Movatterモバイル変換


[0]ホーム

URL:


WO2010033000A2 - Method and apparatus for managing device discovery in wireless system - Google Patents

Method and apparatus for managing device discovery in wireless system
Download PDF

Info

Publication number
WO2010033000A2
WO2010033000A2PCT/KR2009/005361KR2009005361WWO2010033000A2WO 2010033000 A2WO2010033000 A2WO 2010033000A2KR 2009005361 WKR2009005361 WKR 2009005361WWO 2010033000 A2WO2010033000 A2WO 2010033000A2
Authority
WO
WIPO (PCT)
Prior art keywords
discovery
beacon
duration
response message
control information
Prior art date
Application number
PCT/KR2009/005361
Other languages
French (fr)
Other versions
WO2010033000A3 (en
Inventor
Yong Sun Kim
Seung Eun Hong
Hyoung Jin Kwon
Kyeongpyo Kim
Woo Yong Lee
Original Assignee
Electronics And Telecommunications Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090086268Aexternal-prioritypatent/KR101271918B1/en
Application filed by Electronics And Telecommunications Research InstitutefiledCriticalElectronics And Telecommunications Research Institute
Priority to US13/120,155priorityCriticalpatent/US8767620B2/en
Publication of WO2010033000A2publicationCriticalpatent/WO2010033000A2/en
Publication of WO2010033000A3publicationCriticalpatent/WO2010033000A3/en

Links

Images

Classifications

Definitions

Landscapes

Abstract

Provided is a method and apparatus for managing a device discovery in a wireless system. The device discovery management method may include: transmitting, by a discovery device, a discovery beacon that contains information associated with a discovery scanning duration; and receiving, from a neighboring device, a response message to the discovery beacon in the discovery scanning duration.

Description

METHOD AND APPARATUS FOR MANAGING DEVICE DISCOVERY IN WIRELESS SYSTEM
The present invention relates to a wireless system enabling a high data rate transmission using an ultra-wideband high frequency signal with a strong straightness, and more particularly, to a method and apparatus for managing a device discovery in a wireless system enabling a high data rate transmission.
In a wireless system enabling a high data rate transmission, a device may be classified into any one of three types. For example, a type A device may support antenna training and a communication distance thereof is about 10 meters. A type B device may not support antenna training, and a communication distance thereof is about five meters. A type C device may support only a master-slave operation and a communication distance thereof is about 2 meters. Here, the term "device" denotes a communication device that may transmit data at a high data rate.
In the wireless system enabling a high data rate transmission, when a power is applied, a device may initially verify which neighboring devices exist in a current network. The device may perform a device discovery procedure to perform antenna training with a neighboring device, as necessary.
Hereinafter, the device discovery procedure is referred to as a discovery procedure. The device performing the discovery procedure is referred to as a discovery device.
To search for neighboring devices, the discovery device may transmit, via a discovery channel, a beacon where a status field is set to a discovery. Hereinafter, the beacon where the status field is set to the discovery is referred to as a "discovery beacon" or a "Poll frame".
Also, to search for different types of devices, the discovery device may transmit a beacon using a physical (PHY) mode supported by a desired type device. Here, the beacon using the PHY mode supported by the desired type device is referred to as the "Poll frame".
When performing the discovery procedure, each of devices may divide a space into sectors, and perform the discovery procedure with devices included in the sectors. In this instance, to perform the discovery procedure with the devices of the sectors, the discovery device may transmit the beacon or the poll frame using a directional beam. For a response to the beacon or the poll frame, the devices may also transmit a response message to a corresponding sector using the directional beam. Hereinafter, the device receiving the beacon or the poll frame from the discovery device is referred to as a neighboring device. The neighboring device may also perform discovery scanning for each sector according to an antenna performance.
Accordingly, there is a need for a method and apparatus that enables a device to effectively perform a discovery procedure, and enables each of a type A device, a type B device, and a type C device to accurately perform discovery scanning for each sector in a wireless system enabling a high data rate transmission.
An aspect of the present invention provides a method and apparatus for managing a device discovery that enables a device to effectively perform a discovery procedure, and enables each of a type A device, a type B device, and a type C device to accurately perform discovery scanning for each sector.
Another aspect of the present invention also provides a method and apparatus for managing a device discovery that may minimize a response message collision caused by a hidden device.
Another aspect of the present invention also provides a method and apparatus for managing a device discovery that may solve a problem that a discovery device or a neighboring device iteratively transmits and receives a response message with respect to a discovery beacon.
Another aspect of the present invention also provides a method and apparatus for managing a device discovery that enables each of a type A device, a type B device, and a type C device to accurately perform discovery scanning for each sector when a transmission opportunity is obtained through a contention.
According to an aspect of the present invention, there is provided a method of managing a device discovery, the method including: transmitting, by a discovery device, a discovery beacon that contains information associated with a discovery scanning duration; and receiving, from a neighboring device, a response message to the discovery beacon in the discovery scanning duration.
The response message may include status information indicating that the response message is a response to the discovery beacon.
The discovery beacon may include device control information, and the device control information may include a Status field indicating that the discovery beacon is used to search for neighboring devices.
The device control information may further include a Security Mode field indicating a security mode where the discovery device is currently set, a Signaling Slot field indicating whether the discovery beacon is transmitted in a signaling beacon slot, and a Movable field indicating whether the discovery beacon is movable according to a beacon period (BP) contraction.
The response message may include device control information, and the status information may be included in the device control information.
A backoff timer in the discovery scanning duration may be a maximum length of a frame of the response message.
A transmission opportunity for the discovery device may be allocated based on a sector unit of the discovery device. The transmission opportunity may include a D0 Discovery duration for discovery of a first device supporting antenna training, a B0 Poll duration for discovery of a second device, a C0 Poll duration for discovery of a third device, a C-SCAN duration, a B-SCAN duration, and a D-SCAN duration.
According to another aspect of the present invention, there is provided a communication apparatus including: a discovery beacon generator to generate a discovery beacon containing information associated with a discovery scanning duration; a transmitter to transmit the discovery beacon to a neighboring device; and a receiver to receive, from the neighboring device, a response message to the discovery beacon in the discovery scanning duration.
According to embodiments of the present invention, it is possible to manage a device discovery so that a device may effectively perform a discovery procedure, and each of a type A device, a type B device, and a type C device may accurately perform discovery scanning for each sector.
Also, according to embodiments of the present invention, it is possible to minimize a response message collision caused by a hidden device.
Also, according to embodiments of the present invention, it is possible to solve a problem that a discovery device or a neighboring device iteratively transmits and receives a response message with respect to a discovery beacon.
FIG. 1 is a diagram for describing a discovery procedure according to an embodiment of the present invention;
FIG. 2 is a diagram illustrating an example of performing backoff by each of devices of FIG. 1;
FIG. 3 is a diagram illustrating another example of performing backoff by each of the devices of FIG. 1;
FIG. 4 is a diagram illustrating an example of managing a discovery duration according to an embodiment of the present invention;
FIG. 5 is a diagram illustrating a configuration of Discovery Beacon BlockS (DBBS) according to an embodiment of the present invention;
FIG. 6 is a diagram illustrating a configuration of DBBS according to another embodiment of the present invention;
FIG. 7 is a flowchart illustrating a method of managing a device discovery according to an embodiment of the present invention;
FIG. 8 is an example of a beacon frame format according to an embodiment of the present invention;
FIG. 9 is a diagram illustrating a configuration of a Beacon Parameters field of FIG. 8;
FIG. 10 is a diagram illustrating a configuration of a Device Control field of FIG. 9;
FIG. 11 is a block diagram illustrating a configuration of a communication apparatus according to an embodiment of the present invention; and
FIG. 12 is a block diagram illustrating a configuration of a communication apparatus according to another embodiment of the present invention.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. When it is determined detailed description related to a known function or configuration they may render the purpose of the present invention unnecessarily ambiguous in describing the present invention, the detailed description will be omitted herein.
FIG. 1 is a diagram for describing a discovery procedure according to an embodiment of the present invention. In FIG. 1, a direction indicated by a dotted line indicates a single sector covered by adiscovery device 110.
Here, thediscovery device 110 corresponds to a type A device. Therefore, thediscovery device 110 may support antenna training. The discovery procedure and the antenna training process may be performed using a discovery channel. Here, antenna training indicates a process of adjusting an antenna parameter and the like to maximize a link performance between devices. Generally, a device performing antenna training may select a pattern or steer a transmit and receive beam pattern through the above antenna training process.
Neighboring devices, that is, afirst device 120, asecond device 130, and athird device 140 may be classified into any one of the type A device, a type B device, and a type C device.
To perform the discovery procedure, thediscovery device 110 may transmit Discovery Beacon BlockS (DBBS). The DBBS may include Mode-D0 Discovery Beacon, Mode-B0 Poll, and Mode-C0 Poll. After transmitting the DBBS, thediscovery device 110 may be waiting during a C-SCN duration, a B-SCAN duration, and a Mode D0-SCAN duration to receive a response from type C devices, type B devices, and type A devices, respectively. When thediscovery device 110 includes a plurality of antennas, the above DBBS transmission and response reception process may be repeated the same number of times as the number of antennas. Thediscovery device 110 may receive the responses in the above scan durations, and thereby become aware that corresponding devices exist.
To prevent a collision with other devices, thediscovery device 110 may need to obtain a transmission opportunity (TXOP) corresponding to a DBBS interval. To obtain the TXOP, thediscovery device 110 may employ a Distributed Contention Access (DCA) scheme. Accordingly, thediscovery device 110 may obtain the TXOP using the DCA scheme in a channel. The DCA scheme denotes a scheme that may perform a transmission when a backoff counter is zero and the channel is in an idle status. The DCA scheme and the TXOP obtainment scheme may be variously specified according to a communication standard or a communication scheme.
Constituent elements of the DBBS may be separated by a period of time equal to a Beacon Interframe Space (BIFS). A Mode-D0 Discovery Beacon corresponds to a beacon to search for type A devices. A "Discovery Scanning Information Element (IE)" contained in the Mode-D0 Discovery Beacon may include a point in time when the type A devices receiving the beacon starts a response, and a period of time used by the response. Specifically, the type A devices receiving the Mode-D0 Discovery Beacon may transmit a response beacon using the DCA scheme within a starting point in time and an end point in time of the Mode-D0 Scan duration.
The type B devices receiving a Mode-B0 Poll frame may transmit a response frame within a corresponding duration from a point in time indicated by "Discovery Scanning IE" included in the Mode-B0 Poll frame.
However, a Mode-C0 Poll frame is not included in "Discovery Scanning IE". The type C devices may receive the Mode-C0 Poll frame and then transmit a response message immediately after a Short Interframe Space (SIFS).
FIG. 2 is a diagram illustrating an example of performing backoff by each of thefirst device 120, thesecond device 130, and thethird device 140 of FIG. 1,.
FIG. 2 illustrates an example where devices perform backoff based on a SlotTime unit. Thefirst device 120 may pre-occupy a channel and transmit aresponse message 210 in a scanning duration. Thesecond device 130 and thethird device 140 may not recognize theresponse message 210 and thus may transmitresponse messages 220 and 230, respectively. Accordingly, while receiving theresponse message 210 from thefirst device 120, thediscovery device 110 may receive theresponse messages 220 and 230 from thesecond device 130 and thethird device 140, which may result in a collision. In this instance, thesecond device 130 and thethird device 140 may need to recognize that thefirst device 120 pre-occupies the channel, based on a Clear Channel Assessment (CCA). However, due to a limitation on a directional beam, thesecond device 130 and thethird device 140 may not recognize that the channel is preoccupied by thefirst device 120, whereby the collision may occur.
FIG. 3 is a diagram illustrating another example of performing backoff by each of thefirst device 120, thesecond device 130, and thethird device 140 of FIG. 1. Specifically, a backoff counter is a maximum length of a response message frame.
Thefirst device 120 may pre-occupy a channel in a scanning duration and transmit aresponse message 310 in a scanning duration. Aresponse message 320 of thesecond device 130 may be transmitted after the transmission of theresponse message 310 is completed. Aresponse message 330 of thethird device 140 may be transmitted after the transmission of theresponse message 320 is completed.
Accordingly, when the backoff counter is set to be the maximum length of the response message frame, a response message collision may not occur.
According to an embodiment of the present invention, the backoff counter may be set to be an average length of theresponse messages 310, 320, and 330. Also, the backoff counter may be set to a size that a plurality of response messages occupies, whereby it is possible to minimize a collision caused by a hidden device.
Also, according to an embodiment of the present invention, a device receiving a discovery beacon may set a response message backoff value differently depending on a received strength of the discovery beacon. Through this, it is possible to reduce a collision probability caused by the hidden device. Specifically, a backoff timer may be set differently depending on the received strength of the discovery beacon.
FIG. 4 is a diagram illustrating an example of managing a discovery duration according to an embodiment of the present invention.
Referring to FIG. 4, DBBS for asector 1 may include aD0 Discovery duration 410, aB0 Poll duration 420, aC0 Poll duration 430, aC0 Scan duration 440, aB0 Scan duration 450, and aD0 Scan duration 460. A TXOP for a discovery device may be allocated based on a sector unit of the discovery device. Accordingly, theD0 Discovery duration 410, theB0 Poll duration 420, theC0 Poll duration 430, theC0 Scan duration 440, theB0 Scan duration 450, and theD0 Scan duration 460 may be included in a single TXOP.
TheD0 Discovery duration 410 corresponds to a duration for transmitting a "D0 Discovery Beacon" for discovery of a type A device. Therefore, in theD0 Discovery duration 410, the discovery device may transmit the D0 Discovery Beacon. In theD0 Scan duration 460, the type A device receiving the D0 Discovery Beacon may transmit a response message thereto to the discovery device. TheD0 Discovery duration 410 may be set to be sufficiently longer than theB0 Poll duration 420 and theC0 Poll duration 430 in order to expand a discovery coverage of the discovery device.
Due to a DCA scheme, a duration of the DBBS for thesector 1 may be variable. Accordingly, when theD0 duration 460 is not positioned within the DBBS for thesector 1, scanning durations may become inaccurate due to the DCA scheme.
In FIG. 4, theD0 Scan duration 460 is followed by theB0 Scan duration 450, and is included in the single TXOP together with theC0 Scan duration 440 and theB0 Scan duration 450. Accordingly, it is possible to solve the above inaccuracy problem caused by the DCA scheme.
FIG. 5 is a diagram illustrating a configuration of DBBS according to an embodiment of the present invention.
In a case where a discovery device includes a plurality of antennas and performs a discovery procedure for a plurality of sectors, the example of FIG. 5 may be applicable. Here, the discovery device may be a type A device.
Referring to FIG. 5, a DBBS 510 for asector 1 may have a configuration as shown in FIG. 4. Therefore, a D-SCAN duration is simply followed by a B-SCAN duration and is included in a single TXOP together with a C-SCAN duration and the B-SCAN duration. AD0 Scan duration 520 may be followed by theDBBS 510. Like the D-SCAN duration, theD0 Scan duration 520 corresponds to a duration where type A devices transmit a response message corresponding to a discovery beacon.
FIG. 6 is a diagram illustrating a configuration of DBBS according to another embodiment of the present invention.
The DBBS of FIG. 6 may be performed by a type B device. Here, the type B device does not perform a discovery for a type A device in a discovery procedure.
FIG. 7 is a flowchart illustrating a method of managing a device discovery according to an embodiment of the present invention.
The device discovery management method of FIG. 7 may be performed by any one of a type A device, a type B device, and a type C device. Also, the device discovery management method may be performed using the examples of FIGS. 4 through 6.
Inoperation 710, a device may receive a discovery beacon from a discovery device. Specifically, a discovery device may transmit the discovery beacon containing information associated with a discovery scanning duration. For example, the discovery beacon may be D0 Discovery Beacon of FIG. 5. Also, the discovery beacon may be B0 Poll or C0 Poll.
Inoperation 720, the device may verify the discovery scanning duration from the discovery beacon. Here, the discovery beacon may include a "Discovery Scanning IE. The "Discovery Scanning IE" may contain scanning duration information for each device type. Therefore, the device may verify the discovery scanning duration from the discovery beacon.
Inoperation 730, the device may transmit, to the discovery device, a response message to the discovery beacon in the discovery scanning duration. Specifically, the discovery device may receive, from a neighboring device, the response message to the discovery beacon in the discovering scanning duration. Here, a backoff timer in the discovery scanning duration may be set to a maximum length of a frame of the response message.
The response message may include status information indicating that the response message is a response to the discovery beacon. When the response message does not include the status information, the discovery device receiving the response message may retransmit the response message. In this case, it is possible to prevent the discovery device from retransmitting the response message by including a device identifier (ID) in the response message, and by unicasting or broadcasting the response message.
FIG. 8 is an example of a beacon frame format according to an embodiment of the present invention.
The beacon frame format of FIG. 8 indicates a format of a body excluding a header of a beacon frame. The beacon frame format may be applicable to a format of a discovery beacon or a format of the response message to the discovery beacon.
Referring to FIG. 8, the beacon frame may include aBeacon Parameter field 810 and a plurality of Information Element fields 820 and 830.
TheBeacon Parameter field 810 may be constructed as shown in FIG. 9.
The Information Element fields 820 and 830 may include various types of information elements associated with a channel selection. For example, the Information Element fields 820 and 830 may include a scan timing information element regarding when each device performs scanning, and when each device returns to a discovery channel to perform a scan response, and the like.
FIG. 9 is a diagram illustrating a configuration of theBeacon Parameter field 810 of FIG. 8.
ADevice Identifier field 910 may be set according to EUI-48 of a device transmitting a beacon.
A BeaconSlot Number field 920 may be set to a number of a beacon slot where the beacon is transmitted within a beacon period (BP), excluding beacons transmitted in signaling slots.
ADevice Control field 930 may include device control information. Here, the device control information may include a Status field indicating that the discovery beacon is used to search for neighboring devices.
FIG. 10 is a diagram illustrating a configuration of theDevice Control field 930 of FIG. 9.
ASecurity Mode field 940 may be set to a security mode where a device is currently set.
AReserved field 950 indicates a field reserved for future use.
AStatus field 960 may be constructed as given by the following Table 1:
[Table 1]
Figure PCTKR2009005361-appb-I000001
In the case of a discovery beacon, theStatus field 960 may indicate that a discovery beacon is used to search for neighboring devices. In the case of a response message, theStatus field 960 may include status information indicating that the response message is a response to the discovery beacon. Therefore, the response message may include device control information. The status information may be included in the device control information.
In the above Table 1, "Ready" denotes a status value set in a beacon transmitted in a superframe when a device communicates with a responder device after completing a discovery procedure. "Discovery" denotes a beacon used to search for neighboring devices in a discovery channel. "Response" denotes a beacon informing other devices about its own existence in response to the discovery beacon received from the neighboring devices when searching for the neighboring devices in the discovery channel. Here, when receiving the discovery beacon, a reception device may perform a data communication by transmitting an antenna training frame or a channel selection request frame instead of transmitting the response frame. "Preemptive" may be used to request devices, currently in communication, to move from the discovery channel to another channel. "Dual" may be used to prevent a collision with a type A device when a type B device performs the data communication.
ASignaling Slot field 970 may indicate whether the discovery beacon is transmitted in signaling beacon slots.
AMovable field 980 may indicate whether the discovery beacon is movable according to a BP contraction.
FIG. 11 is a block diagram illustrating a configuration of acommunication apparatus 1100 according to an embodiment of the present invention.
Thecommunication apparatus 1100 may perform a device discovery management method according to an embodiment of the present invention. Thecommunication apparatus 1100 may include adiscovery beacon generator 1110, atransmitter 1120, and areceiver 1130. Thecommunication apparatus 1100 may further include a configuration to generate or process data, a processor to perform a control operation, and the like. For ease of description, a configuration included in a general communication apparatus is not described here.
Thediscovery beacon generator 1110 may generate a discovery beacon. The discovery beacon may contain information associated with a discovery scanning duration.
Thetransmitter 1120 may transmit the discovery beacon to a neighboring device.
Thereceiver 1130 may receive, from the neighboring device, a response message to the discovery beacon in the discovery scanning duration. Here, the response message may include status information indicating that the response message is a response to the discovery beacon.
FIG. 12 is a block diagram illustrating a configuration of acommunication apparatus 1200 according to another embodiment of the present invention.
Thecommunication apparatus 1200 may perform a device discovery management method according to an embodiment of the present invention. Thecommunication apparatus 1200 may include areceiver 1210, ascanning duration verifier 1220, aresponse message generator 1230, and atransmitter 1240. Thecommunication apparatus 1200 may further include a configuration to generate or process data, a processor to perform a control operation, and the like. For ease of description, a configuration included in a general communication apparatus is not described here.
Thereceiver 1210 may receive a discovery beacon for a device discovery.
Thescanning duration verifier 1220 may verify a discovery scanning duration to respond to the discovery device.
Theresponse message generator 1230 may generate a response message to the discovery beacon.
Thetransmitter 1240 may transmit the response message to the discovery device in the discovery scanning duration.
The exemplary embodiments of the present invention include computer-readable media including program instructions to implement various operations embodied by a computer. The media may also include, alone or in combination with the program instructions, data files, data structures, tables, and the like.
Although a few embodiments of the present invention have been shown and described, the present invention is not limited to the described embodiments. Instead, it would be appreciated by those skilled in the art that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents.

Claims (14)

  1. A method of managing a device discovery, the method comprising:
    transmitting, by a discovery device, a discovery beacon that contains information associated with a discovery scanning duration; and
    receiving, from a neighboring device, a response message to the discovery beacon in the discovery scanning duration,
    wherein the response message includes status information indicating that the response message is a response to the discovery beacon.
  2. The method of claim 1, wherein:
    the discovery beacon includes device control information, and
    the device control information includes a Status field indicating that the discovery beacon is used to search for neighboring devices.
  3. The method of claim 2, wherein the device control information further includes a Security Mode field indicating a security mode where the discovery device is currently set, a Signaling Slot field indicating whether the discovery beacon is transmitted in a signaling beacon slot, and a Movable field indicating whether the discovery beacon is movable according to a beacon period (BP) contraction.
  4. The method of claim 1, wherein:
    the response message includes device control information, and
    the status information is included in the device control information.
  5. The method of claim 1, wherein a backoff timer in the discovery scanning duration is a maximum length of a frame of the response message.
  6. The method of claim 1, wherein:
    a transmission opportunity for the discovery device is allocated based on a sector unit of the discovery device, and
    the transmission opportunity includes a D0 Discovery duration for discovery of a first device supporting antenna training, a B0 Poll duration for discovery of a second device, a C0 Poll duration for discovery of a third device, a C-SCAN duration, a B-SCAN duration, and a D-SCAN duration.
  7. The method of claim 1, wherein a backoff timer in the discovery scanning duration is set to be different depending on a received strength of the discovery beacon.
  8. A communication apparatus comprising:
    a discovery beacon generator to generate a discovery beacon containing information associated with a discovery scanning duration;
    a transmitter to transmit the discovery beacon to a neighboring device; and
    a receiver to receive, from the neighboring device, a response message to the discovery beacon in the discovery scanning duration,
    wherein the response message includes status information indicating that the response message is a response to the discovery beacon.
  9. The communication apparatus of claim 8, wherein:
    the discovery beacon includes device control information, and
    the device control information includes a Status field indicating that the discovery beacon is used to search for neighboring devices.
  10. The communication apparatus of claim 9, wherein the device control information further includes a Security Mode field indicating a security mode where a discovery device is currently set, a Signaling Slot field indicating whether the discovery beacon is transmitted in a signaling beacon slot, and a Movable field indicating whether the discovery beacon is movable according to a BP contraction.
  11. The communication apparatus of claim 8, wherein:
    the response message includes device control information, and
    the status information is included in the device control information.
  12. The communication apparatus of claim 8, wherein a backoff timer in the discovery scanning duration is a maximum length of a frame of the response message.
  13. The communication apparatus of claim 8, wherein:
    a transmission opportunity for the communication apparatus is allocated based on a sector unit corresponding to a coverage of a discovery device, and
    the transmission opportunity includes a D0 Discovery duration for discovery of a first device supporting antenna training, a B0 Poll duration for discovery of a second device, a C0 Poll duration for discovery of a third device, a C-SCAN duration, a B-SCAN duration, and a D-SCAN duration.
  14. The communication apparatus of claim 8, wherein a backoff timer in the discovery scanning duration is set to be different depending on a received strength of the discovery beacon.
PCT/KR2009/0053612008-09-222009-09-21Method and apparatus for managing device discovery in wireless systemWO2010033000A2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US13/120,155US8767620B2 (en)2008-09-222009-09-21Method and apparatus for managing device discovery in wireless system

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
KR200800929022008-09-22
KR10-2008-00929022008-09-22
KR10-2009-00862682009-09-14
KR1020090086268AKR101271918B1 (en)2008-09-222009-09-14Method and apparatus for managing device discovery in wireless system

Publications (2)

Publication NumberPublication Date
WO2010033000A2true WO2010033000A2 (en)2010-03-25
WO2010033000A3 WO2010033000A3 (en)2013-06-06

Family

ID=42040031

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/KR2009/005361WO2010033000A2 (en)2008-09-222009-09-21Method and apparatus for managing device discovery in wireless system

Country Status (1)

CountryLink
WO (1)WO2010033000A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2012040400A1 (en)*2010-09-212012-03-29Intel CorporationDevice, system, and method of adjusting channel utilization for wireless transmission
CN102918879A (en)*2010-05-142013-02-06皇家飞利浦电子股份有限公司Method and device for deterministic directional discovery of wireless devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB2375014A (en)*2001-04-272002-10-30Ericsson Telefon Ab L MNeighbour discovery in a communication network
ATE526801T1 (en)*2006-01-112011-10-15Qualcomm Inc COMMUNICATION METHOD AND APPARATUS FOR SENDING PRIORITY INFORMATION VIA BEACON SIGNALS
US7613156B2 (en)*2006-06-082009-11-03Motorola, Inc.Method for energy efficient prospective peer discovery in an ad hoc network
US8135400B2 (en)*2007-01-192012-03-13Samsung Electronics Co., Ltd.Method and system for device discovery in wireless communication

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102918879A (en)*2010-05-142013-02-06皇家飞利浦电子股份有限公司Method and device for deterministic directional discovery of wireless devices
EP2569962B1 (en)*2010-05-142017-12-20Koninklijke Philips N.V.Method and device for deterministic directional discovery of wireless devices
US9967726B2 (en)2010-05-142018-05-08Koninklijke Philips N.V.Method and device for deterministic directional discovery of wireless devices
WO2012040400A1 (en)*2010-09-212012-03-29Intel CorporationDevice, system, and method of adjusting channel utilization for wireless transmission
CN103109579A (en)*2010-09-212013-05-15英特尔公司Device, system, and method of adjusting channel utilization for wireless transmission
US8467472B2 (en)2010-09-212013-06-18Intel CorporationDevice, system, and method of adjusting channel utilization for wireless transmission
CN103109579B (en)*2010-09-212016-08-10英特尔公司Adjust for the device of channel usage of Wireless transceiver, system and method

Also Published As

Publication numberPublication date
WO2010033000A3 (en)2013-06-06

Similar Documents

PublicationPublication DateTitle
US9906995B2 (en)Neighbor scanning in wireless local area networks
WO2011030956A1 (en)Method of channel scanning in wireless local area network system
US8767620B2 (en)Method and apparatus for managing device discovery in wireless system
WO2016108589A1 (en)Fast association in millimeter wave wireless local area network systems
WO2010067964A2 (en)Method and system of radio frequency (rf) power transmission in a wireless network
WO2011065743A2 (en)Methods for transmitting a frame in a multi-user based wireless communication system
WO2010044624A2 (en)Method for multicast frame transmission and duplicated multicast frame detection
WO2015030520A1 (en)Wireless device searching apparatus and method in wireless communication system
WO2019035631A1 (en)Method and apparatus for managing radio link in unlicensed band
WO2014109467A1 (en)Method for providing information through wireless lan and apparatus therefor
WO2009088263A2 (en)Active scan processing method for setting up mesh network
WO2013095043A1 (en)Apparatus and method for performing handover in radio local access network communication system
WO2013058573A1 (en)Method and apparatus for generating connection identifier for device-to-device communication
WO2010033000A2 (en)Method and apparatus for managing device discovery in wireless system
WO2016137198A1 (en)Association method for data transmission in wireless communication system and device using same
EP1636944B1 (en)Method and arrangement for reducing the average time needed for a communication unit to connect to a communication network
WO2016129915A1 (en)Method for transmitting data in wireless communication system and device using same
WO2014098340A1 (en)Random access processing method and digital signal processing device performing said method
JP2005020566A (en) Base station apparatus, mobile terminal, and communication method
WO2010085093A2 (en)Method and apparatus for accessing channel in contention based communication system
WO2010032977A2 (en)Method and apparatus for selecting a channel in wideband high frequency wireless system
WO2014003471A1 (en)Method for scanning for access points in wireless lan system
WO2009157678A2 (en)Method and system for reducing background scanning delay in wireless communication system
WO2013051781A1 (en)Method for transmitting and receiving a signal in a wireless communication system
WO2025048571A1 (en)Method and apparatus for measuring channel on basis of coordination in wireless lan system

Legal Events

DateCodeTitleDescription
121Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number:09814816

Country of ref document:EP

Kind code of ref document:A2

WWEWipo information: entry into national phase

Ref document number:13120155

Country of ref document:US

122Ep: pct application non-entry in european phase

Ref document number:09814816

Country of ref document:EP

Kind code of ref document:A2


[8]ページ先頭

©2009-2025 Movatter.jp