以下、本発明の欠陥検査システムおよび欠陥検査方法について、添付の図面に示される好適実施例を基に詳細に説明する。
 図1に示される欠陥検査システム10は、第1の欠陥検査装置12と、第2の欠陥検査装置14と、処理装置16と、を有して構成されている。
 第1の欠陥検査装置12と第2の欠陥検査装置14は、ガラス板Gの搬送経路に沿って上流側から、この順に設けられる。処理装置16は、第1の欠陥検査装置12と第2の欠陥検査装置14で得られた画像を処理し、欠陥検出を行う装置である。
 ガラス板Gは、溶融炉から取り出され所定の厚さとなった長尺状の板材であり、搬送経路に設けられた複数の駆動ローラ18上で搬送される。Hereinafter, the defect inspection system and the defect inspection method of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
 Adefect inspection system 10 shown in FIG. 1 includes a firstdefect inspection device 12, a seconddefect inspection device 14, and aprocessing device 16.
 The firstdefect inspection device 12 and the seconddefect inspection device 14 are provided in this order from the upstream side along the conveyance path of the glass sheet G. Theprocessing device 16 is a device that processes the images obtained by the firstdefect inspection device 12 and the seconddefect inspection device 14 and performs defect detection.
 The glass plate G is a long plate material that is taken out of the melting furnace and has a predetermined thickness, and is conveyed on a plurality ofdrive rollers 18 provided in a conveyance path.
 第1の欠陥検査装置12は、欠陥検査システム10の搬送側最上流に位置し、ガラス板Gの欠陥を検査する装置である。
 具体的には、第1の欠陥検査装置12は、ガラス板Gの面に、駆動ローラ18の側(下側)から投光する第1の線状光源20と、ガラス板Gを通過した透過光を集光して明視野画像を撮影する第1のカメラ22と、第1の線状光源20の透過光の光路中の第1のカメラ22の前面の位置に設けられるナイフエッジ状の光路遮蔽部材24と、を有する。The firstdefect inspection apparatus 12 is an apparatus that is located on the most upstream side of thedefect inspection system 10 on the conveyance side and inspects defects on the glass sheet G.
 Specifically, the firstdefect inspection apparatus 12 transmits the first linearlight source 20 that projects light from thedrive roller 18 side (lower side) to the surface of the glass plate G and the glass plate G that has passed through. Afirst camera 22 that collects light and captures a bright-field image, and a knife-edge optical path provided at a position in front of thefirst camera 22 in the optical path of the transmitted light of the first linearlight source 20 And a shieldingmember 24.
 第1の線状光源20は、略平行光を出射するLED光源であり、第1の線状光源20の出射口は、ガラス板Gの幅方向(図1中の紙面垂直方向)に沿って線状に延びている。第1の線状光源20の出射口は、ガラス板Gの面から、例えば100~900mm離れた位置に設けられ、光源の搬送方向に沿った幅L(図2参照)は、例えば1~20mmに設定される。なお、第1の線状光源20は、ガラス板Gの面から離れて設けられていることが、高い位置精度を必要としない点で好ましい。LED光源における光の種類は特に制限されず、白色が好適に用いられるが、赤色、青色、緑色等であってもよい。LED光源は、具体的には、発光する発光源(不図示)と、発光された光を略平行光とするフレネルレンズ(不図示)と、光強度を略均一にする拡散板(不図示)と、光の出射を絞るスリット板(不図示)とを有する。これにより、第1の線状光源20は、略均一な光強度を持った略平行光を発する。なお、上述のようにフレネルレンズ、拡散板及びスリット板を用いても、必ずしも光強度を均一にし、かつ光を平行光にすることはできず、光強度は指向特性を持ち、光は拡がる。このときの光強度の指向特性を考慮して、指向特性を表す値をαとする。The first linearlight source 20 is an LED light source that emits substantially parallel light, and the exit of the first linearlight source 20 is along the width direction of the glass plate G (the direction perpendicular to the paper surface in FIG. 1). It extends linearly. The exit of the first linearlight source 20 is provided, for example, at a position 100 to 900 mm away from the surface of the glass plate G, and the width L (see FIG. 2) along the light source transport direction is, for example, 1 to 20 mm. Set to In addition, it is preferable that the 1st linearlight source 20 is provided away from the surface of the glass plate G at the point which does not require high position accuracy. The type of light in the LED light source is not particularly limited, and white is preferably used, but may be red, blue, green, or the like. Specifically, the LED light source includes a light emitting source (not shown) that emits light, a Fresnel lens (not shown) that makes emitted light substantially parallel light, and a diffusion plate (not shown) that makes light intensity substantially uniform. And a slit plate (not shown) for narrowing the emission of light. Accordingly, the first linearlight source 20 emits substantially parallel light having substantially uniform light intensity. In addition, even if a Fresnel lens, a diffuser plate, and a slit plate are used as described above, the light intensity is not necessarily uniform and the light cannot be made parallel, the light intensity has directional characteristics, and the light spreads. In consideration of the directivity of the light intensity at this time, a value representing the directivity is α.
 第1のカメラ22は、第1の線状光源20と、ガラス板Gを挟んで対向する位置に設けられ、ガラスGを透過した透過光を直接受光面で読み取るラインセンサー型カメラである。第1のカメラ22は、図1中の紙面に垂直方向に複数台設けられ、搬送方向の同じ位置を撮影し、しかも複数台のカメラは、ガラス板Gの幅方向における視野範囲がお互いに部分的に重なるように設定され、ガラス板Gの検査部分において、非検査エリアがないように配置されている。
 第1のカメラ22は、ガラス板Gの面から、第1のカメラ22の結像レンズ23(図2参照)のピントが合う位置、例えば200~400mm離れた位置に受光面が来るように設けられる。第1のカメラ22には、結像レンズ23を備える光学系、及び、図示されないが、開口を調整する絞りを有する。第1のカメラ22で得られた画像データは、ライン状に読み取られる度に逐次処理装置16に送られる。Thefirst camera 22 is a line sensor type camera that is provided at a position facing the first linearlight source 20 with the glass plate G interposed therebetween and reads transmitted light that has passed through the glass G directly on the light receiving surface. A plurality offirst cameras 22 are provided in the direction perpendicular to the paper surface in FIG. 1 and photograph the same position in the transport direction. In addition, the plurality of cameras have mutually different viewing ranges in the width direction of the glass plate G. In the inspection part of the glass plate G, it is arranged so that there is no non-inspection area.
 Thefirst camera 22 is provided so that the light receiving surface comes to a position where the focusing lens 23 (see FIG. 2) of thefirst camera 22 is in focus, for example, 200 to 400 mm away from the surface of the glass plate G. It is done. Thefirst camera 22 includes an optical system including animaging lens 23 and a diaphragm that adjusts an aperture, which is not illustrated. The image data obtained by thefirst camera 22 is sequentially sent to theprocessing device 16 every time it is read in a line shape.
 光路遮蔽部材24は、ガラスGからの透過光の光路中の、第1のカメラ22の前面の位置で、光路の一部を遮断するナイフエッジ状の部材である。光路中の先端部分は、刃を成すように先鋭化されている。光路遮蔽部材24は、第1のカメラ22の光学系(結像レンズ23)の前面の位置、例えば1~5mm離れた位置に設けられる。光路遮蔽部材24を保持する部分は、光路遮蔽部材24が、光路中を横断するようにX方向に移動可能な機構が設けられている。その際、光路遮蔽部材24の透過光の通過位置において、第1のカメラ22中の結像レンズ23の光軸に直交する面にできる、受光面からみた視野範囲を表す錯乱円を定めたとき、光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の43~57%に該当し、好ましくは略50%に該当する。43%より小さい場合、明視野画像に後述する明部が発生しにくく、57%を超えると暗視野画像になりやすい。
 このような光路を遮断する範囲は、例えば、光遮蔽部材24とガラス板Gとの間の距離と、第1のカメラ22の絞り値とを調整することで実現できる。光路を遮断する範囲をこの範囲に設定することにより、後述するように、明視野画像内に存在する泡等の欠陥によってつくられる暗部の領域に近接して、明部の領域を効率よく形成させるためである。The opticalpath shielding member 24 is a knife edge-shaped member that blocks a part of the optical path at the position of the front surface of thefirst camera 22 in the optical path of the transmitted light from the glass G. The tip portion in the optical path is sharpened so as to form a blade. The opticalpath shielding member 24 is provided at a position on the front surface of the optical system (imaging lens 23) of thefirst camera 22, for example, at aposition 1 to 5 mm away. The part that holds the opticalpath shielding member 24 is provided with a mechanism that allows the opticalpath shielding member 24 to move in the X direction so as to cross the optical path. At that time, when a circle of confusion representing the field of view as viewed from the light receiving surface, which can be a surface orthogonal to the optical axis of theimaging lens 23 in thefirst camera 22 at the passing position of the transmitted light of the opticalpath shielding member 24, is determined. The area of the portion where the circle of confusion is blocked by the opticalpath shielding member 24 corresponds to 43 to 57%, preferably about 50%, of the area of the circle of confusion. If it is less than 43%, a bright field described later is unlikely to occur in the bright field image, and if it exceeds 57%, a dark field image tends to be formed.
 Such a range for blocking the optical path can be realized by adjusting the distance between the light shieldingmember 24 and the glass plate G and the aperture value of thefirst camera 22, for example. By setting the range for blocking the optical path to this range, as will be described later, the bright region is efficiently formed in the vicinity of the dark region created by defects such as bubbles existing in the bright field image. Because.
 その際、第1の線状光源20の発光指向性を表す値をαとしたとき、図2に示す照明発光有効角θに対する画角φの比率に値αを乗算した値が、2より大きくなっていることが好ましい。照明発光有効角θとは、第1の線状光源20から、結像レンズ23を介して第1のカメラ22の受光素子の受光面に至る、第1の線状光源20の透過光の光束の拡がり角の半分の角度をいう。画角φは、第1のカメラ22の受光素子の受光面の位置から結像レンズ23を介して(レンズの有効口径dを用いて)第1の線状光源20の照射面に至る視野範囲の見込み角の半分の角度である。
 ここで、第1の線状光源20の発光指向性を表す値αとは、図3に示すように、横軸に光源の照射面に直交する方向を方位角0度として方位角度をとり、縦軸に最大光強度の値を1としたときの、相対光強度の平均値をいう。In this case, when the value representing the light emission directivity of the first linearlight source 20 is α, the value obtained by multiplying the ratio of the field angle φ to the illumination light emission effective angle θ shown in FIG. It is preferable that The effective illumination emission angle θ is a light flux of transmitted light from the first linearlight source 20 that reaches the light receiving surface of the light receiving element of thefirst camera 22 through theimaging lens 23 from the first linearlight source 20. The half of the spread angle. The angle of view φ ranges from the position of the light receiving surface of the light receiving element of thefirst camera 22 through the imaging lens 23 (using the effective aperture d of the lens) to the irradiation surface of the first linearlight source 20. Is half of the prospective angle.
 Here, the value α representing the light emission directivity of the first linearlight source 20 has an azimuth angle with the direction perpendicular to the irradiation surface of the light source as the azimuth angle of 0 degrees on the horizontal axis, as shown in FIG. The vertical axis represents the average value of relative light intensity when the maximum light intensity value is 1.
 さらに、第1のカメラ22の受光素子は、図2に示すように、ガラス板Gを挟んで、第1の線状光源20と正対するように、第1のカメラ22が配置されることが好ましい。なお、図2中のdは、結像レンズ23の有効口径であり、f/F(fは焦点距離、FはF値である)で表される。このように、本発明において用いる照明発光有効角θおよび画角φは、図2に示すように、各装置の設定や配置に基づいて、幾何学的に定められる。Furthermore, as shown in FIG. 2, thefirst camera 22 is disposed so that the light receiving element of thefirst camera 22 faces the first linearlight source 20 with the glass plate G interposed therebetween. preferable. Note that d in FIG. 2 is an effective aperture of theimaging lens 23 and is represented by f / F (f is a focal length, and F is an F value). As described above, the illumination emission effective angle θ and the angle of view φ used in the present invention are geometrically determined based on the setting and arrangement of each device as shown in FIG.
 このような第1の欠陥検査装置12により、ガラス板Gに存在する微小な泡等の欠陥を容易に検出することができるようになった。Such a firstdefect inspection device 12 makes it possible to easily detect defects such as fine bubbles present on the glass plate G.
 第2の欠陥検査装置14は、第2の光源28と、第2のカメラ30とを有する。第2の欠陥検査装置14は、第1の欠陥検査装置の検査対象として検査されたガラス板Gに対して、一方の側からガラス板を照明し、このときガラス板Gの表面と裏面で反射した照明光を第2のカメラ30で受光して、欠陥を検査する装置である。
 上記した第1の欠陥検査装置12による検出結果に加えて、この第2の欠陥検査装置14の検出結果を組み合わせて、総合的に評価することにより、ガラス板Gに存在する欠陥の特定をより的確に行うことができるようになった。The seconddefect inspection apparatus 14 includes a secondlight source 28 and asecond camera 30. The 2nddefect inspection apparatus 14 illuminates a glass plate from one side with respect to the glass plate G test | inspected as a test object of a 1st defect inspection apparatus, and reflects on the surface and back surface of the glass plate G at this time It is a device that receives the illuminated light with thesecond camera 30 and inspects for defects.
 In addition to the detection result of the firstdefect inspection apparatus 12 described above, the detection result of the seconddefect inspection apparatus 14 is combined and comprehensively evaluated, thereby more accurately identifying defects present in the glass plate G. Now it can be done accurately.
 第2の光源28は、ガラス板Gの面に略平行光を出射するLED光源であり、ガラス板Gの面に対して傾斜した方向から光を入射させる。第2の光源28は、図1の紙面に垂直方向に延びている。第2の光源28に用いられるLED光源における光の種類は特に制限されず、白色が好適に用いられるが、赤色、青色、緑色等であってもよい。LED光源は、具体的には、発光する発光源(不図示)と、発光された光を略平行光とするフレネルレンズ(不図示)と、光強度を略均一にする拡散板(不図示)と、光の出射を絞るスリット板(不図示)とを有する。これにより、第2の線状光源28は略均一な光強度を持った略平行光を発する。The secondlight source 28 is an LED light source that emits substantially parallel light to the surface of the glass plate G, and makes light incident from a direction inclined with respect to the surface of the glass plate G. The secondlight source 28 extends in a direction perpendicular to the paper surface of FIG. The type of light in the LED light source used for the secondlight source 28 is not particularly limited, and white is preferably used, but may be red, blue, green, or the like. Specifically, the LED light source includes a light emitting source (not shown) that emits light, a Fresnel lens (not shown) that makes emitted light substantially parallel light, and a diffusion plate (not shown) that makes light intensity substantially uniform. And a slit plate (not shown) for narrowing the emission of light. As a result, the second linearlight source 28 emits substantially parallel light having substantially uniform light intensity.
 第2のカメラ30は、ガラスGの表面から出射した反射光を集光し、明視野反射画像を撮影するラインセンサー型カメラである。第2のカメラ30は、ガラス板Gから見て第2の光源28と同じ側に設けられている。Thesecond camera 30 is a line sensor type camera that collects reflected light emitted from the surface of the glass G and shoots a bright field reflected image. Thesecond camera 30 is provided on the same side as the secondlight source 28 when viewed from the glass plate G.
 第2のカメラ30で撮影される画像は、第2の光源28で照明されてガラスGの裏面で反射した画像であり、ガラス板Gに存在する欠陥の領域が暗部になる画像である。この画像には、ガラス板Gの面に対して傾斜した方向からガラス板Gの表面に入射し、ガラス板Gの裏面で反射した後、この反射光の光路を欠陥の領域が通過することによってできる欠陥の実像と、ガラス板Gの表面に対して傾斜した方向からガラス板Gの表面に入射した入射光が、ガラス板G内の光路中にある欠陥の領域を通過した後、ガラス板Gの裏面で反射してできる欠陥の鏡像とが含まれる。第2のカメラ30で得られた画像データは、ライン状に読み取られる度に処理装置16に送られる。The image photographed by thesecond camera 30 is an image that is illuminated by the secondlight source 28 and reflected by the back surface of the glass G, and is an image in which a defect area existing in the glass plate G becomes a dark part. In this image, after entering the surface of the glass plate G from a direction inclined with respect to the surface of the glass plate G and reflecting on the back surface of the glass plate G, the defect region passes through the optical path of the reflected light. After the actual image of the defect that can be formed and the incident light incident on the surface of the glass plate G from the direction inclined with respect to the surface of the glass plate G pass through the defect region in the optical path in the glass plate G, the glass plate G And a mirror image of defects formed by reflection on the back surface of the film. The image data obtained by thesecond camera 30 is sent to theprocessing device 16 every time it is read in a line shape.
 処理装置16は、第1の欠陥検査装置12および第2の欠陥検査装置14から送られた画像データを用いて、ガラス板Gの欠陥を検出し、その種類を識別し、また、欠陥のガラス板Gの厚さ方向における位置を特定する装置でもある。処理装置16には、ディスプレイ32が接続され、ディスプレイ32には、第1の欠陥検査装置12および第2の欠陥検査装置14で得られた画像、欠陥の検出結果、識別結果、あるいは欠陥の位置特定結果が画面表示される。
 第1の欠陥検査装置12で得られる画像は、上述したように、明視野画像であり、ガラス板Gの欠陥は、欠陥領域の乱反射によって、画像中では暗部となって現れる。また、上述したように、第1のカメラ22の光学系の直前には、光路の一部分を遮断するナイフエッジ状の光路遮蔽部材24が設けられていることにより、この光路遮蔽部材24により、画像中の暗部の領域と近接して向かい合うように、あるいは接して対するように、明部の領域が形成される。この明部は、欠陥の部分の屈折異常により発生し、明視野画像の背景部分に比べて明度が高い。Theprocessing device 16 uses the image data sent from the firstdefect inspection device 12 and the seconddefect inspection device 14 to detect a defect on the glass plate G, identify the type of the defect, and also detect the defect glass. It is also an apparatus for specifying the position of the plate G in the thickness direction. Adisplay 32 is connected to theprocessing device 16, and thedisplay 32 includes images, defect detection results, identification results, or defect positions obtained by the firstdefect inspection device 12 and the seconddefect inspection device 14. The specific result is displayed on the screen.
 As described above, the image obtained by the firstdefect inspection apparatus 12 is a bright field image, and the defect of the glass plate G appears as a dark part in the image due to irregular reflection of the defect region. Further, as described above, a knife-edge-shaped opticalpath shielding member 24 that blocks a part of the optical path is provided immediately before the optical system of thefirst camera 22, so that the opticalpath shielding member 24 allows the image to be displayed. A bright area is formed so as to face the dark area in the vicinity or to face and contact each other. The bright portion is generated due to a refractive error in the defective portion, and has a higher brightness than the background portion of the bright field image.
 図4Aは、光路遮蔽部材24が光路中にあるときの欠陥画像の一例の模式図である。図4Aに示すように、暗部の領域と近接して向かい合う明部が形成される。これに対して、図4Bは光路遮蔽部材24が光路中に存在しない(光を遮断しない)ときの欠陥画像の一例の模式図である。図4Bに示すように、暗部の領域と近接して向かい合う明部は形成されない。明視野画像中において、図4Aに示すように、明部が暗部の領域に近接して向かい合うように形成されるのは、ガラス板Gの表面や内部に存在する気泡や異物等により、ガラス板Gの表面が凹凸形状となって、ガラス板Gの屈折異常が僅かに変化することによるものと考えられる。実際、ガラス板Gの面に生じるキズや付着した異物では、図4Aに示すような明部は形成されない。
 このため、処理装置16では、明視野画像において、明視野画像における背景部分の画像データの値より高い閾値を設定し、この閾値以上の領域を明部の領域として抽出する。
なお、第1のカメラ22から送られてくる画像データは、検査位置を通過してラインセンサー型カメラで読み取られた一次元の画像データであるので、処理装置16では、複数ライン(例えば500ライン)の画像データが蓄積されて一定の面領域の画像が得られると、上記明部の領域の抽出を開始する。この抽出した明部の領域の位置情報は、ガラス板Gに存在する欠陥領域の検出の際に、以下のようにして用いられる。FIG. 4A is a schematic diagram of an example of a defect image when the opticalpath shielding member 24 is in the optical path. As shown in FIG. 4A, a bright part is formed that faces the dark part region in close proximity. On the other hand, FIG. 4B is a schematic diagram of an example of a defect image when the opticalpath shielding member 24 does not exist in the optical path (does not block light). As shown in FIG. 4B, the bright part that faces the dark part region in the vicinity is not formed. In the bright field image, as shown in FIG. 4A, the bright part is formed so as to face the dark part region in close proximity to the glass plate G due to bubbles or foreign substances existing on the surface or inside of the glass plate G. It is considered that the surface of G becomes uneven and the refractive error of the glass plate G slightly changes. In fact, a bright portion as shown in FIG. 4A is not formed by scratches or foreign matter adhering to the surface of the glass plate G.
 For this reason, in the bright field image, theprocessing device 16 sets a threshold value higher than the value of the image data of the background portion in the bright field image, and extracts an area that is equal to or larger than the threshold value as the bright part area.
 Since the image data sent from thefirst camera 22 is one-dimensional image data that has passed through the inspection position and is read by the line sensor type camera, theprocessing device 16 has a plurality of lines (for example, 500 lines). ) Image data is accumulated and an image of a certain surface area is obtained, the extraction of the bright area is started. The position information of the extracted bright area is used as follows when detecting a defective area existing on the glass plate G.
 第2の欠陥検査装置14で得られ処理装置16に送られた画像データは、明視野反射画像のデータであり、欠陥の部分が暗部の領域となる画像である。上述したように、欠陥の実像と鏡像が暗部となって現れる。ガラス板Gの欠陥が存在するガラス板Gの厚さ方向の位置に応じて、欠陥の実像と鏡像とに位置ずれが生ずる。例えば、ガラス板Gの裏面近くに欠陥が位置する場合、実像と鏡像との位置ずれ量は小さくなり、表面近くに欠陥が位置する場合、実像と鏡像との位置ずれ量は大きくなる。The image data obtained by the seconddefect inspection apparatus 14 and sent to theprocessing apparatus 16 is data of a bright field reflection image, and is an image in which a defective portion is a dark area. As described above, the real image and mirror image of the defect appear as dark portions. Depending on the position in the thickness direction of the glass plate G where the defects of the glass plate G are present, a positional shift occurs between the real image and the mirror image of the defect. For example, when the defect is located near the back surface of the glass plate G, the amount of positional deviation between the real image and the mirror image is small, and when the defect is located near the surface, the amount of positional deviation between the real image and the mirror image is large.
 そこで、処理装置16は、上記抽出された明部の領域の情報を用いて、欠陥のガラス板Gの幅方向の位置を特定する。さらに、この幅方向の位置を用いて、第1の欠陥検査装置12で得られる画像と第2の欠陥検査装置14で得られる画像との間の、ガラス板Gの同一箇所の画像が現れる時間ずれ量に基づいて、第2のカメラ30で得られた欠陥の実像および鏡像の暗部の領域を検出する。上記時間ずれ量は、第1の欠陥検査装置12の計測位置と第2の欠陥検査装置14の計測位置との搬送方向の離間距離とガラスGの搬送速度とが既知であるので、これらの情報から求めることができる。
 暗部の領域の抽出には、予め設定された閾値を用いて行われる。
 次に、この実像の中心位置と鏡像の中心位置との位置ずれ量を求め、この位置ずれ量に基づいて欠陥のガラス板Gにおける厚さ方向の位置を算出する。
 また、処理装置16は、第2のカメラ30で得られた欠陥の実像を用いて暗部の領域の大きさを求め、この領域の大きさから、欠陥の大きさを推定する。なお、処理装置16は、上記明部の領域の情報に基づく処理と独立して、上記明部の領域の情報を用いることなく、予め設定された閾値を用いて暗部の領域を抽出する。Therefore, theprocessing device 16 specifies the position of the defective glass plate G in the width direction using the information on the extracted bright area. Furthermore, using this position in the width direction, the time at which an image of the same portion of the glass plate G appears between the image obtained by the firstdefect inspection device 12 and the image obtained by the seconddefect inspection device 14. Based on the amount of deviation, the real image of the defect and the dark area of the mirror image obtained by thesecond camera 30 are detected. The time lag amount is known because the distance in the conveyance direction between the measurement position of the firstdefect inspection apparatus 12 and the measurement position of the seconddefect inspection apparatus 14 and the conveyance speed of the glass G are known. Can be obtained from
 Extraction of the dark area is performed using a preset threshold value.
 Next, the amount of positional deviation between the center position of the real image and the center position of the mirror image is obtained, and the position of the defect in the glass plate G in the thickness direction is calculated based on the amount of positional deviation.
 Further, theprocessing device 16 obtains the size of the dark area using the real image of the defect obtained by thesecond camera 30, and estimates the size of the defect from the size of this area. Theprocessing device 16 extracts a dark area using a preset threshold value without using the information on the bright area independently of the process based on the information on the bright area.
 処理装置16は、抽出した暗部の領域と、明部の領域の情報を用いて、明部の領域と暗部の領域が近接して向かい合うか否かと、算出されたガラス板Gに存在する欠陥の厚さ方向の位置と、抽出した暗部の領域から求められる欠陥の大きさや欠陥の特徴量を用いて、欠陥の種類を特定する。好ましくは、欠陥の形状を、明視野透過画像中の明部及び暗部の領域と明視野反射画像中の暗部の領域から識別することにより、欠陥の種類、例えば、泡による欠陥、異物による欠陥、あるいは、キズ等に分けて推定する。
 ガラス板Gの面上にある異物やキズ等の欠陥は、第1の欠陥検査装置12から得られる明視野画像中では明部を形成しない。Theprocessing device 16 uses the information of the extracted dark area and the bright area to determine whether the bright area and the dark area face each other in close proximity, and the calculated defects of the glass plate G. The type of defect is specified using the position in the thickness direction, the size of the defect and the feature amount of the defect obtained from the extracted dark area. Preferably, by identifying the shape of the defect from the bright and dark areas in the bright-field transmission image and the dark area in the bright-field reflection image, the type of defect, for example, a defect due to bubbles, a defect due to foreign matter, Or it estimates by dividing into a crack etc.
 Defects such as foreign matter and scratches on the surface of the glass plate G do not form bright portions in the bright field image obtained from the firstdefect inspection apparatus 12.
 なお、第1の欠陥検査装置12において、明視野画像中の、欠陥の暗部の領域と近接して向かい合う明部が効果的に出現するには、以下の条件を満たすことが好ましい。
 すなわち、図2に示す各部分の配置において、照明発光有効角θに対する画角φの比率に値αを乗算した値が、2より大きい第1の条件を満たすように、第1のカメラ22とガラス板Gとの間の距離、ガラス板Gと第1の線状光源20との間の距離、第1の線状光源の照射幅Lが設定されている。
 また、光路遮蔽部材24の配置位置の、結像レンズ23の光軸に直交する面にできる、受光面からみた視野範囲の縁を定める錯乱円を定めたとき、光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の43~57%になる第2の条件を満たすように、第1のカメラ22の絞り値、および第1のカメラ22とガラス板Gとの間の距離が設定されている。
 さらに、第1のカメラ22の受光素子が、ガラス板Gを挟んで、第1の線状光源20の最大光強度の方向に位置するように、第1のカメラ22が配置される。
 この3つの条件を満たすように各装置を配置することで、明視野画像に上記明部を有効に生じさせることができる。
 また、F値を小さくすることにより、撮影における被写体焦点深度は浅くなり、画像のピンボケが生じ易くなるといった不都合が生じる。このため、明部を効率よく抽出するためには、F5.6~F11が好ましく、第1のカメラ20の発光部分34の幅L1~20mmの範囲において、上記比率に値αを乗算した値が2より大きいことが好ましい。In the firstdefect inspection apparatus 12, it is preferable that the following conditions be satisfied in order for a bright part in the bright-field image that is close to and faces the dark area of the defect to appear effectively.
 That is, in the arrangement of each part shown in FIG. 2, thefirst camera 22 and thefirst camera 22 are set so that the value obtained by multiplying the ratio of the field angle φ to the illumination light emission effective angle θ by the value α satisfies the first condition larger than 2. The distance between the glass plate G, the distance between the glass plate G and the first linearlight source 20, and the irradiation width L of the first linear light source are set.
 Further, when the circle of confusion that defines the edge of the field of view as viewed from the light receiving surface, which is formed on the surface orthogonal to the optical axis of theimaging lens 23 at the arrangement position of the opticalpath shielding member 24, is determined, The aperture value of thefirst camera 22 and the distance between thefirst camera 22 and the glass plate G are set so that the area of the blocked portion satisfies the second condition of 43 to 57% of the area of the circle of confusion. The distance is set.
 Further, thefirst camera 22 is arranged so that the light receiving element of thefirst camera 22 is positioned in the direction of the maximum light intensity of the first linearlight source 20 with the glass plate G interposed therebetween.
 By arranging the devices so as to satisfy these three conditions, the bright portion can be effectively generated in the bright field image.
 In addition, by reducing the F value, there is a disadvantage that the subject focal depth in photographing becomes shallow and the image is likely to be out of focus. Therefore, in order to extract the bright part efficiently, F5.6 to F11 are preferable. In the range of the width L1 to 20 mm of the light emitting portion 34 of thefirst camera 20, a value obtained by multiplying the ratio by the value α is Preferably it is greater than 2.
 図5A及び5Bに示す表では、第1のカメラ20の発光部分34の幅LがL=1mm、3mm、4mm、5mm、7mmにより定められる照明発光有効角θの数値と、F値によって定められる画角φの値を示し、各表の対応する欄には、φ/θに第1の光源20のαの値を含めて乗算した値を示している。図5A及び5Bに示す表中の太枠で囲まれる範囲において、値αが略1のとき、図4Aに示すα・φ/θの値が2より大きい条件で、明部が効果的に出現することが確かめられた。これより、第1の線状光源20の値αが1より小さい(発光指向性を考慮した)とき、α・φ/θが2より大きい条件で、明部が効果的に出現するといえる。
 なお、ガラス板Gと第1のカメラ22の結像レンズ23の表面までの距離を380mmとした。第1の線状光源20の照射面からガラス板Gの計測位置までの照明WDは、図5Aでは200mm、図5Bでは400mmである。このときの光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の50%になるようにした。In the tables shown in FIGS. 5A and 5B, the width L of the light emitting portion 34 of thefirst camera 20 is determined by the numerical value of the illumination light emission effective angle θ determined by L = 1 mm, 3 mm, 4 mm, 5 mm, and 7 mm, and the F value. The value of the angle of view φ is shown, and the corresponding column of each table shows a value obtained by multiplying φ / θ by including the value of α of thefirst light source 20. In the range surrounded by the thick frame in the table shown in FIGS. 5A and 5B, when the value α is approximately 1, the bright portion appears effectively under the condition that the value of α · φ / θ shown in FIG. It was confirmed to do. Thus, it can be said that when the value α of the first linearlight source 20 is smaller than 1 (in consideration of the light emission directivity), the bright portion appears effectively under the condition that α · φ / θ is larger than 2.
 The distance from the glass plate G to the surface of theimaging lens 23 of thefirst camera 22 was 380 mm. The illumination WD from the irradiation surface of the first linearlight source 20 to the measurement position of the glass plate G is 200 mm in FIG. 5A and 400 mm in FIG. 5B. At this time, the area of the part where the circle of confusion is blocked by the opticalpath shielding member 24 is set to 50% of the area of the circle of confusion.
 このような欠陥検査システム10では、平行光をガラス板Gに斜めから照射し、シュリーレン撮影法に似た従来の自動欠陥検査で見逃していた欠陥を、精度良く抽出することができる他、修復できないガラス板Gの欠陥を区別することができる点で、有効である。これにより、修復できない欠陥部分を避けるようにして、所定のサイズにガラス板Gを切り出すことができる。In such adefect inspection system 10, the glass plate G is irradiated with the parallel light from an oblique direction, and defects that have been missed by the conventional automatic defect inspection similar to the schlieren imaging method can be extracted with high accuracy and cannot be repaired. This is effective in that the defects of the glass plate G can be distinguished. Thereby, the glass plate G can be cut out to a predetermined size so as to avoid a defective portion that cannot be repaired.
 以上、本発明の欠陥検査システムおよび欠陥検査方法について詳細に説明したが、本発明は上記実施形態や実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。As described above, the defect inspection system and the defect inspection method of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiments and examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2008年8月25日出願の日本特許出願(特願2008-215091)に基づくものであり、その内容はここに参照として取り込まれる。Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 25, 2008 (Japanese Patent Application No. 2008-215091), the contents of which are incorporated herein by reference.