Solarzelle solar cell
Beschreibungdescription
Die Erfindung betrifft eine Solarzelle gemäß Oberbegriff des Patentanspruchs 1.The invention relates to a solar cell according to the preamble of patent claim 1.
Solarzellen bestehen aus Halbleiterwerkstoffen, wie beispielsweise Germanium, Silizium, Galliumarsenid etc.. Sie sind wie Halbleiterdioden aufgebaut, indem sie aus einer P- und einer N-dotierten Schicht bestehen. Normalerweise ist je nach Typ die P- oder N-Schicht dem Sonnenlicht zugewandt.Solar cells consist of semiconductor materials, such as germanium, silicon, gallium arsenide etc. They are constructed like semiconductor diodes, consisting of a P- and an N-doped layer. Usually, depending on the type, the P or N layer faces the sunlight.
Die N- und P-Schichten erzeugen eine Raumladungszone, in der Elektronen aus der N-Schicht in die P-Schicht und Locher der P-Schicht in die N-Schicht wandern. Trifft Sonnenlicht auf die P- oder N-Schicht der Solarzelle, so durchdringen diese die jeweilige der Sonne zugewandten Schicht und gelangen in die Raumladungszone, wobei Elektronen freigesetzt werden und in dem elektrischen Feld der Raumladungszone zum N-dotierten Bereich wandern, wahrend sich die entstandenen Locher zum P- dotierten Bereich bewegen und von dort weiter zu metallischen Elektroden wandern. Wenn nun eine Last zwischen die positiven und negativen Elektroden gelegt wird, so fließt ein Strom.The N and P layers create a space charge zone in which electrons migrate from the N-layer into the P-layer and holes of the P-layer into the N-layer. When sunlight strikes the P or N layer of the solar cell, they penetrate the respective layer facing the sun and enter the space charge zone, releasing electrons and traveling in the electric field of the space charge zone to the N-doped region, while the resulting Move the holes to the P-doped area and from there move on to metallic electrodes. Now, when a load is placed between the positive and negative electrodes, a current flows.
Neben Solarzellen mit horizontal angeordneten PN-Schichten gibt es auch Solarzellen mit vertikalen PN-Schichten, wie sie für Konzentratoren und Standardsolarzellen genutzt werden.In addition to solar cells with horizontally arranged PN layers, there are also solar cells with vertical PN layers, as they are used for concentrators and standard solar cells.
Hierbei befinden sich die Elektroden auf der Ruckseite derHere are the electrodes on the back of the
Solarzellen, also der Seite, die der Sonne abgewandt ist.Solar cells, that is, the side that faces away from the sun.
Dies verbessert die Lichtausbeute, da es keine Abschattungen durch Leitungen gibt.This improves the luminous efficacy, since there are no shadowing by cables.
Eine weitere Verbesserung bei Solarzellen mit vertikalen PN-A further improvement in solar cells with vertical PN
Schichten besteht darin, die PN-Schichten planar anzuordnen.Layers is to planarize the PN layers.
Hierbei bildet sich in dem darüber liegenden Halbleitermate- rial eine offene Raumladungszone, in die das Sonnenlicht ein- fällt. Dabei wirkt das Raumfeld halbkreisförmig in das darüber liegende Halbleitermaterial hinein, wie dies in Fig. 2 angedeutet ist.In this case, an open space charge zone forms in the overlying semiconductor material, into which the sunlight falls. In this case, the spatial field acts semicircular in the overlying semiconductor material, as indicated in Fig. 2.
Ein Problem bei Solarzellen mit vertikalen PN-Schichten besteht darin, dass durch die Reihenschaltung von Solarzellen und Solarmodulen mit Systemspannungen bis zu 1000 V gearbeitet wird. Dabei ergeben sich unerwünschte Spannungen, Ableitwiderstände und unerwünschte elektrische Felder zwischen den Solarzellen und Erdpotential.A problem with solar cells with vertical PN layers is that the series connection of solar cells and solar modules with system voltages of up to 1000 V is used. This results in unwanted voltages, bleeder and unwanted electric fields between the solar cell and ground potential.
Das starke unerwünschte Feld verursacht eine positive Ladung in einer hochisolierenden Antireflexschicht und in weiteren Isolationsschichten wie z.B. EVA oder Frontglas, wobei sich speziell in der Siliziumoxidschicht Ladungsträger einlagern können. Dafür braucht es eine Mindestspannung, um diesen Pro- zess in Gang setzen zu können. Das Verhalten der Solarzelle hat Ähnlichkeiten mit MOS-Transistoren, welche über die Siliziumoxidschicht des Gates dauerhaft programmiert werden kön- nen.The strong unwanted field causes a positive charge in a high-insulating antireflective layer and in further insulating layers such as e.g. EVA or front glass, whereby charge carriers can be incorporated, especially in the silicon oxide layer. This requires a minimum voltage in order to be able to set this process in motion. The behavior of the solar cell has similarities with MOS transistors, which can be permanently programmed via the silicon oxide layer of the gate.
Je nach Witterung verstärkt sich die Wirkung des positiven unerwünschten Feldes. Bei trockener Witterung wirkt hauptsächlich der Panelrahmen auf die angrenzenden Solarzellen. Bei Kondensation auf dem Abdeckglas verstärkt sich die Wirkung noch erheblich, da sich durch die Ableitwiderstände der Widerstand zur Zelle nochmals verringert und der Hauptspannungsabfall an der Antireflexschicht erfolgt.Depending on the weather, the effect of the positive unwanted field increases. In dry weather, the panel frame mainly affects the adjacent solar cells. When condensing on the cover glass, the effect is significantly enhanced, since the bleeder resistances reduce the resistance to the cell again and the main voltage drop occurs at the antireflection layer.
Mit zunehmender Einlagerung von positiven Ladungen in die Antireflexschicht nimmt die Leistungsfähgkeit der Solarzellen ab und es tritt dann die Situation ein, dass durch die eingelagerten positiven Ladungen die Elektronen in der Raumladungszone angezogen werden und damit ein Teil der Raumla- dungszone aufgelöst wird, mit der Folge, dass der Solarzel- lenstrom zurückgeht. Unternimmt man nichts dagegen, so kann es zu einer erheblichen Stromabnahme kommen.With increasing incorporation of positive charges into the antireflective layer, the efficiency of the solar cells decreases and then the situation occurs that the electrons stored in the space charge zone are attracted by the stored positive charges and thus a part of the space charge zone is dissolved, with the consequence that the solar cell lenstrom goes back. If you do not do anything about it, it can lead to a significant decrease in power.
Es ist daher Aufgabe der Erfindung, bei einer Solarzelle zu verhindern, dass sich positive Ladungen in der Antireflex- schicht einlagern.It is therefore an object of the invention to prevent in a solar cell that store positive charges in the antireflection layer.
Zur Lösung dieser Aufgabe wird die Solarzelle mit einer externen Spannung ausgestattet, die zwischen der Solarzelle und Erde anliegt.To solve this problem, the solar cell is equipped with an external voltage, which is applied between the solar cell and ground.
Dadurch werden in den Solarzellen-Isolationsschichten negative Ladungsträger gespeichert, welche dann ausreichend sind, um die Wirkungen des unerwünschten Feldes des Tages zu kom- pensieren.As a result, negative charge carriers are stored in the solar cell insulation layers, which are then sufficient to compensate for the effects of the unwanted field of the day.
Eine weitere Lösung sieht die Beseitigung des Problems an der Solarzelle selbst vor, indem die Antireflexschicht an der Oberfläche leitend transparent beschichtet wird.Another solution provides for the elimination of the problem on the solar cell itself, by the transparent surface of the antireflection coating is coated conductive transparent.
Die an der Antireflexschicht anliegenden Ladungen werden dann über eine Widerstandsverbindung zum Beispiel am Rand der Solarzellen abgeleitet zum negativen Anschluss der jeweiligen Solarzelle. Mit dieser Maßnahme kann das äußere unerwünschte Feld keine Ladungen in die Antireflexschicht einbringen.The charges applied to the antireflective layer are then discharged via a resistance connection, for example at the edge of the solar cells, to the negative terminal of the respective solar cell. With this measure, the outer unwanted field can not introduce charges into the antireflection layer.
Durch diese Maßnahme erhöht sich die Effektivität der Solarzelle und die Außenbeschaltung von einer zusätzlichen Formatierungsspannung entfällt.As a result of this measure, the effectiveness of the solar cell is increased and the external circuitry of an additional formatting voltage is eliminated.
Anstelle einer konstanten Spannung U kann ein Widerstand mit Konstantstromcharakteristik, also eine Stromquelle, zwischen Erde und den Pluspol oder den Minuspol der Solarzelle gelegt werden, der die Solarzelle niederohmig erdet. Dadurch wird erreicht, dass bei unterschiedlich großen Anlagen dieses zu- gefügte Bauteil automatisch dafür sorgt, dass das während des Tages entstehende störende Feld, das zu der erwähnten unerwünschten Ladungsanreicherung in der Antireflexschicht führt, reduziert wird.Instead of a constant voltage U, a resistor with a constant-current characteristic, that is a current source, can be connected between ground and the positive pole or the negative pole of the solar cell, which grounds the solar cell with low resistance. This ensures that, for systems of different sizes, this joined component automatically ensures that the resulting during the day disturbing field, which leads to the aforementioned undesirable charge accumulation in the antireflection coating is reduced.
Die Erfindung wird nun anhand einer Zeichnung näher erläutert; es zeigen:The invention will now be explained in more detail with reference to a drawing; show it:
Figur 1 einen schematischen Schnitt durch einen Teil einer Solarzelle mit horizontal angeordneten PN-Schichten und mit darüber liegender Antireflexschicht;1 shows a schematic section through part of a solar cell with horizontally arranged PN layers and with overlying anti-reflection layer;
Figur 2 einen Schnitt ähnlich wie in Fig. 1 durch die bekannte Solarzelle mit beispielhafter Ladungsanordnung und Po- laritäten;FIG. 2 shows a section similar to that in FIG. 1 through the known solar cell with exemplary charge arrangement and polarities;
Figur 3 einen Schnitt ähnlich wie in Fig. 2 durch ein erstes Ausführungsbeispiel für die erfindungsgemäße Solarzelle; undFigure 3 is a section similar to Figure 2 through a first embodiment of the solar cell according to the invention; and
Figur 4 einen Schnitt ähnlich wie in Fig. 2 durch ein zweites Ausführungsbeispiel für die erfindungsgemäße Solarzelle.FIG. 4 shows a section similar to that in FIG. 2 through a second exemplary embodiment of the solar cell according to the invention.
Im einzelnen zeigt nun Fig. 1 eine Solarzelle 1 mit horizontaler Anordnung der PN-Schichten auf eine Si-Substrat 2. Über der PN-Schicht ist eine Antireflexbeschichtung 3 angeordnet, die die PN-Schicht vollständig überdeckt. Über der Antire- flexbeschichtung 3 befindet sich eine Abdeckschicht 4 aus Glas oder Kunststoff zum Schutz der Solarzelle 1.1 shows a solar cell 1 with a horizontal arrangement of the PN layers on a Si substrate 2. Above the PN layer, an antireflection coating 3 is arranged, which completely covers the PN layer. Above the anti-reflection coating 3 is a covering layer 4 made of glass or plastic for protecting the solar cell 1.
Fig. 2 zeigt, dass während der Tagesphase positive Ladungen durch die negativen Raumladungszonen in die AntireflexschichtFig. 2 shows that during the daytime positive charges through the negative space charge zones in the antireflection layer
3 der Solarzellen verdrängt werden und sich dort einlagern, was zu unerwünschten Spannungen, Ableitwiderständen und uner- wünschten elektrischen Feldern zwischen der Solarzelle und Erdpotential führt.3 of the solar cells are displaced and store there, resulting in undesirable voltages, bleeder resistance and unex- Wanted electric fields between the solar cell and ground potential leads.
Fig. 3 zeigt, dass durch Anlegen einer Spannung U von mehre- ren 100 Volt, beispielsweise 50 - 1000 V, vorzugsweise 400 - 600 V, die in der Antireflexschicht 3 eingelagerten positiven Ladungsträger durch Zufuhr von negativen Ladungsträgern aus der Raumladungszone kompensiert werden. Dies erfolgt zweckmäßigerweise nachts, wenn das Solarzellenarray keinen Strom liefert. Dabei werden die in der Antireflexschicht 3 der Solarzelle 1 eingelagerten positiven Ladungen durch eine Gegenspannung nicht nur ausgeglichen, sondern die Antireflex- schicht 3 wird auch noch negativ vorgeladen. Dies wird erfindungsgemäß dadurch gelöst, dass sich nachts zwischen dem Pluspol der Solarzelle und Erde eine negative Spannung U automatisch einschaltet und erst bei Beginn des Tages wieder abschaltet. Es wird aber darauf hingewiesen, dass die Kompensationsspannung auch zwischen Erde und den Minuspol der Solarzelle 1 gelegt werden kann.3 shows that by applying a voltage U of several 100 volts, for example 50-1000 V, preferably 400-600 V, the positive charge carriers embedded in the antireflection layer 3 are compensated by supplying negative charge carriers from the space charge zone. This is expediently carried out at night when the solar cell array is not supplying power. In this case, the positive charges stored in the antireflection layer 3 of the solar cell 1 are not only compensated by a countervoltage, but the antireflection layer 3 is also precharged negatively. This is inventively achieved in that at night between the positive pole of the solar cell and earth a negative voltage U turns on automatically and turns off again at the beginning of the day. It should be noted, however, that the compensation voltage can also be applied between ground and the negative pole of the solar cell 1.
Ferner wird die externe Spannungsquelle so gesteuert, dass sich das Zu- und Abschalten der externen Spannungsquelle über den Spannungszustand der Solarzelle 1 steuert.Furthermore, the external voltage source is controlled so that the switching on and off of the external voltage source via the voltage state of the solar cell 1 controls.
In einer anderen Ausführungsform werden die Solarzellen 1 auf Zellebene selbst gegen Aufladungen durch unerwünschte elektrische Felder geschützt. Dies wird erfindungsgemäß dadurch erreicht, dass gemäß Fig. 4 über der Antireflexschicht 3 ein transparenter leitender Überzug 5 aufgetragen ist und dass dieser Überzug 5 über einen Shunt-Widerstand 6 mit dem negativen Rückkontakt oder Minuspol des Solarzellenarrays verbunden wird. Dabei kann der Shunt-Widerstand 6 einen Widerstandswert von einigen 10 kΩ bis einigen 100 kΩ haben. In einer Ausführungsform der Erfindung wird der Shunt- Widerstand 6 im Randbereich der Solarzelle durch geeignete Dotierung des Halbleitermaterials unmittelbar ausgebildet. In einer anderen Ausführungform werden mit einem Laserstrahl ein oder mehrere Löcher durch das Halbleitermaterial der Solarzelle erzeugt, durch die eine leitende Verbindung von dem leitenden Überzug 5 zum Rückkontakt (Minus) der Solarzelle hergestellt werden kann. Letzteres erfolgt beispielsweise auf elektrochemischem Wege, wobei der Shunt-Widerstand 6 ohne be- sondere Dotierung der leitenden Verbindung einen Wert von etwa 0Ω hat, bei entsprechender Dotierung der leitenden Verbindung aber auch einen Widerstand von einigen 10 kΩ haben kann.In another embodiment, the solar cells 1 are protected at cell level even against charging by unwanted electric fields. This is inventively achieved in that according to FIG. 4, a transparent conductive coating 5 is applied over the antireflection layer 3 and that this coating 5 is connected via a shunt resistor 6 to the negative back contact or negative pole of the solar cell array. At this time, the shunt resistor 6 may have a resistance value of several 10 kΩ to several 100 kΩ. In one embodiment of the invention, the shunt resistor 6 is directly formed in the edge region of the solar cell by suitable doping of the semiconductor material. In another embodiment, one or more holes are created by the semiconductor material of the solar cell with a laser beam, through which a conductive connection can be made from the conductive coating 5 to the back contact (minus) of the solar cell. The latter takes place, for example, by electrochemical means, wherein the shunt resistor 6 without special doping of the conductive compound has a value of about 0Ω, but may also have a resistance of a few 10 kΩ with appropriate doping of the conductive compound.
n einer weiteren Ausführungsform der Erfindung sind alle oder nur einige Gruppen der leitenden Überzüge 5 eines Solarzel- lenarrays miteinander verbunden und an einer einzigen Stelle an einen Pol (Plus oder Minus) des Solarzellenarrays angeschlossen, so dass dann kein Shunt-Widerstand 6 erforderlich ist. Denn wenn Solarzellen 1 gruppenweise hinsichtlich ihrer Antireflexschicht-Überzüge 5 zusammengefaßt werden, ist es möglich, die Kompensationsspannungen einzustellen. Dadurch kann jedes Array seine eigene Kompensationsspannung selbst erzeugen und damit einen Ladungsträgerausgleich vornehmen.In a further embodiment of the invention, all or only a few groups of the conductive coatings 5 of a solar cell array are connected to one another and connected at a single point to a pole (plus or minus) of the solar cell array, so that then no shunt resistor 6 is required. For if solar cells 1 are grouped together in terms of their antireflection coating 5, it is possible to adjust the compensation voltages. This allows each array to generate its own compensation voltage itself and thus make a charge carrier compensation.
Wenn die Anschlüsse an die leitenden Überzüge 5 aus der Solarzelle 1 nach außen geführt und nicht mit den Polen (Plus oder Minus) des Arrays verbunden sind, kann durch Anlegen einer Spannung zwischen der herausgeführten Leitung und einem Pol (Plus oder Minus) des Arrays auch bewußt eine Ladung zu Steuerzwecken eingebracht werden. Dies ist für Anwendungen wie Laderegelung oder Leistungssteuerung von Interesse. Es hat den Vorteil, dass keine externen Leistungs-Regelbauteile wie MOS-Transistoren erforderlich sind.When the terminals are led to the conductive coatings 5 from the solar cell 1 to the outside and not connected to the poles (plus or minus) of the array, by applying a voltage between the lead out and a pole (plus or minus) of the array also deliberately a charge is introduced for tax purposes. This is of interest for applications such as charge control or power control. It has the advantage that no external power control components such as MOS transistors are required.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102005039780.8 | 2005-08-22 | ||
| DE102005039780 | 2005-08-22 |
| Publication Number | Publication Date |
|---|---|
| WO2007022955A1true WO2007022955A1 (en) | 2007-03-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/008241WO2007022955A1 (en) | 2005-08-22 | 2006-08-22 | Solar cell |
| Country | Link |
|---|---|
| WO (1) | WO2007022955A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009024807B3 (en)* | 2009-06-02 | 2010-10-07 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Solar cell has photo-active, semiconducting absorber layer, where alternating adjacent arrangement of electrically insulating passivation areas on back of absorber layer with thickness |
| RU2401480C1 (en)* | 2009-11-27 | 2010-10-10 | Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" | Semiconductor photoconverter (versions) and method for its manufacturing |
| DE102009031982A1 (en)* | 2009-07-06 | 2011-01-13 | Schott Solar Ag | Photovoltaic module and photovoltaic device |
| WO2011033070A2 (en) | 2009-09-18 | 2011-03-24 | Schott Solar Ag | Crystalline solar cell, method for producing said type of solar cell and method for producing a solar cell module |
| DE102009044142A1 (en)* | 2009-09-30 | 2011-03-31 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Thin-film component on glass, a process for its production and its use |
| US7964837B2 (en) | 2007-12-31 | 2011-06-21 | Advanced Energy Industries, Inc. | Photovoltaic inverter interface device, system, and method |
| DE102010037355A1 (en) | 2010-09-06 | 2012-03-08 | Schott Solar Ag | Crystalline solar cell and process for producing such |
| US8134812B2 (en) | 2008-01-29 | 2012-03-13 | Advanced Energy Industries, Inc. | Energy conversion system with fault detection and interruption |
| US8203069B2 (en) | 2007-08-03 | 2012-06-19 | Advanced Energy Industries, Inc | System, method, and apparatus for coupling photovoltaic arrays |
| US8294296B2 (en) | 2007-08-03 | 2012-10-23 | Advanced Energy Industries, Inc. | System, method, and apparatus for remotely coupling photovoltaic arrays |
| US8362644B2 (en) | 2008-12-02 | 2013-01-29 | Advanced Energy Industries, Inc. | Device, system, and method for managing an application of power from photovoltaic arrays |
| US8461508B2 (en) | 2008-08-10 | 2013-06-11 | Advanced Energy Industries, Inc. | Device, system, and method for sectioning and coupling multiple photovoltaic strings |
| US8461507B2 (en) | 2008-08-10 | 2013-06-11 | Advanced Energy Industries, Inc | Device system and method for coupling multiple photovoltaic arrays |
| WO2013124394A2 (en) | 2012-02-23 | 2013-08-29 | Schott Solar Ag | Method for producing a solar cell |
| US9172296B2 (en) | 2007-05-23 | 2015-10-27 | Advanced Energy Industries, Inc. | Common mode filter system and method for a solar power inverter |
| US9287712B2 (en) | 2008-11-07 | 2016-03-15 | Sma Solar Technology Ag | Photovoltaic power plant |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2894173A (en)* | 1955-10-03 | 1959-07-07 | Hoffman Electronics Corp | Solar powered light source or the like |
| JPS57162372A (en)* | 1981-03-30 | 1982-10-06 | Toshiba Corp | Semiconductor radiation detector |
| US4479027A (en)* | 1982-09-24 | 1984-10-23 | Todorof William J | Multi-layer thin-film, flexible silicon alloy photovoltaic cell |
| DE4227504A1 (en)* | 1992-08-20 | 1994-02-24 | Kern Ralf M | Photovoltaic cell with active layer, or active layer regions - has separated voltage source forming electric field perpendicular to active layer, such that released charge is conducted to polarity of electric field opposite to charge polarity |
| DE19602313A1 (en)* | 1996-01-23 | 1997-07-24 | Siemens Ag | Thin film solar cell |
| US5907766A (en)* | 1996-10-21 | 1999-05-25 | Electric Power Research Institute, Inc. | Method of making a solar cell having improved anti-reflection passivation layer |
| US20040200520A1 (en)* | 2003-04-10 | 2004-10-14 | Sunpower Corporation | Metal contact structure for solar cell and method of manufacture |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2894173A (en)* | 1955-10-03 | 1959-07-07 | Hoffman Electronics Corp | Solar powered light source or the like |
| JPS57162372A (en)* | 1981-03-30 | 1982-10-06 | Toshiba Corp | Semiconductor radiation detector |
| US4479027A (en)* | 1982-09-24 | 1984-10-23 | Todorof William J | Multi-layer thin-film, flexible silicon alloy photovoltaic cell |
| DE4227504A1 (en)* | 1992-08-20 | 1994-02-24 | Kern Ralf M | Photovoltaic cell with active layer, or active layer regions - has separated voltage source forming electric field perpendicular to active layer, such that released charge is conducted to polarity of electric field opposite to charge polarity |
| DE19602313A1 (en)* | 1996-01-23 | 1997-07-24 | Siemens Ag | Thin film solar cell |
| US5907766A (en)* | 1996-10-21 | 1999-05-25 | Electric Power Research Institute, Inc. | Method of making a solar cell having improved anti-reflection passivation layer |
| US20040200520A1 (en)* | 2003-04-10 | 2004-10-14 | Sunpower Corporation | Metal contact structure for solar cell and method of manufacture |
| Title |
|---|
| MARVIN D C ET AL INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS: "ANALYSIS OF INTERDIGITATED BACK CONTACT SILICON SOLAR CELLS FOR SPACE USE", PROCEEDINGS OF THE INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE. (IECEC). WASHINGTON, AUG. 6 - 11, 1989, NEW YORK, IEEE, US, vol. VOL. 2 CONF. 24, 6 August 1989 (1989-08-06), pages 821 - 827, XP000078833* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9172296B2 (en) | 2007-05-23 | 2015-10-27 | Advanced Energy Industries, Inc. | Common mode filter system and method for a solar power inverter |
| US8642879B2 (en) | 2007-08-03 | 2014-02-04 | Advanced Energy Industries, Inc. | System for coupling photovoltaic arrays |
| US8294296B2 (en) | 2007-08-03 | 2012-10-23 | Advanced Energy Industries, Inc. | System, method, and apparatus for remotely coupling photovoltaic arrays |
| US8203069B2 (en) | 2007-08-03 | 2012-06-19 | Advanced Energy Industries, Inc | System, method, and apparatus for coupling photovoltaic arrays |
| US7964837B2 (en) | 2007-12-31 | 2011-06-21 | Advanced Energy Industries, Inc. | Photovoltaic inverter interface device, system, and method |
| US8134812B2 (en) | 2008-01-29 | 2012-03-13 | Advanced Energy Industries, Inc. | Energy conversion system with fault detection and interruption |
| US8461508B2 (en) | 2008-08-10 | 2013-06-11 | Advanced Energy Industries, Inc. | Device, system, and method for sectioning and coupling multiple photovoltaic strings |
| US8461507B2 (en) | 2008-08-10 | 2013-06-11 | Advanced Energy Industries, Inc | Device system and method for coupling multiple photovoltaic arrays |
| US9287712B2 (en) | 2008-11-07 | 2016-03-15 | Sma Solar Technology Ag | Photovoltaic power plant |
| USRE49376E1 (en) | 2008-11-07 | 2023-01-17 | Sma Solar Technology Ag | Photovoltaic power plant |
| US8362644B2 (en) | 2008-12-02 | 2013-01-29 | Advanced Energy Industries, Inc. | Device, system, and method for managing an application of power from photovoltaic arrays |
| US8395043B2 (en) | 2009-06-02 | 2013-03-12 | Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh | Solar cell comprising neighboring electrically insulating passivation regions having high surface charges of opposing polarities and production method |
| DE102009024807B3 (en)* | 2009-06-02 | 2010-10-07 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Solar cell has photo-active, semiconducting absorber layer, where alternating adjacent arrangement of electrically insulating passivation areas on back of absorber layer with thickness |
| WO2010139312A2 (en) | 2009-06-02 | 2010-12-09 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Solar cell comprising neighboring electrically insulating passivation regions having high surface charges of opposing polarities and production method |
| DE102009031982A1 (en)* | 2009-07-06 | 2011-01-13 | Schott Solar Ag | Photovoltaic module and photovoltaic device |
| CN102498573A (en)* | 2009-09-18 | 2012-06-13 | 肖特太阳能控股公司 | Crystalline solar cell, method for producing crystalline solar cell and method for producing solar cell module |
| WO2011033070A3 (en)* | 2009-09-18 | 2011-06-30 | Schott Solar Ag | Crystalline solar cell, method for producing said type of solar cell and method for producing a solar cell module |
| DE102009044052A1 (en) | 2009-09-18 | 2011-03-24 | Schott Solar Ag | Crystalline solar cell, process for producing the same and process for producing a solar cell module |
| WO2011033070A2 (en) | 2009-09-18 | 2011-03-24 | Schott Solar Ag | Crystalline solar cell, method for producing said type of solar cell and method for producing a solar cell module |
| US9496424B2 (en) | 2009-09-18 | 2016-11-15 | Schott Solar Ag | Crystalline solar cell, method for producing said type of solar cell and method for producing a solar cell module |
| DE102009044142A1 (en)* | 2009-09-30 | 2011-03-31 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Thin-film component on glass, a process for its production and its use |
| RU2401480C1 (en)* | 2009-11-27 | 2010-10-10 | Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" | Semiconductor photoconverter (versions) and method for its manufacturing |
| WO2012032046A1 (en) | 2010-09-06 | 2012-03-15 | Schott Solar Ag | Crystalline solar cell and method for producing the latter |
| DE102010037355A1 (en) | 2010-09-06 | 2012-03-08 | Schott Solar Ag | Crystalline solar cell and process for producing such |
| WO2013124394A2 (en) | 2012-02-23 | 2013-08-29 | Schott Solar Ag | Method for producing a solar cell |
| DE102012101456A1 (en) | 2012-02-23 | 2013-08-29 | Schott Solar Ag | Process for producing a solar cell |
| US9461195B2 (en) | 2012-02-23 | 2016-10-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a solar cell |
| Publication | Publication Date | Title |
|---|---|---|
| WO2007022955A1 (en) | Solar cell | |
| EP2478564B1 (en) | Crystalline solar cell and method for producing said type of solar cell | |
| DE1021097B (en) | Barrier layer photo element for converting solar radiation into electrical energy | |
| DE3031907A1 (en) | SOLAR CELL AND SOLAR CELL COMPOSITION AND METHOD FOR THEIR PRODUCTION. | |
| DE2929010A1 (en) | LIGHT EMISSION DIODE DISPLAY ARRANGEMENT | |
| EP3577695B1 (en) | Photovoltaic device | |
| DE3244488C2 (en) | ||
| DE102016117264A1 (en) | Power semiconductor component with controllability of dU / dt | |
| DE112011101267T5 (en) | Multilayer P / N and Schottky junction photovoltaic cell and method of making the same | |
| WO2009149841A2 (en) | Solar cell and method for the production thereof | |
| DE2904424C2 (en) | Thyristor controlled by field effect transistor | |
| EP0719454A1 (en) | Semiconductor (detector) structure | |
| EP3900051B1 (en) | Circuit configuration for power generation comprising series-connected solar cells having bypass diodes | |
| DE102019122213A1 (en) | Method for electrically conductive contacting of an optoelectronic component having at least one protective layer and optoelectronic component with such contacting | |
| EP4272258A1 (en) | Photovoltaic element with at least one photovoltaic cell and at least one folded busbar | |
| DE102010017246A1 (en) | Solar cell module and manufacturing method therefor | |
| DE1573717A1 (en) | Semiconductor component | |
| DE102019129349A1 (en) | Photovoltaic element with improved efficiency in the case of shading, and method for producing such a photovoltaic element | |
| EP4052299A1 (en) | Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element | |
| WO2017001277A1 (en) | Optimized photovoltaic module having a bypass network | |
| DE202015009864U1 (en) | Back-side contacted Si thin-film solar cell | |
| DE2447289A1 (en) | PHOTOCELL | |
| WO2012159143A2 (en) | Photovoltaic module and use thereof | |
| DE1564935C3 (en) | Method for manufacturing a solar element | |
| WO2020126614A1 (en) | Method and device for reducing the potentially induced degradation of solar cells |
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase | Ref country code:DE | |
| 122 | Ep: pct application non-entry in european phase | Ref document number:06791615 Country of ref document:EP Kind code of ref document:A1 |