MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA CON REFORZANTES DE DIFERENTES MORFOLOGÍAS Y SUS PROCEDIMIENTOS DE SÍNTESIS POLYMERIC MATRIX COMPOSITE MATERIALS WITH REINFORCEMENTS OF DIFFERENT MORPHOLOGIES AND THEIR SYNTHESIS PROCEDURES
DESCRIPCIÓNDESCRIPTION
CAMPO TÉCNICO DE LA INVENCIÓNTECHNICAL FIELD OF THE INVENTION
El objetivo de la presente invención es obtener materiales compuestos, formados por una matriz polimérica, reforzados con sulfato de bario, que puede ser de tamaño nano o micrométrico, y de diferentes morfologías, obtenidos mediante varios procedimientos de síntesis sencillos, siendo más baratos que los métodos convencionales. Las propiedades de los materiales se incrementan al agregar elementos o partículas reforzantes, lo cual posibilita que exista un mayor número de aplicaciones. Los reforzantes pueden estar presentes en forma de fibras o de aglomerados, ya sean esféricos o en forma de donas. Las características y propiedades de los materiales dependen en gran medida de los procedimientos de síntesis utilizados, originando que tengan aplicaciones que se inscriben en los campos de la biomedicina, farmacia, pinturas, pigmentos e industria textil. The objective of the present invention is to obtain composite materials, formed by a polymer matrix, reinforced with barium sulfate, which can be of nano or micrometric size, and of different morphologies, obtained by several simple synthesis procedures, being cheaper than conventional methods The properties of the materials are increased by adding reinforcing elements or particles, which allows for a greater number of applications. Reinforcers may be present in the form of fibers or agglomerates, either spherical or donut-shaped. The characteristics and properties of the materials depend largely on the synthesis procedures used, causing them to have applications that fall within the fields of biomedicine, pharmacy, paints, pigments and textile industry.
ANTECEDENTESBACKGROUND
Existe una gran demanda de materiales poliméricos para su uso en la industria biomédica, para aplicaciones tales como recubrimientos, corazones artificiales, catéteres, marcapasos y reemplazo de tejido estructural. Por tal motivo, cada día es más importante el estudio de materiales que cumplan con las características que se necesitan para estas aplicaciones. Entre los polímeros más usado en estas aplicaciones están el poliuretano, como se menciona en Hsu S., Chou C. 2004, Enhanced biostabiliy of polyurethane containing gold nanoparticles. Polymer Degradation and Stability 85, 675-680; Byung Kyu K., Jang Won S., Han Mo J. 25 2003. J. Eu. Polymer, vol. 39, 85; y el polioximetileno o poliacetal, como se menciona en Kongkhlang T., Kousaka Y., There is a great demand for polymeric materials for use in the biomedical industry, for applications such as coatings, artificial hearts, catheters, pacemakers and replacement of structural tissue. For this reason, the study of materials that meet the characteristics needed for these applications is increasingly important. Among the polymers most used in these applications are polyurethane, as mentioned in Hsu S., Chou C. 2004, Enhanced biostabiliy of polyurethane containing gold nanoparticles. Polymer Degradation and Stability 85, 675-680; Byung Kyu K., Jang Won S., Han Mo J. 25 2003. J. Eu. Polymer, vol. 39, 85; and polyoxymethylene or polyacetal, as mentioned in Kongkhlang T., Kousaka Y.,
Umemura T., Nakaya D., Thuamthong W., Pattamamongkolchai Y.,Umemura T., Nakaya D., Thuamthong W., Pattamamongkolchai Y.,
i Chirachanchai S. 2008, Role of primary amine in polyoxymethylene POM/bentonite nanocomposite formation, Polymer 49 , 1676-1684. Con el objetivo de aumentar las propiedades de estos polímeros se han venido agregando partículas reforzantes para lograr nano y micro compuestos que aumenten las propiedades físicas, como la deformación al rompimiento y el esfuerzo a la tensión con respecto al polímero virgen o a los materiales compuestos convencionales, utilizando concentraciones relativamente pequeñas de nano y micropartículas: Zhao Jin, Morgan A., Harris J. 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersión, Polymer 46, 8641-1660. Las propiedades mecánicas y reólogicas dependen de la forma, tamaño, distancia entre las partículas y su orientación en la fase dispersa. Al añadir un reforzante, además de mantenerse o mejorarse las propiedades mecánicas, es posible producir un polímero radiopaco al incorporar un aditivo o un pigmento opaco a los rayos X, como es el caso de BaS04. Una ventaja del polímero radiopaco es su transparencia, aun con el aditivo incorporado. Estos materiales presentan otras propiedades como son la biocompatibilidad, tanto del polímero como del aditivo, además de ser un material biológicamente inerte. Dependiendo del nivel de interacción entre las nanopartículas y la cadena polimérica se pueden producir materiales con propiedades superiores en comparación con la matriz polimérica: Saha M.C., Kabir Md. E., Jeelanis S., 2007, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles, Materials Science and Engineering A, article in press. Recientemente se han reportado una amplia variedad de aditivos para obtener nanocompuestos de poliuretano, tal es el caso de arcilla montmorillonita y arcillas modificadas: Finnigan B. Martín D., Halley R., Truss R., Campbell K., 2004, Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45, 2249- 2260; Xiong J., Zheng Z., Jiang H., Ye S., Wang X. 2007, Reinforcement of polyurethane composites with an organically modified montmorillonite. Composites: Part A 38, 132-137; Jia Q., Zheng M., Chen H., Shen R., 2006, 30i Chirachanchai S. 2008, Role of primary amine in polyoxymethylene POM / bentonite nanocomposite formation, Polymer 49, 1676-1684. With the aim of increasing the properties of these polymers, reinforcing particles have been added to achieve nano and microcompounds that increase physical properties, such as strain deformation and stress stress with respect to virgin polymer or conventional composite materials, using relatively small concentrations of nano and microparticles: Zhao Jin, Morgan A., Harris J. 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion, Polymer 46, 8641-1660. The mechanical and rheological properties depend on the shape, size, distance between the particles and their orientation in the dispersed phase. By adding a reinforcer, in addition to maintaining or improving the mechanical properties, it is possible to produce a radiopaque polymer by incorporating an additive or an opaque pigment to X-rays, as is the case of BaS04 . An advantage of the radiopaque polymer is its transparency, even with the additive incorporated. These materials have other properties such as biocompatibility, both of the polymer and of the additive, in addition to being a biologically inert material. Depending on the level of interaction between the nanoparticles and the polymer chain, materials with superior properties can be produced compared to the polymer matrix: Saha MC, Kabir Md. E., Jeelanis S., 2007, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles, Materials Science and Engineering A, article in press. Recently a wide variety of additives have been reported to obtain polyurethane nanocomposites, such as montmorillonite clay and modified clays: Finnigan B. Martin D., Halley R., Truss R., Campbell K., 2004, Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45, 2249-2260; Xiong J., Zheng Z., Jiang H., Ye S., Wang X. 2007, Reinforcement of polyurethane composites with an organically modified montmorillonite. Composites: Part A 38, 132-137; Jia Q., Zheng M., Chen H., Shen R., 2006, 30
Morphologies and properties of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay, Materials letters 60, 1306- 1309; Lyu S., Grailer T., Belu A., Schley J., Bartlett T., 2007, Nano-adsorbent control surface properties of polyurethane. Polymer 48 , 6049-6055; Esposito Corcione C, Prinari P., Cannoletta D., Mensitieri G., Maffezzoli A., 2008, Synthesis and characterizarion of clay-nanocomposite solvent-based polyurethane adhesives. International Journal of Adhesión & Adhesives 28 , 91- 100; Pizzato L, Lizot A., Fiorio R., Amorim C, Machado G., Giovanela M. Zattera A., Crespo J., 2008, Synthesis and Characterization of thermoplatic polyurethane/nanoclay composites. Materials Science and Engineering C, article in press. También se han utilizado nanotubos de carbono, carburo de silicio, y negro de humo, como se detalla en Gunes S., Cao F., Jana S. C, 2008, Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer, article in press, así como metales o aditivos inorgánicos y óxidos como el Ti02: Chen J., Zhou Y., Nan Q., Ye X., Wang Z., 2007, Synthesis, characterization and infrared emissivity study of Polyurethane/Ti02 nanocomposites. Applied Surface Science 253, 9154-9158. Existen varios casos en los cuales se utiliza sulfato de bario como reforzante para poliuretano como WO 00/14165, WO 02/30994, WO 00/57932, WO 2005/054133, JP 2006-1 10224, JP 2000-217903, JP 10-033680, JP2000- 203890, 2002-269141 ó US 2009020042, o como reforzante para polioximetileno EP1828308 y US20040630704P. El sulfato de bario se añade en diferentes proporciones, como pueden ser 20%, en el caso de JP2006- 1 10224 y JP10-033680, o incluso cantidades tan pequeñas como 0.1 % en JP02-269141. De igual forma existe una gran variedad de tamaños de partículas de sulfato de bario para estos casos, lo cual es dependiente de los métodos de síntesis. El tamaño de las partículas reforzantes va desde los tamaños micrométricos, tal es caso de sales metálicas de 5 μ en 15 a 90 % en peso, US 4935019, y en intervalos de 20 hasta 500 μ dependiendo del tamaño y del tipo de marcador, US6340367 B1. Por otro lado en tamaños nanométricos de 10 a 300 nm, número de publicación JP2000-203890. Otros ejemplos varían el tamaño de la sal metálica de 0.1 a 5μηη usando de 0.2 a 40% en peso, USMorphologies and properties of polyurethane / epoxy resin interpenetrating network nanocomposites modified with organoclay, Materials letters 60, 1306-1309; Lyu S., Grailer T., Belu A., Schley J., Bartlett T., 2007, Nano-adsorbent control surface properties of polyurethane. Polymer 48, 6049-6055; Esposito Corcione C, Prinari P., Cannoletta D., Mensitieri G., Maffezzoli A., 2008, Synthesis and characterization of clay-nanocomposite solvent-based polyurethane adhesives. International Journal of Adhesion & Adhesives 28, 91-100; Pizzato L, Lizot A., Fiorio R., Amorim C, Machado G., Giovanela M. Zattera A., Crespo J., 2008, Synthesis and Characterization of thermoplatic polyurethane / nanoclay composites. Materials Science and Engineering C, article in press. Carbon nanotubes, silicon carbide, and carbon black have also been used, as detailed in Gunes S., Cao F., Jana S. C, 2008, Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer, article in press, as well as metals or inorganic additives and oxides such as Ti02 : Chen J., Zhou Y., Nan Q., Ye X., Wang Z., 2007, Synthesis, characterization and infrared emissivity study of Polyurethane / Ti02 nanocomposites. Applied Surface Science 253, 9154-9158. There are several cases in which barium sulfate is used as a reinforcer for polyurethane such as WO 00/14165, WO 02/30994, WO 00/57932, WO 2005/054133, JP 2006-1 10224, JP 2000-217903, JP 10- 033680, JP2000-203890, 2002-269141 or US 2009020042, or as a reinforcer for polyoxymethylene EP1828308 and US20040630704P. Barium sulfate is added in different proportions, such as 20%, in the case of JP2006-1 10224 and JP10-033680, or even amounts as small as 0.1% in JP02-269141. Similarly, there is a wide variety of barium sulfate particle sizes for these cases, which is dependent on the methods of synthesis. The size of the reinforcing particles ranges from micrometer sizes, such as metal salts of 5 μ in 15 to 90% by weight, US 4935019, and in intervals of 20 to 500 μ depending on the size and type of marker, US6340367 B1. On the other hand in nanometric sizes from 10 to 300 nm, publication number JP2000-203890. Other examples vary the size of the metal salt from 0.1 to 5μηη using 0.2 to 40% by weight, US
0136879 A1 ;y de 0.1 a 5μ con contenidos de 0.1 % a 10% en peso JP2002- 269141. El BaS04 es químicamente inerte, insoluble y no modifica sustancialmente la transparencia y biocompatibilidad de la matriz polimérica: US 668983 B1.0136879 A1; and from 0.1 to 5μ with contents of 0.1% to 10% by weight JP2002- 269141. BaS04 is chemically inert, insoluble and does not substantially modify the transparency and biocompatibility of the polymer matrix: US 668983 B1.
Algunos de los usos de estos materiales con reforzantes en forma de partículas o aglomeraciones de éstas, se inscriben en el área de la biomedicina, como catéteres, en US 3618614 y US 6623829, válvulas cardiacas en US 6596024 B2 y US 617335 B1 , películas en US 0136879 A1 y marcadores radiopacos en US 6340367 B1 ; así como para su uso en adhesivos en US 2009020042 Al¬ ivio se han encontrado reportes sobre reforzantes que no sean en forma de partículas o aglomerados de éstas. Mediante los procedimientos de obtención descritos en la presente invención es posible obtener no solo materiales reforzados por partículas, sino elementos reforzantes en forma de fibras o aglomerados de partículas en forma de dona. En el estado del arte no se han encontrado referencias acerca de estas morfologías. El uso de reforzantes con morfologías diferentes afecta las propiedades mecánicas, ópticas y reológicas de los nuevos compuestos.Some of the uses of these materials with particulate enhancers or agglomerations thereof, are registered in the area of biomedicine, as catheters, in US 3618614 and US 6623829, heart valves in US 6596024 B2 and US 617335 B1, films in US 0136879 A1 and radiopaque markers in US 6340367 B1; as well as for use in adhesives in US 2009020042 Al¬ ivio have been found reports on reinforcers that are not in the form of particles or agglomerates thereof. By means of the obtaining procedures described in the present invention, it is possible to obtain not only particulate reinforced materials, but also reinforcing elements in the form of fibers or agglomerates of donut-shaped particles. In the state of the art, no references have been found about these morphologies. The use of reinforcers with different morphologies affects the mechanical, optical and rheological properties of the new compounds.
Algunos métodos de obtención de estos materiales son la utilización de mezclas acuosas de las sales con el polímero, recubriéndolos con metales como se detalla en EP1828308 y JP02269141. En muchos casos se utilizan aditivos, como son los compuestos halógenados, utilizando preferentemente bromo: US4722344, US5177170 y US5346981. También se han usado sales de bismuto, como se muestra en US 3618614, que aunque son compuestos radiopacos tienen la desventaja de que al incorporar este tipo de aditivo el polímero no es transparente. La utilización de agua en los métodos de fabricación origina la formación de burbujas, lo cual es perjudicial debido a la dificultad de su procesamiento y al decremento de las propiedades mecánicas, tal es el caso de la deformación al rompimiento, el esfuerzo a la tensión, el modulo de Young y la resistencia al impacto: Lu G. Kalyon D., Y. I., 2004, Rheology and processing of BaS04-filled 30 medical-grade thermoplatic polyurethane, Polymer Engineering and Science Vol 44, No.10, 1941-1947. De igual forma, otras desventajas de los procedimientos actualmente utilizados son su alto costo y la utilización de equipos especializados. También se han utilizado métodos de extrusión, como es el caso de G. Lu, D. Kalyon, I. Yilgor and E. Yilgor, Extrusión of BaS04 filled medicalgrade thermoplastic polyurethane, Society of Plastics Engineers ANTEC Technical, Papers, Volume 49 (2003).Some methods of obtaining these materials are the use of aqueous mixtures of the salts with the polymer, coating them with metals as detailed in EP1828308 and JP02269141. In many cases additives are used, such as halogenated compounds, preferably using bromine: US4722344, US5177170 and US5346981. Bismuth salts have also been used, as shown in US 3618614, which although they are radiopaque compounds have the disadvantage that by incorporating this type of additive the polymer is not transparent. The use of water in the manufacturing methods causes the formation of bubbles, which is detrimental due to the difficulty of its processing and the decrease in mechanical properties, such is the case of breakage deformation, stress strain, Young's module and impact resistance: Lu G. Kalyon D., YI, 2004, Rheology and processing of BaS04- filled 30 medical-grade thermoplatic polyurethane, Polymer Engineering and Science Vol 44, No.10, 1941-1947 . Similarly, other disadvantages of the procedures currently used are its high cost and the use of specialized equipment. Extrusion methods have also been used, such as G. Lu, D. Kalyon, I. Yilgor and E. Yilgor, Extrusion of BaS04 filled medicalgrade thermoplastic polyurethane, Society of Plastics Engineers ANTEC Technical, Papers, Volume 49 (2003 ).
Con este propósito la presente invención se refiere a nuevos materiales formados por una matriz polimérica, reforzada con sulfato de bario con morfologías que pueden ser en forma de fibras o aglomerados de partículas en forma de donas o esferas, así como procedimientos de síntesis sencillos para su obtención. Dependiendo de los procedimientos de síntesis utilizados se pueden obtener reforzantes con morfologías diferentes. Los materiales compuestos obtenidos, polímero-sulfato de bario, son opacos a los rayos X con bajos porcentajes del aditivo, incluso 1 %, transparentes, biocompatibles, bioinertes, mantienen sus propiedades mecánicas con respecto al polímero precursor, son fácilmente procesables, no presentan formación de burbujas y son de menor costo. Estos materiales y sus procedimientos de síntesis suplirían a los actuales, eliminando algunas de sus desventajas. Otra ventaja de la presente invención es que al agregar menor cantidad de sulfato de bario disminuyen de manera notable los costos del material obtenido. Además, al añadir nano o micro partículas aumenta la superficie de contacto del sulfato de bario, por lo que es necesario añadir una menor cantidad de esta sustancia, disminuyendo también costos. Todas las propiedades necesarias para sus aplicaciones se mantienen invariables, como la radiopacidad, transparencia, inerte a los fluidos presentes en el organismo humano y biocompatibilidad, entre otras. Las propiedades mecánicas no se ven afectadas con la introducción o la disminución del porcentaje del elemento reforzante en forma de partículas esféricas. Los materiales así obtenidos pudieran emplearse como pigmentos, en industria de pinturas, como fibras en la industria textil, recubrimientos y en biomedicina para dispositivos biomédicos como prótesis, válvulas cardiacas y catéteres. Para conseguir compuestos tan eficaces como sea posible, se utilizaron varios procedimientos de síntesis sencillos. DESCRIPCIÓN DETALLADA DE LA INVENCIÓNFor this purpose the present invention relates to new materials formed by a polymer matrix, reinforced with barium sulfate with morphologies that can be in the form of fibers or agglomerates of particles in the form of donuts or spheres, as well as simple synthesis procedures for their obtaining. Depending on the synthesis procedures used, reinforcers with different morphologies can be obtained. The composite materials obtained, barium polymer sulfate, are opaque to X-rays with low percentages of the additive, even 1%, transparent, biocompatible, bioinert, maintain their mechanical properties with respect to the precursor polymer, are easily processable, do not have formation of bubbles and are of lower cost. These materials and their synthesis procedures would replace the current ones, eliminating some of their disadvantages. Another advantage of the present invention is that adding less barium sulfate significantly reduces the costs of the material obtained. In addition, adding nano or micro particles increases the contact surface of barium sulfate, so it is necessary to add a smaller amount of this substance, also reducing costs. All the necessary properties for its applications remain unchanged, such as radiopacity, transparency, inert to the fluids present in the human organism and biocompatibility, among others. The mechanical properties are not affected by the introduction or decrease of the percentage of the reinforcing element in the form of spherical particles. The materials thus obtained could be used as pigments, in the paint industry, as fibers in the textile industry, coatings and in biomedicine for biomedical devices such as prostheses, heart valves and catheters. To achieve as effective compounds as possible, several simple synthesis procedures were used. DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un material compuesto obtenido al combinar una matriz polimérica y un elemento reforzante, caracterizado porque la matriz polimérica puede ser poliuretano o polioximetileno, y sulfato de bario como reforzante. Estos materiales se caracterizan porque se pueden utilizar como pigmentos, recubrimientos, en la industria textil, así como en biomedicina. En particular en biomedicina su uso sería para dispositivos biomédicos como prótesis, válvulas cardiacas, catéteres y recubrimientos. En la industria textil se usaría para la fabricación de hilos para su utilización en la fabricación de telas y mallas. The present invention relates to a composite material obtained by combining a polymer matrix and a reinforcing element, characterized in that the polymer matrix can be polyurethane or polyoxymethylene, and barium sulfate as a reinforcer. These materials are characterized in that they can be used as pigments, coatings, in the textile industry, as well as in biomedicine. In particular in biomedicine, its use would be for biomedical devices such as prostheses, heart valves, catheters and coatings. In the textile industry it would be used for the manufacture of threads for use in the manufacture of fabrics and meshes.
Estos materiales se caracterizan por incluir diferentes tamaños y formas de reforzantes, los cuales dependen de los procedimientos de obtención, y pueden ser fibras o aglomerados, ya sea en forma esférica o en forma de donas. La adición de los reforzantes hace que se incrementen sus propiedades mecánicas, además de que presentan radiopacidad. Las diferentes morfologías de partículas afectan las propiedades mecánicas, ópticas y Teológicas.These materials are characterized by including different sizes and shapes of reinforcers, which depend on the procedures for obtaining them, and can be fibers or agglomerates, either spherical or donut-shaped. The addition of the reinforcers increases their mechanical properties, in addition to their radiopacity. Different particle morphologies affect the mechanical, optical and theological properties.
Los materiales compuestos de la presente invención, formados por una matriz que puede ser de poliuretano o polioximetileno, reforzados con sulfato de bario, presentan características estructurales y morfológicas que se caracterizan porque presentan al menos una, o una combinación, de las siguientes propiedades:The composite materials of the present invention, formed by a matrix that can be made of polyurethane or polyoxymethylene, reinforced with barium sulfate, have structural and morphological characteristics that are characterized in that they have at least one, or a combination, of the following properties:
1. Los materiales compuestos formados por aglomerados de partículas, presentan agregados esféricos con tamaños que van de los 0.5 a las 5 μιτι, formados por partículas individuales de 0.02 a 0.1 pm, y volúmenes del reforzante que van de 0.5 a 10 %.1. Composite materials formed by particle agglomerates, have spherical aggregates with sizes ranging from 0.5 to 5 μιτι, formed by individual particles from 0.02 to 0.1 pm, and reinforcer volumes ranging from 0.5 to 10%.
2. Los materiales compuestos formados por aglomerados de partículas individuales de 0.02 a 0.1 μιη, presentan agregados en forma de donas con diámetros exteriores que van de 0.5 a 5 pm y diámetros interiores de entre 0.01 a 1 μηι, con volúmenes del reforzante que van 0.5 a 10.0%. . Los materiales compuestos formados por fibras, presentan fibras con un diámetro de 0.1 a 0.5 pm, con fracciones volumétricas del reforzante que van de 0.5 a 10.0 %. eriales compuestos de la presente invención se obtienen por el métodosis que se comprende de los siguientes pasos:2. Composite materials formed by agglomerates of individual particles of 0.02 to 0.1 μιη, have aggregates in the form of donuts with outside diameters ranging from 0.5 to 5 pm and diameters interiors between 0.01 to 1 μηι, with reinforcer volumes ranging from 0.5 to 10.0%. . Composite materials formed by fibers, have fibers with a diameter of 0.1 to 0.5 pm, with volumetric fractions of the reinforcer ranging from 0.5 to 10.0%. The compound compounds of the present invention are obtained by the method that is comprised of the following steps:
a. Se mezclan soluciones de BaCI2 y un agente estabilizante, que puede ser la sal del ácido etilendiamintetracético, poliacrilato de sodio ó una mezcla de 2-amino-2-metilpropanol con un polímero asociativo, manteniendo el pH entre 3 y 10. Las cantidades de reactivos utilizadas corresponden a relaciones molares BaCI2/Agente estabilizante de entre 0.005 y 1.5.to. Solutions of BaCI2 and a stabilizing agent are mixed, which can be the salt of ethylenediaminetetraacetic acid, sodium polyacrylate or a mixture of 2-amino-2-methylpropanol with an associative polymer, maintaining the pH between 3 and 10. The amounts of Reagents used correspond to molar ratios BaCI2 / Stabilizing agent between 0.005 and 1.5.
b. La mezcla resultante se deja reposar un tiempo de entre 10 minutos y 60 h.b. The resulting mixture is allowed to stand for a time between 10 minutes and 60 h.
c. A la mezcla obtenida se le agrega una solución de Na2S0 entre 0.05 y 0.5 M a temperatura ambiente y agitando de manera constante. La cantidad que se utiliza de esta solución corresponde a relaciones volumétricas con la mezcla obtenida en el inciso 1 a. de entre 0.5 y 1.5.C. To the obtained mixture is added a solution of Na2 S0 between 0.05 and 0.5 M at room temperature and stirring constantly. The amount used of this solution corresponds to volumetric relationships with the mixture obtained in part 1 a. between 0.5 and 1.5.
d. La mezcla resultante se deja reposar, siendo el máximo tiempo de reposo de 10 días.d. The resulting mixture is allowed to stand, the maximum resting time being 10 days.
e. Los precipitados obtenidos se lavan con agua destilada y se secan a una temperatura entre 50 y 200 °C por un tiempo de entre 10 y 35 h.f. El polímero en forma de gránulos que puede ser poliuretano o polioximetileno, se seca en un deshumidificador a temperaturas entre 60 y 160 °C por tiempos entre 8 y 15 h.and. The precipitates obtained are washed with distilled water and dried at a temperature between 50 and 200 ° C for a time between 10 and 35 h.f. The polymer in the form of granules, which can be polyurethane or polyoxymethylene, is dried in a dehumidifier at temperatures between 60 and 160 ° C for times between 8 and 15 h.
g. Posteriormente se prepara una mezcla de los precipitados obtenidos en el inciso 1e con el polímero y el agente antiespumante que sea a base de silicones. Las relaciones entre los pesos de los componentes de esta mezcla están entre de 0.1 y 10 % de BaS04, 90-99 % de polímero y de 0.1 a 1.0 % de antiespumante.g. Subsequently, a mixture of the precipitates obtained in subsection 1e with the polymer and the antifoaming agent based on silicones is prepared. The relationships between the weights of the Components of this mixture are between 0.1 and 10% BaS04 , 90-99% polymer and 0.1 to 1.0% antifoam.
1 h. La mezcla así obtenida se procesa mediante un equipo de extrusión de doble husillo manteniendo la velocidad del husillo entre 2 y 35 RMP, manteniendo la temperatura entre 130 y 220 °C.1 hour. The mixture thus obtained is processed by means of a twin screw extrusion equipment maintaining the spindle speed between 2 and 35 RMP, maintaining the temperature between 130 and 220 ° C.
1 i. El material extrudido se inyecta por moldeo en un intervalo de temperaturas entre 150 y 270 °C. 1 i. The extruded material is injected by molding in a temperature range between 150 and 270 ° C.
Las concentraciones de las soluciones del inciso 1a. son las siguientes: BaCI2 de 0.05 a 1.0 M y agente estabilizante entre 0.05 y 0.8 M, preferentemente soluciones con las siguientes concentraciones: BaCI2 0.1 M, agente estabilizante 0.1 M para la sal del ácido etilendiamintetracético. y el poliacrilato de sodio, y 0.5 M para la mezcla 2-amino-2-metilpropanol/polímero asociativo, mismas que se mezclan manteniendo el pH en 4.0 cuando el agente estabilizante es la sal del ácido etilendiamintetracético, en 8.0 cuando el agente estabilizante es el poliacrilato de sodio y en 9.0 cuando el agente estabilizante es el 2-amino-2-metilpropanol/polímero asociativo.The concentrations of the solutions in part 1a. they are as follows: BaCI2 from 0.05 to 1.0 M and stabilizing agent between 0.05 and 0.8 M, preferably solutions with the following concentrations: BaCI2 0.1 M, 0.1 M stabilizing agent for the salt of ethylenediaminetetraacetic acid. and sodium polyacrylate, and 0.5 M for the 2-amino-2-methylpropanol / associative polymer mixture, which are mixed keeping the pH at 4.0 when the stabilizing agent is the salt of ethylenediaminetetraacetic acid, at 8.0 when the stabilizing agent is sodium polyacrylate and in 9.0 when the stabilizing agent is 2-amino-2-methylpropanol / associative polymer.
De preferencia el polímero asociativo a que se refiere en el inciso 1a es el polímero comercial Primal TT-935 de Rhom and Haas al 0.02 M, en una relación volumétrica entre el Primal y el amino-2-metilpropanol 0.5 M de 42:8.Preferably, the associative polymer referred to in item 1a is the commercial polymer Primal TT-935 of Rhom and Haas at 0.02 M, in a volumetric ratio between the Primal and the 0.5 M amino-2-methylpropanol of 42: 8.
La concentración de la solución de sulfato de sodio del inciso 1 b. es preferentemente 0.1 M.The concentration of the sodium sulfate solution in item 1 b. it is preferably 0.1 M.
La mezcla resultante en el inciso 1a., de preferencia se deja reposar 1 h cuando el agente estabilizante es la sal del ácido etilendiamintetracético, 6 días cuando el agente estabilizante es el poliacrilato de sodio y 5 días cuando el agente estabilizante es el 2-amino-2-metilpropanol/polímero asociativo. Los precipitados colectados se lavan con agua destilada y se secan a una temperatura de cerca de 1 10 °C por un tiempo aproximado de 24 h.The resulting mixture in item 1a., Preferably, is allowed to stand for 1 h when the stabilizing agent is the salt of ethylenediaminetetraacetic acid, 6 days when the stabilizing agent is sodium polyacrylate and 5 days when the stabilizing agent is 2-amino -2-methylpropanol / associative polymer. The collected precipitates are washed with distilled water and dried at a temperature of about 10 ° C for an approximate time of 24 h.
De preferencia el antiespumante a que se refiere el inciso 1g es el comercial A204 ó A289 de Aldrich. Los gránulos de los polímeros a que se refiere el inciso 1f., de preferencia se secan en un deshumidificador a 1 10°C por 12 h.Preferably, the antifoam referred to in item 1g is commercial A204 or A289 of Aldrich. The granules of the polymers referred to in subparagraph 1f., Are preferably dried in a dehumidifier at 10 ° C for 12 h.
Las relaciones de las masas de los componentes del inciso 1f., son de preferencia las siguientes: de 1 % de partículas de BaS04, 98.5% de los gránulos del polímero y 0.5% de antiespumante.The mass ratios of the components of subsection 1f., Are preferably the following: 1% BaS04 particles, 98.5% polymer granules and 0.5% antifoam.
El proceso de extrusión a que se refiere el inciso 1 h., de preferencia se realiza a una velocidad del husillo de 5 RMP cuando el polímero es poliuretano, con un perfil de temperaturas de 175°C para la zona de alimentación, 180°C para la zona de suministro, 180°C para la zona de compresión y 188°C para la zona de dosificación. En el caso del polioximetileno, la velocidad del husillo es de 25 RMP y las temperaturas del proceso de extrusión son de 180-180-185-185°C respectivamente.The extrusion process referred to in paragraph 1 h., Is preferably carried out at a spindle speed of 5 RMP when the polymer is polyurethane, with a temperature profile of 175 ° C for the feeding zone, 180 ° C for the supply zone, 180 ° C for the compression zone and 188 ° C for the dosing zone. In the case of polyoxymethylene, the spindle speed is 25 RMP and the extrusion process temperatures are 180-180-185-185 ° C respectively.
Las temperaturas utilizadas en el proceso de inyección por moldeo a que se refiere el inciso 1 i., preferentemente son: para el poliuretano de 180°C para la zona de alimentación y 210, 210 y 220°C para las zona de dosificación, mientras que para el polioximetileno son de 220, 210, 210 y 200°C.The temperatures used in the injection molding process referred to in subparagraph 1 i., Preferably are: for polyurethane 180 ° C for the feeding zone and 210, 210 and 220 ° C for the dosing zone, while which for the polyoxymethylene are 220, 210, 210 and 200 ° C.
Los materiales compuestos obtenidos por estos métodos de síntesis se caracterizan porque presentan distribución homogénea de sulfato de bario como reforzante en forma de: aglomerados esféricos de 0.5 a 10.0 % en volumen de partículas esféricas, con tamaño de aglomerado de 0.5 a las 5 pm, con tamaño de 5 partículas individuales de 0.02 a 0.1 pm, cuando el agente estabilizante es la sal del ácido etilendiamintetracético; fibras 0.5 a 10.0 % con un diámetro de 0.1 a 0.5 pm cuando el agente estabilizante es el poliacrllato de sodio; y donas 0.5 a 10.0 % en volumen, con diámetros exteriores que van de 0.05 a 5 pm y diámetros interiores de entre 0.01 a 1 pm, cuando el agente estabilizante es el 2-amino-2 metilpropanol/polímero asociativo.The composite materials obtained by these methods of synthesis are characterized in that they have a homogeneous distribution of barium sulfate as a reinforcer in the form of: spherical agglomerates from 0.5 to 10.0% by volume of spherical particles, with agglomerate size from 0.5 to 5 pm, with size of 5 individual particles from 0.02 to 0.1 pm, when the stabilizing agent is the salt of ethylenediaminetetraacetic acid; 0.5 to 10.0% fibers with a diameter of 0.1 to 0.5 pm when the stabilizing agent is sodium polyacrylate; and donuts 0.5 to 10.0% by volume, with outside diameters ranging from 0.05 to 5 pm and internal diameters between 0.01 to 1 pm, when the stabilizing agent is 2-amino-2 methylpropanol / associative polymer.
La presente invención también se refiere al uso de los materiales compuestos formados por la matriz polimérica de polioximetileno o de poliuretano y el reforzante de sulfato de bario, en biomedicina para dispositivos biomédicos como prótesis, recubrimientos, válvulas cardiacas y catéteres.The present invention also relates to the use of composite materials formed by the polymer matrix of polyoxymethylene or polyurethane and the Barium sulfate booster, in biomedicine for biomedical devices such as prostheses, coatings, heart valves and catheters.
Los compuestos de la presente invención también se pueden utilizar como pigmentos o en la industria textil, en la fabricación de hilos para la fabricación de telas y mallas.The compounds of the present invention can also be used as pigments or in the textile industry, in the manufacture of threads for the manufacture of fabrics and meshes.
EJEMPLOS.EXAMPLES
Los siguientes ejemplos son para ilustrar la invención pero en ningún momento es para limitarla. The following examples are to illustrate the invention but at no time is it to limit it.
Ejemplo 1. Síntesis de material compuesto de matriz de poliuretano con reforzantes en forma de aglomerados esféricos.Example 1. Synthesis of polyurethane matrix composite material with reinforcements in the form of spherical agglomerates.
Se secan 600 g de gránulos de poliuretano en un deshumidificador a 1 10°C por 12 h. Para preparar el reforzante de BaS04 se mezclan disoluciones de 200 mL cloruro de bario 0.1 M con 200 mL de la sal del ácido etilendiamintetracético (EDTA) 0.1 M manteniendo el pH en 4, posteriormente se agregan 200 mL de una disolución de sulfato de sodio 0.1 M a temperatura ambiente y agitación constante. El precipitado obtenido se decanta, se lava con agua destilada y se seca a 1 10 °C por 24 h. Posteriormente se prepara una mezcla de 6g de partículas de BaS04, 600 g de los gránulos del polímero ya seco y 3g de un agente antiespumante comercial Aldrich A204 ó A289. La mezcla es alimentada a un equipo de extrusión de doble husillo con velocidad del husillo de 5 RMP, con un perfil de temperaturas de 175°C para la zona de alimentación, 180 para la zona de suministro, 180 para la zona de compresión y 188°C para la zona de dosificación. El material extrudido se inyecta por moldeo en un intervalo de temperaturas de 180 para la zona de alimentación, 210, 210 y 220°C para la zona dosificación. En la Figura 1 se puede observar mediante microscopía electrónica de barrido la morfología de las aglomeraciones esféricas de partículas de sulfato de bario, de entre 0.5 y 5 μιτι, formadas por partículas de entre 0.02 a 0.1 pm. Al añadir las partículas al poliuretano se obtiene el material compuesto cuya microestructura se observa en la Figura 2. En la Figura 3 se muestran los resultados de la prueba de radioopacidad, donde se observa el material por medio de una radiografía y con diferentes espesores. Se muestra comparativamente la mayor radiopacidad del poliuretano reforzado, a la derecha, respecto al poliuretano virgen, izquierda.600 g of polyurethane granules are dried in a dehumidifier at 1 10 ° C for 12 h. To prepare the BaS04 booster, solutions of 200 mL 0.1 M barium chloride are mixed with 200 mL of the 0.1 M ethylenediaminetetraacetic acid (EDTA) salt keeping the pH at 4, then 200 mL of a sodium sulfate solution is added 0.1 M at room temperature and constant stirring. The precipitate obtained is decanted, washed with distilled water and dried at 10 ° C for 24 h. Subsequently, a mixture of 6g of BaS04 particles, 600g of the granules of the already dried polymer and 3g of a commercial antifoam agent Aldrich A204 or A289 is prepared. The mixture is fed to a double spindle extrusion equipment with spindle speed of 5 RMP, with a temperature profile of 175 ° C for the feeding zone, 180 for the supply zone, 180 for the compression zone and 188 ° C for the dosing area. The extruded material is injected by molding in a temperature range of 180 for the feeding zone, 210, 210 and 220 ° C for the dosing zone. In Figure 1 the morphology of the spherical agglomerations of barium sulfate particles, between 0.5 and 5 μιτι, formed by particles between 0.02 to 0.1 pm can be observed by scanning electron microscopy. By adding the particles to the polyurethane, the composite material whose microstructure is shown in Figure 2 is obtained. Figure 3 shows the results of the radiopacity test, where the material is observed by means of an x-ray and with different thicknesses. The greater radiopacity of the reinforced polyurethane, on the right, compared to the virgin polyurethane, on the left, is shown comparatively.
Ejemplo 2. Síntesis de material compuesto de matriz de polioximetileno con reforzantes en forma de fibras.Example 2. Synthesis of composite material of polyoxymethylene matrix with fiber-reinforced reinforcements.
Se secan 600 g de gránulos de polioximetileno en un deshumidificador a 1 10°C por 12 h. Se mezclan disoluciones de 400 mL de cloruro de bario 0.1 M y 400mL poliacrilato de sodio 0.1 M, manteniendo el pH en 8 bajo agitación vigorosa y temperatura ambiente. A continuación se agrega una disolución de 400 mL de sulfato de sodio 0.1 M. La disolución se deja reposar 6 días para la formación y crecimiento de las fibras. El precipitado colectado se lava con agua destilada y se seca a 1 10 °C por 24 h. Posteriormente se prepara una mezcla de 6g de partículas de BaS04, 600 g de los gránulos del polímero y 3g de un agente antiespumante comercial Aldrich A204 ó A289. La mezcla es alimentada a un equipo de extrusión de doble husillo con velocidad del husillo de 25 RMP, con un perfil de temperaturas de 180°C para la zona de alimentación, 180°C para la zona de suministro, 185°C para la zona de compresión y 185° C para la zona de dosificación. A continuación el material extrudido se inyecta por moldeo en un intervalo de temperaturas de 220°C para la zona de alimentación y 210-210-200°C para la zona dosificación. En la Figura 4 se puede observar mediante microscopía electrónica de barrido la morfología de las fibras obtenidas, cuyo diámetro es de entre 0.1 a 0.5 pm. Al añadir las fibras al polioximetileno se obtiene el material compuesto cuya microestructura se observa en la Figura 5. En la Figura 6 se muestran los resultados de la prueba de radio-opacidad, donde se observa el material por medio de una radiografía y con diferentes espesores. Se muestra comparativamente la mayor radiopacidad del polioximetileno reforzado, a la derecha, respecto al virgen, izquierda.600 g of polyoxymethylene granules are dried in a dehumidifier at 10 ° C for 12 h. Solutions of 400 mL of 0.1M barium chloride and 400mL 0.1M sodium polyacrylate are mixed, keeping the pH at 8 under vigorous stirring and room temperature. A solution of 400 mL of 0.1 M sodium sulfate is then added. The solution is allowed to stand for 6 days for the formation and growth of the fibers. The collected precipitate is washed with distilled water and dried at 10 ° C for 24 h. Subsequently, a mixture of6 g of BaS04 particles, 600 g of the polymer granules and3 g of a commercial antifoam agent Aldrich A204 or A289 is prepared. The mixture is fed to a twin-screw extrusion equipment with spindle speed of 25 RMP, with a temperature profile of 180 ° C for the feeding zone, 180 ° C for the supply zone, 185 ° C for the zone compression and 185 ° C for the dosing area. The extruded material is then injected by molding in a temperature range of 220 ° C for the feeding zone and 210-210-200 ° C for the dosing zone. In Figure 4, the morphology of the fibers obtained, whose diameter is between 0.1 to 0.5 pm, can be observed by scanning electron microscopy. When the fibers are added to the polyoxymethylene, the composite material whose microstructure is observed in Figure 5 is obtained. Figure 6 shows the results of the radiopacity test, where the material is observed by means of an X-ray and with different thicknesses . The greater radiopacity of the reinforced polyoxymethylene is shown comparatively, on the right, compared to the virgin, on the left.
Ejemplo 3. Síntesis de material compuesto de matriz de polioximetileno con reforzantes en forma aglomerados con aspecto de donas. Se secan 600 g de gránulos de polioximetileno en un deshumidificador a 1 10°C por 12 h. Se mezclan 200 mL de amino-2-metilpropanol 0.5 M y 1 L de un polímero asociativo comercial Primal TT-935 de Rhom and Haas 0.02 M. Esta disolución se agita vigorosamente y se deja reposar por 48 h para que su pH se estabilice en 9.0. Posteriormente se mezcla con 50 mL disoluciones de 50 mL cloruro de bario 0.1 M y 50 mL de sulfato de sodio 0.1 M. Los precipitados obtenidos se decantan, se lavan con agua destilada y se secan a una temperatura de entre 1 10 °C por un tiempo 24 horas. Posteriormente se prepara una mezcla de 6g de partículas de BaS04, 600 g de los gránulos del polímero y 3g de un agente antiespumante comercial Aldrich A204 ó A289. La mezcla es alimentada a un equipo de extrusión de doble husillo con velocidad del husillo de 25 RMP, con un perfil de temperaturas de 180°C para la zona de alimentación, 180°C para la zona de suministro, 185°C para la zona de compresión y 185°C para la zona de dosificación. A continuación el material extrudido se inyecta por moldeo a temperaturas de 220°C para la zona de alimentación y 210-210-200°C para la zona dosificación. En la Figura 7 se puede observar mediante microscopía electrónica de barrido la morfología de los aglomerados de partículas en forma de donas con diámetros exteriores que van de 0.05 a 5 prn y diámetros interiores de entre 0.01 a 1 pm, con volúmenes del reforzante que van 0.5 a 10.0 %. Al añadir los aglomerados al polioximetileno se obtiene el material compuesto cuya microestructura se observa en la Figura 8. En la Figura 9 se muestran los resultados de la prueba de radio-opacidad, donde se observa el material por medio de una radiografía y con diferentes espesores. Se muestra comparativamente la mayor radiopacidad del polioximetileno reforzado, a la derecha, respecto al virgen, izquierda.Example 3. Synthesis of polyoxymethylene matrix composite material with agglomerated donut-like reinforcements. 600 g of polyoxymethylene granules are dried in a dehumidifier at 10 ° C for 12 h. 200 mL of 0.5 M amino-2-methylpropanol and 1 L of a commercial primal TT-935 Rhom and Haas 0.02 M associative polymer are mixed. This solution is vigorously stirred and allowed to stand for 48 h so that its pH is stabilized in 9.0. Subsequently, 50 mL solutions of 50 mL 0.1 M barium chloride and 50 mL of 0.1 M sodium sulfate are mixed with the precipitates. The precipitates obtained are decanted, washed with distilled water and dried at a temperature between 1-10 ° C for a 24 hours time. Subsequently, a mixture of 6g of BaS04 particles, 600g of the polymer granules and 3g of a commercial antifoam agent Aldrich A204 or A289 is prepared. The mixture is fed to a twin-screw extrusion equipment with spindle speed of 25 RMP, with a temperature profile of 180 ° C for the feeding zone, 180 ° C for the supply zone, 185 ° C for the zone compression and 185 ° C for the dosing area. The extruded material is then injected by molding at temperatures of 220 ° C for the feeding zone and 210-210-200 ° C for the dosing zone. In Figure 7 it can be observed by scanning electron microscopy the morphology of the particle agglomerates in the form of donuts with outside diameters ranging from 0.05 to 5 prn and internal diameters between 0.01 to 1 pm, with volumes of the reinforcer ranging 0.5 to 10.0%. By adding the agglomerates to the polyoxymethylene the composite material whose microstructure is observed in Figure 8 is obtained. Figure 9 shows the results of the radiopacity test, where the material is observed by means of an x-ray and with different thicknesses . The greater radiopacity of the reinforced polyoxymethylene is shown comparatively, on the right, compared to the virgin, on the left.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
En la Figura 1 se observa una micrografía obtenida mediante microscopía electrónica de barrido donde se aprecia la aglomeración de partículas de sulfato de bario. En la Figura 2 se observa una imagen de microscopía electrónica de barrido del material compuesto, poliuretano reforzado con aglomerados esféricos de sulfato de bario.Figure 1 shows a micrograph obtained by scanning electron microscopy where the agglomeration of barium sulfate particles can be seen. Figure 2 shows a scanning electron microscopy image of the composite material, polyurethane reinforced with spherical barium sulfate agglomerates.
En la Figura 3 se puede observar una radiografía, realizada con diferentes espesores de protección, donde se muestra la mayor radiopacidad del poliuretano reforzado con aglomerados esféricos, a la derecha, respecto al poliuretano virgen.In Figure 3 an X-ray can be observed, made with different thicknesses of protection, showing the greatest radiopacity of the reinforced polyurethane with spherical agglomerates, on the right, with respect to the virgin polyurethane.
En la Figura 4 se observa una micrografía obtenida mediante microscopía electrónica de barrido, donde se aprecian las fibras de sulfato de bario.Figure 4 shows a micrograph obtained by scanning electron microscopy, where barium sulfate fibers are seen.
En la Figura 5 se observa una imagen de microscopía electrónica de barrido del material compuesto polioximetileno reforzado con fibras de sulfato de bario.A scanning electron microscopy image of the barium sulfate polyoxymethylene composite material is observed in Figure 5.
En la Figura 6 se puede observar una radiografía, realizada con diferentes espesores de protección, donde se muestra la mayor radiopacidad del polioximetileno reforzado con fibras, a la derecha, respecto al virgen.In Figure 6 an x-ray can be observed, made with different thicknesses of protection, showing the greatest radiopacity of fiber reinforced polyoxymethylene, on the right, with respect to the virgin.
En la Figura 7 se observa una micrografía obtenida mediante microscopía electrónica de barrido, donde se aprecia la aglomeración de partículas de sulfato de bario formando donas.Figure 7 shows a micrograph obtained by scanning electron microscopy, where the agglomeration of barium sulfate particles forming donuts can be seen.
En la Figura 8 se observa una imagen de microscopía electrónica de barrido del material compuesto polioximetileno reforzado con aglomerados en forma de dona de sulfato de bario.A scanning electron microscopy image of the agglomerated polyoxymethylene composite material in the form of barium sulfate donut is observed in Figure 8.
En la Figura 9 se puede observar una radiografía, realizada con diferentes espesores de protección, donde se muestra la mayor radiopacidad del polioximetileno reforzado por aglomerados en forma de donas, a la derecha, respecto al polioximetileno virgen.In Figure 9 an x-ray can be observed, made with different thicknesses of protection, showing the greater radiopacity of the polyoxymethylene reinforced by donut-shaped agglomerates, on the right, with respect to the virgin polyoxymethylene.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2009012860AMX339572B (en) | 2009-11-27 | 2009-11-27 | Polymeric matrix material with reinforcements of different morphologies and the synthesis process thereof. |
MXMX/A/2009/012860 | 2009-11-27 |
Publication Number | Publication Date |
---|---|
WO2011065809A2true WO2011065809A2 (en) | 2011-06-03 |
WO2011065809A3 WO2011065809A3 (en) | 2011-11-24 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2010/000140WO2011065809A2 (en) | 2009-11-27 | 2010-11-26 | Polymer matrix composite materials with reinforcing agents having different morphologies and procedures of synthesis thereof |
Country | Link |
---|---|
MX (1) | MX339572B (en) |
WO (1) | WO2011065809A2 (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014163795A1 (en)* | 2013-03-13 | 2014-10-09 | W. L. Gore & Associates, Inc. | Durable high strength polymer composites suitable for implant and articles produced therefrom |
US8945212B2 (en) | 2011-04-01 | 2015-02-03 | W. L. Gore & Associates, Inc. | Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom |
US8961599B2 (en) | 2011-04-01 | 2015-02-24 | W. L. Gore & Associates, Inc. | Durable high strength polymer composite suitable for implant and articles produced therefrom |
US9554900B2 (en) | 2011-04-01 | 2017-01-31 | W. L. Gore & Associates, Inc. | Durable high strength polymer composites suitable for implant and articles produced therefrom |
US9744033B2 (en) | 2011-04-01 | 2017-08-29 | W.L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US9801712B2 (en) | 2011-04-01 | 2017-10-31 | W. L. Gore & Associates, Inc. | Coherent single layer high strength synthetic polymer composites for prosthetic valves |
US10342658B2 (en) | 2011-04-01 | 2019-07-09 | W. L. Gore & Associates, Inc. | Methods of making durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
US11457925B2 (en) | 2011-09-16 | 2022-10-04 | W. L. Gore & Associates, Inc. | Occlusive devices |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149674A (en)* | 1984-01-17 | 1985-08-07 | Nippon Paint Co Ltd | Paint composition |
JPH02269141A (en)* | 1989-04-07 | 1990-11-02 | Kanebo Ltd | Antimicrobial molded product and production thereof |
US20060111473A1 (en)* | 2004-11-23 | 2006-05-25 | Shengmei Yuan | High density polyoxymethylene compositions |
DE102005025719A1 (en)* | 2005-06-04 | 2006-12-07 | Solvay Infra Bad Hönningen GmbH | Process for producing a dispersion of deagglomerated barium sulfate in plastics or plastic precursors |
BRPI0717172A2 (en)* | 2006-08-25 | 2013-10-15 | Sachtleben Chemie Gmbh | COMPOSITE CONTAINING BARIUM SULFATE |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10993803B2 (en) | 2011-04-01 | 2021-05-04 | W. L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US8945212B2 (en) | 2011-04-01 | 2015-02-03 | W. L. Gore & Associates, Inc. | Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom |
US8961599B2 (en) | 2011-04-01 | 2015-02-24 | W. L. Gore & Associates, Inc. | Durable high strength polymer composite suitable for implant and articles produced therefrom |
US10653518B2 (en) | 2011-04-01 | 2020-05-19 | W. L. Gore & Associates, Inc. | Methods of making a durable multi-layer high strength polymer composite suitable for prosthetic valves |
US9554900B2 (en) | 2011-04-01 | 2017-01-31 | W. L. Gore & Associates, Inc. | Durable high strength polymer composites suitable for implant and articles produced therefrom |
US9744033B2 (en) | 2011-04-01 | 2017-08-29 | W.L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US9770327B2 (en) | 2011-04-01 | 2017-09-26 | W. L. Gore & Associates, Inc. | Methods of making a prosthetic valve with a durable high strength polymer composite leaflet |
US9795475B2 (en) | 2011-04-01 | 2017-10-24 | W.L. Gore & Associates, Inc. | Durable high strength polymer composite suitable for implant and articles produced therefrom |
US10022219B2 (en) | 2011-04-01 | 2018-07-17 | W. L. Gore & Associates, Inc. | Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom |
US9801712B2 (en) | 2011-04-01 | 2017-10-31 | W. L. Gore & Associates, Inc. | Coherent single layer high strength synthetic polymer composites for prosthetic valves |
US10470878B2 (en) | 2011-04-01 | 2019-11-12 | W. L. Gore & Associates, Inc. | Durable high strength polymer composites suitable for implant and articles produced therefrom |
US10342658B2 (en) | 2011-04-01 | 2019-07-09 | W. L. Gore & Associates, Inc. | Methods of making durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom |
US10548724B2 (en) | 2011-04-01 | 2020-02-04 | W. L. Gore & Associates, Inc. | Coherent single layer high strength synthetic polymer composites for prosthetic valves |
US11457925B2 (en) | 2011-09-16 | 2022-10-04 | W. L. Gore & Associates, Inc. | Occlusive devices |
EP3459498A1 (en)* | 2013-03-13 | 2019-03-27 | W. L. Gore & Associates Inc | Prosthetic heart valve comprising durable high strength polymer composites suitable for implant |
CN105007955A (en)* | 2013-03-13 | 2015-10-28 | W.L.戈尔及同仁股份有限公司 | Durable high strength polymer composites suitable for implant and articles produced therefrom |
WO2014163795A1 (en)* | 2013-03-13 | 2014-10-09 | W. L. Gore & Associates, Inc. | Durable high strength polymer composites suitable for implant and articles produced therefrom |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
Publication number | Publication date |
---|---|
MX2009012860A (en) | 2011-05-26 |
WO2011065809A3 (en) | 2011-11-24 |
MX339572B (en) | 2016-05-18 |
Publication | Publication Date | Title |
---|---|---|
WO2011065809A2 (en) | Polymer matrix composite materials with reinforcing agents having different morphologies and procedures of synthesis thereof | |
Idumah et al. | Recently emerging advancements in halloysite nanotubes polymer nanocomposites | |
Yang et al. | Luminescent poly (vinyl alcohol)/carbon quantum dots composites with tunable water-induced shape memory behavior in different pH and temperature environments | |
Zhang et al. | Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube− two-dimensional clay nanoplatelet heterostructures | |
Khan et al. | Polymer nanocomposites–synthesis techniques, classification and properties | |
Jin et al. | Study of tetrapodal ZnO-PDMS composites: A comparison of fillers shapes in stiffness and hydrophobicity improvements | |
Calamak et al. | In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications | |
Vengatesan et al. | Nanoparticle‐and Nanofiber‐Based Polymer Nanocomposites: An Overview | |
Topuz et al. | Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite | |
Kausar | Amalgamation of Nanodiamond and Epoxy | |
Deliormanli et al. | Two-dimensional molybdenum disulfide/polymer-coated bioactive glass scaffolds for tissue engineering: Fabrication, structural, mechanical, bioactivity, and radiation interaction properties | |
Varghese et al. | Nanocomposites of polymer matrices: Nanoscale processing | |
Mondal | Carbon nanotube-reinforced polymer nanocomposite for biomedical applications | |
Mohammadzadeh Koumleh et al. | A review on shape‐memory polyurethane nanocomposites: Focusing on the most important used nanofillers | |
Absalan et al. | Bone tissue engineering of HA/COL/GO porous nanocomposites with the ability to release naproxen: synthesis, characterization, and in vitro study | |
Kendre et al. | Nanocomposite polymeric materials: state of the art in the development of biomedical drug delivery systems and devices | |
Parida | Recent Advances on Polymer-Based Nanocomposite: A Brief Review | |
Choubey et al. | Synthesis of polymer nanomaterials, mechanisms, and their structural control | |
Zhang et al. | Nanodiamond-Reinforced polyurethane micro/nanofiber membrane for UV protection in multifunctional textiles | |
Pielichowska | Preparation and characterization of polyoxymethylene nanocomposites | |
Sharma et al. | Recent Advances in Nanofillers for Multidisciplinary Applications of Polymer Nanocomposites | |
Bakhtiar et al. | Silica-based polymer nanocomposites and their biomedical applications | |
Abdul Majeed et al. | Amorphous and semicrystalline thermoplastic polymer nanocomposites applied in biomedical engineering | |
Zadeh et al. | Processing and industrial applications of sustainable nanocomposites containing nanofillers | |
Gupta | Functionalized metal oxides based polymer nanocomposites |
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase | Ref country code:DE | |
122 | Ep: pct application non-entry in european phase | Ref document number:10833620 Country of ref document:EP Kind code of ref document:A2 |