Movatterモバイル変換


[0]ホーム

URL:


WO2001028444A1 - An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue - Google Patents

An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
Download PDF

Info

Publication number
WO2001028444A1
WO2001028444A1PCT/DK1999/000565DK9900565WWO0128444A1WO 2001028444 A1WO2001028444 A1WO 2001028444A1DK 9900565 WDK9900565 WDK 9900565WWO 0128444 A1WO0128444 A1WO 0128444A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue portion
electric power
tissue
applying
electric
Prior art date
Application number
PCT/DK1999/000565
Other languages
French (fr)
Other versions
WO2001028444A8 (en
Inventor
Niels Kornerup
Original Assignee
Lina Medical Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lina Medical ApsfiledCriticalLina Medical Aps
Priority to DE69927411TpriorityCriticalpatent/DE69927411T2/en
Priority to PCT/DK1999/000565prioritypatent/WO2001028444A1/en
Priority to DK99948733Tprioritypatent/DK1150616T3/en
Priority to AU61897/99Aprioritypatent/AU6189799A/en
Priority to EP99948733Aprioritypatent/EP1150616B1/en
Priority to AT99948733Tprioritypatent/ATE304820T1/en
Publication of WO2001028444A1publicationCriticalpatent/WO2001028444A1/en
Publication of WO2001028444A8publicationCriticalpatent/WO2001028444A8/en

Links

Classifications

Definitions

Landscapes

Abstract

An electrosurgical device for coagulating and for making incisions in or severing tissue such as blood vessels, the device comprising forceps jaws (6, 7) for immobilising a tissue portion to be coagulated and incised, the forceps jaws (6, 7) being connected to means for applying an electrical tension between said forceps jaws for coagulating the tissue portion, the device further comprising a member (22) for being displaced between said forceps jaws (6, 7) to incise a tissue portion held between the forceps jaws and coagulated thereby, the member (22) being connected to means for applying an electrical voltage to said member for performing an incision in said tissue by means of said electrical voltage applied to said member (22), the member (22) preferably being blunt such that the incision substantially exclusively is achieved by means of the voltage applied to the member (22). For preventing the generation of smoke through charring of the tissue portion, a tube is provided for supplying an electrically non-conductive, cooling liquid to the tissue portion.

Description

An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue.
The present invention relates to an electrosurgical device for coagulating and for making incisions in or severing tissue such as for instance blood vessels, said device comprising at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised and first electrical means for applying a first electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion.
An electrosurgical device of this type is disclosed in US patent No. 5,445,638 to Rydell et al. In this known device two moveable forceps jaws are provided for clamping the tissue portion therebetween, the forceps jaws being provided with electrical means to provide electric power for coagulating the tissue portion clamped therebetween. A cutting instrument with one or more cutting edges is provided for being moved between the forceps jaws for mechanically cutting the tissue portion after coagulation thereof has taken place.
When tissue such as for instance a blood vessel has been coagulated, the tissue often becomes relatively tough requiring a relatively large force to be exerted on the cutting instrument to perform the required incision. Furthermore each incision dulls the cutting edge thereby requiring even larger force for each incision. In many cases, the cutting edge has been dulled so much after one or two incisions that the device must be replaced if, as is often the case, several incision are to be performed during the same operation. As the device normally is intended to be discarded after use, this is expensive, and furthermore, it is not desirable to have to re-move and introduce such devices during such surgery.
When tissue such as for instance a blood vessel or other tissue is coagulated through the supply of electric power to the blood vessel or other tissue, a risk exists of generating excessive carbonization or charring of the tissue through the supply of electric power to the tissue and further a disadvantage of generating smoke through the heating of the tissue in question through the evaporation of water and/or through possible carbonization or charring of the tissue through the supply of power to the tissue. It is to be understood that the generation of any excessive carbonization or charring of the tissue of a patient in itself constitutes a risk to the individuals' health and may cause serious injuries and possibly also give origin to cancer diseases. It is also to be understood that the generation of smoke may on the one hand slow down the overall operation and prolongate the operation, which also may cause a risk to the patients' health, and on the other hand increasse the risk of the surgeon using the electrosurgical device incorrectly and thereby causing harm or injury to the patient.
Additionally, because of the toughness of the tissue and the manual application of the cutting force, the manipulation of the device is less smooth and easy than desirable, and the cutting operation may give rise to a snap-like reaction which is undesirable in this type of surgery.
A main object of the invention is thus to provide an electrosurgical device of the type in reference by means of which multiple incisions may be performed with the same device and without the disadvantages of the known device described above.
A further object of the invention is to provide an electrosurgical device of the type in reference by means of which the risk of generation of smoke through evaporation of water and/or carbonization or charring of the tissue through the supply of electric power to the tissue is to a great extent reduced or eliminated.
According to the invention, this object is achieved by providing the device with at least one electric power application means for applying a second electric power to at least part of said tissue portion for making incisions in said tissue portion, and by providing the device with at least one tubular element for supplying an electrically non-conductive, cooling liquid to the tissue portion, to which electric power is applied for making the incisions.
The invention, to be more precise, relates to an electrosurgical device for coagulation and for making incisions in or severing tissue such as for instance blood vessels, said device comprising: - at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised,
- first electrical means for applying a first electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion,
- at least one electric power application means for applying a second electric power to at least part of said tissue portion for making incisions in said tissue portion and
- at least one tubular element for supplying an electrically non-conductive, cooling liquid to said tissue portion.
Hereby, the second electric power applied gives rise to a thermal influence on the tissue portion whereby the incision is performed by the effects of the thermal influence which is not subject to alteration from incision to incision and therefore gives uniform handling characteristics as well as a smooth and easy operation because the toughness of the tissue has very reduced or no effect on the force to be exerted for performing the incision. By thermal influence is meant herein the diverse effects of electric power applied to tissue and which are well known to those skilled in the art. Through the supply of the electrically non-conductive, cooling liquid to the tissue portion to which electric power is applied, the tissue is cooled and in particular any surface charring is to a great extent reduced or eliminated preventing the generation of smoke through charring and evaporation of water from the tissue.
Although, for some uses, it may be advantageous to combine a mechanical cutting effect with the thermal cutting effect for instance by providing the electric power application means according to the invention with a mechanical cutting edge, in the currently preferred device according to the invention, the electric power application means are configured such, for instance being blunt, that the incision or severing is substantially exclusively achieved by means of said second electric power.
Hereby it is achieved that the cutting characteristics of the device are not influenced at all by any dulling of a cutting edge. Furthermore, this feature is advantageous in that the risk of cutting through tissue that has not been adequately coagulated for eliminating bleeding is greatly reduced or eliminated because the thermal effect of the second electric power applied by the electric power application means will tend to coagulate any tissue that has not been sufficiently coagulated by the application of the first electric power.
In the known device described above, the severing of a blood vessel, for instance, where the coagulation has not been performed correctly or in-sufficiently will give rise to bleeding when the blood vessel is severed by the cutting edge while the device according to the invention will tend to coagulate any insufficiently coagulated tissue or blood while performing the severing operation. This affords a device with a greatly increased safety margin whereby complications during surgery are reduced both in number and severity.
According to the invention and depending on the characteristics of the surgery to be performed, the first and/or the second electrical power may be constituted by an electric current signal, an electric voltage signal or a combination thereof, and the signal may be a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
In the currently preferred embodiment of the device according to the invention, the first and second electric powers are obtained by means of substantially identical electric current or voltage signals. Hereby a common, relatively inexpensive signal generating means may be employed for generating the required signals. However, for some applications it may be advantageous that the respective electric current or voltage signals be different so as to obtain, for instance, a relatively higher incision power than coagulating power.
Although many different types of grasping means, pinning means and the like may be utilized as tissue immobilizing means, in the currently preferred embodiment of the device according to the invention, the immobilizing means comprise first and second moveable forceps jaws and moving means for opening and closing the first and second jaws relative to one another for holding and/or clamping the tissue portion therebetween.
When severing blood vessels it is important that the vessel be compressed to the correct degree to achieve the desired coagulation. Therefore, in the currently preferred embodiment of the device according to the invention, the moving means comprise adjustable spring loading means for applying a specific or an adjustable spring load for closing the first and second jaws relative to one another, and the spring load may be manually adjustable depending on the characteristics of the tissue portion to be held between said jaws. Hereby, the clamping effect may be adjusted according to the diameter, type and degree of calcification of the blood vessel to be severed. The surgeon may thus adjust the spring load and thereby the clamping effect prior to performing the severing of the blood vessel and thus avoid the inconvenience and complication of the known device described above where the surgeon must maintain the pressure manually during almost the whole severing operation.
In the currently preferred embodiment of the device according to the invention, the device furthermore comprises electrical switching means for applying the first and second electric powers independently of one another and preferably sequentially.
The currently preferred embodiment of the device according to the invention comprises: an elongated tubular member having a proximal and a distal end and a lumen extending therethrough, first and second moveable forceps jaws extending from said distal end, opening and closing means for opening and closing the first and second forceps jaws relative to one another, first electrical means for applying a first electric voltage across the first and second forceps jaws, an electric power application means extending from said distal end and arranged for being moved through a tissue portion held between the first and second forceps jaws, and second electrical means for applying a second electric voltage to the electric power application means relative to the first and/or the second forceps jaws. Preferably, the first electric voltage is substantially equal to the second electric voltage.
The currently preferred embodiment of the device according to the invention further comprises a handle fixed to said proximal end of the tubular member, said handle advantageously comprising forceps activating means for manually activating the opening and closing means, spring load adjusting means for manually adjusting the spring load of the spring loading means, incision activating means for manually activating the movement of the electric power application means through the tissue portion, and switching means for activating the first and second electrical means for applying said first and second electric voltages.
So as to render the device according to the invention as practical as possible for the surgeon and avoid any risk of erroneous operation thereof, in the currently preferred embodiment of the device, the switching means are adapted to cooperate with the incision activating means such that the first electric voltage is applied in the deactivated condition of said incision activating means while the second electric voltage is applied in the activated condition of said incision activating means. Hereby the coagulating power is automatically succeeded by the incision power when the incision activating means are activated.
According to the currently preferred embodiment of the device according to the invention described above and including the tubular member and the handle, the said at least one tubular element is exposed at said distal end of said tubular member.
Further in the currently preferred embodiment of the device according to the invention, the said additional tubular element preferably includes a pump for controlling the supply of said electrically non-conductive, cooling liquid.
In the currently preferred embodiment of the device according to the invention the electric power application means comprise a plate member having a blunt leading edge, and the plate member except the leading edge portion is electrically insulated from the surroundings such that electric power only may be supplied to the tissue portion through said leading edge portion exclusively. In an alternative embodiment of the device according to the invention, the electric power application means may advantageously comprise a wire member arranged for being moved through the tissue portion and for supplying electric power to the tissue portion.
The invention further relates to an electrosurgical device for coagulating and for making incisions in or severing tissue such as for instance blood vessels, said device comprising: at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised, first electrical means for applying electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion, at least one incision means for making incisions in at least part of said tissue portion, the immobilizing means comprising adjustable spring loading means for applying an adjustable spring load for immobilizing the tissue portion, and at least one tubular element for supplying an electrically non-conductive, cooling liquid to said tissue portion.
Preferably, the spring load is manually adjustable depending on the characteristics of the tissue portion to be immobilized by the immobilizing means.
In the currently preferred embodiment of the device according to the invention, the immobilizing means comprise first and second moveable forceps jaws and moving means for opening and closing the first and second jaws relative to one another for holding the tissue portion there-between and the moving means comprise adjustable spring loading means for applying an adjustable spring load for closing the first and second jaws relative to one another.
The invention furthermore relates to a method of severing blood vessels, the method comprising the following steps: applying a first electric power to a portion of the blood vessel adjacent the intended severing location for coagulating the blood and tissue in said region, supplying an electrically non-conductive, cooling liquid to said portion of said blood vessel and/or to said region while applying said first and/or said second electric power, respectively, and applying a second electric power to said region at said severing location for severing the blood vessel.
Preferably, said portion of the blood vessel is compressed prior to and/or during the application of the first electric power, the degree of compression being such the blood and tissue coagulates to form a permanent coagulation clot in the blood vessel adjacent said severing location for allowing severing of the blood vessel without bleeding.
Advantageously, the first and/or the second electrical power is constituted by an electric current signal, an electric voltage signal or a combination thereof, and the signal is a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
In the currently preferred embodiment of the method according to the invention, the first and second electric powers are obtained by means of substantially identical electric current or voltage signals.
Although any suitable values of the electric powers and any suitable signal frequency may be utilized for various purposes, in the currently preferred embodiment of the method according to the invention, the first and/or second electric powers are delivered by a 60 watt 500 kHz generator.
Finally, the invention furthermore relates to a method of coagulating and for making incisions in or severing tissue such as for instance blood vessels, the method comprising the following steps: providing at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised, providing first electrical means for applying a first electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion, providing at least one electric power application means for applying a second electric power to at least part of said tissue portion, immobilizing said tissue portion by applying said immobilizing means to the tissue portion, applying the electric power to the tissue portion for coagulating at least part of the tissue portion, applying the second electric power to at least part of said tissue portion for at least assisting in performing an incision in or severing the tissue portion, and supplying an electrically non-conductive, cooling liquid to said tissue portion while applying said first and/or said second electric power to said tissue portion.
Advantageously, the first and/or the second electrical power is constituted by an electric current signal, an electric voltage signal or a combination thereof, and the signal is a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
In the currently preferred embodiment of the method according to the invention, the first and second electric powers are obtained by means of substantially identical electric current or voltage signals.
Although any suitable values of the electric powers and any suitable signal frequency may be utilized for various purposes, in the currently preferred embodiment of the method according to the invention, particularly when being utilized for severing blood vessels, the first and/or second electric powers are delivered by a 60 Watt 500 kHz generator.
Although any suitable electrically non-conductive, cooling liquid may be used, experiments have revealed that the product Glycin ® has proven to fulfil the purpose of on the one hand allowing a cooling of the tissue to which electric power is applied and on the other hand preventing electric discharging from the tissue through conduction of electric current through the cooling liquid which would have occured provided the cooling liquid was electrically conductive.
In the following a device according to the invention is described, solely by way of example, with reference to the accompanying drawings where: Fig. 1 is a schematic perspective elevational view of a preferred embodi-ment of a device according to the invention,
Fig. 2 is a schematic lateral partly cut-away view of the device in Fig. 1 shown in reduced scale,
Fig. 3 is a schematic, partly sectional and perspective view of the device in Fig. 1 ,
Figs. 4a-c are partial diagrammatic illustrative views of three stages in the operation of the device in Fig. 1 ,
Figs. 5-7 are partial diagrammatic illustrative views illustrating the operation of the device in Fig. 1 when utilized for severing a blood vessel,
Fig. 8 is a diagrammatic view of one embodiment of an electric power application means according to the invention shown in increased scale,
Fig. 9 is a diagrammatic view of a second embodiment of an electric power application means according to the invention shown in increased scale,
Fig. 10 is a schematic, partly sectional and perspective view similar to the view of Fig. 3 illustrating the device in Figs. 1 and 3 including a cooling liquid applying tube, and
Fig. 11 is a schematic, partly sectional and perspective view similar to the views of Figs. 3 and 10 illustrating a modified device as compared to the device shown in Fig. 10.
Referring now to Figs 1-3, the currently preferred embodiment of an electrosurgical device according to the invention comprises an elongate rigid tube 1 made from a glass fiber reinforced tubing material, with a vinyl ester resin as the matrix, the material being of the type Polygon II CW produced by the Polygon Company but may be made from any suit-able material having sufficient strength and being substantially electrically non- conductive. At one end, the proximal end, the tube 1 is fixedly attached to a handle 2 provided with a trigger lever 3, a spring load adjustment knob 4 and a severing activating push button 5. Two forceps jaws 6 and 7 protrude from the distal end of the tube 1 , the jaws 6 and 7 each being formed by bending a length of steel wire 8 and 9, respectively, so as to form the jaws 6 and 7 and camming portions 10 and 11 , respectively, the two end portions of each wire 8 and 9 being embedded in an electrically non-conductive cylinder 12 longitudinally slideably arranged in the lumen of the tube 1. The lengths of wire 8 and 9 are furthermore bent such that a spring force is achieved tending to force the jaws 6 and 7 away from one another, the jaws being forced to abut each other in the de-activated condition of the device shown in Fig. 3 by the cooperation of the distal edge of the tube 1 and the camming portions 10 and 11.
The cylinder 12 is fixedly attached to the distal ends of two rigid, electrically conductive rods 13 and 14 that are electrically connected to the wires 8 and 9, respectively, and the rods 13 and 14 are attached at the proximal ends thereof to an electrically non- conductive block 15 longitudinally slideably arranged in guide members 16 arranged on the lateral inner surfaces of the handle 2. The trigger lever 3 is pivotably arranged about a pivot 17 and is provided with a protuberance 18 engaging a recess 15a in the block 15 such that pivoting of the trigger lever 3 around the pivot 17 causes the block 15 to slide to and fro longitudinally in the guide members 16 in the handle 2. Movement of the block 15 in the distal direction causes the cylinder 12 and the wires 8 and 9 to move in the distal direction whereby the forceps jaws 6 and 7 move away from each other because of said spring force in the wires 8 and 9 and the cooperation between the camming portions 10 and 11 with the distal edge of the tube 1.
When the trigger lever 3 is fully depressed the forceps jaws 6 and 7 are in the open position shown in Fig. 5. When the trigger lever 3 is in the de-activated position, the block 15 is at its furthermost proximal position and the forceps jaws abut each other because of the inherent spring force in the wires 8 and 9 and the camming cooperation between the camming portions 10 and 11 and the distal edge of the tube 1. However, the force achieved by this cooperation is relatively weak and not sufficient to clamp and compress a blood vessel as shown in Fig. 6. Therefore an additional spring force is applied to move the forceps jaws 6 and 7 towards one another as explained below. A coil spring 19 with two arms 19a and 19b is arranged on a pin 20, the end of the arm 19a being pivotably attached to the trigger lever 3 and the end of the arm 19b being pivotably attached to a protuberance 4a of the knob 4, the knob 4 and protuberance 4a being slideably arranged in an arcuate slot 21 in the handle 2. The spring force applied to the trigger lever 3 by the coil spring 19 is thus adjustable by sliding the protuberance in the slot 21. The spring force applied to the trigger lever 3 biasses the block 15 in the proximal direction thereby exerting a relatively large force for moving the forceps jaws 6 and 7 towards one another and for clamping and compressing a blood vessel therebetween. The shape and orientation of the slot 21 relative to the spring 19 and the pin 20 determine the number of possible settings of the spring force exerted by the spring 19. In this embodiment, a maximum spring force and a minimum spring force are obtainable by placing the knob 4 at the left and right end of the slot 21 , respectively.
Referring now to Figs. 3 and 4a-c, an elongate plate shaped electric power application electrode or member 22 is slideably arranged in the lumen of the tube 1 such that it may slide longitudinally from a retracted position entirely within the distal portion of the tube 1 as shown in Figs. 3 and 4a-b and an extended position shown in Fig. 4c protruding from the tube 1 and located between the two legs of each forceps jaw 6 and 7. The proximal end of the electrode 22 is fixedly attached to the distal end of a rigid electrically conductive rod 23 extending slideably through a central bore in the cylinder 12 and slideably through a bore in the block 15, the proximal end of the rod 23 being fixedly attached to a plate member 24 attached to the push button 5 arranged longitudinally slidable in an aperture in the handle 2 under the biassing influence of a coil spring 25. The rod 23 is along the length thereof extending in the lumen of the tube 1 surrounded by an electrically insulating material.
By depressing the push button 5 in the distal direction against the biassing force of the coil spring 25, the rod 23 is displaced longitudinally in the distal direction thereby displacing the electrode 22 in the distal direction from the retracted to the extended position thereof while the action of the coil spring 25 will reverse this displacement when pressure is not applied to the push button 5 thereby retracting the electrode 22 into the distal end of the tube 1. Referring now to Figs. 8 and 9, two alternative embodiments of the electric power application electrode or member 22 are illustrated. In Fig. 9 the electrode comprises an electrically insulated proximal body 22a and an electrically uninsulated distal wire 22b electrically connected to the rod 23. In Fig. 8 the electrode comprises a plate member electrically connected to the rod 23 and having an electrically insulated body 22c having an electrically uninsulated distal blunt edge 22d. Neither the wire 22b nor the blunt edge 22d are able to perform any mechanical cutting function on any tissue when the electrode 22 is displaced from the retracted proximal position to the extended distal position thereof. The insulating material utilized for the electrical insulation of the body region of the electrode is black polyvinylidene fluoride of the type KBM-100 produced by Plastronics US, Inc. of Alpharetta, GA 30201.
Referring now to Fig. 3, a power cable 26 leading from a 60 Watt 500 kHz generator (not shown) is connected to an electrical switch 27 that will be described more in detail in the following. An electrical lead 28 electrically interconnects a terminal 28a of the switch 27 and the rod 23 and thereby the electrode 22. Electrical leads 29 and 30 electrically interconnect terminals 29a and 30a, respectively, of the switch 27 with the rods 13 and 14, respectively, and thereby with the wires 8 and 9, respectively.
Referring now to Figs. 6 and 7 an electrical diagram of the switch 27 is shown illustrating that in the situation shown in Fig. 6 wherein a blood vessel V is clamped between the forceps jaws 6 and 7 voltage is applied across the forceps jaws as the terminal 29 and 30 are electrically connected to the power cable 26 and thereby to the generator whereby a coagulation of the tissue and blood between the jaws takes place. In the situation shown in Fig. 7 a voltage is applied across the uninsulated wire 22b or the uninsulated tip region 22d of the electrode 22 in an extended position of said electrode 22 and both the forceps jaws 6 and 7 thereby giving rise to a thermal influence of the tissue adjacent the wire 22b or the tip region 22d and particularly the edge 22e.
The switching function of the switch 27 between the coagulating position of Fig. 6 and the severing position of Fig. 7 is achieved by means of two spring tongues 31 and 32 arranged on the top surface of the switch 27, the spring tongues being depressed by the plate 24 when the push button 5 is displaced in the distal direction. Referring now to Fig. 10, a modified embodiment of the device shown in Fig. 3 is illustrated, which embodiment includes all elements of the embodiment described above with reference to Fig. 3, further includes a tubular element 42 which extends parallel with the rods 13 and 14 within the outer protective elongated rigid tube 1. The tubular element is, as is evident from Fig. 10, exposed at the outer opened end or distal end of the elongated rigid tube 1. The tubular element 42 extends through the block 15 and is at its' proximate end opposite to the above-described distal end, connected to a tube 40 connected to a fitting 38 at the lower end of the handle 2 for allowing connection to an external container through which an electrically non-conductive, cooling liquid is supplied to the tissue portion which is to be coagulated or separated through the supply of electrical power to the tissue portion in question.
The cooling liquid has to be electrically non-conductive in order to prevent that the liquid short circuits the location of applying electrical power which short circuiting might else give origin to extreme injuries at unintentional tissue locations within the body of the patient. The electrically non-conductive, cooling liquid may preferably be constituted by the liquid known as Glycin ®.
In Fig. 11 , a further embodiment, slightly differing from the embodiment shown in Fig. 10 is illustrated, which embodiment basically differs from the embodiment described in that the forceps 6 and 7 are operated in the inverse mode of operation, as the forceps 6 and 7 in the above-described embodiment illustrated in Figs. 1-10 are kept in the closed position through the application of pressure to the trigger lever 3 from the spring 19 and consequently kept in the closed position provided the trigger lever 3 is not operated and opened through the actuation of the trigger lever 3, whereas the forceps 6 and 7 are in the embodiment shown in Fig. 11 kept in their open position, provided the trigger lever 3 is not operated and pressed together by the actuation of the trigger lever 3.
In the embodiment shown in Fig. 11 , the spring 19 serves to force the trigger lever 3 to its' neutral position in which the forceps 6 and 7 are seperated apart. For establishing the inverse operation of the forceps 6 and 7 in the embodiment shown in Fig. 11 as compared to the above-described embodiments, a further tubular element 46 is provided, which tubular element is a movable inner tube in relation to the outer rigid tube 1.
In Fig. 10, the rods 13 and 14 of the forceps 6 and 7 are connected to the block 10 and movable along with the block 15 shown in Fig. 10, whereas in Fig. 11 , the forceps 6 and 7 and consequently the rods 13 and 14 connected thereto are stationary in relation to the handle 2, whereas the block 15 causes the inner tube 46 to move in relation to the outer rigid tube 1 and further in relation to the forceps 6 and 7 and causing through the application of pressure to the camming portions 10 and 11 a motion of the forceps 6 and 7 towards one another provided the trigger lever 3 be actuated and the block 15 and along with the block 15, the inner tube 46 be extracted from the outer rigid tube 1.
For maintaining the forceps 6 and 7 in a specific close position, a ratchet catch is provided in the handle which ratchet catch comprises two cooperating ratchet elements 48 and 50 which are connected to the trigger lever 3 and the housing of the handle 2, respectively, and serve to maintain the trigger lever 3 in a specific position after actuation and thereby also maintaining the forceps 6 and 7 in a corresponding specific position applying a manually set pressure load to the blood vessel or other tissue kept between the forceps 6 and 7.
For disengaging the ratchet elements 48 and 50 from their locking the trigger lever 13 in a preset position, a push button 52 is provided, which protrudes from the outer remote side of the handle 2 and serves to apply a pressure to the ratchet element 50 and cause the ratchet element 50 to be disengaged from the ratchet element 48 through actuation of the push button 52.
In use, the surgeon operating the device first decides which spring load to set by means of the knob 4 depending on the character of the tissue portion, for instance the blood vessel to be severed. Thereafter the surgeon depresses the trigger lever 3 so as to separate the forceps jaws 6, 7 relative to one another, Fig. 5. The forceps jaws are then placed around the vessel and the trigger lever 3 is released so that the forceps jaws are retracted slightly and are moved towards one another by the action of the spring 19, Fig. 6 and the cooperation between the camming portions 10 and 11I and the distal end of the tube 1. The voltage across the forceps jaws coagulates the tissue and any blood in the vessel therebetween. Thereafter the surgeon gradually depresses the push button 5 thereby extending the electrode 22 and simultaneously and automatically switching the voltage from coagulation mode across the forceps jaws 6 and 7 to the severing mode across the electrode 22 and both jaws 6, 7, Fig. 7.
In use, the surgeon may, by means of the embodiments illustrated in Figs. 10 and 11 apply electrically non-conductive, cooling liquid to the tissue portion to be coagulated or separated through the application of electric energy or power to the tissue portion by actuating a pump supplying electrically non-conductive, cooling liquid for ejection from the outer exposed distal end of the tube 42 through the supply of the liquid through the hose 36. The pump may be continuously running or be operated in an intermittent mode for interrupting the supply of cooling liquid or alternatively the hose 36 may be provided with a hose pump which is periodically operated or stopped or alternatively be provided with a blocking element preventing the supply of liquid through the hose 36.
As no mechanical cutting effect is involved, the toughness of the tissue to be severed has no effect on the force to be exerted on the push button 5, and the severing action is smooth and gradual with no snap effect as with known mechanical cutting instruments in the known devices.
The person skilled in the art will readily understand that many of the features described above in relation to the embodiment shown in the drawings may be varied and modified without departing from the scope of the invention as defined in the appended patent claims.
Thus, the electrode may have any suitable shape such as pointed, bifurcated, spherical, cylindrical and so on as long as sufficient thermal influence can be caused by the electrical power applied to the electrode.
As mentioned above, the electrode may, for certain applications, have a mechanically cutting edge so as to be able to utilize mechanical cutting in addition to the thermal influence cutting. However, the security of the device will thereby be impaired as the risk of cutting through not sufficiently coagulated tissue or blood vessels will be higher as discussed above. The diameter of the tube 1 may be any suitable value such as 5 mm or 10 mm and the materials chosen for the various components may be modified as long as the requirements of biological non-toxicity and sterility are met.
The spring loading of the immobilizing means such as the described forceps jaws or any other suitable immobilizing means may be achieved by other means than the described coil spring, for instance a cylinder-piston mechanism with adjustable pressure.
The tube 2 may be replaced by any other suitable means for locating the immobilizing means and electrical power application means adjacent the tissue to be coagulated and incised, for instance two or three parallel or concentric tubes, one or two for the immobilizing means and one for the electric power application means.
EXAMPLE
DIMENSIONS
Total length of device parallel to axis of tube 1 : 465 mm. Handle size: 75x145x20mm
Tube 1 or cannula: 300 mm
Cannula diameter: 10 mm
Forceps size: 1.5 mm wire, U-form 4.5x25mm (closed)
Plate electrode: 22x6.2x0.28mm Cable: 3 metre with 2x4 male connector
COMPONENTS
Handle + push button + trigger lever: Material: ABS Cannula: Material: Vinyl ester resin with glass fibre reinforcement Forceps: Material: Stainless steel spring wire (AISI 302) Plate electrode: Material: Stainless steel covered by KYNAR KBM 100 Connector: Material: Nickel plated brass with plastic housing Cable: Material: CU with PVC insulation Sterialization of entire device by electron irradiation.
For contemplated smaller diameters of the tube 1 , for instance 5 mm, the rigidity achievable with glass fibre reinforced vinyl ester resin matrix may not be sufficient and therefore it is contemplated to make the tube 1 of stainless steel. In such case the regions of the forceps jaw wires 8 and 9 extending from the cylinder 12 to the distal end of the camming portions 10 and 11 , i.e. the regions of the wires being able to come into contact with the distal edge of the tube 1 , are contemplated being electrically insulated by means of KYNAR KBM 100 to avoid electrical connection between the forceps jaws and the tube 1.
TEST OF CUTTING FUNCTION
Objective
To examine the possible advantage of applying an active electrode to perform the cutting function compared to a sharp blade with mechanical cutting function.
The objective is based on the statements from surgeons using a similar device where they claimed that the mechanical cutting blade became blunt.
Test
Three tests were conducted on a piece of meat:
1. Transection with a mechanically cutting blade: After coagulating the meat with the forceps, the sharp cutting blade was advanced through the meat. This procedure was repeated several times (on fresh meat zones) while monitoring/sensing the blade's cutting ability.
Conclusion: After having repeated the procedure 6 times there was a clear difference in the smoothness of the cutting function. The blade seemed to push the meat out of the forceps and more pressure had to be applied to perform the transection. . Transection with a non-active blunt electrode (without applying electric power): After coagulating the meat with the forceps, the blunt electrode was advanced to perform transection.
Conclusion: The blunt electrode could not cut its way through the meat, but instead pushed it out of the forceps. The electrode could only make a very rough and uncontrolled preliminary cut when pressed forward with a very strong force.
3. Transection with an active blunt electrode: After coagulating the meat with the forceps, the active electrode was advanced to perform transection. The active electrode performed the cutting very smoothly, and the resistance to the meat was clearly minimized, hence the self cutting effect of the electric power or electrosurgical energy.
Conclusion: This procedure was performed continuously for 25 times and the electrode performed the cutting smoothly and without damage to the meat. There seemed no reason why it should not be able to continue cutting the meat. Only the electrode had to be cleaned once due to meat adhering on the edge.
Final Conclusion
From the above tests, it was concluded that the active electrode gave a significantly better long term performance and an incision which was fully acceptable compared to a mechanically cutting blade. In fact, the active electrode seemed to perform a superficial coagulation of the incision, thus securing a complete coagulation of blood vessels.

Claims

PATENT CLAIMS
1. An electrosurgical device for coagulating and for making incisions in or severing tissue such as for instance blood vessels, said device comprising:
- at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised,
- first electrical means for applying a first electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion,
- at least one electric power application means for applying a second electric power to at least part of said tissue portion for making incisions in said tissue portion and
- at least one tubular element for supplying an electrically non-conductive, cooling liquid to said tissue portion.
2. A device according to claim 1 wherein the electric power application means is configured such, for instance being blunt, that the incision or severing is substantially exclusively achieved by means of said second electric power.
3. A device according to claim 1 or 2 wherein the first and/or the second electrical power is constituted by an electric current signal, an electric voltage signal or a combination thereof.
4. A device according to claim 3 wherein the signal is a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
5. A device according to claim 1 or 2 wherein the first and second electric powers are obtained by means of substantially identical electric current or voltage signals.
6. A device according to any of the claims 1-5 wherein the immobilizing means comprise first and second moveable forceps jaws and moving means for opening and closing the first and second jaws relative to one another for holding and/or clamping the tissue portion therebetween.
7. A device according to claim 6 wherein the moving means comprise adjustable spring loading means for applying a specific or an adjustable spring load for closing the first and second jaws relative to one another.
8. A device according to claim 7 wherein the spring load is manually adjustable depending on the characteristics of the tissue portion to be held between said jaws.
9. A device according to any of the preceding claims and furthermore comprising electrical switching means for applying the first and second electric powers independently of one another and preferably sequentially.
10. A device according to any of the preceding claims and comprising:
- an elongated tubular member having a proximal and a distal end and a lumen extending therethrough,
- first and second moveable forceps jaws extending from said distal end,
- opening and closing means for opening and closing the first and second forceps jaws relative to one another,
- first electrical means for applying a first electric voltage across the first and second forceps jaws,
- an electric power application means extending from said distal end and arranged for being moved through a tissue portion held between the first and second forceps jaws, and
- second electrical means for applying a second electric voltage to the electric power application means relative to the first and/or the second forceps jaws.
11. A device according to claim 10 wherein the first electric voltage is substantially equal to the second electric voltage.
12. A device according to claim 10 or 11 and further comprising a handle fixed to said proximal end of the tubular member.
13. A device according to claim 12 wherein the handle comprises forceps activating means for manually activating the opening and closing means.
14. A device according to claim 12 or 13 wherein the handle comprises spring load adjusting means for manually adjusting the spring load of the spring loading means.
15. A device according to any of the claims 12-14 wherein the handle comprises incision activating means for manually activating the movement of the electric power application means through the tissue portion.
16. A device according to any of the claims 12-15 wherein the handle comprises switching means for activating the first and second electrical means for applying said first and second electric voltages.
17. A device according to any of the claims 12-16, wherein said at least one tubular element extends from said handle through said elongated tubular member and communicates through a further tubular element with an external source for the supply of said electrically non-conductive, cooling liquid.
18. A device according to claim 17 wherein said at least one tubular element is exposed at said distal end of said tubular member.
19. A device according to any of the claims 17 or 18 wherein said additional tubular element includes a pump for controlling the supply of said electrically non-conductive, cooling liquid.
20. A device according to claim 16 wherein the switching means are adapted to cooperate with the incision activating means such that the first electric voltage is applied in the deactivated condition of said incision activating means while the second electric voltage is applied in the activated condition of said incision activating means.
21. A device according to any of the preceding claims wherein the electric power application means comprise a plate member having a blunt leading edge.
22. A device according to claim 18 wherein the plate member except the leading edge portion is electrically insulated from the surroundings such that electric power only may be supplied to the tissue portion through said leading edge portion.
23. A device according to any of the claims 1-14 wherein the electric power application means comprise a wire member arranged for being moved through the tissue portion and for supplying electric power to the tissue portion.
24. An electrosurgical device for coagulating and for making incisions in or severing tissue such as for instance blood vessels, said device comprising
- at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised,
- first electrical means for applying electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion,
- at least one incision means for making incisions in at least part of said tissue portion, and
- at least one tubular element for supplying an electrically non-conductive, cooling liquid to said tissue portion.
the immobilizing means comprising adjustable spring loading means for applying an adjustable spring load for immobilizing the tissue portion.
25. A device according to claim 24 wherein the spring load is manually adjustable depending on the characteristics of the tissue portion to be immobilized by the immobilizing means.
26. A device according to claim 24 or 25 wherein the immobilizing means comprise first and second moveable forceps jaws and moving means for opening and closing the first and second jaws relative to one another for holding the tissue portion therebetween.
27. A device according to claim 26 wherein the moving means comprise adjustable spring loading means for applying an adjustable spring load for closing the first and second jaws relative to one another.
28. A method of severing blood vessels, the method comprising the following steps:
- applying a first electric power to a portion of the blood vessel adjacent the intended severing location for coagulating the blood and tissue in said region,
- applying a second electric power to said region at said severing location for severing the blood vessel, and
- supplying an electrically non-conductive, cooling liquid to said portion of said blood vessel and/or to said region while applying said first and/or said second electric power, respectively.
29. A method according to claim 28 wherein said portion of the blood vessel is compressed prior to and/or during the application of the first electric power, the degree of compression being such that the flow of blood through the blood vessel is such that the blood and tissue for coagulates to form a permanent coagulation clot in the blood vessel adjacent said severing location for allowing severing of the blood vessel without bleeding.
30. A method according to claim 28 or 29 wherein the first and/or the second electrical power is constituted by an electric current signal, an electric voltage signal or a combination thereof.
31. A method according to claim 30 wherein the signal is a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
32. A method according to claim 31 or 32 wherein the first and second electric powers are obtained by means of substantially identical electric current or voltage signals.
33. A method according to any of the claims 28-32 wherein the first and/or second electric powers are delivered by a 60 Watt 500 kHz generator.
34. A method according to any of the claims 28-32, said electrically non-conductive, cooling liquid being Glycin ®.
35. A method of coagulating and for making incisions in or severing tissue such as for instance blood vessels, the method comprising the following steps:
- providing at least one immobilizing means for immobilizing a tissue portion to be coagulated and incised,
- providing first electrical means for applying a first electric power to the tissue portion immobilized by the immobilizing means for coagulating at least part of said tissue portion,
- providing at least one electric power application means for applying a second electric power to at least part of said tissue portion,
-immobilizing said tissue portion by applying said immobilizing means to the tissue portion,
- applying the first electric power to the tissue portion for coagulating at least part of the tissue portion,
- applying the second electric power to at least part of said tissue portion for at least assisting in performing an incision in or severing the tissue portion, and - supplying an electrically non-conductive, cooling liquid to said tissue portion while applying said first and/or said second electric power to said tissue portion.
36. A method according to claim 35 wherein the first and/or the second electrical power is constituted by an electric current signal, an electric voltage signal or a combination thereof.
37. A method according to claim 36 wherein the signal is a DC or AC signal such as a LF, an HF or an RF signal for instance a VHF, a UHF or a microwave signal.
38. A method according to any of the claims 35-39, said electrically non-conductive, cooling liquid being Glycin ®.
39. A method according to claim 36 or 37 wherein the first and second electric powers are obtained by means of substantially identical electric current or voltage signals.
40. A method according to any of the claims 35-39 wherein the first and/or second electric powers are delivered by a 60 Watt 500 kHz generator.
PCT/DK1999/0005651999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissueWO2001028444A1 (en)

Priority Applications (6)

Application NumberPriority DateFiling DateTitle
DE69927411TDE69927411T2 (en)1999-10-151999-10-15 An electrosurgical device for coagulating and cutting, a method for separating blood vessels, and a method for coagulating and cutting tissue into or out of tissue
PCT/DK1999/000565WO2001028444A1 (en)1999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
DK99948733TDK1150616T3 (en)1999-10-151999-10-15 Surgical device for coagulation and for incision, a method for cutting blood vessels and a method for coagulating and for incision in wounds or for cutting wounds
AU61897/99AAU6189799A (en)1999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
EP99948733AEP1150616B1 (en)1999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
AT99948733TATE304820T1 (en)1999-10-151999-10-15 AN ELECTROSURGICAL DEVICE FOR COAGULATION AND CUTTING, A METHOD FOR SEPARATING BLOOD VESSELS, AND A METHOD FOR COAGULATION AND CUTTING INTO OR SEPARATING TISSUE

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/DK1999/000565WO2001028444A1 (en)1999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue

Publications (2)

Publication NumberPublication Date
WO2001028444A1true WO2001028444A1 (en)2001-04-26
WO2001028444A8 WO2001028444A8 (en)2001-07-12

Family

ID=8157162

Family Applications (1)

Application NumberTitlePriority DateFiling Date
PCT/DK1999/000565WO2001028444A1 (en)1999-10-151999-10-15An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue

Country Status (6)

CountryLink
EP (1)EP1150616B1 (en)
AT (1)ATE304820T1 (en)
AU (1)AU6189799A (en)
DE (1)DE69927411T2 (en)
DK (1)DK1150616T3 (en)
WO (1)WO2001028444A1 (en)

Cited By (204)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6558385B1 (en)2000-09-222003-05-06Tissuelink Medical, Inc.Fluid-assisted medical device
RU2241407C1 (en)*2003-12-162004-12-10Зао "Вниимп-Вита"Device for applying electric surgery
US6953461B2 (en)2002-05-162005-10-11Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
EP1363547A4 (en)*2001-01-242006-08-02Ethicon IncElectrosurgical instrument with closing tube for conducting rf energy and moving jaws
US7115139B2 (en)2000-03-062006-10-03Tissuelink Medical Inc.Fluid-assisted medical devices, fluid delivery systems and controllers for such devices, and methods
RU2294712C1 (en)*2005-06-022007-03-10Сергей Владимирович БеловElectric surgical oscillation apparatus
US7537595B2 (en)2001-12-122009-05-26Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US7727232B1 (en)2004-02-042010-06-01Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US7811282B2 (en)2000-03-062010-10-12Salient Surgical Technologies, Inc.Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7951148B2 (en)2001-03-082011-05-31Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US7998140B2 (en)2002-02-122011-08-16Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
WO2011156547A3 (en)*2010-06-102012-01-26Ethicon Endo-Surgery, Inc.Cooling configurations for electro-surgical instruments
WO2012012602A1 (en)*2010-07-222012-01-26Ethicon Endo-Surgery, Inc.Electrosurgical instrument with separate closure and cutting members
US8123746B2 (en)2003-04-282012-02-28Olympus CorporationHigh-frequency current treatment tool
CN103099670A (en)*2011-11-102013-05-15科维蒂恩有限合伙公司Surgical forceps
US8453906B2 (en)2010-07-142013-06-04Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US8475455B2 (en)2002-10-292013-07-02Medtronic Advanced Energy LlcFluid-assisted electrosurgical scissors and methods
US8496682B2 (en)2010-04-122013-07-30Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8535311B2 (en)2010-04-222013-09-17Ethicon Endo-Surgery, Inc.Electrosurgical instrument comprising closing and firing systems
US8574231B2 (en)2009-10-092013-11-05Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US8613383B2 (en)2010-07-142013-12-24Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US8628529B2 (en)2010-10-262014-01-14Ethicon Endo-Surgery, Inc.Surgical instrument with magnetic clamping force
US8715277B2 (en)2010-12-082014-05-06Ethicon Endo-Surgery, Inc.Control of jaw compression in surgical instrument having end effector with opposing jaw members
US8747404B2 (en)2009-10-092014-06-10Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US8753338B2 (en)2010-06-102014-06-17Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing a thermal management system
US8764747B2 (en)2010-06-102014-07-01Ethicon Endo-Surgery, Inc.Electrosurgical instrument comprising sequentially activated electrodes
US8790342B2 (en)2010-06-092014-07-29Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing pressure-variation electrodes
US8795276B2 (en)2010-06-092014-08-05Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing a plurality of electrodes
US8834518B2 (en)2010-04-122014-09-16Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8888776B2 (en)2010-06-092014-11-18Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing an electrode
US8906016B2 (en)2009-10-092014-12-09Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising steam control paths
US8926607B2 (en)2010-06-092015-01-06Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US8939974B2 (en)2009-10-092015-01-27Ethicon Endo-Surgery, Inc.Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US8979843B2 (en)2010-07-232015-03-17Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9005199B2 (en)2010-06-102015-04-14Ethicon Endo-Surgery, Inc.Heat management configurations for controlling heat dissipation from electrosurgical instruments
US9011437B2 (en)2010-07-232015-04-21Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9044243B2 (en)2011-08-302015-06-02Ethcon Endo-Surgery, Inc.Surgical cutting and fastening device with descendible second trigger arrangement
US9149324B2 (en)2010-07-082015-10-06Ethicon Endo-Surgery, Inc.Surgical instrument comprising an articulatable end effector
US9192431B2 (en)2010-07-232015-11-24Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9259265B2 (en)2011-07-222016-02-16Ethicon Endo-Surgery, LlcSurgical instruments for tensioning tissue
US9265926B2 (en)2013-11-082016-02-23Ethicon Endo-Surgery, LlcElectrosurgical devices
US9283027B2 (en)2011-10-242016-03-15Ethicon Endo-Surgery, LlcBattery drain kill feature in a battery powered device
US9295514B2 (en)2013-08-302016-03-29Ethicon Endo-Surgery, LlcSurgical devices with close quarter articulation features
US9375232B2 (en)2010-03-262016-06-28Ethicon Endo-Surgery, LlcSurgical cutting and sealing instrument with reduced firing force
US9408660B2 (en)2014-01-172016-08-09Ethicon Endo-Surgery, LlcDevice trigger dampening mechanism
US9456864B2 (en)2010-05-172016-10-04Ethicon Endo-Surgery, LlcSurgical instruments and end effectors therefor
US9492224B2 (en)2012-09-282016-11-15EthiconEndo-Surgery, LLCMulti-function bi-polar forceps
US9526565B2 (en)2013-11-082016-12-27Ethicon Endo-Surgery, LlcElectrosurgical devices
US9554846B2 (en)2010-10-012017-01-31Ethicon Endo-Surgery, LlcSurgical instrument with jaw member
US9554854B2 (en)2014-03-182017-01-31Ethicon Endo-Surgery, LlcDetecting short circuits in electrosurgical medical devices
US9610091B2 (en)2010-04-122017-04-04Ethicon Endo-Surgery, LlcElectrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US9700333B2 (en)2014-06-302017-07-11Ethicon LlcSurgical instrument with variable tissue compression
US9737355B2 (en)2014-03-312017-08-22Ethicon LlcControlling impedance rise in electrosurgical medical devices
US9757186B2 (en)2014-04-172017-09-12Ethicon LlcDevice status feedback for bipolar tissue spacer
US9795436B2 (en)2014-01-072017-10-24Ethicon LlcHarvesting energy from a surgical generator
US9814514B2 (en)2013-09-132017-11-14Ethicon LlcElectrosurgical (RF) medical instruments for cutting and coagulating tissue
US9848937B2 (en)2014-12-222017-12-26Ethicon LlcEnd effector with detectable configurations
US9861428B2 (en)2013-09-162018-01-09Ethicon LlcIntegrated systems for electrosurgical steam or smoke control
US9872725B2 (en)2015-04-292018-01-23Ethicon LlcRF tissue sealer with mode selection
US9877776B2 (en)2014-08-252018-01-30Ethicon LlcSimultaneous I-beam and spring driven cam jaw closure mechanism
US9913680B2 (en)2014-04-152018-03-13Ethicon LlcSoftware algorithms for electrosurgical instruments
US10092310B2 (en)2014-03-272018-10-09Ethicon LlcElectrosurgical devices
US10092348B2 (en)2014-12-222018-10-09Ethicon LlcRF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10111699B2 (en)2014-12-222018-10-30Ethicon LlcRF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10117702B2 (en)2015-04-102018-11-06Ethicon LlcSurgical generator systems and related methods
US10117667B2 (en)2010-02-112018-11-06Ethicon LlcControl systems for ultrasonically powered surgical instruments
CN108814682A (en)*2018-04-202018-11-16河南科技大学第附属医院General surgery Wound care instrument
US10130410B2 (en)2015-04-172018-11-20Ethicon LlcElectrosurgical instrument including a cutting member decouplable from a cutting member trigger
US10154852B2 (en)2015-07-012018-12-18Ethicon LlcUltrasonic surgical blade with improved cutting and coagulation features
US10159524B2 (en)2014-12-222018-12-25Ethicon LlcHigh power battery powered RF amplifier topology
US10172669B2 (en)2009-10-092019-01-08Ethicon LlcSurgical instrument comprising an energy trigger lockout
US10179022B2 (en)2015-12-302019-01-15Ethicon LlcJaw position impedance limiter for electrosurgical instrument
US10194973B2 (en)2015-09-302019-02-05Ethicon LlcGenerator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10194972B2 (en)2014-08-262019-02-05Ethicon LlcManaging tissue treatment
US10194976B2 (en)2014-08-252019-02-05Ethicon LlcLockout disabling mechanism
US10201382B2 (en)2009-10-092019-02-12Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US10226273B2 (en)2013-03-142019-03-12Ethicon LlcMechanical fasteners for use with surgical energy devices
US10245064B2 (en)2016-07-122019-04-02Ethicon LlcUltrasonic surgical instrument with piezoelectric central lumen transducer
US10245065B2 (en)2007-11-302019-04-02Ethicon LlcUltrasonic surgical blades
US10251664B2 (en)2016-01-152019-04-09Ethicon LlcModular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
USD847990S1 (en)2016-08-162019-05-07Ethicon LlcSurgical instrument
US10285724B2 (en)2014-07-312019-05-14Ethicon LlcActuation mechanisms and load adjustment assemblies for surgical instruments
US10285723B2 (en)2016-08-092019-05-14Ethicon LlcUltrasonic surgical blade with improved heel portion
US10299810B2 (en)2010-02-112019-05-28Ethicon LlcRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10314638B2 (en)2015-04-072019-06-11Ethicon LlcArticulating radio frequency (RF) tissue seal with articulating state sensing
US10321950B2 (en)2015-03-172019-06-18Ethicon LlcManaging tissue treatment
US10335183B2 (en)2012-06-292019-07-02Ethicon LlcFeedback devices for surgical control systems
US10335614B2 (en)2008-08-062019-07-02Ethicon LlcDevices and techniques for cutting and coagulating tissue
US10335182B2 (en)2012-06-292019-07-02Ethicon LlcSurgical instruments with articulating shafts
US10342602B2 (en)2015-03-172019-07-09Ethicon LlcManaging tissue treatment
US10357303B2 (en)2015-06-302019-07-23Ethicon LlcTranslatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en)2016-08-052019-08-13Ethicon LlcMethods and systems for advanced harmonic energy
US10398466B2 (en)2007-07-272019-09-03Ethicon LlcUltrasonic end effectors with increased active length
US10420580B2 (en)2016-08-252019-09-24Ethicon LlcUltrasonic transducer for surgical instrument
US10420579B2 (en)2007-07-312019-09-24Ethicon LlcSurgical instruments
US10426507B2 (en)2007-07-312019-10-01Ethicon LlcUltrasonic surgical instruments
US10441345B2 (en)2009-10-092019-10-15Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US10441308B2 (en)2007-11-302019-10-15Ethicon LlcUltrasonic surgical instrument blades
US10441310B2 (en)2012-06-292019-10-15Ethicon LlcSurgical instruments with curved section
US10456193B2 (en)2016-05-032019-10-29Ethicon LlcMedical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en)2014-03-272019-11-05Ethicon LlcTwo stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en)2016-04-292019-11-26Ethicon LlcJaw structure with distal closure for electrosurgical instruments
US10517627B2 (en)2012-04-092019-12-31Ethicon LlcSwitch arrangements for ultrasonic surgical instruments
US10524872B2 (en)2012-06-292020-01-07Ethicon LlcClosed feedback control for electrosurgical device
US10524852B1 (en)2014-03-282020-01-07Ethicon LlcDistal sealing end effector with spacers
US10531910B2 (en)2007-07-272020-01-14Ethicon LlcSurgical instruments
US10537352B2 (en)2004-10-082020-01-21Ethicon LlcTissue pads for use with surgical instruments
US10543008B2 (en)2012-06-292020-01-28Ethicon LlcUltrasonic surgical instruments with distally positioned jaw assemblies
US10555769B2 (en)2016-02-222020-02-11Ethicon LlcFlexible circuits for electrosurgical instrument
US10575892B2 (en)2015-12-312020-03-03Ethicon LlcAdapter for electrical surgical instruments
US10595930B2 (en)2015-10-162020-03-24Ethicon LlcElectrode wiping surgical device
US10595929B2 (en)2015-03-242020-03-24Ethicon LlcSurgical instruments with firing system overload protection mechanisms
US10603064B2 (en)2016-11-282020-03-31Ethicon LlcUltrasonic transducer
US10603117B2 (en)2017-06-282020-03-31Ethicon LlcArticulation state detection mechanisms
US10639092B2 (en)2014-12-082020-05-05Ethicon LlcElectrode configurations for surgical instruments
US10646269B2 (en)2016-04-292020-05-12Ethicon LlcNon-linear jaw gap for electrosurgical instruments
US10688321B2 (en)2009-07-152020-06-23Ethicon LlcUltrasonic surgical instruments
US10702329B2 (en)2016-04-292020-07-07Ethicon LlcJaw structure with distal post for electrosurgical instruments
US10709906B2 (en)2009-05-202020-07-14Ethicon LlcCoupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10716615B2 (en)2016-01-152020-07-21Ethicon LlcModular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10722261B2 (en)2007-03-222020-07-28Ethicon LlcSurgical instruments
US10729494B2 (en)2012-02-102020-08-04Ethicon LlcRobotically controlled surgical instrument
US10751117B2 (en)2016-09-232020-08-25Ethicon LlcElectrosurgical instrument with fluid diverter
US10765470B2 (en)2015-06-302020-09-08Ethicon LlcSurgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779848B2 (en)2006-01-202020-09-22Ethicon LlcUltrasound medical instrument having a medical ultrasonic blade
US10779845B2 (en)2012-06-292020-09-22Ethicon LlcUltrasonic surgical instruments with distally positioned transducers
US10799284B2 (en)2017-03-152020-10-13Ethicon LlcElectrosurgical instrument with textured jaws
US10820920B2 (en)2017-07-052020-11-03Ethicon LlcReusable ultrasonic medical devices and methods of their use
US10828059B2 (en)2007-10-052020-11-10Ethicon LlcErgonomic surgical instruments
US10828057B2 (en)2007-03-222020-11-10Ethicon LlcUltrasonic surgical instruments
US10835768B2 (en)2010-02-112020-11-17Ethicon LlcDual purpose surgical instrument for cutting and coagulating tissue
US10835307B2 (en)2001-06-122020-11-17Ethicon LlcModular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842522B2 (en)2016-07-152020-11-24Ethicon LlcUltrasonic surgical instruments having offset blades
US10842580B2 (en)2012-06-292020-11-24Ethicon LlcUltrasonic surgical instruments with control mechanisms
US10856896B2 (en)2005-10-142020-12-08Ethicon LlcUltrasonic device for cutting and coagulating
US10856934B2 (en)2016-04-292020-12-08Ethicon LlcElectrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10874418B2 (en)2004-02-272020-12-29Ethicon LlcUltrasonic surgical shears and method for sealing a blood vessel using same
US10893883B2 (en)2016-07-132021-01-19Ethicon LlcUltrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en)2015-06-302021-01-26Ethicon LlcSurgical system with user adaptable techniques based on tissue impedance
US10912580B2 (en)2013-12-162021-02-09Ethicon LlcMedical device
US10952788B2 (en)2015-06-302021-03-23Ethicon LlcSurgical instrument with user adaptable algorithms
US10952759B2 (en)2016-08-252021-03-23Ethicon LlcTissue loading of a surgical instrument
US10959806B2 (en)2015-12-302021-03-30Ethicon LlcEnergized medical device with reusable handle
US10959771B2 (en)2015-10-162021-03-30Ethicon LlcSuction and irrigation sealing grasper
US10987156B2 (en)2016-04-292021-04-27Ethicon LlcElectrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10987123B2 (en)2012-06-282021-04-27Ethicon LlcSurgical instruments with articulating shafts
US10993763B2 (en)2012-06-292021-05-04Ethicon LlcLockout mechanism for use with robotic electrosurgical device
US11020140B2 (en)2015-06-172021-06-01Cilag Gmbh InternationalUltrasonic surgical blade for use with ultrasonic surgical instruments
US11033323B2 (en)2017-09-292021-06-15Cilag Gmbh InternationalSystems and methods for managing fluid and suction in electrosurgical systems
US11033325B2 (en)2017-02-162021-06-15Cilag Gmbh InternationalElectrosurgical instrument with telescoping suction port and debris cleaner
US11033292B2 (en)2013-12-162021-06-15Cilag Gmbh InternationalMedical device
US11051873B2 (en)2015-06-302021-07-06Cilag Gmbh InternationalSurgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en)2007-07-312021-07-13Cilag Gmbh InternationalTemperature controlled ultrasonic surgical instruments
US11090103B2 (en)2010-05-212021-08-17Cilag Gmbh InternationalMedical device
US11090104B2 (en)2009-10-092021-08-17Cilag Gmbh InternationalSurgical generator for ultrasonic and electrosurgical devices
US11129670B2 (en)2016-01-152021-09-28Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11129669B2 (en)2015-06-302021-09-28Cilag Gmbh InternationalSurgical system with user adaptable techniques based on tissue type
US11179173B2 (en)2012-10-222021-11-23Cilag Gmbh InternationalSurgical instrument
US11229471B2 (en)2016-01-152022-01-25Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en)2016-11-292022-03-08Cilag Gmbh InternationalEnd effector control and calibration
US11311326B2 (en)2015-02-062022-04-26Cilag Gmbh InternationalElectrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en)2012-11-152022-05-10Cilag Gmbh InternationalUltrasonic and electrosurgical devices
US11413102B2 (en)2019-06-272022-08-16Cilag Gmbh InternationalMulti-access port for surgical robotic systems
US11452525B2 (en)2019-12-302022-09-27Cilag Gmbh InternationalSurgical instrument comprising an adjustment system
US11484358B2 (en)2017-09-292022-11-01Cilag Gmbh InternationalFlexible electrosurgical instrument
US11490951B2 (en)2017-09-292022-11-08Cilag Gmbh InternationalSaline contact with electrodes
US11497546B2 (en)2017-03-312022-11-15Cilag Gmbh InternationalArea ratios of patterned coatings on RF electrodes to reduce sticking
US11523859B2 (en)2012-06-282022-12-13Cilag Gmbh InternationalSurgical instrument assembly including a removably attachable end effector
US11547468B2 (en)2019-06-272023-01-10Cilag Gmbh InternationalRobotic surgical system with safety and cooperative sensing control
US11589916B2 (en)2019-12-302023-02-28Cilag Gmbh InternationalElectrosurgical instruments with electrodes having variable energy densities
US11607278B2 (en)2019-06-272023-03-21Cilag Gmbh InternationalCooperative robotic surgical systems
US11612445B2 (en)2019-06-272023-03-28Cilag Gmbh InternationalCooperative operation of robotic arms
US11660089B2 (en)2019-12-302023-05-30Cilag Gmbh InternationalSurgical instrument comprising a sensing system
US11684412B2 (en)2019-12-302023-06-27Cilag Gmbh InternationalSurgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en)2019-12-302023-07-11Cilag Gmbh InternationalArticulatable surgical instrument
US11723716B2 (en)2019-12-302023-08-15Cilag Gmbh InternationalElectrosurgical instrument with variable control mechanisms
US11723729B2 (en)2019-06-272023-08-15Cilag Gmbh InternationalRobotic surgical assembly coupling safety mechanisms
US11759251B2 (en)2019-12-302023-09-19Cilag Gmbh InternationalControl program adaptation based on device status and user input
US11779329B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalSurgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalClamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en)2019-12-302023-10-17Cilag Gmbh InternationalDeflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en)2019-12-302023-11-14Cilag Gmbh InternationalSurgical instrument comprising a signal interference resolution system
US11911063B2 (en)2019-12-302024-02-27Cilag Gmbh InternationalTechniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11931026B2 (en)2021-06-302024-03-19Cilag Gmbh InternationalStaple cartridge replacement
US11937863B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalDeflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalMethod for an electrosurgical procedure
US11944366B2 (en)2019-12-302024-04-02Cilag Gmbh InternationalAsymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en)2019-12-302024-04-09Cilag Gmbh InternationalDeflectable electrode with higher distal bias relative to proximal bias
US11957342B2 (en)2021-11-012024-04-16Cilag Gmbh InternationalDevices, systems, and methods for detecting tissue and foreign objects during a surgical operation
US11974829B2 (en)2021-06-302024-05-07Cilag Gmbh InternationalLink-driven articulation device for a surgical device
US11986201B2 (en)2019-12-302024-05-21Cilag Gmbh InternationalMethod for operating a surgical instrument
US12023086B2 (en)2019-12-302024-07-02Cilag Gmbh InternationalElectrosurgical instrument for delivering blended energy modalities to tissue
US12053224B2 (en)2019-12-302024-08-06Cilag Gmbh InternationalVariation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12059224B2 (en)2019-06-272024-08-13Cilag Gmbh InternationalRobotic surgical system with safety and cooperative sensing control
US12064109B2 (en)2019-12-302024-08-20Cilag Gmbh InternationalSurgical instrument comprising a feedback control circuit
US12076006B2 (en)2019-12-302024-09-03Cilag Gmbh InternationalSurgical instrument comprising an orientation detection system
US12082808B2 (en)2019-12-302024-09-10Cilag Gmbh InternationalSurgical instrument comprising a control system responsive to software configurations
CN118750153A (en)*2024-08-192024-10-11南昌华安众辉健康科技股份有限公司 A tweezers-type minimally invasive electrode forceps
US12114912B2 (en)2019-12-302024-10-15Cilag Gmbh InternationalNon-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12193698B2 (en)2016-01-152025-01-14Cilag Gmbh InternationalMethod for self-diagnosing operation of a control switch in a surgical instrument system
US12262937B2 (en)2019-12-302025-04-01Cilag Gmbh InternationalUser interface for surgical instrument with combination energy modality end-effector
US12336747B2 (en)2019-12-302025-06-24Cilag Gmbh InternationalMethod of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector
US12343063B2 (en)2019-12-302025-07-01Cilag Gmbh InternationalMulti-layer clamp arm pad for enhanced versatility and performance of a surgical device
US12358136B2 (en)2021-06-302025-07-15Cilag Gmbh InternationalGrasping work determination and indications thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP2540243B1 (en)2011-06-282020-02-26Lina Medical ApSAn electrosurgical instrument
EP2540242B1 (en)2011-06-282014-05-21Lina Medical ApSAn electrosurgical instrument and apparatus for use with the instrument
EP2606845B1 (en)2011-12-232016-10-26Lina Medical ApSPulse generator
CA3134694A1 (en)2019-03-292020-10-08Coopersurgical, Inc.Endoscopic devices and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5267998A (en)*1991-11-191993-12-07Delma Elektro-Und Medizinische Apparatebau Gesellschaft MbhMedical high frequency coagulation cutting instrument
EP0695535A1 (en)*1994-08-021996-02-07Ethicon Endo-Surgery, Inc.Ultrasonic haemostatic and cutting instrument
WO1997018766A1 (en)*1995-11-201997-05-29Storz Endoskop GmbhBipolar high-frequency surgical instrument
US5674220A (en)*1995-09-291997-10-07Ethicon Endo-Surgery, Inc.Bipolar electrosurgical clamping device
US5716366A (en)*1995-04-071998-02-10Ethicon Endo-Surgery, Inc.Hemostatic surgical cutting or stapling instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5267998A (en)*1991-11-191993-12-07Delma Elektro-Und Medizinische Apparatebau Gesellschaft MbhMedical high frequency coagulation cutting instrument
EP0695535A1 (en)*1994-08-021996-02-07Ethicon Endo-Surgery, Inc.Ultrasonic haemostatic and cutting instrument
US5716366A (en)*1995-04-071998-02-10Ethicon Endo-Surgery, Inc.Hemostatic surgical cutting or stapling instrument
US5674220A (en)*1995-09-291997-10-07Ethicon Endo-Surgery, Inc.Bipolar electrosurgical clamping device
WO1997018766A1 (en)*1995-11-201997-05-29Storz Endoskop GmbhBipolar high-frequency surgical instrument

Cited By (342)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7604635B2 (en)2000-03-062009-10-20Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8361068B2 (en)2000-03-062013-01-29Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8048070B2 (en)2000-03-062011-11-01Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8038670B2 (en)2000-03-062011-10-18Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US7115139B2 (en)2000-03-062006-10-03Tissuelink Medical Inc.Fluid-assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US7815634B2 (en)2000-03-062010-10-19Salient Surgical Technologies, Inc.Fluid delivery system and controller for electrosurgical devices
US7811282B2 (en)2000-03-062010-10-12Salient Surgical Technologies, Inc.Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7645277B2 (en)2000-09-222010-01-12Salient Surgical Technologies, Inc.Fluid-assisted medical device
US6558385B1 (en)2000-09-222003-05-06Tissuelink Medical, Inc.Fluid-assisted medical device
US7651494B2 (en)2000-09-222010-01-26Salient Surgical Technologies, Inc.Fluid-assisted medical device
EP1363547A4 (en)*2001-01-242006-08-02Ethicon IncElectrosurgical instrument with closing tube for conducting rf energy and moving jaws
US7951148B2 (en)2001-03-082011-05-31Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US11229472B2 (en)2001-06-122022-01-25Cilag Gmbh InternationalModular battery powered handheld surgical instrument with multiple magnetic position sensors
US10835307B2 (en)2001-06-122020-11-17Ethicon LlcModular battery powered handheld surgical instrument containing elongated multi-layered shaft
US7537595B2 (en)2001-12-122009-05-26Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US7998140B2 (en)2002-02-122011-08-16Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US6953461B2 (en)2002-05-162005-10-11Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US8475455B2 (en)2002-10-292013-07-02Medtronic Advanced Energy LlcFluid-assisted electrosurgical scissors and methods
US8123746B2 (en)2003-04-282012-02-28Olympus CorporationHigh-frequency current treatment tool
RU2241407C1 (en)*2003-12-162004-12-10Зао "Вниимп-Вита"Device for applying electric surgery
US8075557B2 (en)2004-02-042011-12-13Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US7727232B1 (en)2004-02-042010-06-01Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US10874418B2 (en)2004-02-272020-12-29Ethicon LlcUltrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en)2004-02-272023-08-22Cilag Gmbh InternationalUltrasonic surgical shears and method for sealing a blood vessel using same
US11006971B2 (en)2004-10-082021-05-18Ethicon LlcActuation mechanism for use with an ultrasonic surgical instrument
US10537352B2 (en)2004-10-082020-01-21Ethicon LlcTissue pads for use with surgical instruments
RU2294712C1 (en)*2005-06-022007-03-10Сергей Владимирович БеловElectric surgical oscillation apparatus
US10856896B2 (en)2005-10-142020-12-08Ethicon LlcUltrasonic device for cutting and coagulating
US11998229B2 (en)2005-10-142024-06-04Cilag Gmbh InternationalUltrasonic device for cutting and coagulating
US10779848B2 (en)2006-01-202020-09-22Ethicon LlcUltrasound medical instrument having a medical ultrasonic blade
US12042168B2 (en)2006-01-202024-07-23Cilag Gmbh InternationalUltrasound medical instrument having a medical ultrasonic blade
US10722261B2 (en)2007-03-222020-07-28Ethicon LlcSurgical instruments
US10828057B2 (en)2007-03-222020-11-10Ethicon LlcUltrasonic surgical instruments
US10531910B2 (en)2007-07-272020-01-14Ethicon LlcSurgical instruments
US12324602B2 (en)2007-07-272025-06-10Cilag Gmbh InternationalUltrasonic end effectors with increased active length
US11690641B2 (en)2007-07-272023-07-04Cilag Gmbh InternationalUltrasonic end effectors with increased active length
US11607268B2 (en)2007-07-272023-03-21Cilag Gmbh InternationalSurgical instruments
US10398466B2 (en)2007-07-272019-09-03Ethicon LlcUltrasonic end effectors with increased active length
US10426507B2 (en)2007-07-312019-10-01Ethicon LlcUltrasonic surgical instruments
US12268900B2 (en)2007-07-312025-04-08Cilag Gmbh InternationalSurgical instruments
US12220143B2 (en)2007-07-312025-02-11Cilag Gmbh InternationalTemperature controlled ultrasonic surgical instruments
US11058447B2 (en)2007-07-312021-07-13Cilag Gmbh InternationalTemperature controlled ultrasonic surgical instruments
US11877734B2 (en)2007-07-312024-01-23Cilag Gmbh InternationalUltrasonic surgical instruments
US11666784B2 (en)2007-07-312023-06-06Cilag Gmbh InternationalSurgical instruments
US10420579B2 (en)2007-07-312019-09-24Ethicon LlcSurgical instruments
US10828059B2 (en)2007-10-052020-11-10Ethicon LlcErgonomic surgical instruments
US10441308B2 (en)2007-11-302019-10-15Ethicon LlcUltrasonic surgical instrument blades
US11266433B2 (en)2007-11-302022-03-08Cilag Gmbh InternationalUltrasonic surgical instrument blades
US10433866B2 (en)2007-11-302019-10-08Ethicon LlcUltrasonic surgical blades
US12369939B2 (en)2007-11-302025-07-29Cilag Gmbh InternationalUltrasonic surgical blades
US12383296B2 (en)2007-11-302025-08-12Cilag Gmbh InternationalUltrasonic surgical instrument blades
US11439426B2 (en)2007-11-302022-09-13Cilag Gmbh InternationalUltrasonic surgical blades
US10463887B2 (en)2007-11-302019-11-05Ethicon LlcUltrasonic surgical blades
US11253288B2 (en)2007-11-302022-02-22Cilag Gmbh InternationalUltrasonic surgical instrument blades
US10433865B2 (en)2007-11-302019-10-08Ethicon LlcUltrasonic surgical blades
US11766276B2 (en)2007-11-302023-09-26Cilag Gmbh InternationalUltrasonic surgical blades
US10265094B2 (en)2007-11-302019-04-23Ethicon LlcUltrasonic surgical blades
US10888347B2 (en)2007-11-302021-01-12Ethicon LlcUltrasonic surgical blades
US11690643B2 (en)2007-11-302023-07-04Cilag Gmbh InternationalUltrasonic surgical blades
US10245065B2 (en)2007-11-302019-04-02Ethicon LlcUltrasonic surgical blades
US11890491B2 (en)2008-08-062024-02-06Cilag Gmbh InternationalDevices and techniques for cutting and coagulating tissue
US10335614B2 (en)2008-08-062019-07-02Ethicon LlcDevices and techniques for cutting and coagulating tissue
US10709906B2 (en)2009-05-202020-07-14Ethicon LlcCoupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10688321B2 (en)2009-07-152020-06-23Ethicon LlcUltrasonic surgical instruments
US11717706B2 (en)2009-07-152023-08-08Cilag Gmbh InternationalUltrasonic surgical instruments
US10172669B2 (en)2009-10-092019-01-08Ethicon LlcSurgical instrument comprising an energy trigger lockout
US11871982B2 (en)2009-10-092024-01-16Cilag Gmbh InternationalSurgical generator for ultrasonic and electrosurgical devices
US8574231B2 (en)2009-10-092013-11-05Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US10201382B2 (en)2009-10-092019-02-12Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US10265117B2 (en)2009-10-092019-04-23Ethicon LlcSurgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US8906016B2 (en)2009-10-092014-12-09Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising steam control paths
US12408967B2 (en)2009-10-092025-09-09Cilag Gmbh InternationalSurgical generator for ultrasonic and electrosurgical devices
US8939974B2 (en)2009-10-092015-01-27Ethicon Endo-Surgery, Inc.Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US11090104B2 (en)2009-10-092021-08-17Cilag Gmbh InternationalSurgical generator for ultrasonic and electrosurgical devices
US8747404B2 (en)2009-10-092014-06-10Ethicon Endo-Surgery, Inc.Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US10441345B2 (en)2009-10-092019-10-15Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US11369402B2 (en)2010-02-112022-06-28Cilag Gmbh InternationalControl systems for ultrasonically powered surgical instruments
US10835768B2 (en)2010-02-112020-11-17Ethicon LlcDual purpose surgical instrument for cutting and coagulating tissue
US11382642B2 (en)2010-02-112022-07-12Cilag Gmbh InternationalRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10299810B2 (en)2010-02-112019-05-28Ethicon LlcRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10117667B2 (en)2010-02-112018-11-06Ethicon LlcControl systems for ultrasonically powered surgical instruments
US9375232B2 (en)2010-03-262016-06-28Ethicon Endo-Surgery, LlcSurgical cutting and sealing instrument with reduced firing force
US9610091B2 (en)2010-04-122017-04-04Ethicon Endo-Surgery, LlcElectrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8834518B2 (en)2010-04-122014-09-16Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9808308B2 (en)2010-04-122017-11-07Ethicon LlcElectrosurgical cutting and sealing instruments with cam-actuated jaws
US8496682B2 (en)2010-04-122013-07-30Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8535311B2 (en)2010-04-222013-09-17Ethicon Endo-Surgery, Inc.Electrosurgical instrument comprising closing and firing systems
US9456864B2 (en)2010-05-172016-10-04Ethicon Endo-Surgery, LlcSurgical instruments and end effectors therefor
US11090103B2 (en)2010-05-212021-08-17Cilag Gmbh InternationalMedical device
US8888776B2 (en)2010-06-092014-11-18Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing an electrode
US8795276B2 (en)2010-06-092014-08-05Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing a plurality of electrodes
US8926607B2 (en)2010-06-092015-01-06Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US8790342B2 (en)2010-06-092014-07-29Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing pressure-variation electrodes
US9005199B2 (en)2010-06-102015-04-14Ethicon Endo-Surgery, Inc.Heat management configurations for controlling heat dissipation from electrosurgical instruments
US9737358B2 (en)2010-06-102017-08-22Ethicon LlcHeat management configurations for controlling heat dissipation from electrosurgical instruments
WO2011156547A3 (en)*2010-06-102012-01-26Ethicon Endo-Surgery, Inc.Cooling configurations for electro-surgical instruments
US8753338B2 (en)2010-06-102014-06-17Ethicon Endo-Surgery, Inc.Electrosurgical instrument employing a thermal management system
US8764747B2 (en)2010-06-102014-07-01Ethicon Endo-Surgery, Inc.Electrosurgical instrument comprising sequentially activated electrodes
US9149324B2 (en)2010-07-082015-10-06Ethicon Endo-Surgery, Inc.Surgical instrument comprising an articulatable end effector
US8453906B2 (en)2010-07-142013-06-04Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US8613383B2 (en)2010-07-142013-12-24Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
WO2012012602A1 (en)*2010-07-222012-01-26Ethicon Endo-Surgery, Inc.Electrosurgical instrument with separate closure and cutting members
US10278721B2 (en)2010-07-222019-05-07Ethicon LlcElectrosurgical instrument with separate closure and cutting members
CN103096827A (en)*2010-07-222013-05-08伊西康内外科公司Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en)2010-07-232020-01-07Ethicon LlcSurgical instrument
US8979843B2 (en)2010-07-232015-03-17Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9192431B2 (en)2010-07-232015-11-24Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9011437B2 (en)2010-07-232015-04-21Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9707030B2 (en)2010-10-012017-07-18Ethicon Endo-Surgery, LlcSurgical instrument with jaw member
US9554846B2 (en)2010-10-012017-01-31Ethicon Endo-Surgery, LlcSurgical instrument with jaw member
US8628529B2 (en)2010-10-262014-01-14Ethicon Endo-Surgery, Inc.Surgical instrument with magnetic clamping force
US8715277B2 (en)2010-12-082014-05-06Ethicon Endo-Surgery, Inc.Control of jaw compression in surgical instrument having end effector with opposing jaw members
US10433900B2 (en)2011-07-222019-10-08Ethicon LlcSurgical instruments for tensioning tissue
US9259265B2 (en)2011-07-222016-02-16Ethicon Endo-Surgery, LlcSurgical instruments for tensioning tissue
US10166060B2 (en)2011-08-302019-01-01Ethicon LlcSurgical instruments comprising a trigger assembly
US9044243B2 (en)2011-08-302015-06-02Ethcon Endo-Surgery, Inc.Surgical cutting and fastening device with descendible second trigger arrangement
US9421060B2 (en)2011-10-242016-08-23Ethicon Endo-Surgery, LlcLitz wire battery powered device
US9414880B2 (en)2011-10-242016-08-16Ethicon Endo-Surgery, LlcUser interface in a battery powered device
US9333025B2 (en)2011-10-242016-05-10Ethicon Endo-Surgery, LlcBattery initialization clip
US9283027B2 (en)2011-10-242016-03-15Ethicon Endo-Surgery, LlcBattery drain kill feature in a battery powered device
US9314292B2 (en)2011-10-242016-04-19Ethicon Endo-Surgery, LlcTrigger lockout mechanism
US10779876B2 (en)2011-10-242020-09-22Ethicon LlcBattery powered surgical instrument
AU2012244379B2 (en)*2011-11-102014-01-30Covidien LpSurgical forceps
EP3153126A1 (en)*2011-11-102017-04-12Covidien LPSurgical forceps
US9168088B2 (en)2011-11-102015-10-27Covidien LpSurgical forceps
EP2591744A1 (en)*2011-11-102013-05-15Covidien LPSurgical forceps
CN103099670B (en)*2011-11-102016-08-03科维蒂恩有限合伙公司 surgical forceps
US9375245B2 (en)2011-11-102016-06-28Covidien LpSurgical forceps
CN103099670A (en)*2011-11-102013-05-15科维蒂恩有限合伙公司Surgical forceps
US8968309B2 (en)2011-11-102015-03-03Covidien LpSurgical forceps
US10729494B2 (en)2012-02-102020-08-04Ethicon LlcRobotically controlled surgical instrument
US10517627B2 (en)2012-04-092019-12-31Ethicon LlcSwitch arrangements for ultrasonic surgical instruments
US12167866B2 (en)2012-04-092024-12-17Cilag Gmbh InternationalSwitch arrangements for ultrasonic surgical instruments
US11419626B2 (en)2012-04-092022-08-23Cilag Gmbh InternationalSwitch arrangements for ultrasonic surgical instruments
US11839420B2 (en)2012-06-282023-12-12Cilag Gmbh InternationalStapling assembly comprising a firing member push tube
US11523859B2 (en)2012-06-282022-12-13Cilag Gmbh InternationalSurgical instrument assembly including a removably attachable end effector
US10987123B2 (en)2012-06-282021-04-27Ethicon LlcSurgical instruments with articulating shafts
US11547465B2 (en)2012-06-282023-01-10Cilag Gmbh InternationalSurgical end effector jaw and electrode configurations
US10543008B2 (en)2012-06-292020-01-28Ethicon LlcUltrasonic surgical instruments with distally positioned jaw assemblies
US11602371B2 (en)2012-06-292023-03-14Cilag Gmbh InternationalUltrasonic surgical instruments with control mechanisms
US10335182B2 (en)2012-06-292019-07-02Ethicon LlcSurgical instruments with articulating shafts
US10524872B2 (en)2012-06-292020-01-07Ethicon LlcClosed feedback control for electrosurgical device
US11426191B2 (en)2012-06-292022-08-30Cilag Gmbh InternationalUltrasonic surgical instruments with distally positioned jaw assemblies
US12268408B2 (en)2012-06-292025-04-08Cilag Gmbh InternationalHaptic feedback devices for surgical robot
US10966747B2 (en)2012-06-292021-04-06Ethicon LlcHaptic feedback devices for surgical robot
US10335183B2 (en)2012-06-292019-07-02Ethicon LlcFeedback devices for surgical control systems
US11096752B2 (en)2012-06-292021-08-24Cilag Gmbh InternationalClosed feedback control for electrosurgical device
US11717311B2 (en)2012-06-292023-08-08Cilag Gmbh InternationalSurgical instruments with articulating shafts
US10779845B2 (en)2012-06-292020-09-22Ethicon LlcUltrasonic surgical instruments with distally positioned transducers
US11583306B2 (en)2012-06-292023-02-21Cilag Gmbh InternationalSurgical instruments with articulating shafts
US10441310B2 (en)2012-06-292019-10-15Ethicon LlcSurgical instruments with curved section
US11871955B2 (en)2012-06-292024-01-16Cilag Gmbh InternationalSurgical instruments with articulating shafts
US10993763B2 (en)2012-06-292021-05-04Ethicon LlcLockout mechanism for use with robotic electrosurgical device
US10842580B2 (en)2012-06-292020-11-24Ethicon LlcUltrasonic surgical instruments with control mechanisms
US9492224B2 (en)2012-09-282016-11-15EthiconEndo-Surgery, LLCMulti-function bi-polar forceps
US10881449B2 (en)2012-09-282021-01-05Ethicon LlcMulti-function bi-polar forceps
US11179173B2 (en)2012-10-222021-11-23Cilag Gmbh InternationalSurgical instrument
US11324527B2 (en)2012-11-152022-05-10Cilag Gmbh InternationalUltrasonic and electrosurgical devices
US11272952B2 (en)2013-03-142022-03-15Cilag Gmbh InternationalMechanical fasteners for use with surgical energy devices
US10226273B2 (en)2013-03-142019-03-12Ethicon LlcMechanical fasteners for use with surgical energy devices
US9295514B2 (en)2013-08-302016-03-29Ethicon Endo-Surgery, LlcSurgical devices with close quarter articulation features
US9814514B2 (en)2013-09-132017-11-14Ethicon LlcElectrosurgical (RF) medical instruments for cutting and coagulating tissue
US10925659B2 (en)2013-09-132021-02-23Ethicon LlcElectrosurgical (RF) medical instruments for cutting and coagulating tissue
US9861428B2 (en)2013-09-162018-01-09Ethicon LlcIntegrated systems for electrosurgical steam or smoke control
US9265926B2 (en)2013-11-082016-02-23Ethicon Endo-Surgery, LlcElectrosurgical devices
US10912603B2 (en)2013-11-082021-02-09Ethicon LlcElectrosurgical devices
US9949788B2 (en)2013-11-082018-04-24Ethicon Endo-Surgery, LlcElectrosurgical devices
US9526565B2 (en)2013-11-082016-12-27Ethicon Endo-Surgery, LlcElectrosurgical devices
US11033292B2 (en)2013-12-162021-06-15Cilag Gmbh InternationalMedical device
US10912580B2 (en)2013-12-162021-02-09Ethicon LlcMedical device
US10856929B2 (en)2014-01-072020-12-08Ethicon LlcHarvesting energy from a surgical generator
US9795436B2 (en)2014-01-072017-10-24Ethicon LlcHarvesting energy from a surgical generator
US9408660B2 (en)2014-01-172016-08-09Ethicon Endo-Surgery, LlcDevice trigger dampening mechanism
US10779879B2 (en)2014-03-182020-09-22Ethicon LlcDetecting short circuits in electrosurgical medical devices
US9554854B2 (en)2014-03-182017-01-31Ethicon Endo-Surgery, LlcDetecting short circuits in electrosurgical medical devices
US10932847B2 (en)2014-03-182021-03-02Ethicon LlcDetecting short circuits in electrosurgical medical devices
US10092310B2 (en)2014-03-272018-10-09Ethicon LlcElectrosurgical devices
US11399855B2 (en)2014-03-272022-08-02Cilag Gmbh InternationalElectrosurgical devices
US10463421B2 (en)2014-03-272019-11-05Ethicon LlcTwo stage trigger, clamp and cut bipolar vessel sealer
US10524852B1 (en)2014-03-282020-01-07Ethicon LlcDistal sealing end effector with spacers
US11471209B2 (en)2014-03-312022-10-18Cilag Gmbh InternationalControlling impedance rise in electrosurgical medical devices
US10349999B2 (en)2014-03-312019-07-16Ethicon LlcControlling impedance rise in electrosurgical medical devices
US9737355B2 (en)2014-03-312017-08-22Ethicon LlcControlling impedance rise in electrosurgical medical devices
US11337747B2 (en)2014-04-152022-05-24Cilag Gmbh InternationalSoftware algorithms for electrosurgical instruments
US9913680B2 (en)2014-04-152018-03-13Ethicon LlcSoftware algorithms for electrosurgical instruments
US9757186B2 (en)2014-04-172017-09-12Ethicon LlcDevice status feedback for bipolar tissue spacer
US9700333B2 (en)2014-06-302017-07-11Ethicon LlcSurgical instrument with variable tissue compression
US10285724B2 (en)2014-07-312019-05-14Ethicon LlcActuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en)2014-07-312022-08-16Cilag Gmbh InternationalActuation mechanisms and load adjustment assemblies for surgical instruments
US9877776B2 (en)2014-08-252018-01-30Ethicon LlcSimultaneous I-beam and spring driven cam jaw closure mechanism
US10194976B2 (en)2014-08-252019-02-05Ethicon LlcLockout disabling mechanism
US10194972B2 (en)2014-08-262019-02-05Ethicon LlcManaging tissue treatment
US10639092B2 (en)2014-12-082020-05-05Ethicon LlcElectrode configurations for surgical instruments
US10111699B2 (en)2014-12-222018-10-30Ethicon LlcRF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10751109B2 (en)2014-12-222020-08-25Ethicon LlcHigh power battery powered RF amplifier topology
US10092348B2 (en)2014-12-222018-10-09Ethicon LlcRF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en)2014-12-222017-12-26Ethicon LlcEnd effector with detectable configurations
US10159524B2 (en)2014-12-222018-12-25Ethicon LlcHigh power battery powered RF amplifier topology
US11311326B2 (en)2015-02-062022-04-26Cilag Gmbh InternationalElectrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en)2015-03-172019-06-18Ethicon LlcManaging tissue treatment
US10342602B2 (en)2015-03-172019-07-09Ethicon LlcManaging tissue treatment
US10595929B2 (en)2015-03-242020-03-24Ethicon LlcSurgical instruments with firing system overload protection mechanisms
US10314638B2 (en)2015-04-072019-06-11Ethicon LlcArticulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en)2015-04-102018-11-06Ethicon LlcSurgical generator systems and related methods
US10130410B2 (en)2015-04-172018-11-20Ethicon LlcElectrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en)2015-04-292018-01-23Ethicon LlcRF tissue sealer with mode selection
US12156674B2 (en)2015-06-172024-12-03Cilag Gmbh InternationalUltrasonic surgical blade for use with ultrasonic surgical instruments
US11020140B2 (en)2015-06-172021-06-01Cilag Gmbh InternationalUltrasonic surgical blade for use with ultrasonic surgical instruments
US11129669B2 (en)2015-06-302021-09-28Cilag Gmbh InternationalSurgical system with user adaptable techniques based on tissue type
US11141213B2 (en)2015-06-302021-10-12Cilag Gmbh InternationalSurgical instrument with user adaptable techniques
US11553954B2 (en)2015-06-302023-01-17Cilag Gmbh InternationalTranslatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en)2015-06-302021-07-06Cilag Gmbh InternationalSurgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11903634B2 (en)2015-06-302024-02-20Cilag Gmbh InternationalSurgical instrument with user adaptable techniques
US10765470B2 (en)2015-06-302020-09-08Ethicon LlcSurgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10898256B2 (en)2015-06-302021-01-26Ethicon LlcSurgical system with user adaptable techniques based on tissue impedance
US10357303B2 (en)2015-06-302019-07-23Ethicon LlcTranslatable outer tube for sealing using shielded lap chole dissector
US10952788B2 (en)2015-06-302021-03-23Ethicon LlcSurgical instrument with user adaptable algorithms
US10154852B2 (en)2015-07-012018-12-18Ethicon LlcUltrasonic surgical blade with improved cutting and coagulation features
US10736685B2 (en)2015-09-302020-08-11Ethicon LlcGenerator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US11058475B2 (en)2015-09-302021-07-13Cilag Gmbh InternationalMethod and apparatus for selecting operations of a surgical instrument based on user intention
US10687884B2 (en)2015-09-302020-06-23Ethicon LlcCircuits for supplying isolated direct current (DC) voltage to surgical instruments
US11033322B2 (en)2015-09-302021-06-15Ethicon LlcCircuit topologies for combined generator
US11766287B2 (en)2015-09-302023-09-26Cilag Gmbh InternationalMethods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10751108B2 (en)2015-09-302020-08-25Ethicon LlcProtection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10194973B2 (en)2015-09-302019-02-05Ethicon LlcGenerator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10624691B2 (en)2015-09-302020-04-21Ethicon LlcTechniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11559347B2 (en)2015-09-302023-01-24Cilag Gmbh InternationalTechniques for circuit topologies for combined generator
US10610286B2 (en)2015-09-302020-04-07Ethicon LlcTechniques for circuit topologies for combined generator
US11666375B2 (en)2015-10-162023-06-06Cilag Gmbh InternationalElectrode wiping surgical device
US10595930B2 (en)2015-10-162020-03-24Ethicon LlcElectrode wiping surgical device
US10959771B2 (en)2015-10-162021-03-30Ethicon LlcSuction and irrigation sealing grasper
US10179022B2 (en)2015-12-302019-01-15Ethicon LlcJaw position impedance limiter for electrosurgical instrument
US10959806B2 (en)2015-12-302021-03-30Ethicon LlcEnergized medical device with reusable handle
US10575892B2 (en)2015-12-312020-03-03Ethicon LlcAdapter for electrical surgical instruments
US10537351B2 (en)2016-01-152020-01-21Ethicon LlcModular battery powered handheld surgical instrument with variable motor control limits
US11684402B2 (en)2016-01-152023-06-27Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11974772B2 (en)2016-01-152024-05-07Cilag GmbH IntemationalModular battery powered handheld surgical instrument with variable motor control limits
US11751929B2 (en)2016-01-152023-09-12Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US12201339B2 (en)2016-01-152025-01-21Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10842523B2 (en)2016-01-152020-11-24Ethicon LlcModular battery powered handheld surgical instrument and methods therefor
US12193698B2 (en)2016-01-152025-01-14Cilag Gmbh InternationalMethod for self-diagnosing operation of a control switch in a surgical instrument system
US11229450B2 (en)2016-01-152022-01-25Cilag Gmbh InternationalModular battery powered handheld surgical instrument with motor drive
US12239360B2 (en)2016-01-152025-03-04Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10779849B2 (en)2016-01-152020-09-22Ethicon LlcModular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11229471B2 (en)2016-01-152022-01-25Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US12402906B2 (en)2016-01-152025-09-02Cilag Gmbh InternationalModular battery powered handheld surgical instrument and methods therefor
US11896280B2 (en)2016-01-152024-02-13Cilag Gmbh InternationalClamp arm comprising a circuit
US10251664B2 (en)2016-01-152019-04-09Ethicon LlcModular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11134978B2 (en)2016-01-152021-10-05Cilag Gmbh InternationalModular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US11129670B2 (en)2016-01-152021-09-28Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11058448B2 (en)2016-01-152021-07-13Cilag Gmbh InternationalModular battery powered handheld surgical instrument with multistage generator circuits
US10716615B2 (en)2016-01-152020-07-21Ethicon LlcModular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en)2016-01-152020-07-14Ethicon LlcModular battery powered handheld surgical instrument with energy conservation techniques
US11051840B2 (en)2016-01-152021-07-06Ethicon LlcModular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10828058B2 (en)2016-01-152020-11-10Ethicon LlcModular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10299821B2 (en)2016-01-152019-05-28Ethicon LlcModular battery powered handheld surgical instrument with motor control limit profile
US11202670B2 (en)2016-02-222021-12-21Cilag Gmbh InternationalMethod of manufacturing a flexible circuit electrode for electrosurgical instrument
US10555769B2 (en)2016-02-222020-02-11Ethicon LlcFlexible circuits for electrosurgical instrument
US10856934B2 (en)2016-04-292020-12-08Ethicon LlcElectrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en)2016-04-292020-05-12Ethicon LlcNon-linear jaw gap for electrosurgical instruments
US10702329B2 (en)2016-04-292020-07-07Ethicon LlcJaw structure with distal post for electrosurgical instruments
US10485607B2 (en)2016-04-292019-11-26Ethicon LlcJaw structure with distal closure for electrosurgical instruments
US10987156B2 (en)2016-04-292021-04-27Ethicon LlcElectrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US11864820B2 (en)2016-05-032024-01-09Cilag Gmbh InternationalMedical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en)2016-05-032019-10-29Ethicon LlcMedical device with a bilateral jaw configuration for nerve stimulation
US10966744B2 (en)2016-07-122021-04-06Ethicon LlcUltrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en)2016-07-122024-01-30Cilag Gmbh InternationalUltrasonic surgical instrument with piezoelectric central lumen transducer
US10245064B2 (en)2016-07-122019-04-02Ethicon LlcUltrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en)2016-07-132021-01-19Ethicon LlcUltrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en)2016-07-152020-11-24Ethicon LlcUltrasonic surgical instruments having offset blades
US12114914B2 (en)2016-08-052024-10-15Cilag Gmbh InternationalMethods and systems for advanced harmonic energy
US10376305B2 (en)2016-08-052019-08-13Ethicon LlcMethods and systems for advanced harmonic energy
US11344362B2 (en)2016-08-052022-05-31Cilag Gmbh InternationalMethods and systems for advanced harmonic energy
US10285723B2 (en)2016-08-092019-05-14Ethicon LlcUltrasonic surgical blade with improved heel portion
USD924400S1 (en)2016-08-162021-07-06Cilag Gmbh InternationalSurgical instrument
USD1049376S1 (en)2016-08-162024-10-29Cilag Gmbh InternationalSurgical instrument
USD847990S1 (en)2016-08-162019-05-07Ethicon LlcSurgical instrument
US11350959B2 (en)2016-08-252022-06-07Cilag Gmbh InternationalUltrasonic transducer techniques for ultrasonic surgical instrument
US10779847B2 (en)2016-08-252020-09-22Ethicon LlcUltrasonic transducer to waveguide joining
US11925378B2 (en)2016-08-252024-03-12Cilag Gmbh InternationalUltrasonic transducer for surgical instrument
US10952759B2 (en)2016-08-252021-03-23Ethicon LlcTissue loading of a surgical instrument
US10420580B2 (en)2016-08-252019-09-24Ethicon LlcUltrasonic transducer for surgical instrument
US10751117B2 (en)2016-09-232020-08-25Ethicon LlcElectrosurgical instrument with fluid diverter
US11839422B2 (en)2016-09-232023-12-12Cilag Gmbh InternationalElectrosurgical instrument with fluid diverter
US12295644B2 (en)2016-09-232025-05-13Cilag Gmbh InternationalElectrosurgical instrument with fluid diverter
US10603064B2 (en)2016-11-282020-03-31Ethicon LlcUltrasonic transducer
US11998230B2 (en)2016-11-292024-06-04Cilag Gmbh InternationalEnd effector control and calibration
US11266430B2 (en)2016-11-292022-03-08Cilag Gmbh InternationalEnd effector control and calibration
US11033325B2 (en)2017-02-162021-06-15Cilag Gmbh InternationalElectrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en)2017-03-152020-10-13Ethicon LlcElectrosurgical instrument with textured jaws
US12023087B2 (en)2017-03-152024-07-02Cilag Gmbh InternationalElectrosurgical instrument with textured jaws
US11497546B2 (en)2017-03-312022-11-15Cilag Gmbh InternationalArea ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en)2017-06-282020-03-31Ethicon LlcArticulation state detection mechanisms
US10820920B2 (en)2017-07-052020-11-03Ethicon LlcReusable ultrasonic medical devices and methods of their use
US11033323B2 (en)2017-09-292021-06-15Cilag Gmbh InternationalSystems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en)2017-09-292022-11-01Cilag Gmbh InternationalFlexible electrosurgical instrument
US12390264B2 (en)2017-09-292025-08-19Cilag Gmbh InternationalSystems and methods for managing fluid and suction in electrosurgical systems
US11490951B2 (en)2017-09-292022-11-08Cilag Gmbh InternationalSaline contact with electrodes
CN108814682A (en)*2018-04-202018-11-16河南科技大学第附属医院General surgery Wound care instrument
US11607278B2 (en)2019-06-272023-03-21Cilag Gmbh InternationalCooperative robotic surgical systems
US12059224B2 (en)2019-06-272024-08-13Cilag Gmbh InternationalRobotic surgical system with safety and cooperative sensing control
US11413102B2 (en)2019-06-272022-08-16Cilag Gmbh InternationalMulti-access port for surgical robotic systems
US11547468B2 (en)2019-06-272023-01-10Cilag Gmbh InternationalRobotic surgical system with safety and cooperative sensing control
US11612445B2 (en)2019-06-272023-03-28Cilag Gmbh InternationalCooperative operation of robotic arms
US11723729B2 (en)2019-06-272023-08-15Cilag Gmbh InternationalRobotic surgical assembly coupling safety mechanisms
US12114912B2 (en)2019-12-302024-10-15Cilag Gmbh InternationalNon-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11759251B2 (en)2019-12-302023-09-19Cilag Gmbh InternationalControl program adaptation based on device status and user input
US11986234B2 (en)2019-12-302024-05-21Cilag Gmbh InternationalSurgical system communication pathways
US11937863B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalDeflectable electrode with variable compression bias along the length of the deflectable electrode
US11950797B2 (en)2019-12-302024-04-09Cilag Gmbh InternationalDeflectable electrode with higher distal bias relative to proximal bias
US12023086B2 (en)2019-12-302024-07-02Cilag Gmbh InternationalElectrosurgical instrument for delivering blended energy modalities to tissue
US11911063B2 (en)2019-12-302024-02-27Cilag Gmbh InternationalTechniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11812957B2 (en)2019-12-302023-11-14Cilag Gmbh InternationalSurgical instrument comprising a signal interference resolution system
US12053224B2 (en)2019-12-302024-08-06Cilag Gmbh InternationalVariation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11937866B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalMethod for an electrosurgical procedure
US12064109B2 (en)2019-12-302024-08-20Cilag Gmbh InternationalSurgical instrument comprising a feedback control circuit
US12076006B2 (en)2019-12-302024-09-03Cilag Gmbh InternationalSurgical instrument comprising an orientation detection system
US12082808B2 (en)2019-12-302024-09-10Cilag Gmbh InternationalSurgical instrument comprising a control system responsive to software configurations
US11452525B2 (en)2019-12-302022-09-27Cilag Gmbh InternationalSurgical instrument comprising an adjustment system
US11786294B2 (en)2019-12-302023-10-17Cilag Gmbh InternationalControl program for modular combination energy device
US11944366B2 (en)2019-12-302024-04-02Cilag Gmbh InternationalAsymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11786291B2 (en)2019-12-302023-10-17Cilag Gmbh InternationalDeflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779387B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalClamp arm jaw to minimize tissue sticking and improve tissue control
US11779329B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalSurgical instrument comprising a flex circuit including a sensor system
US11986201B2 (en)2019-12-302024-05-21Cilag Gmbh InternationalMethod for operating a surgical instrument
US11744636B2 (en)2019-12-302023-09-05Cilag Gmbh InternationalElectrosurgical systems with integrated and external power sources
US11974801B2 (en)2019-12-302024-05-07Cilag Gmbh InternationalElectrosurgical instrument with flexible wiring assemblies
US11723716B2 (en)2019-12-302023-08-15Cilag Gmbh InternationalElectrosurgical instrument with variable control mechanisms
US12262937B2 (en)2019-12-302025-04-01Cilag Gmbh InternationalUser interface for surgical instrument with combination energy modality end-effector
US11707318B2 (en)2019-12-302023-07-25Cilag Gmbh InternationalSurgical instrument with jaw alignment features
US11696776B2 (en)2019-12-302023-07-11Cilag Gmbh InternationalArticulatable surgical instrument
US11684412B2 (en)2019-12-302023-06-27Cilag Gmbh InternationalSurgical instrument with rotatable and articulatable surgical end effector
US11660089B2 (en)2019-12-302023-05-30Cilag Gmbh InternationalSurgical instrument comprising a sensing system
US12336747B2 (en)2019-12-302025-06-24Cilag Gmbh InternationalMethod of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector
US12343063B2 (en)2019-12-302025-07-01Cilag Gmbh InternationalMulti-layer clamp arm pad for enhanced versatility and performance of a surgical device
US12349961B2 (en)2019-12-302025-07-08Cilag Gmbh InternationalElectrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11589916B2 (en)2019-12-302023-02-28Cilag Gmbh InternationalElectrosurgical instruments with electrodes having variable energy densities
US11974829B2 (en)2021-06-302024-05-07Cilag Gmbh InternationalLink-driven articulation device for a surgical device
US12358136B2 (en)2021-06-302025-07-15Cilag Gmbh InternationalGrasping work determination and indications thereof
US11931026B2 (en)2021-06-302024-03-19Cilag Gmbh InternationalStaple cartridge replacement
US11957342B2 (en)2021-11-012024-04-16Cilag Gmbh InternationalDevices, systems, and methods for detecting tissue and foreign objects during a surgical operation
CN118750153A (en)*2024-08-192024-10-11南昌华安众辉健康科技股份有限公司 A tweezers-type minimally invasive electrode forceps

Also Published As

Publication numberPublication date
ATE304820T1 (en)2005-10-15
WO2001028444A8 (en)2001-07-12
EP1150616B1 (en)2005-09-21
DK1150616T3 (en)2006-02-13
EP1150616A1 (en)2001-11-07
AU6189799A (en)2001-04-30
DE69927411D1 (en)2005-10-27
DE69927411T2 (en)2006-06-22

Similar Documents

PublicationPublication DateTitle
EP1150616B1 (en)An electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US6679882B1 (en)Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
EP1089664B1 (en)An electrosurgical device for coagulating and for making incisions,
US5573535A (en)Bipolar surgical instrument for coagulation and cutting
US6361534B1 (en)Electrosurgical cutting instrument
US5735849A (en)Endoscopic forceps with thumb-slide lock release mechanism
US8303586B2 (en)Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
JP4988909B2 (en) Bipolar forceps with monopolar extension
US5891141A (en)Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures
US5190541A (en)Surgical instrument and method
US5527313A (en)Bipolar surgical instruments
JP3857354B2 (en) Electrosurgical hemostasis device with adaptive electrodes
EP1586278B1 (en)Bipolar electrosurgical instrument with replaceable electrodes
EP1381325B1 (en)Electrosurgical instrument for coagulation and cutting
EP0724863A2 (en)Surgical instrument with expandable cutting element
EP0913126A2 (en)Combined bipolar scissor and grasper
WO1992006644A1 (en)Apparatus for and method of stereotoxic surgery
JP2011235119A (en)Mechanism for dividing tissue in hemostat-style instrument
EP3389531B1 (en)An electrosurgical device
US10660694B2 (en)Vessel sealing instrument and switch assemblies thereof
JPH0630949A (en)Electric scalpel
WO2017176482A1 (en)Electrosurgical device for vessel sealing

Legal Events

DateCodeTitleDescription
AKDesignated states

Kind code of ref document:A1

Designated state(s):AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

ALDesignated countries for regional patents

Kind code of ref document:A1

Designated state(s):GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWEWipo information: entry into national phase

Ref document number:1999948733

Country of ref document:EP

121Ep: the epo has been informed by wipo that ep was designated in this application
AKDesignated states

Kind code of ref document:C1

Designated state(s):AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

ALDesignated countries for regional patents

Kind code of ref document:C1

Designated state(s):GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WRLater publication of a revised version of an international search report
WWPWipo information: published in national office

Ref document number:1999948733

Country of ref document:EP

REGReference to national code

Ref country code:DE

Ref legal event code:8642

WWGWipo information: grant in national office

Ref document number:1999948733

Country of ref document:EP


[8]ページ先頭

©2009-2025 Movatter.jp