FREDERICAMYCIN-DERIVATE
Die Erfindung betrifft neue Fredericamycin-Derivate, Arzneimittel die diese oder deren Salze enthalten, und die Verwendung der Fredericamycin-Derivate zur Behandlung von Erkrankungen, insbesondere Tumorerkrankungen.
Fredericamycin wurde 1981 aus Streptomyces griseus isoliert und zeigt Antitumoraktivität.
Fredericamycin und einige Fredericamycin-Derivate sind bekannt.
In WO 2004/024696 wird eine vorteilhafte Aufreinigungsmethode von Fredericamycin beschrieben.
In Heterocycles 37 (1994) 1893 - 1912, J. Am. Chem. Soc. 116 (1994) 9921 - 9926, J. Am. Chem. Soc. 116 (1994) 11275 -11286, J. Am. Chem. Soc. 117 (1995) 11839 - 11849, JP 2000-072752 und in J. Am. Chem. Soc. 123 (2001) sind verschiedene, auch enantioselektive, Totalsynthesen von Fredericamycin A beschrieben. In J. Am. Chem. Soc. 127 (2005) 16442 - 16452 ist der Biosynthese Weg von Fredericamycin A beschrieben.
In US 4,673,768 sind Alkalisalze des Fredericamycin A beschrieben. In US 4,584,377
Fredericamycin-Derivate, insbesondere am Ring A und B acylierte Derivate, beschrieben. In US 5,166,208 sind ebenso Fredericamycin-Derivate beschrieben, insbesondere Derivate, die am Ring A Thio- oder Amino-Substituenten tragen. Die Derivate werden semisythetisch oder totalsynthetisch hergestellt. Die Derivate werden semisythetisch oder totalsynthetisch hergestellt. In WO 03/080582 wird eine Vielzahl von Ferdericamycin-Derivaten beschrieben, die an den Ringen A, B, E und/oder F derivatisiert sind. In WO 03/087060 werden weitere Derivate von Fredericamycin offenbart, inbesondere solche bei denen der Ring E weiter derivatisiert ist. In WO 2004/004713 werden weitere Derivate an den Ringen A und B offenbart. Es besteht ein hohes Bedürfnis weitere Fredericamycinderivate bereitzustellen, die insbesondere veränderte Wirkungsprofile aufweisen (Nebenwirkungen etc.).
Überraschenderweise wurde gefunden, dass Fredericamycin-Derivate, die insbesondere am Ring A oder an den Ringen A und E derivatisiert sind, potente Arzneimittel darstellen. Es wurde außerdem eine semisynthetische Möglichkeit gefunden Reste am Ring A oder an beiden Ringen A und E einzuführen, die erlauben die Wirksamkeit und unter anderem die Wasserlöslichkeit der Derivate zu erhöhen. Weitere aus dem Stand der Technik bekannte Wege zur Derivatisierung können an den erfindungsgemäßen Derivaten zusätzlich durchgeführt werden. Es wurde des weiteren eine Alternative gefunden Fredericamycin- Derivate wasserlöslich zu machen, in dem Cyclodextrin Einschlussverbindungen hergestellt werden.
Die Erfindung betrifft neue Fredericamycin-Derivate der allgemeinen Formel Ia oder Ib:
wobei jeweils
R1 H, d-Cβ-Alkyl, Cycloalkyl, CrC4-Alkyl-Cycloalkyl,
R2 H, Ci-Ci4-Alkyl, C2-C14-Alkenyl, Aryl, C1-C4-Alkyl-Aryll Heteroaryl, CrC4-Alkyl-Heteroaryl, C2-C4-Alkenyl-Heteroaryl, Cycloalkyl, C1- C4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC^Alkyl-Heterocycloalkyl, CmH2m+o-pYp (mit m = 1 bis 6, für o = 1 , p = 1 bis 2m+o; für m = 2 bis 6, o = -1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -2, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, OR21, NH2, NHR21 , NR21R22, SH, SR21), (CH2)rCH2NHCOR21 , (CH2)rCH2OCOR21 , (CH2)rCH2NHCSR21 , (CH2)rCH2S(O)nR21 mit n = 0,1 ,2, (CH2)rCH2SCOR21 , (CH2)rCH2OSO2-R21 , (CH2)rCHO, CH2-O-N=CH-Aryl, CH2-O-N=CH-Hetaryl, CH2-O-N=CH-R21 , CH2-O-N=CR21R22, CH2-0-N=CH-Cycloalkyl, CH=N-S-Aryl, CH=N-S-Hetaryl, (CH2)rCH=NOH, (CH2)rCH(OH)R21, -(CH2)rCH=NOR21 , (CH2)rCH=NOCOR21 , (CH2)rCH=NOCH2CONR21 R22, (CH2)rCH=NOCH(CH3)CONR21 R22, -(CH2)rCH=NOC(CH3)2CONR21 R22, (CH2)rCH=N-NHCO-R23, (CH2)rCH=N-NHC(O)NH-R23,  (CH2)rCH=N-NHC(S)NH-R23, (CH2)rCH=N-NHC(NH)NH-R23, (CH2)rCH=N- NHC(NH)-R23, (CH2)rCH=N-NHCO-CH2NHCOR21 , (CH2)rCH=N-O- CH2NHCOR21, (CH2)rCH=N-NHCS-R23, (CH2)rCH=CR24R25 (trans oder eis), (CH2)rCOOH, (CH2)rCOOR21 , (CH2)rCONR21R22, -(CH2)rCH=NR21 ,
(CH
2)
rCH=N-NR21 R22,
 , und der (CH
2)
r- kettenverlängerte Rest
(CH2)rCH=N-N-(C1-C3-Alkyl-NX'R211 R212R213R214)(mit X' = NR215, O, S und R211 , R212, R213, R214, R215 unabhängig voneinander H oder C1-C6- Alkyl), -(CH2)rCH=N-NHSO2-Aryl, -(CH2)rCH=N-NHS02-Heteroaryl, mit r = 0,1 ,2,3,4,5, bevorzugt 0,
R21 , R22 unabhängig voneinander CrCi4-Alkyl, Ci-C14~Alkanoyl, CrC6-Alkylhydroxy, CrCe-Alkylamino, CrCe-Alkylamino-C-i-Ce-Alkyl, CrC6-Alkylamino-di-CrC6- Alkyl, Cycloalkyl, C1-C4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC4-Alkyl- Heterocycloalkyl, Aryl, Aryloyl, C1 -C4-Al kyl-Aryl, Heteroaryl, Heteroaryloyl, C1-
C4-Alkyl-Heteroaryl, Cycloalkanoyl, CrC4-Alkanoyl-Cycloalkyl, Heterocycloalkanoyl, CrC4-Alkanoyl-Heterocycloalkyl, CrC^Alkanoyl-Aryl, CrC4-Alkanoyl-Heteroaryl, Mono- und Di-Zuckerreste, die verknüpft sind über ein C-Atom, das im Zucker eine OH-Gruppe tragen würde, wobei die Zucker unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus
Glucuronsäure und ihren Stereoisomeren an allen optischen C-Atomen, Aldopentosen, Aldohexosen einschließlich ihren Desoxyverbidungen (wie z.B. Glucose, Desoxyglucose, Ribose, Desoxyribose),
R23 unabhängig von R21 , die selben Bedeutungen wie R21 oder CH2pyridinium- salze, CH^ri-CrCβ-alkylammonrnium-salze,
R24 unabhängig von R21 , die selben Bedeutungen wie R21 oder H, CN, COCH3,
COOH, COOR21 , CONR21 R22, NH2, NHCOR21
R25 unabhängig von R21 , die selben Bedeutungen wie R21 oder H, CN, COCH3,
COOH, COOR21 , CONR21R22, NH2, NHCOR21
R24,R25 zusammen C4-C8-Cycloalkyl,
R3 H, F, Cl, Br, I, , OH, OR31, NO2, NH2, NHR31 , NR31 R32, NHCHO,
NHCOR31 , NHCOCF3, CH3-mHalm (mit HaI = Cl, F, insbesondere F, und m = 1 , 2, 3), OCOR31, SCN, CN, N3, CH2NR331 R332 (mit R331 , R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können),  CH2OH, CH2OR33, CH2SR33, C2-C14-Alkyl, C2-C14-Alkenyl, C2-C14-Alkinyl, C2-C14-Alkyl, C2-C14-Alkenyl, C2-C14-Alkinyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, C-i-CVAlkyl-Heteroaryl, wobei die Aryle oder Herteroaryle mit einem weiteren Aryl, CrC4-Alky]-Aryl, O-Aryl, CrC4-Alkyl-O-Aryl, Heteroaryl, Ci-C4-Alkyl- Heteroaryl, O-Heteroaryl oder CrC4-Alkyl-O-Heteroaryl substituiert sein können, Cycloalkyl, CrC4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC4-Alkyl- Heterocycloalkyl, CmH2m+0.pYp (mit m = 2 bis 6, für o = 1 ,-1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -3, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, OR31, NH2, NHR31, NR31R32, SH, SR31), CH2NHCOR31 , CH2NHCSR31 , CH2S(O)nR31 mit n=0,1 ,2, CH2SCOR31 ,
CH2OSO2-R31 , CHO, CH=NOH, CH(OH)R31 , -CH=NOR31 , -CH=NOCOR31 , -CH=NOCH2CONR31R32, -CH=NOCH(CH3)CONR31 R32, -CH=NOC(CH3)2CONR31 R32, -CH=N-NHCO-R33, -CH=N-NHCO-CH2NHCOR31 , -CH=N-O-CH2NHCOR31 , -CH=N-NHCS-R33, -CH=CR34R35 ( trans oder eis ), COOH, COOR31 , CONR31R32,
-CH=NR31 , -CH=N-NR31R32,
 (mit X' =
NR315, O, S und R311, R312, R313, R314, R315 unabhängig voneinander H oder CrC6-Alkyl), -CH=N-NHSO2-Aryl, -CH=N-NHSO2-Heteroaryl, und / oder
SCN, CN, N3, CH2NR331R332 (mit R331, R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können), CH2SR33,
R31 , R32 unabhängig voneinander CrC14-Alkyl, Crd-rAlkanoyl, CrC6-Alkylhydroxy, Ci-C6-Alkylamino, CrCe-Alkylamino-C-i-Ce-Alkyl, CrCe-Alkylamino-di-CrCe-
Alkyl, Cycloalkyl, CrC4-Alkyl-Cycloalkyl, Heterocycloalkyl, d-C4-Alkyl- Heterocycloalkyl, Aryl, Aryloyl, CrC4-Alkyl-Aryl, Heteroaryl, Heteroaryloyl, C1- C4-Alkyl-Heteroaryl, Cycloalkanoyl, CrC4-Alkanoyl-Cycloalkyl, Heterocycloalkanoyl, CrC^AIkanoyl-Heterocycloalkyl, Ci-C4-Alkanoyl-Aryl, CτC4-Alkanoyl-Heteroaryl, Mono- und Di-Zuckerreste, die verknüpft sind über ein C-Atom, das im Zucker eine OH-Gruppe tragen würde, wobei die Zucker unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Glucuronsäure und ihren Stereoisomeren an allen optischen C-Atomen, Aldopentosen, Aldohexosen einschließlich ihren Desoxyverbidungen (wie z.B. Glucose, Desoxyglucose, Ribose, Desoxyribose),
R33 unabhängig von R31, die selben Bedeutungen wie R31 oder CH2pyridinium- salze, CH2tri-C1-C6-alkylammonmium-salze, R34 unabhängig von R31 , die selben Bedeutungen wie R31 oder H, CN, COCH3,
COOH, C00R21 , CONR31 R32, NH2, NHC0R31
R35 unabhängig von R31, die selben Bedeutungen wie R31 oder H, CN, COCH3, COOH, COOR31 , CONR31R32, NH2, NHC0R31
R34,R35 zusammen C4-C8-Cycloalkyl,
R5 H, C1-C6-AIkVl, Cycloalkyl, CrC4-Alkyl-Cycloalkyl, Heterocycloalkyl, C1-C4- Alkyl-Heterocycloalkyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, CrC4-Alkyl-
Heteroaryl,
R4,R6,R7 unabhängig voneinander H, C1-C6-AKyI, CO-R41
R41 unabhängig von R21 , die selben Bedeutungen wie R21
X O, S, NH, N-R8, wobei R8 unabhängig von R5 die gleiche Bedeutung wie R5 annehmen kann oder R5 und R8 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann,
oder X-R5 zusammen gleich H, F, Cl, Br, I, N3
Y F, Cl, Br, I1 N3, CN, CH2NRYI RY2, CH2OH, CH2ORYI , CH2SRYI, SCN, Aryl, Hetaryl (wobei RY1 ,RY2 unabhängig von einander die selbe Bedeutung wie
R23 haben können), NRY1RY2 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann, und bei X-R5 zusammen gleich F, Cl, Br, I, N3 kann Y auch H, W-R51 sein, mit W = O, S, NH, N-R81 , R81 und R51 unabhängig voneinander die gleiche
Bedeutung wie R5 annehmen kann oder R51 und R81 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann, und / oder H, W-R51 , mit W = O, S, NH, N-R81 , wobei R81 und R51 unabhängig voneinander die gleiche Bedeutung wie R5 annehmen kann oder R51 und R81 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann,
Z O, S, NR9, wobei R9 H oder d-Ce-Alkyl sein kann, bedeutet, deren Stereoisomere, Tautomere und deren physiologisch verträglichen Salze oder Einschlussverbindungen.
Bevorzugt sind Verbindungen der Formel IIa oder IIb
wobei die Bedeutung der Reste R, X, Y und Z wie oben angegeben ist, deren Tautomere und deren physiologisch verträglichen Salze oder Einschlussverbindungen.
Die Erfindung betrifft außerdem Verbindungen der Formel Ia, Ib, IIa oder IIb, bei denen die Reste R außer R3, die oben angegebenen Bedeutungen haben und R3 gegenüber R3 gleich H die Wasserlöslichkeit bei Beibehaltung aller anderer Reste mindestens verdoppelt, bevorzugt mindestens verfünffacht, mehr bevorzugt mindestens verzehnfacht, besonders bevorzugt mindestens verfünfzigfacht, insbesondere verhundertfacht, oder sogar verfünfhundertfacht. Die Erhöhung der Wasserlöslichkeit geschieht z.B. über die Einführung von Gruppen, die vermehrt Wasserstoffbrückenbindungen ausbilden können und/oder polar und/oder ionisch sind. Bevorzugt sind Reste R3 mit erhöhter Wasserlöslichkeit und der bei den Formeln angegebenen Bedeutung.
Die Erfindung betrifft außerdem Verbindungen der Formel Ia, Ib, IIa oder IIb, bei denen die Reste R außer R2, die oben angegebenen Bedeutungen haben und zusätzlich R2 gegenüber R2 gleich CH=CH-CH=CH-CH3 die Wasserlöslichkeit bei Beibehaltung aller anderer Reste mindestens verdoppelt, bevorzugt mindestens verfünffacht, mehr bevorzugt mindestens verzehnfacht, besonders bevorzugt mindestens verfünfzigfacht, insbesondere verhundertfacht, oder sogar verfünfhundertfacht. Die Erhöhung der Wasserlöslichkeit geschieht z.B. über die Einführung von Gruppen, die vermehrt
Wasserstoffbrückenbindungen ausbilden können und/oder polar und/oder ionisch sind. Ein Schlüsselzwischenprodukt sind Verbindungen mit einer Aldehyd Funktion in R2. Bevorzugt sind Reste R2 mit erhöhter Wasserlöslichkeit und der bei den Formeln angegebenen Bedeutung. Besonders bevorzugt sind Derivate mit erhöhter Wasserlöslichkeit in R2 und R3.
Bevorzugte Reste bei R2 sind Heteroaryl, Cycloalkyl, CrC4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC4-Alkyl-Heterocycloalkyl, CmH2m+0-pYp (mit m = 1 bis 6, für o = 1 , p = 1 bis 2m+o; für m = 2 bis 6, o = -1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -2, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, OR21 , NH2, NHR21 , NR21R22, SH, SR21), CH2NHCOR21 , CH2NHCSR21 , CH2S(O)nR21 mit n=0,1,2, CH2SCOR21 , CH2OSO2-R21 , CH(OH)R21 , -CH=NOCOR21 ,
-CH=NOCH2CONR21 R22, -CH=NOCH(CH3)CONR21 R22, -CH=NOC(CH3)2CONR21 R22, -CH=N-NHCO-R23, -CH=N-NHCO-CH2NHCOR21 , -CH=N-O-CH2NHCOR21 , -CH=N-NHCS- R23, -CH=CR24R25 ( trans oder eis ), CONR21R22, -CH=NR21,
-CH=N-NR21R22,
 NR215, O, S und R211 , R212,
R213, R214, R215 unabhängig voneinander H oder d-Ce-Alkyl), -CH=N-NHSO2-Aryl, - CH=N-NHS02-Heteroaryl,
Bevorzugt sind weiterhin Verbindungen wie oben angegeben, wobei die Reste R bevorzugt unabhängig voneinander eine oder mehrere der folgenden Bedeutungen annehmen:
R1 H, CrC5-Alkyl, Cycloalkyl, insbesondere H,
R2 H1 C1-C14-A^yI1 C2-C14-Alkenyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, CrC4-Alkyl-Heteroaryl, C2-C4-Alkenyl-Heteroaryl, Cycloalkyl, C1-
C4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC4-Alkyl-Heterocycloalkyl, CmH2m+0- pYp (mit m = 1 bis 6, für o = 1 , p = 1 bis 2m+o; für m = 2 bis 6, o = -1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -2, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, OR21 , NH2, NHR21 , NR21 R22, SH, SR21), (CH2)rCH2NHCOR21 , (CH2)rCH2OCOR21 , (CH2)rCH2NHCSR21 ,
(CH2)rCH2S(O)nR21 mit n = 0,1 ,2, (CH2)rCH2SCOR21 , (CH2)rCH2OSO2-R21 , (CH2)rCHO, CH2-O-N=CH-Aryl, CH2-O-N=CH-Hetaryl, CH2-O-N=CH-R21, CH2-O-N=CR21 R22, CH2-O-N=CH-Cycloalkyl, CH=N-S-Aryl, CH=N-S-Hetaryl,  (CH2)rCH=NOH, (CH2)rCH(OH)R21, -(CH2)rCH=NOR21 , (CH2)rCH=NOCOR21 , (CH2)rCH=NOCH2CONR21 R22, (CH2)rCH=NOCH(CH3)CONR21 R22, -(CH2)rCH=NOC(CH3)2CONR21 R22, (CH2)rCH=N-NHCO-R23, (CH2)rCH=N-NHC(O)NH-R23, (CH2)rCH=N-NHC(S)NH-R23, (CH2)rCH=N-NHC(NH)NH-R23, (CH2)rCH=N- NHC(NH)-R23, (CH2)rCH=N-NHCO-CH2NHCOR21 , (CH2)rCH=N-O- CH2NHCOR21 , (CH2)rCH=N-NHCS-R23, (CH2)rCH=CR24R25 (trans oder eis), (CH2)rCOOH, (CH2)rCOOR21 , (CH2)rCONR21R22, -(CH2)rCH=NR21 ,
(CH
2)
rCH=N-NR21R22,
 , und der (CH
2)
r- ketten verlängerte Rest
(CH2)rCH=N-N-(Ci-C3-Alkyl-NX'R211R212R213R214)(mit X; = NR215, O1 S und R211, R212, R213, R214, R215 unabhängig voneinander H oder C1-C6-
Alkyl), -(CH2)rCH=N-NHSO2-Aryl,
-(CH2)rCH=N-NHSO2-Heteroaryl, mit r = 0,1 ,2,3,4,5, bevorzugt 0, insbesondere bevorzugt sind C2-C14-Alkenyl, CrC4-Alkyl-Heteroaryl, C2-C4-
Alkenyl-Heteroaryl, CH=NOH, CH=NOR21 ,
R21 , R22 unabhängig voneinander CrC6-Alkyl, Cycloalkyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, CrC4-Alkyl-Heteroaryl
R23 unabhängig von R21 , die selben Bedeutungen wie R21 oder CH2pyridinium- salze, CH2tri-CrC6-alkylammonmium-salze,
R24 unabhängig von R21 , die selben Bedeutungen wie R21 oder H, CN, COCH3,
COOH, COOR21 , CONR21 R22, NH2, NHCOR21
R25 unabhängig von R21 , die selben Bedeutungen wie R21 oder H, CN, COCH3,
COOH, COOR21, CONR21R22, NH2, NHCOR21
R24.R25 zusammen C4-C8~Cycloalkyl,
R3 H, F, Cl, Br, I, OH, OR31 , NO2, NH2, NHR31 , NR31 R32, NHCHO, NHCOR31 ,
NHCOCF3, CH3-mHalm (mit HaI = Cl, F, insbesondere F, und m = 1 , 2, 3), OCOR31 , SCN, CN, N3, CH2NR331 R332 (mit R331 , R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können), CH2OH, CH2OR33, CH2SR33, C2-C14-AIkVl, C2-Ci4-Alkenyl, C2-C14-Alkinyl C2-C14-Alkyl, C2-C14-Alkenyl, C2-C14-Alkinyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, CrC4-Alkyl-Heteroaryl, wobei die Aryle oder Herteroaryle mit einem weiteren  Aryl, C|-C4-Alkyl-Aryl, O-Aryl, CrC4-Alkyl-O-Aryl, Heteroaryl, CrC4-Alkyl- Heteroaryl, O-Heteroaryl oder Ci-C4-Alkyl-O-Heteroaryl substituiert sein können, Cycloalkyl, Ci-C4-Alkyl-Cycloalkyl, Heterocycloalkyl, CrC4-Alkyl- Heterocycloalkyl, CmH2m+0-pYp (mit m = 2 bis 6, für o = 1 ,-1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -3, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, OR31 , NH2, NHR31 , NR31 R32, SH1 SR31), CH2NHCOR31 , CH2NHCSR31 , CH2S(O)nR31 mit n=0,1 ,2, CH2SCOR31 , CH2OSO2-R31 , CHO, CH=NOH, CH(OH)R31 , -CH=NOR31 , ~CH=NOCOR31 , -CH=NOCH2CONR31 R32, -CH=NOCH(CH3)CONR31 R32, -CH=NOC(CH3)2CONR31R32, -CH=N-NHCO-R33,
-CH=N-NHCO-CH2NHCOR31, -CH=N-O-CH2NHCOR31 , -CH=N-NHCS-R33, -CH=CR34R35 ( trans oder eis ), COOH, COOR31 , CONR31 R32,
-CH=NR31 , -CH=N-NR31 R32,
NR315, O, S und R311, R312, R313, R314, R315 unabhängig voneinander H oder d-Cβ-Alkyl), -CH=N-NHSO2-Aryl,
-CH=N-NHSO2-Heteroaryl, besonders bevorzugt sind H, F, Cl, Br, I1 NR31 R32, insbesondere Br, I1 und / oder
CH2NR331 R332 (mit R331 , R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können),
R331 , R332 unabhängig voneinander CrC4-Alkyl,
R31 , R32 unabhängig voneinander CrC4-Alkyl,
R5 H, CrC3-Alkyl, Cycloalkyl, Heterocycloalkyl,
R4,R6,R7 unabhängig voneinander H, Ci-C5-Alkyl, CO-R41 , insbesondere jeweils H,
R41 unabhängig von R21 , die selben Bedeutungen wie R21
X O, S, NH, N-R8, besonders bevorzugt ist O, NH, N-Rδ, wobei R8 die gleiche
Bedeutung wie R5 annehmen kann und bei N-R8 besonders bevorzugt R5 und R8 zusammen mit dem N einen 6 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O enthalten kann und insbesondere Piperazino oder Morpholino ist, insbesondere bevorzugt ist O, NH, oder X-R5 zusammen gleich H,
Y H, F, Cl, Br, I, N3, insbesondere Br, I
Z O, S, NH, insbesondere O
bedeutet, deren Stereoisomere, Tautomere und deren physiologisch verträglichen Salze oder Einschlussverbindungen.
Ferner ist bevorzugt, dass falls
R3 = SCN, CN, N3, CH2NR331R332 (mit R331 , R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können), CH2SR33 ist,
ist Y= H, W-R51 , mit W = O, S, NH, N-R81 , wobei R81 und R51 unabhängig voneinander die gleiche Bedeutung wie R5 annehmen kann oder R51 und R81 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann, und falls R3 = H, F, Cl, Br, I, , OH, OR31, NO2, NH2, NHR31 , NR31 R32, NHCHO, NHCOR31 , NHCOCF3, CH3-mHalm (mit HaI = Cl1 F, insbesondere F, und m = 1 , 2, 3), OCOR31 , SCN, CN, N3, CH2NR331R332 (mit R331, R332, die unabhängig voneinander die gleiche Bedeutung wie R33 annehmen können),
CH2OH, CH2OR33, CH2SR33, C2-C14-Alkyl, C2-C14-Alkenyl, C2-C14-Alkinyl, C2-C14-Alkyl, C2-C14-Alkenyl, C2-C-i4-Alkinyl, Aryl, CrC4-Alkyl-Aryl, Heteroaryl, CrC4-Alkyl- Heteroaryl, wobei die Aryle oder Herteroaryle mit einem weiteren Aryl, Ci-C4-Alkyl-Aryl, O- Aryl, CrC4-Alkyl-O-Aryl, Heteroaryl, CrC4-Alkyl-Heteroaryl, O-Heteroaryl oder CrC4-Alkyl-O- Heteroaryl substituiert sein können, Cycloalkyl, CrC4-Alkyl-Cycloalkyl, Heterocycloalkyl, C1- C4-Alkyl-Heterocycloalkyl, CmH2m+0-pYP (mit m = 2 bis 6, für o = 1 ,-1 , p = 1 bis 2m+o; für m = 4 bis 6, o = -3, p = 1 bis 2m+o; Y = unabhängig von einander ausgewählt aus der Gruppe Halogen, OH, 0R31 , NH2, NHR31 , NR31 R32, SH, SR31), CH2NHCOR31 , CH2NHCSR31 , CH2S(O)nR31 mit n=0,1 ,2, CH2SCOR31 , CH2OSO2-R31 , CHO, CH=NOH, CH(OH)R31 , - CH=NOR31,
-CH=NOCOR31 , -CH=NOCH2CONR31 R32, -CH=NOCH(CH3)CONR31R32, -CH=NOC(CH3)2CONR31 R32, -CH=N-NHCO-R33, -CH=N-NHCO-CH2NHCORSI1 -CH=N-O-CH2NHCORSI , -CH=N-NHCS-R33, -CH=CR34R35 ( trans oder eis ), COOH, C00R31 , C0NR31 R32,
-CH=NR31 , -CH=N-NR31R32,
NR315, O1 S und R311, R312, R313, R314, R315 unabhängig voneinander H oder CrC6-Alkyl), -CH=N-NHSO2-Aryl, -CH=N-NHS02-Heteroaryl, ist Y = F, Cl, Br, I1 N3, CN, CH2NRYI RY2, CH2OH, CH2ORYI1 CH2SRYI , SCN, Aryl, Hetaryl (wobei RY1.RY2 unabhängig von einander die selbe Bedeutung wie R23 haben können), NRY1RY2 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann, und bei X-R5 zusammen gleich F1 Cl, Br, I1 N3 kann Y auch H1 W-R51 sein, mit W = O, S, NH1 N-R81 , R81 und R51 unabhängig voneinander die gleiche Bedeutung wie R5 annehmen kann oder R51 und R81 zusammen mit dem N eine 4, 5, 6, 7 oder 8 gliedrigen Heterocycloalkylring bilden, der optional noch ein weiteres Heteroatom ausgewählt aus der Gruppe N, O, S enthalten kann.
Ganz besonders bevorzugt sind die Verbindungen, deren Stereoisomere, Tautomere und deren physiologisch verträglichen Salze oder Einschlussverbindungen, ausgewählt aus der Gruppe bestehend aus den Verbindungen der Beispiele und den Verbindungen, die Kombinationen der verschiedenen Substituenten der Verbindungen dieser Beispiele aufweisen.
Bevorzugt sind außerdem Arzneimittel enthaltend obige Verbindungen der Formel I oder Il neben den üblichen Träger und Hilfsstoffen.
Bevorzugt sind auch die oben genannten Arzneimittel in Kombination mit weitere Wirkstoffen zur Tumorbehandlung.
Diese erfindungsgemäßen Verbindungen werden zur Herstellung von Arzneimitteln zur Behandlung von Tumoren, insbesondere von solchen, die durch die Inhibierung der Topoisomerasen I und/oder Il behandelt werden können, verwendet. Tumoren, die mit den erfindungsgemäßen Substanzen behandelt werden können sind z.B. Leukemie, Lungenkrebs, Melanome, Prostatatumore und Colontumore. Die erfindungsgemäßen Verbindungen werden außerdem zur Herstellung von Arzneimitteln zur Behandlung von Tumoren, die durch die Inhibierung der Peptidyl-Prolyl-Isomerase PIN-1 behandelt werden können, verwendet. Solche Tumoren sind insbesondere Prostatatumoren und Brustkrebs.
Des weiteren können die erfindungsgemäßen Verbindungen zur Herstellung von Arzneimitteln zur Behandlung von Neurodermitis, Parasiten und zur Immunsuppression verwendet werden.
In der Beschreibung und den Ansprüchen gelten für die einzelnen Substituenten folgende Definitionen:
Der Term „Alkyl" für sich oder als Teil eines anderen Substituenten bedeutet ein lineares oder verzweigtes Alkylketten-Radikal der jeweils angegebenen Länge und optional eine CH2- Gruppe durch eine Carbonylfunktion ersetzt sein kann. So bedeutet C1-4-Alkyl z.B. Methyl,  Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl, 2-Butyl, d.6-Alky[ z.B. C1-4-Alkyl, Pentyl, 1-Pentyl, 2-Pentyl, 3-Pentyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 4-Methyl-1- pentyl oder 3,3-Dimethyl-butyl.
Der Term „CrCe-Alkylhydroxy" für sich oder als Teil eines anderen Substituenten bedeutet ein lineares oder verzweigtes Alkylketten-Radikal der jeweils angegebenen Länge, das gesättigt oder ungesättigt sein kann und eine OH Gruppe trägt, z.B. Hydroxymethyl, Hydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypropyl.
Der Term „Alkenyl" für sich oder als Teil eines anderen Substituenten bedeutet ein lineares oder verzweigtes Alkylketten-Radikal mit eine oder mehreren C=C-Doppelbindungen der jeweils angegebenen Länge, wobei mehrere Doppelbindungen bevorzugt konjugiert sind. So bedeutet C2-6-Alkenyl z.B. Ethenyl, 1-Propenyl, 2-Propenyl, 2-Methy!-2-propenyl, 2-Methyl-1- propenyl, 1-Butenyl, 2-Butenyl, 1 ,3-Butdienyl, 2,4-Butdienyl, 1-Pentenyl, 2-Pentenyl, 3- Pentenyl, 1 ,3-Pentdienyl, 2,4-Pentdienyl, 1 ,4-Pentdienyl, 1-Hexenyl, 2-Hexenyl, 1 ,3- Hediexyl, 4-Methyl-1 -pentenyl oder 3,3-Dimethyl-butenyl.
Der Term „Alkinyl" für sich oder als Teil eines anderen Substituenten bedeutet ein lineares oder verzweigtes Alkylketten-Radikal mit eine oder mehreren C-C-Dreifachbindungen der jeweils angegebenen Länge, wobei auch zusätzliche Doppelbindungen vorliegen können. So bedeutet C2-6-Alkinyl z.B. Ethinyl, 1-Propinyl, 2-Propinyl, 2-Methyl-2-propinyl, 2-Methyl-1- propinyl, 1-Butinyl, 2-Butinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 1 ,4-Pentdiinyl, 1-Pentin-4- enyl, 1-Hexinyl, 2-Hexinyl, 1 ,3-Hexdiinyl, 4-Methyl-1-pentinyl oder 3,3-Dimethyl-butinyl.
Der Term „Halogen" steht für Fluor, Chlor, Brom, Jod, bevorzugt Brom und Chlor.
Der Term „NR21R22" oder analoge NRx1Rx2 stehen auch für eine Dialkylaminogruppe, wobei die beiden Alkylgruppen zusammen mit dem N auch einen 5- oder 6-gliedrigen Ring bilden können.
Der Term „Cycloalkyl" für sich oder als Teil eines anderen Substituenten beinhaltet gesättigte, cyclische Kohlenwasserstoffgruppen, mit 3 bis 8 C-Atomen wie z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, 4-Methyl-cyclohexyl, Cyclohexylmethylen, Cycloheptyl oder Cyclooctyl.
Der Term „Heterocycloalkyl" für sich oder als Teil eines anderen Substituenten beinhaltet Cycloalkylgruppen worin bis zu zwei CH2-Gruppen durch Sauerstoff-, Schwefel- oder Stickstoffatome ersetzt sein können und eine weitere CH2-gruppe durch eine Carbonylfunktion ersetzt sein kann, z.B. Pyrrolidin, Piperidin, Morpholin oder
 Der Term „Aryl" für sich oder als Teil eines anderen Substituenten beinhaltet aromatische Ringsysteme mit bis zu 3 Ringen, bei denen mindestens 1 Ringsystem aromatisch ist und die mit bis zu 3 Substituenten, bevorzugt bis zu 1 Substituenten, wobei die Substituenten unabhängig voneinander die Bedeutung C
1-C
6-AIKyI, OH, NO
2, CN, CF
3, 0R11 , SH, SR11 , d-Ce-Alkylhydroxy, C
rC
6-Alkyl-OR11 , COOH, COOR11, CONH2, CONR11 R12, CHO, CH=NO-C
rC
10-Alkyl, C
1-C
10-AIk-I -enyl, NH
2, NHR11, NR11R12, Halogen haben können, wobei die Reste R11 , R12 unabhängig von einander C
rC
1o-Alkyl, Cycloalkyl, C
rC
4-Alkyl- Cycloalkyl, bedeuten können.
Bevorzugte Aryle sind neben Phenyl und 1-Naphtyl und 2-Naphtyl:
Der Term „Heteroaryl" für sich oder als Teil eines anderen Substituenten beinhaltet aromatische Ringsysteme mit bis zu 3 Ringen, und bis zu 3 gleichen oder verschiedenen Heteroatomen N, S, O bei denen mindestens 1 Ringsystem aromatisch ist und die mit bis zu 3 Substituenten, bevorzugt bis zu 1 Substituenten, wobei die Substituenten unabhängig voneinander die Bedeutung CrC6-Alkyl, OH, NO2, CN, CF3, 0R11 , SH, SR11 , C1-C6- Alkylhydroxy, d-Cβ-Alkyl-ORH, COOH1 C00R11 , CONH2, C0NR11 R12, CHO, CH=NO- CrC10-Alkyl, C1-C10-AIk-I -enyl, NH2, NHR11 , NR11R12, Halogen haben können, wobei die Reste R11 , R12 unabhängig von einander CrC10-Alkyl, Cycloalkyl, C1-C4-Alkyl-Cycloalkyl, bedeuten können.
Bevorzugte Heteroaryle sind:
Insbesondere sind 2-furyl, 3-furyl, 2-thiophenyl, 3-thiophenyl, 3-pyridinyl, 4-pyridinyl, 4- isoxazolyl, 2-N-methylpyrrolyl, und 2-pyrazinyl bevorzugt. Ganz besonders bevorzugt sind diese als Rest R3.
Der Term „Ringsystem" bezieht sich im Allgemeinen auf 3, 4, 5, 6, 7, 8, 9 oder 10 gliedrige Ringe. Bevorzugt sind 5 und 6 gliedrige Ringe. Des weiteren sind Ringsysteme mit einem oder 2 anellierten Ringen bevorzugt.
Die Verbindungen der Formel I können als solche oder falls sie acidische oder basische Gruppen aufweisen in Form ihrer Salze mit physiologisch verträglichen Basen oder Säuren vorliegen. Beispiele für solche Säuren sind: Salzsäure, Zitronensäure, Trifluoressigsäure, Weinsäure, Milchsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Ameisensäure, Maleinsäure, Fumarsäure, Bernsteinsäure, Hydroxybernsteinsäure, Schwefelsäure, Glutarsäure, Asparaginsäure, Brenztraubensäure, Benzoesäure, Glucuronsäure, Oxalsäure, Ascorbinsäure und Acetylglycin. Beispiele für Basen sind Alkaliionen, bevorzugt Na, K, Erdalkaliionen, bevorzugt Ca, Mg, Ammoniumionen.
Die erfindungsgemäßen Verbindungen können in üblicher weise oral verabfolgt werden. Die Applikation kann auch i.V., i.m., mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.
Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis pro Person zwischen etwa 0.1 μg/kg und 1 g/Kg bei oraler Gabe. Diese Dosis kann in 2 bis 4 Einzeldosen oder einmalig am Tag als Slow-release-Form gegeben werden.
Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Lösungen, oder Sprays. Diese werden in üblicher weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 99 Gew.-%.
Experimenteller Teil
Fredericamycin A ist fermentativ oder totalsynthetisch nach den bekannten Methoden zugänglich. Die erfindungsgemäßen Fredericamycinderivate lassen entweder aus Fredericamycin A oder aus bekannten Federicamycinderivaten durch angegeben Methoden direkt oder durch Variation der angegeben Methoden herstellen. Die reduzierten Formen der Formel I b und Il b lassen sich durch milde Reduktionsmittel aus den entsprechenden Verbindungen der Formel I a und Il a herstellen.
Herstellung der Substanzen
Fredericamycin (1) oder Fredericamycin Derivate lassen sich mit Halogenierungsmitteln wie N-Chlorsuccinimid (NCS), Bromsuccinimid (NBS), N-Jodsuccinimid (NIS), Fluorierungsmittel wie Selectfluor® bzw elementarem Br2, Cl2, Interhalogenverbindungen in guten Ausbeuten zu den entsprechenden Halogenierten Fredericamycin Derivaten umgesetzt werden (Schema 1). Aminierung und nachfolgende Zweithalogenierung führt zu bishalogenierten Fredericamycin Derivate mit unterschiedlichen Substitutionsmustern. ( Schema 2).
Schema 1 und 2
Halogenierung 1
Hall : F1 CI, Br, I
Hal2 unabhängig von Hall : Halogen
Für die Synthese weiterer wasserlöslichen Fredericamycin Derivaten wurde Fredericamycin (1) zunächst mit Osmium(IV)oxid an der Dienseitenkette hydroxyliert. ( s. Schema 3 ).
Schema 3
Fredericamycin (1) (2)
a) OsO4, N-Methylmorpholin-N-oxid, CH2CI21CH3OH1H2O
Das Fredericamycin-tetrol (2) dient ebenfalls als wichtige Zwischenstufe für die Synthese der in diesem Patent genannten Fredericamycin Derivate mit erhöhtem Löslichkeit und/oder Wirkprofil. Durch Jodatspaltung mit Natriummetaperjodat bzw. trägergebundenem Perjodat läßt sich die Tetrolseitenkette in sehr hohen Ausbeuten zum Fredericamycin-aldehyd (3) abbauen (s. Schema 4).
Schema 4
a) NaIO4-H2O-DMF oder trägergebundenes-l04-H20-DMF
Dieser Aldehyd läßt sich z.B. durch Bromierungsreagenzien wie N-Bromsuccinimid, Brom oder andere bromgenerierende Reagenzien ( bzw. andere Halogenierungsreagenzien ) zur kernbromierten Verbindung (4) bzw. kernhalogenierten Verbindungen umsetzen ( s. Schema 5). Schema 5
Fredericamycinaldehyd
Als Beispiel einer Substanzbibliothek kann der Aldehyd (3)z.B. mit Hydroxylaminen und Hydrazinen zu den entsprechenden R3 substituierten Oximen umgesetzt werden. Aminaustausch, Nukleophile Substitution bzw. C-C Verknüpfungen sind im Schema 6 dargestellt. Schema 6
(3) Fredericamycinaldehyd
Nukleophile Substitution oder C-C Kupplung
Nu: N3, CN, SCN, Aryl, Hetaryl
 In den folgenden Schemata wird anhand von Fredericamycin und dessen Derivaten gezeigt, wie man zu erfindungsgemäßen Derivaten in Analogie kommen kann.
Elektrophile Substitution am E Ring und Austausch der Methoxygruppe am A Ring
1)
Fredericamycin und seine Seitenkettensubstituiertzen Derivate lassen sich mit literaturbekanntem Dimethylrnethylen ammoniumchlorid (Mannich Salz)unter wasserfreien
Bedingungen am E Ring Aminomethylieren.
Der Austausch der Methoxygruppierung am A-Ring des Fredericamycins sowie an den
Derivaten ist durch primäre, sekundäre oder aromatische Amine möglich. Dabei werden die
Komponenten mit den entsprechenden primären oder sekundären Aminen bei
Raumtemperatur in DMF oder einem anderen inerten Lösungsmittel gerührt. Bei aromatischen Aminen ist eine Katalyse mit Lewissäuren wie Zinn(IV)chlorid etc. erforderlich.
Halogenierung mit NBS oder Brom liefert die F Ring halogenierten Derivate ( s. Schema 7 )
Schema 7
R2. ,R3
Wird die Mannich Reaktion mit wässrigem Formaldehyd und Amin am Desmethylierten Fredericamycin durchgeführt, so findet die Aminomethylierung am A Ring statt. Die OH Funktion am A Ring kann über das Triflat in die Aminoverbindung oder Alkoxyverbindung umgewandelt werden (s. Schema 8 ). Schema 8
2)
Fredericamycin oder Fredericamycin Derivate lassen sich am E Ring elektrophil mit in situ hergestelltem Dirhodan substituieren. (Schema 9)
Schema 9
Beispiel 1
(8S)-4',9,9'-trihydroxy-5,7'-dibromo-6'-dimethylamino-1 ,1 ',3',5',8'-pentaoxo- 1 ,1 '^S'^'.ΘJ^'-octahydrospiro [cyclopentafg] isoquinoline-8,2'-cyclopenta[b]naphtalene]- 3-carbaldehyde (Verbindung 1)
Brom dimethylamino Fredericamycin aldehyd 5.0mg ( 8.4μmol ) werden unter N2 in 1ml trockenem Dimethylformamid gelöst. Bei Raumtemperatur werden 3.0mg ( 16.9μmol ) N- Bromsuccinimid zugegeben und bei Raumtemperatur gerührt. Nach 90 Minuten wird mit
15ml Wasser verdünnt und der ausgefallene Niederschlag abgesaugt. Der im Vakuum getrocknete Rückstand wird in 25ml Dichlormethan aufgenommen mit Wasser gewaschen und nach dem Trocknen über Natriumsulfat eingengt.
Ausbeute: 3.5mg ( 62% d.Th. )rotes Kristallpulver: M/e=673, λmax = 507.0nm.
Beispiel 2
(8S)-4',9,9'-trihydroxy-5,7'-dibromo-6'-dimethylamino-1,1 'l3',5',8'-pentaoxo-
1 ,r,2,3',5',6,7,8'-octahydrospiro [cyclopentafg] isoquinoline-8,2'-cyclopenta[b]naphtalene]~
3-carbaldehyde-O-isopropyl oxim (Verbindung 2)
Brom-dimethylamino Fredericamycinaldehyd-O-isopropyloxim 83.0mg ( 128.0μmol ) werden unter N2 in 2ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 128μl
0.1 M Bromlösung in DMF zugegeben. Nach 1 Stunde wird auf 40ml Wasser gegeben.
Der ausgefallene Rückstand wird abgesaugt und anschließend mit Methanol gewaschen. Nach der Reinigung über Sephadex® LH-20 mit Dichlormethan/Methanol/Trifluoressigsäure
30/20/0.1 erhält man 42.0mg ( 45% d.Th. ) eines roten Feststoffes. M/e = 730.0; λmax =
504. Onm
Beispiel 3 (8S)-4',9.9'-trihydroxy-5,7'-dibromo-6'-methylamino-3-[(1 E,3E)-penta-1 ,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1 '-3',5',8'(2H)- pentone (Verbindung 3)
Methylamino Fredericamycin 53.8mg ( 100μmol ) werden unter N2 in 2ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 200μl 0.2M Lösung von N-
Bromsuccinimid in DMF zugegeben. Nach 16 Stunde wird das Lösungsmittel im
Hochvakuum abgezogen. Der Rückstand wird über Sephadex® LH-20 mit
Dichlormethan/Methanol/Trifluoressigsäure 30/20/0.1 gereinigt.
Ausbeute: 52.0mg ( 75% d.Th. ) roter Feststoff. M/e = 696.0; λmax = 506.0nm.
Beispiel 4 (8S)-4',9.9'-trihydroxy-5,7'-dibromo-6'-morpholino-3-[(1E,3E)-penta-1,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1'-3',5',8'(2H)- pentone (Verbindung 5)
Morpholino Fredericamycin 59.5mg ( 100μmol ) werden unter N2 in 2ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 200μl 0.2M Lösung von N- Bromsuccinimid in DMF zugegeben. Nach 3 Stunden werden nochmals 200μl 0.2M NBS Lösung'zugegeben und 1 Stunde weiter gerührt. Das Lösungsmittel wird im Hochvakuum abgezogen und der Rückstand über Sephadex® LH-20 mit Dichlormethan/Methanol/ Trifluoressigsäure 30/20/0.1 gereinigt. Nochmalige Aufreinigung miteis präparativer HPLC RP18 mit Acetonitril/Wasser. Ausbeute: 23.0mg ( 31% d.Th. ) roter Feststoff. M/e = 753.0; λmax = 500.0nm.
Beispiel 5 (8S)-4',9,9'-trihydroxy-5,7'-dibromo-6'-dimethylamino-1 ,1',3',5',8'-pentaoxo~
1 ,1',2,3',5',6,7,8'-octahydrospiro [cyclopenta[g] isoquinoline-8,2'~cyclopenta[b]naphtalene]- 3-carbaldehyde-O-methyl oxim (Verbindung 9)
Brom dimethylamino Fredericamycin aldehyd-O-methyloxim 50.0mg ( 80.3μmol ) werden unter N2 in 5ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 14.3 mg ( 80.3μmol ) N-Bromsuccinimid in 1ml DMF zugegeben. Nach 3 Stunden rühren bei RT wird das Lösungsmittel wird im Hochvakuum abgezogen und der Rückstand über Sephadex® LH-20 mit Dichlormethan/Methanol/ Trifluoressigsäure 80/10/0.1 gereinigt. Ausbeute: 47.0mg ( 83% d.Th. ) roter Feststoff. M/e = 702.0; λmax = 504.0nm.
Beispiel 6
(8S)-4',9.9'-trihydroxy-5,7'-dibromo-6'-cyclopropylamino-3-[(1E,3E)-penta-1 ,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1'-3',5',8'(2H)- pentone (Verbindung 10)
Cyclopropylamino Fredericamycin 56.5 mg ( 100.0μmol ) werden unter N2 in 5ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 36.0mg (202.2μmol ) N- Bromsuccinimid gelöst in 2ml DMF zugegeben. Nach 2 Stunden rühren bei RT wird das Lösungsmittel wird im Hochvakuum abgezogen und der Rückstand über Sephadex® LH-20 mit Dichlormethan/Methanol/ Trifluoressigsäure 80/10/0.1 gereinigt.
Ausbeute: 38.0mg ( 52% d.Th. ) roter Feststoff. M/e = 723.0; λmax = 504.0nm.
Beispiel 7
(8S)-4',9,9'-trihydroxy-5,7'-dibromo-6'-cyclopropylamino-1 ,r,3',5',8'-pentaoxo- 1 ,1 ',2,3',5',6,7,8'-octahydrospiro [cyclopenta[g] isoquinoline-8,2'-cyclopenta[b]naphtalene]- 3-carbaldehyde-O-methyl oxim (Verbindung 12) Cyclopropylamino Fredericamycinaldehyd methoxim 60.0 mg ( 108.0μmol ) werden unter N2 in 5ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 40.3mg (226.8μmol) N-Bromsuccinimid zugegeben. Nach 2 Stunden rühren bei RT wird das Lösungsmittel wird im Hochvakuum abgezogen und der Rückstand über Sephadex® LH-20 mit Dichlormethan/Methanol/ Trifluoressigsäure 80/10/0.1 gereinigt.
Ausbeute: 28.0mg ( 36% d.Th. ) roter Feststoff. M/e = 714.0; λmax = 500.0nm.
Beispiel 8
(8S)-4',9.9'-trihydroxy-5,7'-dibromo-6'-cyclopropylamino-3-[(1E,3E)-penta-1 ,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1,1'-3',5',8'(2H)- pentone (Verbindung 15)
2-Fluorethylamino bromo Fredericamycin 10.0 mg ( 15.4μmol ) werden unter N2 in 1ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 2.7mg (15.4μmol ) N- Bromsuccinimid zugegeben. Nach 5 Stunden rühren bei RT wird 100ml Wasser/1%
Trifluoressigsäure gegeben. Der Niederschlag wird abgesaugt und mit Wasser gewaschen. Ausbeute: 4.0mg ( 36% d.Th. ) roter Feststoff. M/e = 729.0; λmax = 504.0nm.
Beispiel 9 (8S)-4',9.9'-trihydroxy-7'-piperidinomethyl-6'-hydroxy-3-[(1 E,3E)-penta-1 ,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1'-3',5',8'(2H)- pentone ( Verbindung 16 )
Hydroxyfredericamycin ( Desmethylfredericamycin ) 20.0mg ( 38.1μmol )werden unter N2 in 4ml Ethanol vorgelegt. Nach der Zugabe von 4.0μl ( 40.3μmol ) Piperidin und 3.2μl (
115.0μmol ) 37%igem wässrigen Formaldehyd wird 30 Minuten bei Raumtemperatur gerührt.
Man erhitzt dann 3 Stunden auf Rückflusstemperatur. Auf 80ml Wasser ( mit 1%
Trifluoressigsäure )geben. Absaugen und im Vakuum trocknen.
Ausbeute: 23.0mg ( 97% d.Th. ) roter Feststoff. M/e = 623.0; λmax = 500.0nm.
Beispiel 10
(8S)-4',9.9'-trihydroxy-7'-dimethylaminomethyl-6'-hydroxy-3-[(1E,3E)-penta-1 ,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1'-3',5',8'(2H)- pentone ( Verbindung 18)
Hydroxyfredericamycin ( Desmethylfredericamycin ) 200.0mg ( 381.0 μmol ) werden unter N2 in 40ml Ethanol vorgelegt. Nach der Zugabe von 286.0μl ( 571.5μmol ) Dimethylamin ( 2M in
Methanol ) und 57.0μl ( 762.0μmol ) 37%igem wässrigen Formaldehyd wird 30 Minuten bei
Raumtemperatur gerührt. Man erhitzt dann 7 Stunden auf 600C. Anschließend gibt man auf 300ml kaltes Wasser ( mit 1% Trifluoressigsäure ). Absaugen und im Vakuum trocknen.
Ausbeute: 193.0mg ( 87% d.Th. ) roter Feststoff. M/e = 583.0; λmax = 504.0nm.
Beispiel 11 1-Deoxy-5-C-[(8R)-4\9,9'-trihydroxy-6'-hydroxy-7'-dimethylamino-1 ,r,3',5',8'-pentaoxo- 1 , 1 ',2,3',5',6,7,8'-octahydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]- naphtalen]-3- yl]pentitol (Verbindung 20)
Hydroxyfredericamycintetrol 22.5mg ( 38.0μmol )werden unter N2 in 6ml Ethanol vorgelegt. Nach der Zugabe von 20.0μl ( 40.0μmol ) Dimethylaminlösung ( 2M in Methanol ) und 3.2μl ( 115.0μmol ) 37%igem wässrigen Formaldehyd wird 30 Minuten bei Raumtemperatur gerührt. Man erhitzt dann 26 Stunden auf 600C. Nach dem Abkühlen auf 100ml Wasser ( mit 1% Trifluoressigsäure )geben. Absaugen und im Vakuum trocknen. Ausbeute: 21.0mg ( 96% d.Th. ) roter Feststoff. M/e = 651.0; λmax = 498.0nm.
Beispiel 12
(δSJ^'.θ.g'-trihydroxy-SJ'-diiodo-e'-methylamino-S-KIE.SEJ-penta-I .S-dienyll-δ,?- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1 '-3',5',8'(2H)- pentone (Verbindung 24)
Methylamino Fredericamycin 50.0 mg ( 92.8μmol ) werden unter N2 in 5ml absolutem Dimethylformamid gelöst. Bei Raumtemperatur werden 48.8mg (218.5μmol ) N- Jodsuccinimid zugegeben. Nach 5 Stunden rühren bei RT wird 100ml Wasser/1% Trifluoressigsäure gegeben. Der Niederschlag wird abgesaugt und mit Wasser gewaschen. Ausbeute: 7.2mg ( 10% d.Th. ) roter Feststoff. M/e = 791.0; λmax = 506.0nm.
Die Verbindungen 4,6-8,11 ,13,14,17,19,21-23,25-27 wurden nach analoger Vorschrift hergestellt.
Die Verbindungen weisen folgende Strukturen auf
Beispiel 1a
(δSJ^'.θ.θ'-trihydroxy-S-thiocyanato-e'-methoxy-i .i '.S'.δ'.δ'-pentaoxo-i .i '^.S'^'.ey.δ'- octahydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]naphtalene]-3-carbaldehyde-0- methoxim (Verbindung 1)
Fredericamycinaldehyd methoxim 19.0mg (35.8μmol) wird unter N2 in 2ml Essigsäure gelöst. Nach der Zugabe von 15.2mg (157.5μmol) Kaliumrhodanid werden bei 500C 3.6μl (71.6μmol) Brom gelöst in 1 ml Essigsäure zugegeben. Bei 5O0C werden in Abständen von 1h, 2h, 3.5h und 5h jeweils die oben angegebene Kaliumrhodanid/Brom Menge zugegeben. Nach insgesamt 6h wird die Reaktionslösung in 15OmI Wasser eingetropft. Man schüttelt 2x mit Chloroform aus trocknet über Natriumsulfat und engt zur Trockene ein. Ausbeute: 7.0mg ( 33% d.Th. ) rotes Kristallpulver. M/e=588, λmax = 502.0nm.
Beispiel 2a
(8S)-4',9.9'-trihydroxy-5-thiocyanato-6'-methoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1,1 '-3',5',8'(2H)- pentone (Verbindung 2)
Fredericamycin 20.0mg (37.1 μmol) werden unter N2 in 2ml Essigsäure gelöst. Nach der
Zugabe von 7.9mg (81.4μmol) Kaliumrhodanid werden 1.9μl (37.1 μmol) Brom gelöst in 0.5ml Essigsäure zugetropft. Nach 3h werden 39.5mg (407.0μmol) Kaliumrhodanid und 9.5μl (185.5μmol)Brom gelöst in 0.5ml Essigsäure zugegeben. Man erwärmt auf 50°C. Nach 3h wird die Reaktionsmischung auf 50ml Wasser gegeben und der Niederschlag abgesaugt. Mit Wasser waschen und trocknen. Der Rückstand wird in Chloroform aufgenommen und 4x mit Wasser ausgeschüttelt. Trocknen und einengen.
Ausbeute: 6.0mg (27%d.Th.) rote Kristallmasse. M/e=597, λmax = 504.0nm.
Die Verbindungen 3a und 4a werden nach analoger Vorschrift hergestellt.
Beispiel 3a
(8S)-4',9.9'-trihydroxy-6'-azido-3-[(1E,3E)-penta-1 ,3-dienyl]-6,7-dihydrospiro[cyclopenta[g ]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1 '-3',5',8'(2H)~pentone (Verbindung 5)
Hydroxyfredericamycin ( Desmethylfredericamycin ) 10.0mg ( 19.0μmol )werden unter N2 in 3ml Dichlormethan gelöst. Nach der Zugabe von 3.2μl ( 19.0μmol ) Trifluormethansulfonsäureanhydrid und 2.3μl ( 19.0μmol ) 2,6-Lutidin bei 00C rührt man noch 10 Minuten nach. Man lässt auf Raumtemperatur kommen und fügt 1.3mg ( 19.0μmol )
Natriumazid hinzu. 14 Stunden rühren. Man verdünnt anschließend die Reaktionslösung mit 20ml Dichlormethan / 1% Trifluoressigsäure. Schüttelt 2x mit Wasser aus, trocknet die organishe Phase über Natriumsulfat und engt zur Trockene ein. Der zurückbleibende Rückstand wird mittels präparativer HPLC ( RP18, Acetonitril/Wasser/Trifluoressigsäure ) gereinigt.
Ausbeute: 8.0mg ( 76% d.Th. ) roter Feststoff. M/e = 551.0; λmax = 504.0nm.
Beispiel 4a
(8S)-4',9.9'-trihydroxy-5-dimethylaminomethyl-6'-methoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7- dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1'-3',5',8'(2H)- pentone ( Verbindung 6 )
Fredericamycin 10.0mg ( 18.5μmol )werden unter N2 in 2ml absolutem Dimethylformamid gelöst. Nach der Zugabe von 36.6mg (391.0μmol) N.N-Dimethylmethylenammoniumchlorid in 1ml absolutem Dimethylformamid wird auf 50°C erwärmt. Nach 24 Stunden wird die
Reaktionslösung in 70ml Wasser / Trifluoressigsäure eingetragen. Die wässrige Phase wird 2x mit Dichlormethan extrahiert. Über Natriumsulfat trocknen und einengen. Der zurückbleibende Rückstand wird mittels präparativer HPLC ( RP18, Acetonitril/Wasser/ Trifluoressigsäure ) gereinigt. Ausbeute: 5.3mg ( 48% d.Th. ) roter Feststoff. M/e = 597.0; λmax = 504.0nm.
Beispiel 5a
(8S)-4',9.9'-trihydroxy-5-dimethylaminomethyl-6'-methylamin-3-[(1 E,3E)-penta-1,3-dienyl]- 6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 ,1 '-3',5',8'(2H)- pentone ( Verbindung 7 )
5-Dimethylaminornethyl Fredericamycin ( Verbindung 25 ) 10.0mg ( 16.8μmol )werden unter N2 in 1.2ml absolutem Dimethylformamid gelöst. Nach der Zugabe von 200.0μl (400.0μmol) Methylamin ( 2M in Methanol ). Nach 4 Stunden bei 400C wird die Reaktionslösung in 60ml Wasser / Trifluoressigsäure eingetragen. Der Niederschlag wird abgesaugt mit Wasser gewaschen und getrocknet. Der Rückstand wird mittels präparativer HPLC ( RP18, Acetonitril/Wasser/Trifluoressigsäure ) gereinigt. Ausbeute: 4.2mg ( 42% d.Th. ) roter Feststoff. M/e = 596.0; λmax = 504.0nm.
Beispiel 6a
(8S)-4',9.9'-trihydroxy-5-dimethylaminomethyl-6'-morpholino-3-[(1E,3E)-penta-1 ,3-dienyl]- 6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]-naphtalene] -1 , 1 '-3',5',8'(2H)- pentone ( Verbindung 8 )
5-Dimethylaminomethyl Fredericamycin ( Verbindung 25 ) 5.0mg ( 8.4μmol )werden unter N2 in 0.5ml absolutem Morpholin gelöst. 1 Stunden bei Raumtemperatur rühren. Die Reaktionslösung wird anschließend auf 50ml Wasser / Trifluoressigsäure gegeben. Der Niederschlag wird abgesaugt mit Wasser gewaschen und getrocknet.
Ausbeute: 1.8mg ( 33% d.Th. ) roter Feststoff. M/e = 652.0; λmax = 504.0nm.
Die Verbindungen 3,4 wurden nach analoger Vorschrift hergestellt.
Die Verbindungen weisen folgende Strukturen auf:
Beispiel A
Wasserlöslichkeit der Fredericamycin-Derivate Die Wasserlöslichkeit der verschiedenen Fredericamycin-Derivate kann in 0.9 %iger NaCI- Lösung mit einem pH-Wert von 7 bestimmt werden.
Beispiel B
Bestimmung der Wirksamkeit der Verbindungen auf die Überlebensfähigkeit von Tumorzellen (zytotoxischer Effekt)
Es wird der Effekt der Verbindungen auf die Überlebensfähigkeit der menschlichen
Brustkrebszelllinie MCF7 gemessen. Die Zelllinie wird bei 37°C, 95% Luftfeuchtigkeit und 5% CO2 in RPMI Medium (Cambrex) bestimmt.
Die Zellen werden in einer 96-well Mikrotiterplatte (Costar) mit einer Anfangsdichte von 2400
Zellen pro Well angeimpft und 24 Stunden kultiviert. Die Verbindungen werden in DMSO gelöst, mit Zellmedium vorverdünnt und zu den Wells gegeben. Die Zellen werden für weitere 48 Stunden mit einer einer Konzentration der Verbindungen zwischen 2.4 nM und 10,000 nM bei einem Volumen von 50 μl inkubiert.
Zu jedem Well werden 50 μl Cell-Titer GIo (Promega) gegeben und die Mikroplatte für 2
Minuten bei Raumtemperatur auf einem Schüttler inkubiert und danach 10 Minuten im
Dunkeln stehen gelassen. Die Lumineszenz wird mit einem Mikroplattenleser gemessen und ist proportional zu der
Anzahl der lebensfähigen Zellen. Die prozentuale Inhibition der Zelllebensfähigkeit wird kalkuliert im Vergleich zu (i) ohne Zellen und Verbindung (100% Inhibition) und (ii) mit Zellen und ohne Verbindung (keine Inhibition).
Die Konzentration der halbmaximalen Inhibition (IC50) wird mit GraphPad Prism (GraphPad Software) bestimmt, wobei die Kontrollen 0 und 100% entsprechen.  Die Strukturen und die Wirksamkeit der erfindungsgemäßen Verbindungen kann der folgenden Tabelle entnommen werden: