HeNB GW、 邻接基站), 对应于不同的信令流程需要通知的实体 可能是 MME、 HeNB GW、邻接基站中的一个或几个, 对于有多个实体要通知的情况, 通知的方式可能是同时通知(在流程的同一个步骤中通知), 也可能是分别通知(在流 程的不同步骤中通知)。 在 MME和 /或 HeNB GW和 /或邻接基站获知了 HeNB的多个 基站标识之后, HeNB即可与 MME和 /或 HeNB GW和 /或邻接基站建立多条控制面接 口 (S1或 X2) 连接, 作为后续信令交互的通道。 优选地,在 HeNB与 MME和 /或 HeNB GW和 /或邻接基站建立多条控制面接口连 接之后, 还可以包括:The HeNB is configured with multiple base station identifiers, so that the HeNB can establish multiple cells in an existing manner, thereby supporting a scenario of multiple cells. In this way, when a technology requiring multi-cell support such as interference control technology or carrier aggregation technology is applied, there is no problem that the neighboring base station cannot correctly fill in the HeNB ID required in the signaling route, so that the HeNB is in the multi-cell. The various signaling processes in the scenario can be successfully completed, thus achieving more powerful functions. Preferably, after configuring a plurality of base station identifiers for one HeNB, the method further includes: the HeNB establishing a plurality of cells, where the multiple cells correspond to the multiple base station identifiers, and the cell identifier of each cell and the base station identifier corresponding to the cell the same. After a plurality of base station identifiers are configured by one HeNB, the HeNB has a basis for establishing multiple cells. When multiple cells are established, multiple base station identifiers are required to correspond to multiple cells established by the base station, that is, the base station identifier and the cell one. Correspondingly, the cell identifier of each cell is the same as the base station identifier corresponding to the cell. In this way, each established cell can participate in the subsequent various signaling processes with a uniquely determined identity. Corresponding to different applications of the HeNB in a multi-cell scenario, the HeNB performs different processes according to multiple base station identifiers, but the completion of these processes is based on the fact that the HeNB is configured with multiple base station identifiers, and different processes are The completion of the foundation or the initial steps is similar. In the preferred embodiment, an initial execution of a process is presented. Preferably, completing the signaling process corresponding to the HeNB in the multi-cell scenario according to the multiple base station identifiers may include: providing multiple base station identifiers to the MME and/or the HeNB GW and/or the neighboring base station; the HeNB and the MME and/or the HeNB GW And/or adjacent base stations establish multiple control plane interface connections. After a plurality of base station identifiers are configured in a HeNB, in general, the signaling process in the multi-cell scenario applied to the multiple base station identifiers requires the HeNB to notify the other functional entities in the process of the multiple base station identifiers (mainly Refers to the MME, the HeNB GW, and the neighboring base station. The entity that needs to be notified corresponding to different signaling procedures may be one or several of the MME, the HeNB GW, and the neighboring base station. For the case where there are multiple entities to notify, the manner of notification It may be a simultaneous notification (notified in the same step of the process) or a separate notification (notified in the different steps of the process). After the MME and/or the HeNB GW and/or the neighboring base station learn the plurality of base station identifiers of the HeNB, the HeNB may establish multiple control plane interfaces (S1 or X2) connections with the MME and/or the HeNB GW and/or the neighboring base stations. As a channel for subsequent signaling interactions. Preferably, after the HeNB establishes a plurality of control plane interface connections with the MME and/or the HeNB GW and/or the neighboring base station, the method may further include:
HeNB与 MME和 /或 HeNB GW建立一条或多条传输层连接。The HeNB establishes one or more transport layer connections with the MME and/or the HeNB GW.
HeNB与 MME和 /或 HeNB GW建立了多条控制面接口连接,但在 HeNB与 MME 和 /或 HeNB GW建立传输层连接时,与 MME和 /或 HeNB GW建立的传输层连接可以 为一条也可以为多条, 需要根据具体需要进行选择。 优选地, 上述信令流程可以包括以下至少之一: 小区切换流程、 S1AP 地点报告 ( S1AP Location Report) 过程、 X2AP地点信息 (X2AP Location Information) 过程、 资源状态报告 (Resource Status Report) 过程、 移动性变更 (Mobility Change) 过程、 无线链路失败指示 (RLF Indication) 过程、 小区激活 (Cell Activation) 过程。 本优选实施例列举了一些典型的 HeNB在多小区应用场景下对应的信令流程。 在 具体实施过程中, 具有多个基站标识的 HeNB的应用实际上并不限于上述的流程。 下面结合实例对上述优选实施例进行详细说明。 下述实例以小区切换流程为例描述了具有多个基站标识的 HeNB在多小区场景下 的应用。 实例一 (参见图 4): 步骤 S402:在上电阶段,家庭基站 HeNB A根据静态配置或通过动态的选择方法, 选取服务网管系统(Serving HeMS, 简称为 SHeMS )。 HeNB A与 SHeMS之间建立可 靠连接。 SHeMS需要为 HeNB A进行设备身份及地点的认证, 认证通过后 SHeMS为 HeNB配置正常运行所需要的参数, 包括但不局限于:The HeNB establishes multiple control plane interface connections with the MME and/or the HeNB GW. However, when the HeNB establishes a transport layer connection with the MME and/or the HeNB GW, the transport layer connection established with the MME and/or the HeNB GW may be one. For multiple items, you need to choose according to your specific needs. Preferably, the signaling process may include at least one of the following: a cell handover procedure, an S1AP Location Report process, an X2AP Location Information process, a Resource Status Report process, and mobility. Mobility Change process, Radio Link Failure Indication (RLF Indication) process, Cell Activation process. The preferred embodiment enumerates the signaling flow corresponding to some typical HeNBs in a multi-cell application scenario. In a specific implementation process, an application of a HeNB having multiple base station identifiers is not actually limited to the foregoing process. The above preferred embodiments will be described in detail below with reference to examples. The following example uses the cell handover procedure as an example to describe the application of a HeNB with multiple base station identifiers in a multi-cell scenario. Example 1 (see FIG. 4): Step S402: In the power-on phase, the home base station HeNB A selects a Serving HeMS (referred to as SheeMS) according to a static configuration or a dynamic selection method. A reliable connection is established between HeNB A and SHeMS. The SHeMS needs to authenticate the device identity and location for the HeNB A. After the authentication is passed, the SHeMS configures the parameters required for the HeNB to operate normally, including but not limited to:
HeNB A需要连接的 HeNB GW或者是 MME的信息, 如设备标识、设备能力、传 输层地址 (IP地址, SCTP端口号) 等。 可以与 1¾^ 建立 2接口的(11 ^ 的信息, 如设备标识、 设备能力、传输层 地址等。 在本实施例中, 假设 HeNB B可以与 HeNB A建立 X2接口。 HeNB A可以建立的小区数目, 以及这些小区的小区标识 (Cell Identity) 及物理 小区标识 (Physical Cell Identity, PCI)、 频点、 功率等信息。 在本实施例中, 假设 HeNB A可以建立 3个小区, Cell Identity分别为 CID1, CID2, CID3。HeNB A needs to connect to the HeNB GW or MME information, such as device identification, device capability, transport layer address (IP address, SCTP port number), and so on. It is possible to establish 2 interfaces (11 ^ information, such as device identification, device capability, transport layer address, etc.). In this embodiment, it is assumed that HeNB B can establish an X2 interface with HeNB A. The number of cells that HeNB A can establish And the cell identity (Physical Cell Identity, PCI), frequency, power, and the like of the cells. In this embodiment, it is assumed that HeNB A can establish three cells, and the cell identity is CID1. , CID2, CID3.
HeNB A用来建立 SI及 X2接口的传输层地址 (IP地址, SCTP端口号)。 在本实 施例中, 分别为 S 1及 X2配置单独的 IP地址。 在具体实施过程中, 配置初始化参数的功能可以在多种功能实体上实现, 本实例 中选择用 SHeMS实现这项功能。 步骤 S404: HeNB A根据配置信息与选定 HeNB GW或 MME建立一条流控制传 输协议 (Stream Control Transmission Protocol, 简称为 SCTP) 连接, 并在此连接上发 起向选定 HeNB GW或 MME发起 SI Setup过程: 在 S 1 Setup Request消息中, HeNB A指示自己为家庭基站节点,并携带 3个 HeNBHeNB A is used to establish the transport layer address (IP address, SCTP port number) of the SI and X2 interfaces. In this embodiment, separate IP addresses are configured for S 1 and X 2 respectively. In the specific implementation process, the function of configuring initialization parameters can be implemented on multiple functional entities. In this example, SHeMS is selected to implement this function. Step S404: The HeNB A establishes a Stream Control Transmission Protocol (SCTP) connection with the selected HeNB GW or the MME according to the configuration information, and initiates an SI Setup procedure to the selected HeNB GW or MME on the connection. : In the S 1 Setup Request message, HeNB A indicates that it is a home base station node and carries three HeNBs.
ID, 分别等同与 CID1、 CID2及 CID3。ID, which is equivalent to CID1, CID2 and CID3 respectively.
HeNB GW或 MME收到上述消息后, 保存上述多个 HeNB ID与 HeNB A的对应 关系。 并向 HeNB A发送 SI Setup Response。 步骤 S406: HeNB A根据配置信息与 HeNB B建立一条 SCTP连接, 并在此连接 上发起 X2 Setup过程: 在 X2 Setup Request消息中, HeNB A指示自己为家庭基站节点,并携带 3个 HeNB ID, 分别等同与 CID1、 CID2及 CID3。 HeNB B收到上述消息后, 保存上述多个 HeNB ID与 HeNB A的对应关系。 并向 HeNB A发送 X2 Setup Response 如果 HeNB B本身也具有多个 CID, 此时也可以在 response中一起携带。 步骤 S408: 当发生面向 HeNB A的 SI或 X2切换时, UE在测量报告中所测量到 的 HeNB A小区的 Cell Identity (CID1 或 CID2 或 CID3 )。 源基站 Source e B/He B 根据测量报告判断需要为 UE发起切换, 并根据所报告的 Cell Identity填写 SI或 X2 切换信令 S1AP Handover Required中的 HeNB ID。 步骤 S410: 对于 SI切换, 如果 HeNB A是通过 HeNB GW连接到 MME, 此时 MME根据切换信令中的跟踪区标识(Tracking Area Identity, 简称为 TAI)选择 HeNB GW。 根据步骤 S404中获得的对应关系, 无论信令中携带的 HeNB ID为 CID1、 CID2 还是 CID3, HeNB GW或者与 HeNB A直接连接的 MME都会将信令路由到 HeNB A。 对于 X2切换, Source eNB/HeNB (e.g. HeNB B) 根据步骤 S206中获得的对应关 系, 无论信令中携带的 HeNB ID为 CID1、 CID2还是 CID3, HeNB B都会将信令路由 至 lj HeNB A。 HeNB A收到切换信令后执行后续 SI或 X2切换流程。 需要说明的是, 在 S1或者 X2接口上, 除了切换之外的流程, 在其他与小区相关 的流程中, 如 S1AP Location Report过程、 X2AP Location Information过程、 Resource Status Report过程、 Mobility Change过程、 RLF Indication过程、 Cell Activation过程, MME/HeNB GW或 HeNB B也需要根据流程相关小区的 Cell Identity, 将多个 Cell Identity ( CID1、 CID2及 CID3 ) 对应到 HeNB A上并发起流程。 实例二 (参见图 5 ): 本实例与实例一的区别在于, HeNB A与 HeNB GW/MME或 HeNB B之间仍然建 立一条 SCTP连接, HeNB A在此 SCTP上以不同 HeNB ID与 HeNB GW/MME和 HeNBAfter receiving the foregoing message, the HeNB GW or the MME stores the correspondence between the multiple HeNB IDs and the HeNB A. And send SI Setup Response to HeNB A. Step S406: HeNB A establishes an SCTP connection with HeNB B according to the configuration information, and initiates an X2 Setup procedure on the connection: In the X2 Setup Request message, HeNB A indicates that it is a home base station node and carries three HeNB IDs, respectively Equivalent to CID1, CID2 and CID3. After receiving the foregoing message, the HeNB B stores the correspondence between the plurality of HeNB IDs and the HeNB A. And sending X2 Setup Response to HeNB A. If HeNB B itself also has multiple CIDs, it can also be carried together in response at this time. Step S408: The Cell Identity (CID1 or CID2 or CID3) of the HeNB A cell measured by the UE in the measurement report when the SI or X2 handover to the HeNB A occurs. The source base station Source e B/He B determines that a handover needs to be initiated for the UE according to the measurement report, and fills in the HeNB ID in the SI or X2 handover signaling S1AP Handover Required according to the reported Cell Identity. Step S410: For the SI handover, if the HeNB A is connected to the MME through the HeNB GW, the MME selects the HeNB GW according to the Tracking Area Identity (TAI) in the handover signaling. According to the correspondence obtained in step S404, whether the HeNB ID carried in the signaling is CID1, CID2 or CID3, the HeNB GW or the MME directly connected to the HeNB A will route the signaling to the HeNB A. For the X2 handover, the source eNB/HeNB (eg HeNB B) according to the correspondence obtained in step S206, whether the HeNB ID carried in the signaling is CID1, CID2 or CID3, the HeNB B will route the signaling to the lj HeNB A. After receiving the handover signaling, HeNB A performs a subsequent SI or X2 handover procedure. It should be noted that, on the S1 or X2 interface, processes other than handover are in other cell-related processes, such as the S1AP Location Report process, the X2AP Location Information process, the Resource Status Report process, the Mobility Change process, and the RLF Indication. The process, the cell activation process, the MME/HeNB GW or the HeNB B also needs to associate multiple Cell Identitys (CID1, CID2, and CID3) to the HeNB A according to the Cell Identity of the process-related cell and initiate a process. Example 2 (see FIG. 5): The difference between this example and the first instance is that an SCTP connection is still established between the HeNB A and the HeNB GW/MME or the HeNB B, and the HeNB A has different HeNB IDs and HeNB GW/MMEs on the SCTP. And HeNB
B建立多条逻辑 SI或 X2接口。 步骤 S502: 与步骤 S402相同。 步骤 S504: HeNB A根据配置信息与选定 HeNB GW或 MME建立一条 SCTP连 接, 并在此连接上发起向选定 HeNB GW或 MME多次发起 SI Setup过程: 在每条 SI Setup Request消息中, HeNB A指示自己为家庭基站节点, 并在每条消 息中单独携带一个 HeNB ID, 分别等同与 CID1、 CID2及 CID3。B establishes multiple logical SI or X2 interfaces. Step S502: Same as step S402. Step S504: HeNB A establishes an SCTP connection with the selected HeNB GW or MME according to the configuration information, and initiates an SI Setup process to the selected HeNB GW or MME multiple times on the connection: In each SI Setup Request message, HeNB A indicates that it is a home base station node, and carries one HeNB ID in each message, which is equivalent to CID1, CID2, and CID3, respectively.
HeNB GW或 MME收到上述消息后, 保存上述每个 HeNB ID与 HeNB A的对应 关系。 并多次向 HeNB A发送 SI Setup Response。 步骤 S506: HeNB A根据配置信息与 HeNB B建立一条 SCTP连接, 并在此连接 上多次发起 X2 Setup过程: 在每条 X2 Setup Request消息中, HeNB A指示自己为家庭基站节点, 并在每条消 息中单独携带 1个 HeNB ID, 分别等同与 CID 1、 CID2及 CID3。After receiving the foregoing message, the HeNB GW or the MME stores the correspondence between each HeNB ID and HeNB A. And send SI Setup Response to HeNB A multiple times. Step S506: HeNB A establishes an SCTP connection with HeNB B according to the configuration information, and initiates an X2 Setup process multiple times on the connection: In each X2 Setup Request message, HeNB A indicates itself as a home base station node, and in each The message carries one HeNB ID separately, which is equivalent to CID 1, CID2 and CID3 respectively.
HeNB B收到上述消息后, 分别保存每个 HeNB ID与 HeNB A的对应关系。 并多 次向 HeNB A发送 X2 Setup Response。 如果 HeNB B本身也具有多个 CID, 此时也可 以在多条 response中分别携带。 步骤 508-S510: 与步骤 S408-S410相同。 实例三 (参见图 6): 此实例与实例二的区别在于, HeNB A与 HeNB GW/MME或 HeNB B之间建立多 条 SCTP连接, HeNB A在不同 SCTP连接上以不同 HeNB ID与 HeNB GW/MME和 HeNB B建立多条逻辑 SI或 X2接口。 步骤 S602: 与步骤 S402基本相同, 区别在于 SHeMS需要为 HeNB A配置多个用 来建立 S 1及 X2接口的传输层地址 ( IP地址, SCTP端口号)。 步骤 S604: HeNB A根据配置信息与选定 HeNB GW或 MME建立多条 SCTP连 接, 并在每条连接上发起向选定 HeNB GW或 MME的 SI Setup过程: 在每条 SI Setup Request消息中, HeNB A指示自己为家庭基站节点, 并在每条消 息中单独携带一个 HeNB ID。 不同的 SCTP连接上建立的 S1接口分别等同与 CID1、 CID2及 CID3。After receiving the above message, HeNB B stores the correspondence between each HeNB ID and HeNB A. And send X2 Setup Response to HeNB A multiple times. If the HeNB B itself also has multiple CIDs, it can also be carried in multiple responses at this time. Steps 508-S510: The same as steps S408-S410. Example 3 (see FIG. 6): This example differs from the second embodiment in that HeNB A establishes multiple SCTP connections with HeNB GW/MME or HeNB B, and HeNB A uses different HeNB IDs and HeNB GWs on different SCTP connections. The MME and HeNB B establish multiple logical SI or X2 interfaces. Step S602: Basically the same as step S402, the difference is that the SHeMS needs to configure multiple transport layer addresses (IP addresses, SCTP port numbers) for the HeNB A to establish the S1 and X2 interfaces. Step S604: HeNB A establishes multiple SCTP connections with the selected HeNB GW or MME according to the configuration information, and initiates an SI Setup procedure to the selected HeNB GW or MME on each connection: In each SI Setup Request message, HeNB A indicates that it is a home base station node and carries a single HeNB ID in each message. The S1 interfaces established on different SCTP connections are equivalent to CID1, CID2 and CID3 respectively.
HeNB GW或 MME收到上述消息后, 保存上述每个 HeNB ID及 SCTP连接与 HeNB A的对应关系。 并在每条 SCTP连接上分别向 HeNB A发送 SI Setup Response。 步骤 S606: HeNB A根据配置信息与 HeNB B建立一条 SCTP连接, 并在此连接 上多次发起 X2 Setup过程: 在每条 X2 Setup Request消息中, He B A指示自己为家庭基站节点, 并在每条消 息中单独携带 1个 HeNB ID, 分别等同与 CID 1、 CID2及 CID3。After receiving the above message, the HeNB GW or the MME stores the correspondence between each HeNB ID and the SCTP connection and the HeNB A. And sending SI Setup Response to HeNB A on each SCTP connection. Step S606: HeNB A establishes an SCTP connection with HeNB B according to the configuration information, and initiates an X2 Setup process multiple times on the connection: In each X2 Setup Request message, He BA indicates that it is a home base station node, and carries one HeNB ID in each message, which is equivalent to CID 1, CID2 and CID3 respectively.
HeNB B收到上述消息后, 分别保存每个 HeNB ID与 HeNB A的对应关系。 并多 次向 HeNB A发送 X2 Setup Response。 如果 HeNB B本身也具有多个 CID, 需要在不 同的连接上发送 response分别携带。 步骤 S608: 与步骤 S408相同。 步骤 S610:与步骤 S410相同,此时 HeNB GW/MME根据信令中携带的 HeNB ID 选择不同的 SCTP连接并发送相关信令。 图 7是根据本发明实施例的家庭基站标识装置的结构框图。 如图 7所示, 根据本 发明实施例的家庭基站标识装置包括: 多重标识模块 72, 设置为为 HeNB配置多个基站标识; 流程完成模块 74,连接至多重标识模块 72, 设置为根据上述多个基站标识完成该 HeNB在多小区场景下对应的信令流程。 本实施例提供的装置会为一个 HeNB配置多个基站标识, 使得 HeNB可以建立多 个小区, 从而支持了多小区的场景。 这样, 在应用例如干扰控制技术或者载波聚合技 术等需要多小区支持的技术时, 就不会出现像邻接基站无法正确填写信令路由中所需 要的 HeNB ID之类的问题,使得 HeNB在多小区场景下的各项信令流程都可以顺利的 完成, 增加了 HeNB可以实现的功能。 需要说明的是, 本实施例提供的家庭基站标识装置是一种逻辑意义上的装置, 其 包含的各个模块在功能上是互相联系、相互支持的, 从而构成了该家庭基站标识装置, 从物理角度来看, 各个模块可能会位于不同的功能实体上, 但这并不影响其共同构成 家庭基站标识装置。 优选地, 根据本发明实施例的家庭基站标识装置还可以进一步包括: 小区建立模块, 连接至多重标识模块 72及流程完成模块 74, 设置为控制 HeNB 建立多个小区, 该多个小区对应于上述多个基站标识, 每个小区的小区标识与该小区 对应的基站标识相同。 一个 HeNB配置了多个基站标识之后, 该 HeNB就具备了建立多个小区的基础, 小区建立模块即可控制该 HeNB建立多个小区。 在建立多个小区时要求多个基站标识 对应于该基站所建立的多个小区, 即基站标识与小区一一对应, 每个小区的小区标识 与该小区对应的基站标识相同。 这样, 建立的各个小区就可以以唯一确定的身份参加 到后续的各种信令流程中去了。 优选地, 流程完成模块 74可以进一步包括: 标识提供单元,设置为将上述多个基站标识提供给 MME和 /或 HeNB GW和 /或邻 接基站; 接口连接单元,设置为控制 HeNB与 MME和 /或 HeNB GW和 /或邻接基站建立多 条控制面接口连接。 标识提供单元可以将 HeNB的多个基站标识通知其他功能实体(主要是指 MME、 HeNB GW 邻接基站), 对应于不同的信令流程需要通知的实体可能是 MME、 HeNB GW、 邻接基站中的一个或几个, 对于有多个实体要通知的情况, 通知的方式可能是 同时通知(在流程的同一个步骤中通知), 也可能是分别通知(在流程的不同步骤中通 知)。 在 MME禾 P/或 HeNB GW和 /或邻接基站获知了 HeNB的多个基站标识之后, 接 口连接单元即可控制 HeNB与 MME和 /或 HeNB GW和 /或邻接基站建立多条控制面接 口 (S1或 X2) 连接, 作为后续信令交互的通道。 优选地, 流程完成模块 74还可以进一步包括: 传输连接单元, 设置为控制 HeNB与 MME和 /或 HeNB GW建立一条或多条传输 层连接。 传输连接单元主要负责控制 HeNB与 MME和 /或 HeNB GW建立传输层连接。 HeNB与 MME禾口 /或 HeNB GW建立了多条控制面接口连接, 但在 HeNB与 MME禾口 / 或 HeNB GW建立传输层连接时, 与 MME和 /或 HeNB GW建立的传输层连接可以为 一条也可以为多条, 需要根据具体需要进行选择。 优选地, 上述信令流程可以包括以下至少之一: 小区切换流程、 S1AP Location Report过程、 X2AP Location Information过程、 Resource Status Report过程、 Mobility Change过程、 RLF Indication过程、 Cell Activation过程。 本优选实施例列举了一些典型的 HeNB在多小区应用场景下对应的信令流程。 在 具体实施过程中, 具有多个基站标识的 HeNB的应用实际上并不限于上述的流程。 从以上的描述中, 可以看出, 本发明实施例提供的技术方案使得 HeNB可以建立 多个小区, 从而支持了多小区的场景。 在应用例如干扰控制技术或者载波聚合技术等 需要多小区支持的技术时, 避免了像邻接基站无法正确填写信令路由中所需要的 HeNB ID之类问题的出现, 使得 HeNB在多小区场景下的各项信令流程都可以顺利的 完成, 增加了 HeNB可以实现的功能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。After receiving the above message, HeNB B stores the correspondence between each HeNB ID and HeNB A. And send X2 Setup Response to HeNB A multiple times. If HeNB B itself also has multiple CIDs, it needs to send responses on different connections to carry them respectively. Step S608: Same as step S408. Step S610: Same as step S410, at this time, the HeNB GW/MME selects different SCTP connections according to the HeNB ID carried in the signaling and transmits related signaling. FIG. 7 is a structural block diagram of a home base station identification apparatus according to an embodiment of the present invention. As shown in FIG. 7, the home base station identification apparatus according to the embodiment of the present invention includes: a multiple identity module 72, configured to configure a plurality of base station identifiers for the HeNB; and a process completion module 74 connected to the multiple identity module 72, configured to The base station identifier completes the signaling flow corresponding to the HeNB in the multi-cell scenario. The device provided in this embodiment configures multiple base station identifiers for one HeNB, so that the HeNB can establish multiple cells, thereby supporting a scenario of multiple cells. In this way, when a technology requiring multi-cell support such as interference control technology or carrier aggregation technology is applied, there is no problem that the neighboring base station cannot correctly fill in the HeNB ID required in the signaling route, so that the HeNB is in the multi-cell. The signaling processes in the scenario can be successfully completed, and the functions that the HeNB can implement are added. It should be noted that the home base station identifier device provided in this embodiment is a logical device, and each module included in the function is mutually connected and mutually supported, thereby constituting the home base station identifier device, from the physical From a perspective, each module may be located on a different functional entity, but this does not affect the mutual formation of the home base station identification device. Preferably, the home base station identification apparatus according to the embodiment of the present invention may further include: a cell establishment module, connected to the multiple identity module 72 and the process completion module 74, configured to control the HeNB to establish a plurality of cells, where the multiple cells correspond to the foregoing A plurality of base station identifiers, where the cell identifier of each cell is the same as the base station identifier corresponding to the cell. After a HeNB is configured with multiple base station identifiers, the HeNB has a basis for establishing multiple cells, and the cell establishment module can control the HeNB to establish multiple cells. Multiple base station identifications are required when establishing multiple cells Corresponding to the multiple cells established by the base station, that is, the base station identifiers are in one-to-one correspondence with the cells, and the cell identifier of each cell is the same as the base station identifier corresponding to the cell. In this way, each established cell can participate in the subsequent various signaling processes with a uniquely determined identity. Preferably, the process completion module 74 may further include: an identifier providing unit configured to provide the plurality of base station identifiers to the MME and/or the HeNB GW and/or the neighboring base station; and an interface connecting unit configured to control the HeNB and the MME and/or The HeNB GW and/or the neighboring base station establish multiple control plane interface connections. The identifier providing unit may notify the other functional entities (mainly the MME, the HeNB GW neighboring base station) of the multiple base station identifiers of the HeNB, and the entity that needs to be notified corresponding to different signaling procedures may be one of the MME, the HeNB GW, and the adjacent base station. Or several, for cases where there are multiple entities to be notified, the notification may be by simultaneous notification (notification in the same step of the process) or separately (in the different steps of the process). After the MME and/or the HeNB GW and/or the neighboring base station learn the plurality of base station identifiers of the HeNB, the interface connection unit can control the HeNB to establish multiple control plane interfaces with the MME and/or the HeNB GW and/or the adjacent base station (S1). Or X2) connection, as a channel for subsequent signaling interactions. Preferably, the process completion module 74 may further include: a transmission connection unit, configured to control the HeNB to establish one or more transport layer connections with the MME and/or the HeNB GW. The transmission connection unit is mainly responsible for controlling the HeNB to establish a transport layer connection with the MME and/or the HeNB GW. The HeNB establishes multiple control plane interface connections with the MME and/or the HeNB GW. However, when the HeNB establishes a transport layer connection with the MME and/or the HeNB GW, the transport layer connection established with the MME and/or the HeNB GW may be one. It can also be multiple, and needs to be selected according to specific needs. Preferably, the foregoing signaling procedure may include at least one of the following: a cell handover procedure, an S1AP Location Report procedure, an X2AP Location Information procedure, a Resource Status Report procedure, a Mobility Change procedure, an RLF Indication procedure, and a Cell Activation procedure. The preferred embodiment enumerates the signaling flow corresponding to some typical HeNBs in a multi-cell application scenario. In a specific implementation process, an application of a HeNB having multiple base station identifiers is not actually limited to the foregoing process. From the above description, it can be seen that the technical solution provided by the embodiment of the present invention enables the HeNB to establish multiple cells, thereby supporting a scenario of multiple cells. When a technology that requires multi-cell support, such as an interference control technology or a carrier aggregation technology, is applied, the problem that the neighboring base station cannot correctly fill in the HeNB ID required in the signaling route is avoided, so that the HeNB is in a multi-cell scenario. Each signaling process can be successfully completed, and the functions that HeNB can implement are added. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.