本発明の画像認証装置において、さらに、予め定めた基準に基づき、前記所属クラスター決定手段が選択したクラスターを中心としたクラスター範囲を類似度計算の対象として決定するクラスター範囲決定手段を含み、前記第1の類似度計算手段が、前記判定対象画像と前記決定されたクラスター範囲内の登録画像との類似度計算を実施する類似度計算手段であることが好ましい。同様に、本発明の画像認証方法において、さらに、予め定めた基準に基づき、前記所属クラスター決定工程で選択されたクラスターを中心としたクラスター範囲を類似度計算の対象として決定するクラスター範囲決定工程を含み、前記第1の類似度計算工程が、前記判定対象画像と前記決定されたクラスター範囲内の登録画像との類似度計算を実施する類似度計算工程であることが好ましい。The image authentication apparatus of the present invention further includes a cluster range determination unit that determines a cluster range centered on a cluster selected by the cluster determination unit based on a predetermined criterion as a target of similarity calculation, It is preferable that one similarity calculation unit is a similarity calculation unit that performs similarity calculation between the determination target image and the registered image within the determined cluster range. Similarly, in the image authentication method of the present invention, a cluster range determination step for determining a cluster range centered on the cluster selected in the belonging cluster determination step as a target for similarity calculation based on a predetermined criterion. Preferably, the first similarity calculation step is a similarity calculation step of calculating a similarity between the determination target image and the registered image within the determined cluster range.
本発明の画像認証装置において、さらに、複数の特徴空間作製用画像を用いて特徴空間を作製する特徴空間作製手段と、前記特徴空間作製用画像を前記特徴空間へ写像することにより特徴量を抽出し、前記特徴空間において、前記特徴量を基に、各クラスターを形成するクラスター作製手段と、複数の登録画像から特徴量データを抽出し、前記特徴量データを基に、前記特徴空間における複数のクラスターのいずれか一つに前記登録画像を登録する登録手段とを含むことが好ましい。同様に、本発明の画像認証方法において、さらに、複数の特徴空間作製用画像を用いて特徴空間を作製する特徴空間作製工程と、前記特徴空間作製用画像を前記特徴空間に写像することにより特徴量を抽出し、前記特徴空間において、前記特徴量を基に、各クラスターを形成するクラスター作製工程と、複数の登録画像から特徴量データを抽出し、前記特徴量データを基に、前記特徴空間における複数のクラスターのいずれか一つに前記登録画像を登録する登録工程とを含むことが好ましい。In the image authentication apparatus of the present invention, a feature space creating means for creating a feature space using a plurality of feature space creation images, and feature quantities are extracted by mapping the feature space creation image to the feature space In the feature space, based on the feature amount, cluster creation means for forming each cluster, and feature amount data is extracted from a plurality of registered images, and on the basis of the feature amount data, a plurality of feature spaces in the feature space are extracted. It is preferable that registration means for registering the registration image in any one of the clusters is included. Similarly, in the image authentication method of the present invention, a feature space creation step of creating a feature space using a plurality of feature space creation images, and a feature space mapping to the feature space A feature is extracted, and in the feature space, a cluster creation step for forming each cluster based on the feature value, feature value data is extracted from a plurality of registered images, and the feature space is based on the feature value data. And a registration step of registering the registration image in any one of the plurality of clusters.
本発明の画像認証装置において、さらに、予め定めた基準に基づき、前記各クラスター毎に類似度計算の対象となるクラスターの範囲を、クラスター単位で作製するクラスター範囲作製手段を含むことが好ましい。同様に、本発明の画像認証方法において、さらに、予め定めた基準に基づき、前記各クラスター毎に類似度計算の対象となるクラスターの範囲を、クラスター単位で作製するクラスター範囲作製工程を含むことが好ましい。In the image authentication apparatus of the present invention, it is preferable that the image authentication apparatus further includes a cluster range creating means for creating a cluster range, which is a target of similarity calculation, for each cluster based on a predetermined criterion. Similarly, the image authentication method of the present invention may further include a cluster range creation step of creating a cluster range to be subjected to similarity calculation for each cluster based on a predetermined criterion in cluster units. preferable.
本発明の画像認証装置では、さらに、前記第1の類似度計算手段が実施する前記類似度計算とは異なる類似度計算を実施する第2の類似度計算手段と、前記第1の類似度計算手段による計算結果、および前記第2の類似度計算手段による計算結果を統合して、類似度を判定する統合判定手段とを含むことが好ましい。同様に、本発明の画像認証方法では、さらに、前記第1の類似度計算工程において実施される類似度計算とは異なる類似度計算を実施する第2の類似度計算工程と、前記第1の類似度計算工程の計算結果、および前記第2の類似度計算工程の計算結果を統合して、類似度を判定する統合判定工程とを含むことが好ましい。In the image authentication apparatus of the present invention, further, second similarity calculation means for performing similarity calculation different from the similarity calculation performed by the first similarity calculation means, and the first similarity calculation It is preferable that the calculation result by the means and the calculation result by the second similarity calculation means are integrated to determine the similarity. Similarly, in the image authentication method of the present invention, the second similarity calculation step for performing similarity calculation different from the similarity calculation performed in the first similarity calculation step, It is preferable to include an integrated determination step of determining a similarity by integrating the calculation result of the similarity calculation step and the calculation result of the second similarity calculation step.
本発明の画像認証装置において、前記特徴空間作製手段が、ニューラルネットワーク(Neural Network)を含むことが好ましい。同様に、本発明の画像認証方法において、前記特徴空間作製工程が、ニューラルネットワークにより実施されることが好ましい。In the image authentication apparatus according to the present invention, it is preferable that the feature space creating means includes a neural network (Neural Network). Similarly, in the image authentication method of the present invention, it is preferable that the feature space creation step is performed by a neural network.
本発明の画像認証装置および画像認証方法において、前記画像は、例えば、顔画像でもよい。前記画像は、例えば、判定対象画像、登録画像、特徴空間作製用画像等があげられる。In the image authentication device and the image authentication method of the present invention, the image may be a face image, for example. Examples of the image include a determination target image, a registered image, and a feature space creation image.
つぎに、本発明の画像認証装置、画像認証方法、プログラムおよび記録媒体について、例をあげて説明する。ただし、本発明は、下記の例に限定されない。なお、以下の図1から図13において、同一部分には、同一符号を付している。Next, an image authentication apparatus, an image authentication method, a program, and a recording medium according to the present invention will be described with examples. However, the present invention is not limited to the following examples. In addition, in the following FIGS. 1 to 13, the same reference numerals are given to the same portions.
(実施形態1)
図1に、本実施形態における画像認証装置のブロック図を示す。本実施形態の画像認証装置1は、所属クラスター決定手段21および第1の類似度計算手段33を主要な構成要素として含む。所属クラスター決定手段21は、第1の類似度計算手段33と接続している。第1の類似度計算手段33は、判定手段34と接続している。判定手段34は、任意の構成要素であり、有さなくともよいが、有することが好ましい。所属クラスター決定手段21、第1の類似度計算手段33および判定手段34の各部は、例えば、専用のハードウェア(例えば、中央処理装置(CPU)等)を用いて構成することも可能であるし、ソフトウェア処理によってコンピュータ上に実現することも可能である。本実施形態の画像認証装置では、事前に作製された特徴空間およびクラスターを用いる。前記特徴空間は、例えば、後述の実施形態3の特徴空間作製工程により作製できるが、これに限定されるものではなく、いかなる方法で作製されたものであってもよい。前記クラスターは、複数の登録画像から特徴量データを抽出し、前記特徴量データを基に、前記特徴空間において、類似する画像をグループ分けして複数形成される。具体的には、前記クラスターは、例えば、後述の実施形態3のクラスター作製工程により作製できるが、これに限定されるものではなく、いかなる方法で作製されたものであってもよい。(Embodiment 1)
FIG. 1 is a block diagram of an image authentication apparatus according to this embodiment. Theimage authentication apparatus 1 according to the present embodiment includes a belongingcluster determination unit 21 and a firstsimilarity calculation unit 33 as main components. The affiliationcluster determination unit 21 is connected to the firstsimilarity calculation unit 33. The firstsimilarity calculation unit 33 is connected to thedetermination unit 34. Thedetermination unit 34 is an arbitrary component and may or may not be included. Each unit of the affiliationcluster determination unit 21, the firstsimilarity calculation unit 33, and thedetermination unit 34 may be configured using, for example, dedicated hardware (for example, a central processing unit (CPU)). It can also be realized on a computer by software processing. In the image authentication apparatus of the present embodiment, feature spaces and clusters created in advance are used. The feature space can be produced by, for example, a feature space production process of the third embodiment described later, but is not limited to this, and may be produced by any method. The cluster is formed by extracting feature amount data from a plurality of registered images and grouping similar images into groups in the feature space based on the feature amount data. Specifically, the cluster can be produced by, for example, a cluster production process of Embodiment 3 to be described later, but is not limited to this, and may be produced by any method.
以下、前記画像が顔画像である場合を例にとり、本実施形態の画像認証装置および画像認証方法について、さらに詳細に説明する。Hereinafter, taking the case where the image is a face image as an example, the image authentication apparatus and the image authentication method of the present embodiment will be described in more detail.
所属クラスター決定工程
図2の模式図に、所属クラスター決定工程の一例を示す。所属クラスター決定手段21は、判定対象画像から抽出した特徴量データを基に、特徴空間(本例においては、顔特徴空間)における複数のクラスターの中から、前記判定対象画像が所属するクラスターを一つ選択する。図2においては、中年女性の判定対象画像A11の所属するクラスターとして、中年女性の登録画像Aおよび若い女性の登録画像Bが格納されたクラスターが選択されている。Affiliation Cluster Determination Process An example of thebelonging cluster determination process is shown in the schematic diagram of FIG. Based on the feature amount data extracted from the determination target image, the affiliationcluster determination unit 21 selects a cluster to which the determination target image belongs from a plurality of clusters in the feature space (in this example, the face feature space). Select one. In FIG. 2, a cluster storing a registered image A of a middle-aged woman and a registered image B of a young woman is selected as a cluster to which the determination target image A11 of a middle-aged woman belongs.
第1の類似度計算工程
つぎに、第1の類似度計算手段33は、前記所属クラスター決定工程で選択された前記クラスター内における前記登録画像と、前記判定対象画像との類似度計算を実施する。前記類似度計算は、例えば、前記顔特徴空間上における距離(例えば、ユークリッド距離等)を用いて計算する方法等、従来公知の方法を適用できる。図3の模式図に、本工程の一例を示す。図3においては、判定対象画像A11と、前記クラスター内に含まれる登録画像のうち、登録画像AおよびBとの類似度計算を代表として示している。前記類似度計算の結果、判定手段34により、前記登録画像Aが、前記判定対象画像A11との類似度が最も大きいと判定され、前記判定対象画像A11は、前記登録画像Aと同一人物のもの(顔画像)であると認証される。このように、前記類似度計算を実施する範囲を前記クラスター内の登録画像に絞り込むことで、本実施形態の画像認証装置は、認証処理量を削減し、認証を短時間で実施可能である。First Similarity Calculation Step Next, the first similarity calculation means 33 performs similarity calculation between the registered image in the cluster selected in the cluster determination step and the determination target image. . For the similarity calculation, a conventionally known method such as a method using a distance (for example, Euclidean distance) in the face feature space can be applied. An example of this process is shown in the schematic diagram of FIG. In FIG. 3, the similarity calculation between the determination target image A11 and the registered images A and B among the registered images included in the cluster is shown as a representative. As a result of the similarity calculation, thedetermination unit 34 determines that the registered image A has the highest similarity with the determination target image A11, and the determination target image A11 belongs to the same person as the registration image A. It is authenticated as (face image). As described above, by narrowing the range for performing the similarity calculation to the registered images in the cluster, the image authentication apparatus of the present embodiment can reduce the authentication processing amount and can perform authentication in a short time.
(実施形態2)
図4のブロック図に、本発明の画像認証装置の別の構成を示す。図4に示すとおり、この画像認証装置200は、さらに、クラスター範囲決定手段32を含むこと以外、図1に示す画像認証装置1と同様の構成である。クラスター範囲決定手段32は、所属クラスター決定手段21および第1の類似度計算手段33との間に位置し、これらと接続している。(Embodiment 2)
The block diagram of FIG. 4 shows another configuration of the image authentication apparatus of the present invention. As shown in FIG. 4, the image authentication device 200 has the same configuration as theimage authentication device 1 shown in FIG. 1 except that it further includes a clusterrange determination unit 32. The clusterrange determination unit 32 is located between the belongingcluster determination unit 21 and the firstsimilarity calculation unit 33 and is connected to them.
クラスター範囲決定工程
図5の模式図に、クラスター範囲決定工程の一例を示す。本例では、判定対象画像A12取得時の眉の形が、実施形態1における判定対象画像A11とは異なっている。このため、前記所属クラスター決定工程において、前記判定対象画像A12の所属するクラスターとして、前記登録画像AおよびBが格納されたクラスターではなく、それに最近接のクラスターが選択されている。前記クラスター範囲決定工程では、クラスター範囲決定手段32が、予め定めた基準に基づき、前記所属クラスター決定工程で選択されたクラスターを中心としたクラスター範囲を類似度計算の対象として決定する。具体的には、例えば、類似度計算の対象となるデータ数が、ユーザの設定した数に達するまで、近いクラスターを類似度計算の対象に加えていくことにより、前記クラスター範囲を決定する。図5においては、破線で囲まれた範囲に含まれるクラスターを、前記クラスター範囲として決定している。Cluster Range Determination Step An example of thecluster range determination step is shown in the schematic diagram of FIG. In this example, the shape of the eyebrows when the determination target image A12 is acquired is different from the determination target image A11 in the first embodiment. For this reason, in the affiliation cluster determination step, as the cluster to which the determination target image A12 belongs, not the cluster in which the registered images A and B are stored, but the nearest cluster is selected. In the cluster range determining step, the clusterrange determining means 32 determines a cluster range centered on the cluster selected in the belonging cluster determining step as a target for similarity calculation based on a predetermined criterion. Specifically, for example, the cluster range is determined by adding close clusters to the similarity calculation target until the number of data that is the target of similarity calculation reaches the number set by the user. In FIG. 5, a cluster included in a range surrounded by a broken line is determined as the cluster range.
第1の類似度計算工程
つぎに、第1の類似度計算手段33が、前記決定されたクラスター範囲内における前記登録画像と、前記判定対象画像との類似度計算を実施する。前記類似度計算は、例えば、従来公知の方法を適用できる。図6の模式図に、本工程の別の例を示す。図6においては、判定対象画像A12と、前記クラスター範囲内に含まれる登録画像のうち、登録画像AおよびBとの類似度計算を代表として示している。前記類似度計算の結果、判定手段34により、前記登録画像Aが、前記判定対象画像A12との類似度が最も大きいと判定され、前記判定対象画像A12は、登録画像Aと同一人物のもの(顔画像)であると認証される。このように、前記類似度計算を実施する範囲を前記クラスター範囲内の登録画像に絞り込むことで、本実施形態の画像認証装置は、認証処理量を削減し、認証を短時間で実施可能である。First Similarity Calculation Step Next, the first similarity calculation means 33 performs similarity calculation between the registered image and the determination target image within the determined cluster range. For example, a conventionally known method can be applied to the similarity calculation. Another example of this process is shown in the schematic diagram of FIG. In FIG. 6, the similarity calculation between the determination target image A12 and the registered images A and B among the registered images included in the cluster range is shown as a representative. As a result of the similarity calculation, thedetermination unit 34 determines that the registered image A has the highest similarity with the determination target image A12, and the determination target image A12 is of the same person as the registration image A ( Face image). As described above, by narrowing the range in which the similarity calculation is performed to the registered images within the cluster range, the image authentication apparatus according to the present embodiment can reduce the authentication processing amount and perform the authentication in a short time. .
(実施形態3)
図7のブロック図に、本発明の画像認証装置のさらに別の構成を示す。図7に示すとおり、この画像認証装置300は、さらに、特徴空間作製手段10、クラスター作製手段11および特徴空間への写像手段20(以下、「写像手段20」という。)を含むこと以外、図1に示す画像認証装置1と同様の構成である。本実施形態の画像認証装置では、写像手段20および所属クラスター決定手段21により、登録手段が構成される。ただし、前記登録手段は、例示に過ぎない。本発明において、前記登録手段は、後述の登録工程を実施可能なものであれば、いかなる構成であってもよい。また、本実施形態の画像認証装置では、写像手段20、所属クラスター決定手段21、第1の類似度計算手段33および判定手段34により、認証手段が構成される。前記認証手段において、写像手段20および判定手段34は、任意の構成要素であり、有さなくともよいが、有することが好ましい。図7においては、前記登録手段および前記認証手段が、写像手段20および所属クラスター決定手段21を共用する場合を示したが、前記登録手段および前記認証手段は、例えば、写像手段20および所属クラスター決定手段21を別個に有してもよい。この場合には、画像認証装置300は、例えば、写像手段20および所属クラスター決定手段21を、それぞれ、2つ有することとなる。特徴空間作製手段10は、画像認証装置300の外部に設けられた特徴空間作製用画像データベース(DB)40およびクラスター作製手段11と接続している。特徴空間作製用画像DB40には、予め取得された複数の特徴空間作製用画像が格納されている。写像手段20は、画像認証装置300の外部に設けられた登録画像DB50および所属クラスター決定手段21と接続している。登録画像DB50には、予め取得された複数の登録画像が格納されている。特徴空間作製用画像DB40および登録画像DB50は、画像認証装置300の内部に組み込まれていてもよい。特徴空間作製手段10、クラスター作製手段11、写像手段20、所属クラスター決定手段21、第1の類似度計算手段33および判定手段34の各部は、専用のハードウェア(例えば、中央処理装置(CPU)等)を用いて構成することも可能であるし、ソフトウェア処理によってコンピュータ上に実現することも可能である。(Embodiment 3)
FIG. 7 is a block diagram showing still another configuration of the image authentication apparatus of the present invention. As shown in FIG. 7, the image authentication apparatus 300 further includes a featurespace creating unit 10, acluster creating unit 11, and amapping unit 20 to the feature space (hereinafter referred to as “mappingunit 20”). 1 is the same configuration as theimage authentication apparatus 1 shown in FIG. In the image authentication apparatus of this embodiment, themapping unit 20 and the assignedcluster determination unit 21 constitute a registration unit. However, the registration means is merely an example. In the present invention, the registration means may have any configuration as long as it can perform the registration process described later. In the image authentication apparatus according to the present embodiment, themapping unit 20, the belongingcluster determination unit 21, the firstsimilarity calculation unit 33, and thedetermination unit 34 constitute an authentication unit. In the authentication unit, themapping unit 20 and thedetermination unit 34 are optional components and may or may not be included. Although FIG. 7 shows a case where the registration unit and the authentication unit share themapping unit 20 and the belongingcluster determination unit 21, the registration unit and the authentication unit include, for example, themapping unit 20 and the belonging cluster determination unit. The means 21 may be provided separately. In this case, the image authentication apparatus 300 includes, for example, twomapping units 20 and belongingcluster determination units 21, respectively. The featurespace creating means 10 is connected to the feature space creating image database (DB) 40 and the cluster creating means 11 provided outside the image authentication apparatus 300. The feature spacecreation image DB 40 stores a plurality of feature space creation images acquired in advance. Themapping unit 20 is connected to a registeredimage DB 50 and an assignedcluster determination unit 21 provided outside the image authentication apparatus 300. The registeredimage DB 50 stores a plurality of registered images acquired in advance. The feature spacecreation image DB 40 and the registeredimage DB 50 may be incorporated in the image authentication apparatus 300. Each part of the featurespace creating unit 10, thecluster creating unit 11, themapping unit 20, the belongingcluster determining unit 21, the firstsimilarity calculating unit 33, and the determiningunit 34 includes dedicated hardware (for example, a central processing unit (CPU)). Etc.) and can be realized on a computer by software processing.
以下、前記画像が顔画像である場合を例にとり、本実施形態の画像認証装置および画像認証方法について、さらに詳細に説明する。Hereinafter, taking the case where the image is a face image as an example, the image authentication apparatus and the image authentication method of the present embodiment will be described in more detail.
特徴空間作製工程
特徴空間作製手段10は、特徴空間作製用画像DB40に格納された複数の特徴空間作製用画像を用いて特徴空間を作製する。Feature space creation step The feature space creation means 10 creates a feature space using a plurality of feature space creation images stored in the feature spacecreation image DB 40.
クラスター作製工程
クラスター作製手段11は、前記特徴空間作製用画像を前記特徴空間へ写像することにより特徴量を抽出し、前記特徴空間において、前記特徴量を基に、各クラスターを形成する。Cluster production step The cluster production means 11 extracts the feature quantity by mapping the feature space production image onto the feature space, and forms each cluster in the feature space based on the feature quantity.
図8の模式図に、前記特徴空間作製工程および前記クラスター作製工程の一例を示す。まず、これらの工程に先立ち、特徴空間作製用画像DB40を予め準備しておく。特徴空間作製用画像DB40は、例えば、インターネット上で公開されている公開DB(本例においては、複数の人物の顔画像が格納された公開DB)を用いてもよいし、実験室等で複数の特徴空間作製用画像(本例においては、判定対象となる複数の人物の顔画像)を予め取得することで作製してもよいし、画像認証を行う現場で複数の特徴空間作製用画像を予め取得することで作製してもよい。前記特徴空間に含ませる人数は、特に制限されず、例えば、数千~数百万人の範囲である。図8においては、中年の女性の特徴空間作製用画像(A1およびA2)、若い女性の特徴空間作製用画像(B1およびB2)、中年の男性の特徴空間作製用画像(C1およびC2)、および高齢の男性の特徴空間作製用画像(D1およびD2)を代表として示している。例えば、実験室等で特徴空間作製用画像DB40を予め作製しておく場合、画像認証を行う現場での判定対象画像の取得環境を考慮して、図8に示すように、同一人物の特徴空間作製用画像を、撮影条件を変えて複数取得しておくことが好ましい。図8においては、明るい環境(A1、B1、C1およびD1)および暗い環境(A2、B2、C2およびD2)で特徴空間作製用画像を取得した例を示したが、これ以外にも、例えば、照明の色、照明の強度、人物の撮影角度(顔の向き)等の条件を変えてもよい。FIG. 8 is a schematic diagram illustrating an example of the feature space manufacturing process and the cluster manufacturing process. First, prior to these steps, a feature spacecreation image DB 40 is prepared in advance. As the feature spacecreation image DB 40, for example, a public DB published on the Internet (in this example, a public DB storing a plurality of person's face images) may be used. The feature space creation image (in this example, a plurality of human face images to be determined) may be created in advance, or a plurality of feature space creation images may be created at the site where image authentication is performed. You may produce by acquiring beforehand. The number of persons included in the feature space is not particularly limited and is, for example, in the range of thousands to millions. In FIG. 8, feature space creation images (A1 and A2) for middle-aged women, feature space creation images for young women (B1 and B2), and feature space creation images for middle-aged men (C1 and C2). , And an image (D1 and D2) for producing a feature space of an elderly man. For example, when the feature spacecreation image DB 40 is created in advance in a laboratory or the like, the feature space of the same person is taken into consideration as shown in FIG. It is preferable to obtain a plurality of production images by changing the shooting conditions. In FIG. 8, although the example which acquired the image for feature space production in the bright environment (A1, B1, C1, and D1) and the dark environment (A2, B2, C2, and D2) was shown, in addition to this, for example, Conditions such as the color of illumination, the intensity of illumination, and the shooting angle (face orientation) of a person may be changed.
つぎに、特徴空間作製手段10により、複数の特徴空間作製用画像を用いて特徴空間(本例においては、顔特徴空間)を作製する。具体的には、例えば、同一人物の画像同士は近距離に集合させ、異なる人物の画像同士は遠距離に分離させることで、顔特徴空間を作製する。前記顔特徴空間の作製は、従来公知の方法を適用可能であり、例えば、ニューラルネットワーク(Neural Network)、線形判別分析(LDA)等の手法を適用できる。Next, the feature space creation means 10 creates a feature space (in this example, a face feature space) using a plurality of feature space creation images. Specifically, for example, the facial feature space is created by collecting images of the same person at a short distance and separating images of different persons at a long distance. For the creation of the face feature space, a conventionally known method can be applied. For example, a technique such as a neural network or a linear discriminant analysis (LDA) can be applied.
つぎに、クラスター作製手段11が、前記特徴空間作製用画像を前記特徴空間へ写像することにより特徴量を抽出し、前記顔特徴空間において、前記特徴量を基に、各クラスターを形成する。前記特徴量は、複数の特徴空間作製用画像の特徴量変換をそれぞれ行うことで抽出される。前記顔特徴空間に形成されるクラスターの数は、特に制限されず、例えば、100万人の人物の特徴空間作製用画像を用いる場合、例えば、50~100の範囲であり、各クラスターに、例えば、1万~2万人の人物の特徴空間作製用画像が格納される。ただし、前記クラスターの数は、一例に過ぎず、特徴空間作製用画像の数等に応じて、適宜設定すればよい。前記各クラスターの形成は、従来公知の方法を適用可能であり、例えば、K-means法、バイナリ空間分割に基づくクラスタリング、Gaussian mixture model(GMM)によるクラスタリング等の手法を適用できる。前記K-means法は、予め指定した数(K)のクラスターに特徴空間作製用画像をグループ分けし、クラスター中心との相関が高くなるようにグループ分けを繰り返す手法である。前記バイナリ空間分割に基づくクラスタリングは、類似度に応じて、特徴空間作製用画像の集合を再帰的に分割する手法である。前記GMMによるクラスタリングは、特徴空間作製用画像の出現確率分布を正規混合分布の形でモデル化する手法である。これらの中でも、各クラスターの特徴空間作製用画像数の調整が容易なことから、K-means法が好ましい。Next, the cluster creation means 11 extracts the feature quantity by mapping the feature space creation image onto the feature space, and forms each cluster based on the feature quantity in the face feature space. The feature amount is extracted by performing feature amount conversion of a plurality of feature space creation images. The number of clusters formed in the face feature space is not particularly limited. For example, when an image for creating feature spaces of 1 million people is used, for example, the range is 50 to 100. An image for creating a feature space of 10,000 to 20,000 persons is stored. However, the number of the clusters is merely an example, and may be appropriately set according to the number of feature space creation images. For the formation of each cluster, a conventionally known method can be applied. For example, a technique such as K-means method, clustering based on binary space division, or clustering by Gaussian mixture model (GMM) can be applied. The K-means method is a technique of grouping feature space creation images into a predetermined number (K) of clusters and repeating the grouping so that the correlation with the cluster center is high. The clustering based on the binary space division is a technique for recursively dividing a set of feature space creation images according to similarity. The clustering by GMM is a technique for modeling the appearance probability distribution of the feature space creation image in the form of a normal mixture distribution. Among these, the K-means method is preferable because it is easy to adjust the number of images for creating the feature space of each cluster.
〔登録工程〕
つぎに、前記登録手段により、複数の登録画像から特徴量データを抽出し、前記特徴量データを基に、前記特徴空間における複数のクラスターのいずれか一つに前記登録画像を登録する。[Registration process]
Next, the registration unit extracts feature amount data from a plurality of registered images, and registers the registered image in any one of a plurality of clusters in the feature space based on the feature amount data.
図9の模式図に、本工程の一例を示す。まず、本工程に先立ち、登録画像DB50を予め作製しておく。登録画像DB50は、例えば、実験室等で複数の登録画像(本例においては、判定対象となる複数の人物の顔画像)を予め取得することで作製してもよいし、画像認証を行う現場で複数の登録画像を予め取得することで作製してもよい。また、登録画像DB50として、特徴空間作製用画像DB40の一部または全部を用いてもよい。図9においては、中年の女性の登録画像A、若い女性の登録画像B、中年の男性の登録画像Cおよび高齢の男性の登録画像Dを代表として示している。An example of this process is shown in the schematic diagram of FIG. First, prior to this process, aregistered image DB 50 is prepared in advance. The registeredimage DB 50 may be created by, for example, acquiring a plurality of registered images (in this example, face images of a plurality of persons to be determined) in advance in a laboratory or the like, or performing image authentication. A plurality of registered images may be obtained in advance. Further, as the registeredimage DB 50, a part or all of the feature spacecreation image DB 40 may be used. In FIG. 9, a registered image A of a middle-aged woman, a registered image B of a young woman, a registered image C of a middle-aged man, and a registered image D of an elderly man are shown as representatives.
つぎに、前記特徴空間作製用画像におけるのと同様にして、複数の登録画像の特徴量変換をそれぞれ行うことで、各登録画像の特徴量データを抽出する。Next, the feature amount data of each registered image is extracted by performing the feature amount conversion of the plurality of registered images in the same manner as in the feature space creation image.
つぎに、前記特徴量データを基に、写像手段20および所属クラスター決定手段21により、前記顔特徴空間における複数のクラスターのいずれか一つに前記登録画像を登録する。具体的には、例えば、前記登録画像を前記顔特徴空間に写像したときの前記特徴量データ(ベクトル)と各クラスターの中心との距離を求め、前記距離が最短となるクラスターを、前記登録画像が所属する所属クラスターと決定する。Next, the registered image is registered in any one of a plurality of clusters in the face feature space by themapping unit 20 and the assignedcluster determination unit 21 based on the feature amount data. Specifically, for example, a distance between the feature amount data (vector) and the center of each cluster when the registered image is mapped to the face feature space is obtained, and the cluster having the shortest distance is determined as the registered image. Is determined to belong to the cluster.
〔認証工程〕
つぎに、前記認証手段により、前記登録画像と判定対象画像との認証を行う。前述のとおり、本工程は、所属クラスター決定工程および第1の類似度計算工程を含む。[Certification process]
Next, the authentication unit authenticates the registered image and the determination target image. As described above, this process includes the belonging cluster determination process and the first similarity calculation process.
所属クラスター決定工程
図10の模式図に、所属クラスター決定工程の別の例を示す。まず、写像手段20および所属クラスター決定手段21により、前記登録画像におけるのと同様にして、前記判定対象画像から、特徴量データを抽出し、前記特徴量データを基に、前記顔特徴空間における複数のクラスターの中から、前記判定対象画像が所属するクラスターを一つ選択する。図10においては、明るい環境で取得された中年の女性の判定対象画像A11の所属するクラスターとして、前記登録工程において中年の女性の登録画像Aが格納されたクラスター(図9参照)が選択されている。Affiliation cluster determination process FIG. 10 is a schematic diagram showing another example of the belonging cluster determination process. First, themapping unit 20 and the assignedcluster determination unit 21 extract feature amount data from the determination target image in the same manner as in the registered image, and based on the feature amount data, a plurality of pieces in the face feature space are extracted. One cluster to which the determination target image belongs is selected from the clusters. In FIG. 10, the cluster (see FIG. 9) in which the registered image A of the middle-aged woman is stored in the registration process is selected as the cluster to which the determination target image A11 of the middle-aged woman acquired in a bright environment belongs. Has been.
第1の類似度計算工程
つぎに、前述の実施形態1と同様にして、前記第1の類似度計算工程を実施する。ただし、本実施形態では、登録画像Bは、所属クラスター決定手段21が選択した前記クラスター内に含まれていないため、前記類似度計算の対象とならない。本実施形態の画像認証装置においても、前記類似度計算を実施する範囲を前記クラスター内の登録画像に絞り込むことで、認証処理量を削減し、認証を短時間で実施可能である。First Similarity Calculation Step Next, the first similarity calculation step is performed in the same manner as in the first embodiment. However, in the present embodiment, the registered image B is not included in the cluster selected by the affiliationcluster determination unit 21 and is therefore not subjected to the similarity calculation. Also in the image authentication apparatus of the present embodiment, by narrowing the range for performing the similarity calculation to the registered images in the cluster, the amount of authentication processing can be reduced and authentication can be performed in a short time.
(実施形態4)
図11のブロック図に、本発明の画像認証装置のさらに別の構成を示す。図11に示すとおり、この画像認証装置400は、さらに、クラスター範囲作製手段12およびクラスター範囲決定手段32を含むこと以外、図7に示す画像認証装置300と同様の構成である。クラスター範囲作製手段12は、クラスター作製手段11と接続している。本実施形態の画像認証方法は、下記クラスター範囲作製工程および第1の類似度計算工程を除いては、前述の実施形態3と同様にして実施される。(Embodiment 4)
The block diagram of FIG. 11 shows still another configuration of the image authentication apparatus of the present invention. As shown in FIG. 11, the image authentication apparatus 400 has the same configuration as the image authentication apparatus 300 shown in FIG. 7 except that the image authentication apparatus 400 further includes a clusterrange creation unit 12 and a clusterrange determination unit 32. The cluster range preparation means 12 is connected to the cluster preparation means 11. The image authentication method according to the present embodiment is performed in the same manner as in the above-described third embodiment except for the cluster range creation step and the first similarity calculation step described below.
クラスター範囲作製工程
クラスター範囲作製手段12は、予め定めた基準に基づき、前記各クラスター毎に類似度計算の対象となるクラスターの範囲を、クラスター単位で作製する。具体的には、例えば、類似度計算の対象となるデータ数が、ユーザの設定した数に達するまで、近いクラスターを類似度計算の対象に加えていくことにより、前記クラスター範囲を作製する。図12に、クラスター範囲作製工程の一例を示す。図12においては、前述の実施形態3において、中年の女性の特徴空間作製用画像(A1およびA2)が格納されたクラスターに対する類似度計算の対象として、破線で囲まれた範囲に含まれるクラスターを、前記クラスター範囲として決定している。Cluster range creation step The cluster range creation means 12creates a cluster range for each cluster based on a predetermined criterion in units of clusters. Specifically, for example, the cluster range is created by adding close clusters to the similarity calculation object until the number of data that is the object of similarity calculation reaches the number set by the user. FIG. 12 shows an example of the cluster range production process. In FIG. 12, in the above-described third embodiment, clusters included in a range surrounded by a broken line are subjected to similarity calculation with respect to a cluster storing a middle-aged female feature space creation image (A1 and A2). Is determined as the cluster range.
第1の類似度計算工程
本実施形態における第1の類似度計算工程を、前述の実施形態2と同様にして実施する。本実施形態の画像認証装置においても、前記類似度計算を実施する範囲を前記クラスター範囲内の登録画像に絞り込むことで、認証処理量を削減し、認証を短時間で実施可能である。First similarity calculation step The first similarity calculation step in the present embodiment is performed in the same manner as in the second embodiment. Also in the image authentication apparatus of the present embodiment, by narrowing the range for performing the similarity calculation to the registered images within the cluster range, the authentication processing amount can be reduced and authentication can be performed in a short time.
(実施形態5)
図13のブロック図に、本発明の画像認証装置のさらに別の構成を示す。図13に示すとおり、この画像認証装置500は、前記認証手段が、第2の類似度計算手段35を含み、判定手段34が統合判定手段36であること以外、図11に示す画像認証装置400と同様の構成である。第2の類似度計算手段35は、クラスター範囲決定手段32と接続している。統合判定手段36は、第1の類似度計算手段33および第2の類似度計算手段35と接続している。(Embodiment 5)
The block diagram of FIG. 13 shows still another configuration of the image authentication apparatus of the present invention. As shown in FIG. 13, the image authentication apparatus 500 includes an image authentication apparatus 400 shown in FIG. 11 except that the authentication means includes a second similarity calculation means 35 and the determination means 34 is an integrated determination means 36. It is the same composition as. The second similarity calculation means 35 is connected to the cluster range determination means 32. Theintegrated determination unit 36 is connected to the firstsimilarity calculation unit 33 and the secondsimilarity calculation unit 35.
第2の類似度計算工程
前記第2の類似度計算工程では、前述の実施形態4の前記第1の類似度計算工程と同様に、前記所属クラスター決定工程で選択されたクラスターを中心としたクラスター範囲内における前記登録画像と、前記判定対象画像との類似度計算を実施する。前記第2の類似度計算工程と前記第1の類似度計算工程との実施順序は特に制限されず、両工程を同時に実施してもよいし、いずれかの工程を先に実施してもよい。第2の類似度計算手段35は、例えば、従来公知の部分空間法類似度計算手段、データ間距離計算手段等があげられる。前記データ間距離計算手段とは、前記顔特徴空間に写像された前記判定対象画像と、前記クラスター範囲内に含まれる各データとの間の距離を計算する手段である。Second similarity calculation step In the second similarity calculation step, a cluster centered on the cluster selected in the belonging cluster determination step is the same as in the first similarity calculation step of the fourth embodiment. The similarity calculation between the registered image and the determination target image within the range is performed. The order of execution of the second similarity calculation step and the first similarity calculation step is not particularly limited, and both steps may be performed simultaneously, or one of the steps may be performed first. . Examples of the secondsimilarity calculation unit 35 include a conventionally known subspace method similarity calculation unit and an inter-data distance calculation unit. The inter-data distance calculation means is means for calculating a distance between the determination target image mapped to the face feature space and each data included in the cluster range.
部分空間法類似度計算手段
まず、図5を参照して、本実施形態の画像認証装置において、第2の類似度計算手段35が、部分空間法類似度計算手段である場合の一例について説明する。本例において、前記部分空間法類似度計算手段により、前記判定対象画像A12と前記登録画像Bとの類似度が0.75、前記判定対象画像A12と前記登録画像Aとの類似度が0.74と計算されたとすると、僅差で登録画像Aではなく登録画像Bが前記判定対象画像A12との類似度が最も大きいと判定されてしまう。このような場合においても、統合判定手段36により、第1の類似度計算手段33による計算結果および第2の類似度計算手段(部分空間法類似度計算手段)35の計算結果を統合して判定することで、前記判定対象画像A12は、登録画像Aと同一人物のもの(顔画像)であると認証できる。このように、本例によれば、2つの異なる類似度計算手段を用いることで、誤認証を防止し、認証精度をより向上させることができる。Subspace Method Similarity Calculation Unit First, with reference to FIG. 5, an example in which the secondsimilarity calculation unit 35 is a subspace method similarity calculation unit in the image authentication apparatus of the present embodiment will be described. . In this example, the similarity between the determination target image A12 and the registered image B is 0.75, and the similarity between the determination target image A12 and the registered image A is 0. If it is calculated as 74, it is determined that the registered image B, rather than the registered image A, has the highest similarity with the determination target image A12. Even in such a case, theintegration determination unit 36 integrates the calculation result of the firstsimilarity calculation unit 33 and the calculation result of the second similarity calculation unit (subspace method similarity calculation unit) 35 to determine. Thus, the determination target image A12 can be authenticated as the same person (face image) as the registered image A. Thus, according to this example, by using two different similarity calculation means, erroneous authentication can be prevented and the authentication accuracy can be further improved.
データ間距離計算手段
つぎに、図5を参照して、本実施形態の画像認証装置において、第2の類似度計算手段35が、データ間距離計算手段である場合の一例について説明する。本例では、前記データ間距離計算手段により、前記顔特徴空間に写像された前記判定対象画像A12と、前記クラスター範囲内に含まれる各データ(各登録画像)との間の距離が計算される。その結果、前記判定対象画像A12と前記登録画像Bとの間の距離が0.43、前記判定対象画像A12と前記登録画像Aとの間の距離が0.17となったと計算され、登録画像Aが前記判定対象画像A12との類似度が最も大きいと判定されたとする。この場合には、第1の類似度計算手段33による計算結果および第2の類似度計算手段(データ間距離計算手段)35の計算結果の双方で登録画像Aが前記判定対象画像A12との類似度が最も大きいと判定されていることから、統合判定手段36において、前記判定対象画像A12は、登録画像Aと同一人物のものであると認証される。本例においても、2つの異なる類似度計算手段を用いることで、認証精度をより向上させることができる。Next,the data distance calculation means, with reference to FIG. 5, the image recognition apparatus of this embodiment, the secondsimilarity calculation unit 35, an example of a case where the data distance calculation means. In this example, the distance between the determination target image A12 mapped in the face feature space and each data (each registered image) included in the cluster range is calculated by the inter-data distance calculation means. . As a result, it is calculated that the distance between the determination target image A12 and the registered image B is 0.43, and the distance between the determination target image A12 and the registered image A is 0.17. Assume that A is determined to have the highest similarity with the determination target image A12. In this case, the registered image A is similar to the determination target image A12 in both the calculation result by the firstsimilarity calculation unit 33 and the calculation result of the second similarity calculation unit (inter-data distance calculation unit) 35. Since it is determined that the degree is the highest, theintegrated determination unit 36 authenticates that the determination target image A12 belongs to the same person as the registered image A. Also in this example, the authentication accuracy can be further improved by using two different similarity calculation means.
本実施形態の画像認証装置では、前述の実施形態4の画像認証装置に第2の類似度計算手段35および統合判定手段36を適用した例を示したが、前述の実施形態1~3の画像認証装置に、第2の類似度計算手段35および統合判定手段36を適用することもできる。In the image authentication apparatus of the present embodiment, the example in which the secondsimilarity calculation unit 35 and theintegrated determination unit 36 are applied to the image authentication apparatus of the above-described fourth embodiment has been described. However, the image of the above-described first to third embodiments is illustrated. The secondsimilarity calculation unit 35 and theintegrated determination unit 36 may be applied to the authentication device.
実施形態1~5では、前記画像として顔画像を用いているが、前記顔画像に代えて、頭部全体の画像を用いてもよい。これにより、認証精度をさらに向上させることができる。InEmbodiments 1 to 5, a face image is used as the image, but an image of the entire head may be used instead of the face image. Thereby, the authentication accuracy can be further improved.
実施形態1~5では、前記画像として顔画像を用いているが、前記顔画像に代えて、指紋画像、静脈画像等を用いることもできる。InEmbodiments 1 to 5, a face image is used as the image, but a fingerprint image, a vein image, or the like may be used instead of the face image.
[実施形態6]
本実施形態のプログラムは、前述の画像認証方法を、コンピュータ上で実行可能なプログラムである。本実施形態のプログラムは、例えば、記録媒体に記録されてもよい。前記記録媒体は、特に限定されず、例えば、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク(HD)、光ディスク、フロッピー(登録商標)ディスク(FD)等があげられる。[Embodiment 6]
The program of this embodiment is a program that can execute the above-described image authentication method on a computer. The program of this embodiment may be recorded on a recording medium, for example. The recording medium is not particularly limited, and examples thereof include a random access memory (RAM), a read-only memory (ROM), a hard disk (HD), an optical disk, and a floppy (registered trademark) disk (FD).
以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
この出願は、2011年1月31日に出願された日本出願特願2011-17693を基礎とする優先権を主張し、その開示の全てをここに取り込む。This application claims priority based on Japanese Patent Application No. 2011-17663 filed on January 31, 2011, the entire disclosure of which is incorporated herein.