Индикаторное устройство Indicator device
Изобретение относится к индикаторным устройствам с электропитанием от солнечных батарей.The invention relates to indicator devices powered by solar panels.
Известны индикаторные устройства с возможностью электропитания от солнечных батарей (Пул Г. Основные методы и системы индикации., пер. с англ., Л., 1969; Арбузов Ю. Д., Евдокимов B.M., Новейшая энциклопедия персонального компьютера 2002, M.: OJIMA- ПРЕС, 2002, с. 82÷90; Принципы и перспективы фотоэлектрического преобразования энергии концентрированного солнечного излучения.- Гелиотехника, 1993, N 1, с. 3-22; Чирва B.П., Саидов M.C., Кремниевые планарные фотоэлектрические генераторы.- Гелиотехника, 1993, N 6, с.19- 37; TW 416627, МПК: H02J7/32, 2000; WO 02087054, МПК: H02J7/00; H02MЗ/04, 2002; RU 2195754, МПК: H02J7/32, H02J7/35, 2002).Known indicator devices with the possibility of power supply from solar panels (Pool G. Basic methods and display systems., Trans. From English, L., 1969; Arbuzov Yu. D., Evdokimov BM, The latest personal computer encyclopedia 2002, M .: OJIMA - PRES, 2002, pp. 82 ÷ 90; Principles and prospects of photovoltaic energy conversion of concentrated solar radiation. - Solar technology, 1993, N 1, pp. 3-22; Chirva B.P., Saidov MC, Silicon planar photoelectric generators .- Solar engineering, 1993, N 6, p. 19-37; TW 416627, IPC: H02J7 / 32, 2000; WO 02087054, IPC: H02J7 / 00; H02MZ / 04, 2002; RU 2195754, IPC: H02J7 / 3 2, H02J7 / 35, 2002).
Известные индикаторные устройства снабжены встроенными в корпус солнечными батареями (например, в индикаторных устройствах для электронного калькулятора CITZEN SDS-814) или снабжены кабельными разъемами для подключения внешних солнечных батарей (например, типа Вruпtоп Sоlаrроrt 4.4) напрямую или через адаптер (широтно-импульсный преобразователь напряжения), позволяющий осуществлять подзарядку аккумулятора электропитания индикаторного устройства в условиях пониженной освещенности.Known indicator devices are equipped with solar panels integrated in the housing (for example, in indicator devices for the CITZEN SDS-814 electronic calculator) or are equipped with cable connectors for connecting external solar batteries (for example, type Smart Solar 4.4) directly or through an adapter (pulse-width voltage converter ), allowing recharging the battery power indicator device in low light conditions.
Наиболее близким из известных к заявленному изобретению относится индикаторное устройство (TW 416627, МПК: H02J7/32, 2000), содержащее индикаторную панель, соединенную по электропитанию через аккумулятор электрической энергии с электрическим выходом панели солнечных батарей. При этом индикаторная панель и панель солнечных батарей установлены на общем корпусе мобильного телефона и пространственно разнесены между собой.  Недостатком известного индикаторного устройства является относительно малое время работы в автономном режиме и ограниченность применения (только в мобильных телефонах).The closest known to the claimed invention relates to an indicator device (TW 416627, IPC: H02J7 / 32, 2000) containing an indicator panel connected by power via an electric energy accumulator to the electrical output of the solar panel. At the same time, the indicator panel and the solar panel are installed on the common housing of the mobile phone and are spatially spaced from each other.  A disadvantage of the known indicator device is the relatively short battery life and limited use (only in mobile phones).
Задачей настоящего изобретения является увеличение времени работы индикаторного устройства. Техническим результатом, обеспечивающим решение поставленной задачи, является использование собственного излучения индикаторного устройства для дополнительной подзарядки аккумуляторных батарей.The objective of the present invention is to increase the operating time of the indicator device. The technical result that provides a solution to the problem is to use the own radiation of the indicator device for additional recharging of the batteries.
Достижение заявленного технического результата и, как следствие, решение поставленной задачи обеспечивается тем, что индикаторное устройство, содержащее индикаторную панель, соединенную по электропитанию через аккумулятор электрической энергии с электрическим выходом панели солнечных батарей, согласно изобретению оно дополнительно содержит адаптер, включенный в цепь электропитания между солнечной батареей и индикаторной панелью, а индикаторная панель и панель солнечных батарей пространственно совмещены между собой, причем индикаторная панель выполнена светопрозрачной и установлена над панелью солнечных батарей.The achievement of the claimed technical result and, as a consequence, the solution of the problem is ensured by the fact that the indicator device comprising an indicator panel connected by power via an electric energy accumulator to the electrical output of the solar panel, according to the invention, it further comprises an adapter included in the power circuit between the solar battery and indicator panel, and the indicator panel and the solar panel are spatially aligned with each other, and the indicator The front panel is translucent and is mounted above the solar panel.
При этом адаптер выполнен в виде контроллера или широтно- импульсного преобразователя напряжения. Светопрозрачная индикаторная панель - в виде светодиодной или жидкокристаллической матрицы на прозрачной диэлектрической подложке. Панель солнечных батарей выполнена из поликристалина или из кремниевых фотоэлементов, установленных на токопроводящей подложке.In this case, the adapter is made in the form of a controller or a pulse-width voltage converter. Translucent indicator panel - in the form of an LED or liquid crystal matrix on a transparent dielectric substrate. The solar panel is made of polycrystalline or silicon photocells mounted on a conductive substrate.
Пространственное совмещение индикаторной панели и панели солнечных батарей путем установки индикаторной панели над панелью солнечных батарей и выполнение индикаторной панели светопрозрачной позволяет дополнительно к солнечной энергии использовать собственную энергию свечения индикаторной панели для подзарядки аккумуляторных  батарей и, тем самым, увеличить время автономной работы индикаторного устройства. Выполнение индикаторной панели в виде светодиодной или жидкокристаллической матрицы на прозрачной подложке позволяет сделать индикаторную панель светопрозрачной и, тем самым, обеспечить доступ солнечного света к фотоэлементам солнечной батареи для подзарядки аккумулятора индикаторного устройства как при включенном, так и выключенном индикаторных устройствах. При этом введение адаптера позволяет компенсировать некоторое снижение светопропускания индикаторной панели и обеспечить подзарядку аккумулятора индикаторного устройства в условиях недостаточных по освещенности погодных условиях. Выполнение панели солнечных батарей из поликристалина или из кремниевых фотоэлементов, установленных на токопроводящей подложке, позволяет дополнительно увеличить скорость подзарядки и время автономной работы индикаторного устройства за счет повышения КПД преобразования света в электрическое напряжение соответственно не менее 12% и 9% соответственно.The spatial combination of the indicator panel and the solar panel by installing the indicator panel above the solar panel and the implementation of the indicator panel translucent allows in addition to solar energy to use its own energy of the glow of the indicator panel to recharge the batteries  batteries and, thereby, increase the battery life of the indicator device. The implementation of the indicator panel in the form of an LED or liquid crystal matrix on a transparent substrate allows you to make the indicator panel translucent and, thus, provide access to sunlight to the solar cells to recharge the battery of the indicator device when the indicator devices are on or off. At the same time, the introduction of the adapter allows you to compensate for a slight decrease in the light transmission of the indicator panel and provide recharge of the battery of the indicator device in conditions of insufficient weather conditions. The implementation of the solar panel made of polycrystalline or silicon photocells mounted on a conductive substrate, can further increase the charging speed and battery life of the indicator device by increasing the efficiency of conversion of light into electrical voltage, respectively, at least 12% and 9%, respectively.
На фиг. 1 представлена функциональная схема индикаторного устройства, на фиг. 2 - рисунок, поясняющий принцип работы индикаторного устройства и конструкцию его элементов. Индикаторное устройство содержит индикаторную панель 1 , соединенную по электропитанию через аккумулятор 2 электрической энергии и адаптер 3 с электрическим выходом панели 4 солнечных батарей. Индикаторная панель 1 выполнена светопрозрачной и установлена над панелью 4 солнечных батарей. Панель 4 установлена соосно с панелью 1 или со смещением в параллельных плоскостях относительно друг друга. Конкретный вид пространственного совмещения панелей 1 и 4 зависит от относительных значений их геометрических параметров, которые в свою очередь зависят от энергетических характеристик указанных панелей. При сравнимых характеристиках панели 1 и панели 4 по энергопотреблению и  энергообеспечению соответственно последние сравнимы по геометрическим размерам и установлены соосно. В случае малого энергопотребления индикаторной панели 1 размеры панели 4 солнечных батарей могут быть существенно уменьшены. При этом для уменьшения влияния отображения информации на процесс зарядки аккумулятора 2 панель 4 может быть смещена на панели 1 в сектор с большим коэффициентом светопропускания (свободный от затемняющей сигнальной информации). Для обеспечения светопрозрачности индикаторная панель 1 содержит прозрачную светодиодную матрицу 5 на органических аморфокремниевых (а-Si) и/или поликремниевых (LTPS) светодиодах OLED или - жидкокристаллическую матрицу 5 типа TN Тwistеd Nеmаtiс, IPS Iп-Рlапе Switсhiпg, MVA (Мulti-Dоmаiп Vеrtiсаl Аligпmепt) PVA TN TFT с подсветкой и прозрачной диэлектрической подложкой 6. Наиболее перспективными с точки зрения снижения экономических затрат на реализацию индикаторного устройства являются новые дешевые и простые в производстве светодиодные матрицы 5 на органических аморфокремниевых (а-Si) или поликремниевых (LTPS) светодиодах с изменяющейся цветностью. Более дорогостоящие жидкокристаллические (ЖК) матрицы 5 Тwistеd Nеmаtiс (TN), Iп-Рlапе Switсhiпg (IPS), Мulti-Dоmаiп Vеrtiсаl Аligпmепt (MVA) или TN TFT. ЖК - матрицы в отличие от светодиодных (активных матриц) требуют дополнительной подсветки и дополнительно цветных RGB - фильтров (О. Э. Карапетян и др., Оптическое проектирование RGВ-фильтров ЖК- экрана. //Электрон, промышленность. Наука. Технологии. Изделия. 2000 . N 4. - С. 40-43). Поэтому, по мнению заявителя, последние могут использоваться для реализации панели 1 только на начальном этапе как наиболее широко распространенные в производстве дисплеев для цифровой техники. На противоположных сторонах матрицы 5 нанесены методом напыления светопропускающие токопроводы 7 и 8 образуя сетку  токопроводов, управляющих свечением матрицы 5 и отображением информации на индикаторной панели 1. Выводы 7 и 8 матрицы 5 соединены через соответствующие регистры 9 и 10 и вво дно- выводное устройство 11 с цифровым сигнальным входом индикаторной панели 1. Потенциальные выходы регистров 9 и 10 соединены соответственно с выводами 7 и 8 матрицы 5 панели 1. По питающему напряжению индикаторная панель 1 и ее элементы 9÷11 соединены с выходом аккумулятора 2. Аккумулятор 2 содержит два последовательно включенных ионистора, например для индикатора сотового телефона емкостью 30 Ф и напряжением 2,3 В. Для обеспечения зарядки аккумулятора 2 при недостатке света он соединен с выходом солнечной батареи 4 через адаптер 3. Адаптер 3 выполнен в виде контроллера или широтно-импульсного преобразователя напряжения (WO 02087054, МПК: H02J7/00; H02MЗ/04, 2002; RU 2195754, МПК: H02J7/32, H02J7/35, 2002), позволяющего автоматически регулировать величину тока заряда аккумулятора 2 меняя величину напряжения на выходе панели 4 солнечной батареи, характеризующую уровень ее освещенности . Панель 4 солнечных батарей выполнена из поликристалина или из кремниевых фотоэлементов 12, установленных на токопроводящей подложке 13 и закрытых с внешней стороны токопроводящей светопрозрачной пластиной 14, образуя соответственно отрицательную и положительные обкладки фотоэлектронного источника электрической энергии панели 4.In FIG. 1 is a functional diagram of an indicator device; FIG. 2 is a drawing explaining the principle of operation of the indicator device and the design of its elements. The indicator device comprises an indicator panel 1 connected by power supply through an electric energy accumulator 2 and an adapter 3 with an electric output of the solar panel 4. The indicator panel 1 is made translucent and is installed above the panel 4 of solar panels. The panel 4 is installed coaxially with the panel 1 or with an offset in parallel planes relative to each other. The specific form of spatial alignment of panels 1 and 4 depends on the relative values of their geometric parameters, which in turn depend on the energy characteristics of these panels. With comparable characteristics of panel 1 and panel 4 for energy consumption and  energy supply, respectively, the latter are comparable in geometric dimensions and installed coaxially. In case of low power consumption of the indicator panel 1, the dimensions of the panel 4 of the solar panels can be significantly reduced. Moreover, to reduce the effect of the information display on the charging process of the battery 2, the panel 4 can be shifted on the panel 1 in the sector with a high transmittance (free from dimming signal information). To ensure translucency, the indicator panel 1 contains a transparent LED matrix 5 on organic amorphous-silicon (a-Si) and / or polysilicon (LTPS) OLED LEDs or a liquid crystal matrix 5 of the type TN Twisted Nematis, IPS Ip-Рlape Switchсhiпg, MVA (Мulti-Dimp-Dimp Aligmept) PVA TN TFT with backlight and a transparent dielectric substrate 6. The most promising from the point of view of reducing economic costs for the implementation of the indicator device are the new cheap and easy-to-produce LED matrix 5 for organic amorphous silicon (a-Si) or polysilicon (LTPS) color-changing LEDs. The more expensive liquid crystal (LC) matrices are 5 Twisted Nematis (TN), I-Рlape Switсhiпg (IPS), Multi-Domaip Verticl Aligmept (MVA) or TN TFT. LCD matrices, unlike LED (active matrices), require additional illumination and additional color RGB filters (O. E. Karapetyan et al., Optical design of RGB filters for LCD screens. // Electron. Industry. Science. Technologies. Products. . 2000. N 4. - S. 40-43). Therefore, according to the applicant, the latter can be used to implement panel 1 only at the initial stage as the most widespread in the manufacture of displays for digital technology. On the opposite sides of the matrix 5, light-transmitting current conductors 7 and 8 are applied by spraying to form a grid  conductors that control the glow of the matrix 5 and the display of information on the display panel 1. The findings 7 and 8 of the matrix 5 are connected through the corresponding registers 9 and 10 and the input-output device 11 with the digital signal input of the display panel 1. The potential outputs of the registers 9 and 10 are connected respectively with pins 7 and 8 of matrix 5 of panel 1. According to the supply voltage, indicator panel 1 and its elements 9 ÷ 11 are connected to the output of battery 2. Battery 2 contains two series-connected ionistors, for example, for a cell indicator a lefon with a capacity of 30 F and a voltage of 2.3 V. To ensure charging of battery 2 when there is insufficient light, it is connected to the output of the solar battery 4 through adapter 3. Adapter 3 is made in the form of a controller or pulse-width voltage converter (WO 02087054, IPC: H02J7 / 00; H02MZ / 04, 2002; RU 2195754, IPC: H02J7 / 32, H02J7 / 35, 2002), which allows automatic adjustment of the charge current of the battery 2 by changing the voltage at the output of the panel 4 of the solar battery, characterizing the level of its illumination. The solar panel 4 is made of polycrystalline or silicon photocells 12 mounted on a conductive substrate 13 and closed on the outside by a conductive translucent plate 14, forming respectively negative and positive plates of the photoelectronic source of electrical energy of the panel 4.
Работа индикаторного устройства на светодиодной матрице 5 состоит в следующем. На вход вводно-выводного устройства 11 индикаторной панели 1 с внешнего источника информации выдается видеоизображение информационной картины 15 в цифровом виде (в виде последовательности импульсно-кодовых сигналов в декартовой системе координат). Принятая последовательность импульсно-кодовых сигналов в устройстве 11 разделяется на группы сигналов в двух взаимно  ортогональных системах координат и с заданным темпом обновления сигнальной информации подается на счетные входы регистров 9 и 10. При этом с потенциальных выходов регистров 9 и 10 выдаются на соответствующие верхние 7 и нижние 8 шины матрицы 5 разнополярные сигналы возбуждения. На пересечениях шин 7 и 8 за счет разности потенциалов между ними происходит возбуждение поликристаллической среды светодиодной матрицы 5, вызывающей ее свечение в выбранной точке. Цвет излучения определяется величиной приложенного напряжения между шинами 7 и 8 в точке их пересечения. При этом на матрице 5 индикаторной панели формируется светящееся видеоизображение информационной картины 15. Одновременно световое излучение матрицы 5 проникает через прозрачную подложку 6 и облучает панель 4 солнечных батарей 12. Под действием светового излучения матрицы 5 и внешнего дневного света 16, проникающего через прозрачную матрицу 5, в фотоэлементах 12 панели 4 происходит преобразование падающего света в электрическое напряжение с КПД не менее 13%. Далее напряжение с панели 2 передается на адаптер 3. Адаптер 3 измеряет значение входного напряжения, сравнивает его с граничными значениями и методом широтно - импульсной модуляции управляет величиной выходного напряжения адаптера 3 и, как следствие, величиной зарядного тока аккумулятора в зависимости от освещенности панели 4. При этом обеспечивается поддержка электропитания индикаторного устройства при пониженной освещенности, быстрая зарядка аккумулятора 2 при повышенной освещенности и отключение, его заряда при достижении предельного допустимого напряжения на аккумуляторе 2. Работа индикаторного устройства с использованием жидкокристаллической (ЖК) матрицы 5 аналогична вышеприведенной. Отличие состоит в том, что ЖК-матрица 5 с точки зрения генерации зарядного излучения является пассивным элементом. Поэтому  дополнительным к дневному свету 16 источником энергии для зарядки аккумулятора 2 в данном случае является не сама светопрозрачная ЖК- матрица, формирующая изображение на панели 1, а ее слой подсветки, установленный в нижней части матрицы 5 на светопрозрачной подложке 6. Изобретение разработано на уровне технического предложения.The operation of the indicator device on the LED matrix 5 is as follows. To the input of the input-output device 11 of the display panel 1, a video image of the information picture 15 is digitally output (as a sequence of pulse-code signals in a Cartesian coordinate system) from an external information source. The received sequence of pulse-code signals in the device 11 is divided into groups of signals in two mutually  orthogonal coordinate systems and with a given update rate of the signal information is supplied to the counting inputs of registers 9 and 10. At the same time, from the potential outputs of registers 9 and 10, different-polar excitation signals are output to the corresponding upper 7 and lower 8 buses of the matrix 5. At the intersections of buses 7 and 8, due to the potential difference between them, the polycrystalline medium of the LED matrix 5 is excited, causing it to glow at a selected point. The color of the radiation is determined by the magnitude of the applied voltage between the buses 7 and 8 at the point of intersection. In this case, a luminous video image of the information picture 15 is formed on the matrix 5 of the indicator panel. Simultaneously, the light radiation of the matrix 5 penetrates through the transparent substrate 6 and irradiates the solar panel 4 4. Under the action of light radiation of the matrix 5 and external daylight 16 penetrating through the transparent matrix 5, in the photocells 12 of panel 4, the incident light is converted to electrical voltage with an efficiency of at least 13%. Next, the voltage from panel 2 is transmitted to adapter 3. Adapter 3 measures the input voltage, compares it with the boundary values and uses pulse width modulation to control the output voltage of adapter 3 and, as a result, the charging current of the battery depending on the illumination of panel 4. This provides support for the power supply of the indicator device in low light, fast charging of battery 2 in high light and shutdown, its charge when reaching the maximum permissible voltage on the battery 2. The operation of the indicator device using a liquid crystal (LCD) matrix 5 is similar to the above. The difference is that the LCD matrix 5 is a passive element in terms of generation of charge radiation. therefore  an additional source of energy for daylight 16 for charging the battery 2 in this case is not the translucent LCD matrix itself, which forms the image on the panel 1, but its backlight layer, installed at the bottom of the matrix 5 on the translucent substrate 6. The invention is developed at the level of technical proposal .