Movatterモバイル変換


[0]ホーム

URL:


WO2009147733A1 - Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head - Google Patents

Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head
Download PDF

Info

Publication number
WO2009147733A1
WO2009147733A1PCT/JP2008/060278JP2008060278WWO2009147733A1WO 2009147733 A1WO2009147733 A1WO 2009147733A1JP 2008060278 WJP2008060278 WJP 2008060278WWO 2009147733 A1WO2009147733 A1WO 2009147733A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
layer
recess
magnetic pole
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2008/060278
Other languages
French (fr)
Japanese (ja)
Inventor
博 白瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu LtdfiledCriticalFujitsu Ltd
Priority to PCT/JP2008/060278priorityCriticalpatent/WO2009147733A1/en
Publication of WO2009147733A1publicationCriticalpatent/WO2009147733A1/en
Anticipated expirationlegal-statusCritical
Ceasedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

In a perpendicular magnetic recording head having a main pole formed in a recessed part formed on an inorganic insulating layer by plating, a coil, and a return yoke, the recessed part is formed in a recessed part for a tip pole forming the recessed part of an inverted triangular or an inverted trapezoidal cross section that is wide on a trailing side and a recessed part for a core communicating with the recessed part for the tip pole and wider than the recessed part for the tip pole, and a plating seed layer is formed in the recessed part for the core of the recessed part. The main pole is characterized by being formed of a core part comprising multilayer plating layers formed in the recessed part for the core with the plating seed layer as an energization layer and a tip pole part comprising multilayer plating layers formed by extending each plating layer formed in the recessed part for the core by plating into the recessed part for the tip pole where the plating seed layer is not formed.

Description

Translated fromJapanese
垂直磁気記録ヘッドおよび垂直磁気記録ヘッドの主磁極の製造方法Perpendicular magnetic recording head and method of manufacturing main magnetic pole of perpendicular magnetic recording head

 本発明は、磁気記録ディスク装置などの記録に用いられる垂直磁気記録ヘッドおよび垂直磁気記録ヘッドの主磁極の製造方法に関する。The present invention relates to a perpendicular magnetic recording head used for recording in a magnetic recording disk device or the like and a method of manufacturing a main magnetic pole of the perpendicular magnetic recording head.

 垂直磁気記録ヘッドの主磁極は、側面が傾斜面に形成され、断面形状が逆三角形状もしくは逆台形状となっている。このように、主磁極の断面形状を逆三角形状もしくは逆台形状に形成しているのは、磁気ヘッドがトラックを移動する際に生じるアジマス角度によってサイドイレーズをが生じないようにするためで、主磁極の側面の傾斜角度は80°~85°程度に設定されている。なお、主磁極の上面(トレーリング側の面)が最終的に情報を記録する部位で、精度よく情報を記録できるようにするためには、主磁極の上面のエッジが鋭角に形成されている必要がある。
 主磁極を上記のように断面逆三角形状もしくは逆台形状に形成する方法の一つに、いわゆるダマシン法がある。
 このダマシン法は、アルミナ膜等の無機絶縁層に主磁極形状の溝(凹部)を形成し、この溝内にめっきシード層を成膜し、このめっきシード層を通電層としてめっきを施し、溝内にめっき皮膜を盛り上げて主磁極を形成するものである。
特開2004-17172号公報 上記ダマシン法によって主磁極を溝内に作り込めば、主磁極の周りを無機絶縁層が取り囲んでいるので、強度的に優れる。特に主磁極の、浮上面側の先端磁極部は、上面の幅が100nm、高さが200nm程度の極めて微細なものであるので、横方向に倒れ込むなどの変形を生じるおそれがあるが、ダマシン法の場合、主磁極の周りが無機絶縁層で取り囲まれているので先端磁極部の変形を解消できるという製造上の利点がある。 ところで、記録特性を向上させるためには、主磁極の構造として、トレーリング側に高飽和磁束密度(Hi-Bs)の磁性材料を配置させた多層構造のものとするのがよいことが知られている。 しかしながら、図7に示すように、ダマシン法で、断面逆三角形状もしくは逆台形状の溝内にめっきシード層50を形成し、このめっきシード層に通電して多層めっきを行うと、めっき層52、54は、めっきシード層50と平行に盛り上がって形成されるため、シールド層(トレーリングシールド層)56に対して平行な層構造に形成することができない。したがって、ダマシン法によるときは、シールド層56と平行な層の多層構造の主磁極を形成することが不可能であり、記録特性に優れた上記多層構造の主磁極を形成することが困難であった。
The main magnetic pole of the perpendicular magnetic recording head has a side surface formed as an inclined surface and a cross-sectional shape of an inverted triangle or an inverted trapezoid. Thus, the cross-sectional shape of the main pole is formed in an inverted triangular shape or an inverted trapezoidal shape so that side erasure does not occur due to the azimuth angle generated when the magnetic head moves on the track. The inclination angle of the side surface of the main pole is set to about 80 ° to 85 °. Note that the top surface of the main pole (the trailing side surface) is the portion where information is finally recorded, and the edge of the top surface of the main pole is formed at an acute angle so that information can be recorded accurately. There is a need.
One of the methods for forming the main magnetic pole in an inverted triangular shape or inverted trapezoidal shape as described above is a so-called damascene method.
In this damascene method, a main pole-shaped groove (concave portion) is formed in an inorganic insulating layer such as an alumina film, a plating seed layer is formed in the groove, plating is performed using the plating seed layer as a conductive layer, and the groove is formed. The main magnetic pole is formed by raising the plating film inside.
When the main magnetic pole is formed in the groove by the damascene method, the strength is excellent because the inorganic insulating layer surrounds the main magnetic pole. In particular, the tip magnetic pole portion on the air bearing surface side of the main magnetic pole has a very fine top surface with a width of about 100 nm and a height of about 200 nm, and may cause deformation such as falling in the lateral direction. In this case, since the periphery of the main magnetic pole is surrounded by the inorganic insulating layer, there is a manufacturing advantage that the deformation of the tip magnetic pole portion can be eliminated. By the way, in order to improve the recording characteristics, it is known that the structure of the main magnetic pole is preferably a multilayer structure in which a magnetic material having a high saturation magnetic flux density (Hi-Bs) is arranged on the trailing side. ing. However, as shown in FIG. 7, when aplating seed layer 50 is formed in a groove having an inverted triangular or inverted trapezoidal cross section by the damascene method and this plating seed layer is energized to perform multilayer plating, theplating layer 52 is formed. , 54 are formed so as to rise in parallel with theplating seed layer 50, and cannot be formed in a layer structure parallel to the shield layer (trailing shield layer) 56. Therefore, when the damascene method is used, it is impossible to form a main magnetic pole having a multilayer structure parallel to theshield layer 56, and it is difficult to form the main magnetic pole having the multilayer structure having excellent recording characteristics. It was.

 本願は上記課題を解決すべくなされたものであり、その目的とするところは、ダマシン法による平行な多層構造の主磁極を有し、記録特性に優れる垂直磁気記録ヘッドおよびこの垂直磁気記録ヘッドの主磁極の製造方法を提供するにある。
 すなわち、本発明に係る垂直磁気記録ヘッドは、無機絶縁層上に形成された凹部内にめっきで形成された主磁極と、通電することで前記主磁極に磁束を生じさせるコイルと、リターンヨークとを有する垂直磁気記録ヘッドにおいて、前記凹部は、トレーリング側に幅広となる断面逆三角形状もしくは逆台形状の凹部をなす先端磁極用凹部と、該先端磁極用凹部に連通し、先端磁極用凹部よりも幅広のコア用凹部とに形成され、該凹部の前記コア用凹部にめっきシード層が形成され、前記主磁極は、前記めっきシード層を通電層として前記コア用凹部内に形成された多層のめっき層からなるコア部と、前記コア用凹部内にめっきによって形成される各めっき層がめっきシード層の形成されていない前記先端磁極用凹部内に伸長して形成された多層のめっき層からなる先端磁極部とから形成されていることを特徴とする。
 前記主磁極は、トレーリング側となるめっき層が、前記無機絶縁層側のめっき層よりも高い飽和磁束密度を有する磁性層に形成するとよい。
 また、本発明は、無機絶縁層上に形成された凹部内にめっきで形成された主磁極と、通電することで前記主磁極に磁束を生じさせるコイルと、リターンヨークとを有する垂直磁気記録ヘッドの主磁極の製造方法において、前記無機絶縁層を形成する工程と、該無機絶縁層上に形成したマスクによりマスクして無機絶縁層をエッチングして、トレーリング側に幅広となる断面逆三角形状もしくは逆台形状をなす先端磁極用凹部と、該先端磁極用凹部に連通し、先端磁極用凹部よりも幅広となるコア用凹部とを含む凹部を形成する工程と、前記マスクを除去する工程と、前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成する工程と、該めっきシード層を通電層として前記コア用凹部内にめっきを施して多層のめっき層からなる主磁極のコア部を形成すると共に、前記コア用凹部内にめっきによって形成される各めっき層をめっきシード層の形成されていない前記先端磁極用凹部内に伸長させることによって前記先端磁極用凹部内に多層のめっき層からなる主磁極の先端磁極部を形成するめっき工程とを具備することを特徴とする。
 前記凹部内に形成された多層のめっき層をCMP工程で平坦化するようにするとよい。
 また、前記コア用凹部のみを開口したレジストマスクを形成し、コア用凹部内およびレジストマスク上にめっきシード層を形成し、前記先端磁極用凹部のレジストマスク上に形成されためっきシード層をレジストマスクと共に除去して、前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成することを特徴とする。
 あるいは、前記凹部全体にめっきシード層を形成し、前記先端磁極用凹部内に形成されためっきシード層をイオンミリングで除去して、前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成することができる。
The present application has been made to solve the above-described problems, and the object of the present application is a perpendicular magnetic recording head having a parallel multi-layered main magnetic pole by the damascene method and excellent in recording characteristics, and the perpendicular magnetic recording head. It is in providing the manufacturing method of a main pole.
That is, a perpendicular magnetic recording head according to the present invention includes a main magnetic pole formed by plating in a recess formed on an inorganic insulating layer, a coil that generates a magnetic flux in the main magnetic pole when energized, a return yoke, In the perpendicular magnetic recording head, the recessed portion communicates with the recessed portion for the tip magnetic pole that forms a recessed portion having an inverted triangular or inverted trapezoidal cross section that is wide on the trailing side, and the recessed portion for the distal magnetic pole. And a plating seed layer is formed in the concave portion for the core of the concave portion, and the main magnetic pole is formed in the concave portion for the core with the plating seed layer as an energization layer. A core portion made of a plurality of plating layers and a plurality of plating layers formed by plating in the core recesses are formed by extending into the tip pole recesses where no plating seed layer is formed. Characterized in that it is formed from the consisting of the plating layer tip magnetic pole portion.
The main magnetic pole may be formed in a magnetic layer in which a plating layer on the trailing side has a higher saturation magnetic flux density than a plating layer on the inorganic insulating layer side.
The present invention also provides a perpendicular magnetic recording head having a main magnetic pole formed by plating in a recess formed on an inorganic insulating layer, a coil for generating a magnetic flux in the main magnetic pole when energized, and a return yoke. In the method of manufacturing the main magnetic pole, the step of forming the inorganic insulating layer and the cross-sectional inverted triangle shape that is widened on the trailing side by etching the inorganic insulating layer by masking with a mask formed on the inorganic insulating layer Alternatively, a step of forming a concave portion including a concave portion for a tip magnetic pole having an inverted trapezoidal shape and a concave portion for a core that communicates with the concave portion for the leading magnetic pole and is wider than the concave portion for the leading pole, and a step of removing the mask A step of forming a plating seed layer only in the core recess among the recesses formed in the inorganic insulating layer, and plating in the core recess using the plating seed layer as an energization layer. Forming a core portion of the main magnetic pole made of a plating layer, and extending each plating layer formed by plating in the core concave portion into the tip magnetic pole concave portion in which no plating seed layer is formed. And a plating step of forming a tip magnetic pole portion of a main magnetic pole made of a multi-layered plating layer in the concave portion for the tip magnetic pole.
The multilayer plating layer formed in the recess may be planarized by a CMP process.
In addition, a resist mask having an opening only in the core recess is formed, a plating seed layer is formed in the core recess and on the resist mask, and the plating seed layer formed on the resist mask in the tip magnetic pole recess is resisted. A plating seed layer is formed only in the concave portion for the core among the concave portions formed in the inorganic insulating layer by being removed together with the mask.
Alternatively, a plating seed layer is formed over the entire recess, the plating seed layer formed in the tip magnetic pole recess is removed by ion milling, and the core recess among the recesses formed in the inorganic insulating layer Only a plating seed layer can be formed.

発明の効果
 本発明によれば、ダマシン法による平行な多層構造のであって狭コア幅な主磁極を有し、記録特性に優れる垂直磁気記録ヘッドを提供できる。また、本発明の垂直磁気記録ヘッドの主磁極の製造方法によれば、ダマシン法により、狭コア幅で、かつ平行な多層構造の主磁極を有する主磁極を製造することができる。
According to the present invention, it is possible to provide a perpendicular magnetic recording head having a parallel magnetic multi-layer structure by a damascene method, a main pole having a narrow core width, and excellent recording characteristics. Further, according to the method of manufacturing the main magnetic pole of the perpendicular magnetic recording head of the present invention, a main magnetic pole having a narrow core width and a parallel multi-layered main magnetic pole can be manufactured by the damascene method.

垂直磁気記録型の薄膜磁気ヘッドの構成を示す断面図である。1 is a cross-sectional view showing a configuration of a perpendicular magnetic recording type thin film magnetic head.無機絶縁層上に、レジストによるマスクを用いて凹部を形成した状態の説明図である。It is explanatory drawing of the state which formed the recessed part on the inorganic insulating layer using the mask by a resist.凹部の所要個所にめっきシード層を形成した状態の説明図である。It is explanatory drawing of the state which formed the plating seed layer in the required part of a recessed part.めっきシード層が形成されていない先端磁極用凹部に1層目のめっき皮膜が両側から伸長した状態を示す説明図である。It is explanatory drawing which shows the state which the plating film of the 1st layer extended | stretched from both sides in the recessed part for front-end | tip magnetic poles in which the plating seed layer is not formed.断面逆三角形状の先端磁極用凹部内に1層目のめっき皮膜が伸長した状態を示す断面図である。It is sectional drawing which shows the state which the plating film of the 1st layer extended | stretched in the recessed part for front-end | tip magnetic poles of a cross-section inverted triangle shape.断面逆三角形状の先端磁極用凹部内に1層目と2層目のめっき皮膜が伸長した状態を示す断面図である。It is sectional drawing which shows the state which the plating film of the 1st layer and the 2nd layer extended in the recessed part for front-end | tip magnetic poles of a cross-section inverted triangle shape.従来のダマシン法により凹溝内にめっき皮膜を形成した状態を示す説明図である。It is explanatory drawing which shows the state which formed the plating film in the ditch | groove by the conventional damascene method.

 以下本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
 図1は、垂直磁気記録型の薄膜磁気ヘッドの構成を示す断面図である。
 この薄膜磁気ヘッドは、垂直磁気記録ヘッド12として主磁極10、トレーリングシールド13、リターンヨーク14および記録用コイル16を備え、再生ヘッド18として、MR素子20、上部シールド22および下部シールド24を備える。
上部シールド22と主磁極10との間にはアルミナ等からなる無機絶縁層26が設けられ、主磁極10とコイル16との間、コイル16とリターンヨーク14との間、MR素子20と上部シールド22および下部シールド24との間もアルミナ等からなる無機絶縁層が設けられている。
 これら各層は公知の薄膜技術によって形成することができる。
本実施の形態で特徴とするのは、以下に述べる主磁極10の構成およびその製造方法である。
 図2~図6は、主磁極10の製造工程を示す説明図である。
 主磁極10は、上記の無機絶縁層26上に形成される。
 上部シールド層22(図1)の上にスパッタリング等によってアルミナ等からなる無機絶縁層26を形成する。無機絶縁層はアルミナに限定されず、SiC、AlN、TiCなどの無機絶縁層とすることもできる。
 次にこの無機絶縁層26上に公知の方法によって、ダマシン法用の溝(凹部)を形成する。すなわち、無機絶縁層26に、図2に示す実線30の範囲を除いてレジストパターン32を形成する。このレジストパターン32をマスクとして公知のRIE(反応性イオンエッチング)を行い、実線30で囲まれた部位に凹部34を形成する。
 この凹部34は、主磁極10のコア部を形成する部位であるコア用凹部34aと、主磁極10の浮上面側となる先端磁極部を形成する部位である先端磁極用凹部34bと、この先端磁極用凹部34bよりもさらに先端側となるダミー凹部34cとからなる。ダミー凹部34cは、後工程で研磨により除去される部位であり、必ずしも設ける必要がないが、後記するめっき工程でのめっき液の通流をよくするためには設けた方がよい。
 先端磁極用凹部34bは、図5、図6に示すように断面逆三角形状か、もしくは断面逆台形状に形成する。コア用凹部34aとダミー凹部34cとは、先端磁極用凹部34bと連通し、かつこれらよりも幅広に形成される。なお、コア用凹部34aとダミー凹部34cの周壁部は、先端磁極用凹部34bの傾斜壁とほぼ同角度で傾斜する傾斜壁となる。
 凹部34を形成した後、レジストパターン32を除去する。
 次いで、図3に示すように、コア用凹部34aとダミー凹部34c内にめっきシード層36を形成する。このめっきシード層34は、NiFe等の比較的低い飽和磁束密度の磁性材料をスパッタリングして形成する。
 コア用凹部34a内とダミー凹部34c内にめっきシード層36を形成するには、コア用凹部34aおよびダミー凹部34cのみを開口したレジストマスク(図示せず)を形成し、コア用凹部34a内、ダミー凹部34c内およびレジストマスク上にめっきシード層36を形成し、先端磁極用凹部34b上のレジストマスク上に形成されためっきシード層36をレジストマスクと共に除去する(いわゆるリフトアップ法)ようにして行うことができる。
 あるいは、凹部34全体にめっきシード層36を形成し(図示せず)、先端磁極用凹部34b内に形成されためっきシード層34をイオンミリングで除去するようにして、コア用凹部34a内とダミー凹部34c内のみにめっきシード層36を形成するようにすることができる。
 このように、コア用凹部34a内とダミー凹部34c内にめっきシード層36を形成した状態で、めっきシード層36を通電層として公知の方法によって電解めっきを行い、凹部34内に多層めっきを行う。
 この場合、コア用凹部34a内とダミー凹部34c内の底面は平坦面であるから、これら凹部内に平行な多層めっき皮膜として形成される。
 そして、コア用凹部34aとダミー凹部34cとを通じて、先端磁極用凹部34b内にもめっき液が通流し、コア用凹部34a内とダミー凹部34c内とに形成される各めっき皮膜が先端磁極用凹部34b内に伸長し、これにより、先端磁極用凹部34b内にもトレーリングシールド13と平行な多層めっき皮膜37、38が形成される(図6)。なお、図4および図5は、1層目のめっき皮膜37を形成した状態を示す。
 先端磁極用凹部34b内には、図4に示すように、コア用凹部34a内とダミー凹部34c内の双方からめっき皮膜37(およびめっき皮膜38)が伸長してくるが、これらは合体(連続)しなくともよい。すなわち、先端磁極用凹部34b内に形成される先端磁極部40(図6)は、浮上面を形成する際に研磨され、所要長さに形成されるのであって、その長さだけ確保されればよく、コア用凹部34aから伸長するめっき皮膜だけで十分足りるからである。
 多層めっき皮膜は、無機絶縁層26側(リーディング側)は比較的低い飽和磁束密度の磁性材料からなる、例えばNiFeの合金めっき層37とし、その反対のトレーリング側は合金めっき層37よりも高い飽和磁束密度を有する磁性材料からなる、例えばFeCoの合金めっき層38に形成する。これら合金めっきのめっき条件は公知の条件でよいので説明を省略する。このように、主磁極10の、先端磁極用凹部34b内に形成される先端磁極部40を、トレーリングシールド13と平行な多層めっき層37、38に形成できること、また、トレーリング側に高い飽和磁束密度を有するめっき層38を配置することによって記録特性を向上させることができる。
 なお、上記では、多層めっき皮膜として2層の例で説明したが、3層以上の多層めっき層としてもよい。本発明では2層の場合も含めて多層と定義する。
 また、凹部34内に多層めっき層37、38を形成した後、CMP処理を施して、多層めっき層の上面を平坦化するとよい。前記のめっきシード層36は、無機絶縁層26上にまで形成してもよい。この余分なめっきシード層36はCMP処理によって除去できる。
 薄膜磁気ヘッドはウェーハ上にマトリクス状に多数作りこまれた後、各列毎切り出されてローバーに形成され、切り出された各ローバーの、磁気ヘッドの浮上面側となる面が所要量研磨されて、MRハイトや、主磁極10の先端磁極部の長さが調整され、最終的に個片に切断されて薄膜磁気ヘッドに完成される。この一連の工程は公知であるので説明を省略する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a configuration of a perpendicular magnetic recording type thin film magnetic head.
This thin film magnetic head includes a mainmagnetic pole 10, atrailing shield 13, areturn yoke 14 and a recording coil 16 as a perpendicular magnetic recording head 12, and anMR element 20, an upper shield 22 and alower shield 24 as a reproducing head 18. .
Aninorganic insulating layer 26 made of alumina or the like is provided between the upper shield 22 and the mainmagnetic pole 10, and between the mainmagnetic pole 10 and the coil 16, between the coil 16 and thereturn yoke 14, and between theMR element 20 and the upper shield. An inorganic insulating layer made of alumina or the like is also provided between 22 and thelower shield 24.
Each of these layers can be formed by a known thin film technique.
The present embodiment is characterized by the configuration of the mainmagnetic pole 10 described below and a method for manufacturing the same.
2 to 6 are explanatory views showing the manufacturing process of the mainmagnetic pole 10.
The mainmagnetic pole 10 is formed on theinorganic insulating layer 26 described above.
Aninorganic insulating layer 26 made of alumina or the like is formed on the upper shield layer 22 (FIG. 1) by sputtering or the like. The inorganic insulating layer is not limited to alumina, and may be an inorganic insulating layer such as SiC, AlN, or TiC.
Next, grooves (recesses) for the damascene method are formed on theinorganic insulating layer 26 by a known method. That is, theresist pattern 32 is formed on theinorganic insulating layer 26 except for the range of thesolid line 30 shown in FIG. Using thisresist pattern 32 as a mask, known RIE (Reactive Ion Etching) is performed to form arecess 34 in a portion surrounded by asolid line 30.
Theconcave portion 34 includes a coreconcave portion 34a that is a portion that forms the core portion of the mainmagnetic pole 10, a tip magnetic poleconcave portion 34b that is a portion that forms the tip magnetic pole portion on the air bearing surface side of the mainmagnetic pole 10, and the tip It consists of adummy recess 34c that is further on the tip side than the magnetic pole recess 34b. The dummyconcave portion 34c is a portion that is removed by polishing in a later step and is not necessarily provided. However, thedummy recess 34c is preferably provided in order to improve the flow of the plating solution in the plating step described later.
As shown in FIGS. 5 and 6, the tipmagnetic pole recess 34b is formed in an inverted triangular cross section or an inverted trapezoidal cross section. Thecore recess 34a and thedummy recess 34c communicate with the tipmagnetic pole recess 34b and are formed wider than these. The peripheral wall portions of the coreconcave portion 34a and the dummyconcave portion 34c are inclined walls inclined at substantially the same angle as the inclined wall of the tip magnetic poleconcave portion 34b.
After forming therecess 34, theresist pattern 32 is removed.
Next, as shown in FIG. 3, a platingseed layer 36 is formed in thecore recess 34a and the dummy recess 34c. Theplating seed layer 34 is formed by sputtering a magnetic material having a relatively low saturation magnetic flux density such as NiFe.
In order to form theplating seed layer 36 in thecore recess 34a and thedummy recess 34c, a resist mask (not shown) having only thecore recess 34a and thedummy recess 34c opened is formed, and thecore recess 34a Aplating seed layer 36 is formed in thedummy recess 34c and on the resist mask, and theplating seed layer 36 formed on the resist mask on the tipmagnetic pole recess 34b is removed together with the resist mask (so-called lift-up method). It can be carried out.
Alternatively, a plating seed layer 36 (not shown) is formed in theentire recess 34, and theplating seed layer 34 formed in the tipmagnetic pole recess 34b is removed by ion milling, so that the inside of thecore recess 34a and a dummy are formed. Theplating seed layer 36 can be formed only in therecess 34c.
In this manner, with theplating seed layer 36 formed in thecore recess 34a and thedummy recess 34c, electrolytic plating is performed by a known method using theplating seed layer 36 as a conductive layer, and multilayer plating is performed in therecess 34. .
In this case, since the bottom surfaces in the core recesses 34a and the dummy recesses 34c are flat surfaces, they are formed as parallel multilayer plating films in these recesses.
Then, the plating solution flows into the tipmagnetic pole recess 34b through thecore recess 34a and thedummy recess 34c, and each plating film formed in thecore recess 34a and thedummy recess 34c is formed in the tip magnetic pole recess. Thus, themultilayer plating films 37 and 38 parallel to the trailingshield 13 are formed in the tipmagnetic pole recess 34b (FIG. 6). 4 and 5 show a state in which thefirst plating film 37 is formed.
As shown in FIG. 4, a plating film 37 (and a plating film 38) extends from both thecore recess 34a and thedummy recess 34c into the tip magnetic pole recess 34b. ) You don't have to. That is, the tip magnetic pole portion 40 (FIG. 6) formed in the tipmagnetic pole recess 34b is polished when the air bearing surface is formed and formed to a required length, and only that length is secured. This is because a plating film extending from thecore recess 34a is sufficient.
In the multilayer plating film, the inorganic insulatinglayer 26 side (leading side) is made of a magnetic material having a relatively low saturation magnetic flux density, for example, an NiFealloy plating layer 37, and the opposite trailing side is higher than thealloy plating layer 37. For example, an FeCoalloy plating layer 38 made of a magnetic material having a saturation magnetic flux density is formed. Since the plating conditions for these alloy platings may be known conditions, description thereof is omitted. As described above, thetip pole portion 40 formed in thetip pole recess 34b of themain pole 10 can be formed on the multilayer plating layers 37 and 38 parallel to the trailingshield 13, and the trailing side is highly saturated. The recording characteristics can be improved by disposing theplating layer 38 having a magnetic flux density.
In the above description, the multilayer plating film has been described as an example of two layers. However, three or more multilayer plating layers may be used. In the present invention, it is defined as a multilayer including the case of two layers.
Moreover, after forming the multilayer plating layers 37 and 38 in the recessedpart 34, it is good to perform CMP process and to planarize the upper surface of a multilayer plating layer. Theplating seed layer 36 may be formed even on the inorganic insulatinglayer 26. This excessplating seed layer 36 can be removed by a CMP process.
A large number of thin film magnetic heads are formed in a matrix on a wafer, then each row is cut out to form a row bar, and the surface of each row bar that becomes the air bearing surface side of the magnetic head is polished by a required amount. The MR height and the length of the tip magnetic pole portion of the mainmagnetic pole 10 are adjusted and finally cut into individual pieces to complete the thin film magnetic head. Since this series of steps is publicly known, a description thereof will be omitted.

Claims (7)

Translated fromJapanese
 無機絶縁層上に形成された凹部内にめっきで形成された主磁極と、通電することで前記主磁極に磁束を生じさせるコイルと、リターンヨークとを有する垂直磁気記録ヘッドにおいて、
 前記凹部は、トレーリング側に幅広となる断面逆三角形状もしくは逆台形状の凹部をなす先端磁極用凹部と、該先端磁極用凹部に連通し、先端磁極用凹部よりも幅広のコア用凹部とに形成され、
 該凹部の前記コア用凹部にめっきシード層が形成され、
 前記主磁極は、
 前記めっきシード層を通電層として前記コア用凹部内に形成された多層のめっき層からなるコア部と、前記コア用凹部内にめっきによって形成される各めっき層がめっきシード層の形成されていない前記先端磁極用凹部内に伸長して形成された多層のめっき層からなる先端磁極部とから形成されていることを特徴とする垂直磁気記録ヘッド。
In a perpendicular magnetic recording head having a main magnetic pole formed by plating in a recess formed on an inorganic insulating layer, a coil that generates a magnetic flux in the main magnetic pole when energized, and a return yoke.
The concave portion includes a concave portion for a tip magnetic pole that forms a concave portion having an inverted triangular or inverted trapezoidal shape that is wide on the trailing side, and a concave portion for a core that communicates with the concave portion for the leading pole and is wider than the concave portion for the leading pole. Formed into
A plating seed layer is formed in the recess for the core of the recess,
The main pole is
The plating seed layer is not formed in the core part composed of a multi-layered plating layer formed in the concave part for the core using the plating seed layer as a conductive layer, and each plating layer formed by plating in the concave part for the core A perpendicular magnetic recording head, comprising: a tip magnetic pole portion formed of a multi-layered plating layer formed extending in the tip magnetic pole recess.
 前記主磁極は、トレーリング側となるめっき層が、前記無機絶縁層側のめっき層よりも高い飽和磁束密度を有する磁性層に形成されていることを特徴とする請求項1記載の垂直磁気記録ヘッド。2. The perpendicular magnetic recording according to claim 1, wherein the main magnetic pole has a plating layer on the trailing side formed in a magnetic layer having a higher saturation magnetic flux density than the plating layer on the inorganic insulating layer side. head. 無機絶縁層上に形成された凹部内にめっきで形成された主磁極と、通電することで前記主磁極に磁束を生じさせるコイルと、リターンヨークとを有する垂直磁気記録ヘッドの主磁極の製造方法において、
 前記無機絶縁層を形成する工程と、
該無機絶縁層上に形成したマスクによりマスクして無機絶縁層をエッチングして、トレーリング側に幅広となる断面逆三角形状もしくは逆台形状をなす先端磁極用凹部と、該先端磁極用凹部に連通し、先端磁極用凹部よりも幅広となるコア用凹部とを含む凹部を形成する工程と、
 前記マスクを除去する工程と、
 前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成する工程と、
 該めっきシード層を通電層として前記コア用凹部内にめっきを施して多層のめっき層からなる主磁極のコア部を形成すると共に、前記コア用凹部内にめっきによって形成される各めっき層をめっきシード層の形成されていない前記先端磁極用凹部内に伸長させることによって前記先端磁極用凹部内に多層のめっき層からなる主磁極の先端磁極部を形成するめっき工程とを具備することを特徴とする垂直磁気記録ヘッドの主磁極の製造方法。
Method for manufacturing main pole of perpendicular magnetic recording head having main pole formed by plating in recess formed on inorganic insulating layer, coil for generating magnetic flux in said main pole by energization, and return yoke In
Forming the inorganic insulating layer;
Etching the inorganic insulating layer with a mask formed on the inorganic insulating layer to etch the tip magnetic pole recess having an inverted triangular shape or a trapezoidal shape having a wide cross section on the trailing side, and the tip magnetic pole recess A step of forming a recess including a core recess that is wider than the recess for the tip magnetic pole;
Removing the mask;
Of the recesses formed in the inorganic insulating layer, a step of forming a plating seed layer only in the core recesses;
Using the plating seed layer as an energization layer, plating is performed in the core recess to form the core portion of the main pole composed of a multi-layer plating layer, and each plating layer formed by plating is plated in the core recess A plating step of forming a tip magnetic pole portion of a main pole made of a multi-layer plating layer in the tip magnetic pole recess by extending into the tip magnetic pole recess in which no seed layer is formed. A method of manufacturing a main magnetic pole of a perpendicular magnetic recording head.
 前記凹部内に形成された多層のめっき層を平坦化するCMP工程を具備することを特徴とする請求項3の垂直磁気記録ヘッドの主磁極の製造方法。4. The method of manufacturing a main magnetic pole of a perpendicular magnetic recording head according to claim 3, further comprising a CMP step of flattening a multilayer plating layer formed in the recess. 前記コア用凹部のみを開口したレジストマスクを形成し、コア用凹部内およびレジストマスク上にめっきシード層を形成し、前記先端磁極用凹部のレジストマスク上に形成されためっきシード層をレジストマスクと共に除去して、前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成することを特徴とする請求項3または4記載の垂直磁気記録ヘッドの主磁極の製造方法。A resist mask having an opening only in the core concave portion is formed, a plating seed layer is formed in the core concave portion and on the resist mask, and the plating seed layer formed on the resist mask in the tip magnetic pole concave portion together with the resist mask 5. The method of manufacturing a main magnetic pole of a perpendicular magnetic recording head according to claim 3, wherein a plating seed layer is formed only in the concave portion for the core among the concave portions formed in the inorganic insulating layer. . 前記凹部全体にめっきシード層を形成し、前記先端磁極用凹部内に形成されためっきシード層をイオンミリングで除去して、前記無機絶縁層に形成された凹部のうち、前記コア用凹部にのみめっきシード層を形成することを特徴とする請求項3または4記載の垂直磁気記録ヘッドの主磁極の製造方法。A plating seed layer is formed over the entire recess, and the plating seed layer formed in the tip magnetic pole recess is removed by ion milling. Of the recesses formed in the inorganic insulating layer, only the core recess is formed. 5. The method of manufacturing a main magnetic pole of a perpendicular magnetic recording head according to claim 3, wherein a plating seed layer is formed. 前記主磁極の、トレーリング側となるめっき層を、前記無機絶縁層側のめっき層よりも高い飽和磁束密度を有する磁性層で形成することを特徴とする請求項3~6いずれか1項記載の垂直磁気記録ヘッドの主磁極の製造方法。
 
The plating layer on the trailing side of the main magnetic pole is formed of a magnetic layer having a higher saturation magnetic flux density than the plating layer on the inorganic insulating layer side. Of manufacturing the main pole of the perpendicular magnetic recording head.
PCT/JP2008/0602782008-06-042008-06-04Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording headCeasedWO2009147733A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
PCT/JP2008/060278WO2009147733A1 (en)2008-06-042008-06-04Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/JP2008/060278WO2009147733A1 (en)2008-06-042008-06-04Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head

Publications (1)

Publication NumberPublication Date
WO2009147733A1true WO2009147733A1 (en)2009-12-10

Family

ID=41397825

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/JP2008/060278CeasedWO2009147733A1 (en)2008-06-042008-06-04Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head

Country Status (1)

CountryLink
WO (1)WO2009147733A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2002230716A (en)*2001-02-062002-08-16Alps Electric Co LtdThin-film magnetic head, and its manufacturing method
JP2006139898A (en)*2004-11-122006-06-01Headway Technologies IncThin-film magnetic head structure and method for manufacturing the same, and thin-film magnetic head
JP2007242132A (en)*2006-03-082007-09-20Fujitsu Ltd Perpendicular magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2002230716A (en)*2001-02-062002-08-16Alps Electric Co LtdThin-film magnetic head, and its manufacturing method
JP2006139898A (en)*2004-11-122006-06-01Headway Technologies IncThin-film magnetic head structure and method for manufacturing the same, and thin-film magnetic head
JP2007242132A (en)*2006-03-082007-09-20Fujitsu Ltd Perpendicular magnetic head

Similar Documents

PublicationPublication DateTitle
US10014021B1 (en)Perpendicular magnetic recording (PMR) write head with patterned leading shield
US8498079B1 (en)Superior performance head design with minimized ATE and WATE
JP5674295B2 (en) Perpendicular magnetic recording head and manufacturing method thereof
US9361912B1 (en)High moment side shield design for area density improvement of perpendicular magnetic recording (PMR) writer
US7248431B1 (en)Method of fabricating a perpendicular recording write head having a gap with two portions
US7181829B2 (en)Method of manufacturing a perpendicular magnetic recording head
US7742258B2 (en)Magnetic transducer with milling mask
US20190206428A1 (en)Method of Forming a Perpendicular Magnetic Recording (PMR) Write Head with Patterned Leading Edge Taper
JP4803949B2 (en) Method for manufacturing composite thin film magnetic head
US9697855B1 (en)Perpendicular magnetic recording (PMR) write head with multiple layer trailing shield
JP2000105906A (en)Production of thin film magnetic head
US20060152852A1 (en)Thin film magnetic head having solenoidal coil and method of manufacturing the same
US7151647B2 (en)Thin film magnetic head and manufacturing method for creating high surface recording density and including a second yoke portion having two layers of which one is etched to form a narrow portion and a sloped flare portion
JP2007004958A (en)Thin-film magnetic head for perpendicular magnetic recording
US7124498B2 (en)Method for manufacturing magnetic head
US6882502B2 (en)Thin-film magnetic head with narrowed track width and method for making same
US7228619B2 (en)Method of manufacturing a magnetic head with common seed layer for coil and pedestal
JP2007242133A (en) Perpendicular magnetic head
US7626785B2 (en)Thin film magnetic head, method of manufacturing the same, and magnetic recording apparatus
JP3950807B2 (en) Thin film magnetic head
JP3499458B2 (en) Thin film magnetic head, method of manufacturing the same, and method of forming thin film coil
JP4846773B2 (en) Thin film magnetic head
US6940689B2 (en)Thin-film magnetic head comprising a first pole layer having multiple layers including a second layer and a thin-film coil having a portion disposed between the second layer and a coupling portion and method of manufacturing the thin-film magnetic head
JPH10302219A (en) Thin film magnetic head and manufacturing method
WO2009147733A1 (en)Perpendicular magnetic recording head and manufacturing method of main pole of perpendicular magnetic recording head

Legal Events

DateCodeTitleDescription
121Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number:08765091

Country of ref document:EP

Kind code of ref document:A1

NENPNon-entry into the national phase

Ref country code:DE

122Ep: pct application non-entry in european phase

Ref document number:08765091

Country of ref document:EP

Kind code of ref document:A1

NENPNon-entry into the national phase

Ref country code:JP


[8]ページ先頭

©2009-2025 Movatter.jp