CROSS REFERENCE TO RELATED PATENT APPLICATIONSThis patent application is a continuation of U.S. patent application Ser. No. 14/678,742, filed Apr. 3, 2015, entitled MEDICAL DEVICE ADJUSTING OPERATION WHEN USED WITH NON-AUTHENTICATED PATIENT PARAMETER COLLECTING ACCESSORY, currently pending, which is a continuation of U.S. patent application Ser. No. 13/445,776, filed Apr. 12, 2012, entitled MEDICAL DEVICE ADJUSTING OPERATION WHEN USED WITH NON-AUTHENTICATED PATIENT PARAMETER COLLECTING ACCESSORY, issued as U.S. Pat. No. 9,008,766, which is a continuation-in-part of U.S. patent application Ser. No. 12/760,331, filed Apr. 14, 2010, entitled SELECTIVE POWERING OF MEDICAL DEVICE DEPENDING ON AUTHENTICATION OF POWER ADAPTER SYSTEM, issued as U.S. Pat. No. 8,183,823. The U.S. Ser. No. 13/445,776 application is a continuation-in-part application of U.S. patent application Ser. No. 12/760,378, filed Apr. 14, 2010, entitled SELECTIVE RECHARGING OF MEDICAL DEVICE DEPENDING ON AUTHENTICATION OF POWER ADAPTER SYSTEM, issued as U.S. Pat. No. 8,179,087.
Both U.S. patent application Ser. Nos. 12/760,331 and 12/760,378 are continuations-in-part of U.S. patent application Ser. No. 12/131,267, entitled DEFIBRILLATOR BATTERY AUTHENTICATION SYSTEM filed on Jun. 2, 2008, which is now U.S. Pat. No. 7,728,548. All of the above-referenced patents and patent applications are incorporated by reference herein.
FIELDThis invention generally relates to medical devices and accessories for them.
BACKGROUNDIn humans, the heart beats to sustain life. In normal operation, it pumps blood through the various parts of the body. More particularly, the various chamber of the heart contract and expand in a periodic and coordinated fashion, which causes the blood to be pumped regularly. More specifically, the right atrium sends deoxygenated blood into the right ventricle. The right ventricle pumps the blood to the lungs, where it becomes oxygenated, and from where it returns to the left atrium. The left atrium pumps the oxygenated blood to the left ventricle. The left ventricle, then, expels the blood, forcing it to circulate to the various parts of the body. The heart chambers pump because of the heart's electrical control system. More particularly, the sinoatrial (SA) node generates an electrical impulse, which generates further electrical signals. These further signals cause the above-described contractions of the various chambers in the heart, in the right sequence. The electrical pattern created by the sinoatrial (SA) node is called a sinus rhythm.
Sometimes, however, the electrical control system of the heart malfunctions, which can cause the heart to beat irregularly, or not at all. The cardiac rhythm is then generally called an arrhythmia, and some of it may be caused by electrical activity from locations in the heart other than the SA node. Some types of arrhythmia may result in inadequate blood flow, thus reducing the amount of blood pumped to the various parts of the body. Some arrhythmias may even result in a Sudden Cardiac Arrest (SCA). In a SCA, the heart fails to pump blood effectively, and death can occur. In fact, it is estimated that SCA results in more than 250,000 deaths per year in the United States alone. Further, a SCA may result from a condition other than an arrhythmia.
One type of arrhythmia associated with SCA is known as Ventricular Fibrillation (VF). VF is a type of malfunction where the ventricles make rapid, uncoordinated movements, instead of the normal contractions. When that happens, the heart does not pump enough blood. The person's condition will deteriorate rapidly and, if not reversed in time, they will die soon, e.g. within ten minutes.
Ventricular Fibrillation can often be reversed using a life-saving device called a defibrillator. A defibrillator, if applied properly, can administer an electrical shock to the heart. The shock may terminate the VF, thus giving the heart the opportunity to resume pumping blood. If VF is not terminated, the shock may be repeated, often at escalating energies.
A challenge with defibrillation is that the electrical shock must be administered very soon after the onset of VF. There is not much time: the survival rate of persons suffering from VF decreases by about 10% for each minute the administration of a defibrillation shock is delayed. After about 10 minutes the rate of survival for SCA victims averages less than 2%.
The challenge of defibrillating early after the onset of VF is being met in a number of ways. First, for some people who are considered to be at a higher risk of VF or other heart arrythmias, an Implantable Cardioverter Defibrillator (ICD) can be implanted surgically. An ICD can monitor the person's heart, and administer an electrical shock as needed. As such, an ICD reduces the need to have the higher-risk person be monitored constantly by medical personnel.
Regardless, VF can occur unpredictably, even to a person who is not considered at risk. As such, VF can be experienced by many people who lack the benefit of ICD therapy. When VF occurs to a person who does not have an ICD, they collapse, because blood flow has stopped. They should receive therapy quickly.
For a VF victim without an ICD, a different type of defibrillator can be used, which is called an external defibrillator. External defibrillators have been made portable, so they can be brought to a potential VF victim quickly enough to revive them.
During VF, the person's condition deteriorates, because the blood is not flowing to the brain, heart, lungs, and other organs. Blood flow must be restored, if resuscitation attempts are to be successful.
Cardiopulmonary Resuscitation (CPR) is one method of forcing blood flow in a person experiencing cardiac arrest. In addition, CPR is the primary recommended treatment for some patients with some kinds of non-VF cardiac arrest, such as asystole and pulseless electrical activity (PEA). CPR is a combination of techniques that include chest compressions to force blood circulation, and rescue breathing to force respiration.
Properly administered CPR provides oxygenated blood to critical organs of a person in cardiac arrest, thereby minimizing the deterioration that would otherwise occur. As such, CPR can be beneficial for persons experiencing VF, because it slows the deterioration that would otherwise occur while a defibrillator is being retrieved. Indeed, for patients with an extended down-time, survival rates are higher if CPR is administered prior to defibrillation.
Proper treatment and cure of patients oftentimes includes using medical devices. Many of these medical devices, such as defibrillators, use accessories. These accessories are typically replaced more often than the device itself, for example due to wear. Other accessories are intended to be used for only one patient, and are therefore replaced each time the medical device is used with a new patient.
Accessories are typically produced by either the device manufacturer or a party authorized by the device manufacturer. These accessories are made to exacting standards to work properly with the device. Some companies may make accessories that are not authorized by the device manufacturer but still may work with the device. These accessories are known as unauthorized accessories. Sometimes unauthorized accessories are made to lower quality standards than authorized accessories. Due to this lower quality, some unauthorized accessories can cause the device to not function as well, or even cause it to malfunction, both of which may compromise patient care. Oftentimes, users may not be able to distinguish between authorized and un-authorized accessories because some unauthorized accessories are produced and marked to appear as authorized accessories. Thus, there is no way to tell from looking at an accessory whether it will operate properly, in the case of an authorized accessory, or may comprise patient care, in the case of an unauthorized accessory.
Embodiments of the invention address these and other limitations of the prior art.
BRIEF SUMMARYThe present description gives instances of devices, systems, software and methods, the use of which may help overcome problems and limitations of the prior art.
Embodiments include a medical device for use with an accessory capable of collecting a parameter of a patient, the medical device capable of at least a basic functionality, an advanced functionality, and of defibrillating the patient. The device includes a housing structured to couple with the accessory and an energy storage module within the housing for storing an electrical charge that is to be delivered to the patient for the defibrillating. The device also includes a processor in the housing structured to determine whether a data set received from the accessory confirms or not a preset authentication criterion about the accessory. When the accessory is coupled to the housing, the medical device is capable of the defibrillating and the basic functionality. The medical device is additionally capable of the advanced functionality only when the accessory is coupled to the housing and it is determined that the preset authentication criterion is confirmed.
Other embodiments include a method in a medical device for use with an accessory capable of collecting a parameter of a patient and capable of at least a basic functionality, an advanced functionality, and of defibrillating the patient. The method includes enabling the defibrillating ability of the medical device, enabling the basic functionality of the medical device, and enabling the advanced functionality of the medical device. After the accessory is coupled to the medical device, the method determines whether a data set received from the accessory confirms or not a preset authentication criterion about the coupled accessory. The method also disables the advanced functionality of the medical device after it is determined that the preset authentication criterion is not confirmed about the coupled accessory.
An advantage over the prior art is that users of such devices can be secure knowing that patient care is not being compromised by using unauthorized, and perhaps inferior, accessories.
In some embodiments, critical functionality of the medical device is not put at risk due to operation with a faulty, unauthorized accessory. In some embodiments, operators of a medical device are informed early when unauthorized accessories are coupled to the device, alerting such operators of the possibility of compromised patient care. In some embodiments, when the advanced functionality is blocked, operators are informed before such functionality is medically necessary.
These and other features and advantages of this description will become more readily apparent from the following Detailed Description, which proceeds with reference to the drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGSFIG.1 is a diagram of a scene where an external defibrillator is used to save the life of a person according to embodiments.
FIG.2 is a table listing two main types of the external defibrillator shown inFIG.1, and who they might be used by.
FIG.3 is a block diagram of an external defibrillator medical device made according to embodiments, before an accessory has been attached.
FIG.4 is a block diagram of the medical device ofFIG.3, after an authorized accessory has been attached.
FIG.5 is a block diagram of the medical device ofFIG.3, after another authorized accessory has been attached, using a different attachment method than inFIG.4.
FIG.6A is a block diagram of the medical device ofFIG.3, after an example unauthorized accessory has been attached.
FIG.6B is a block diagram of the medical device ofFIG.3, after another example unauthorized accessory has been attached.
FIG.6C is a block diagram of the medical device ofFIG.3, after one more example unauthorized accessory has been attached.
FIG.7 is a conceptual diagram for explaining an operation of the medical device ofFIG.3.
FIG.8 is a detailed block diagram of an example external defibrillator, such as that shown inFIG.3, showing additional components that may be included according to embodiments.
FIG.9 is a detailed flow diagram illustrating example methods according to embodiments of the invention.
DETAILED DESCRIPTIONAs has been mentioned, the present description is about medical devices, methods of operating such medical devices, and a programmed processor to control such medical devices for controlling enabling features of the medical device based on a determination of whether an authorized accessory is attached.
Embodiments are now described in more detail.
FIG.1 is a diagram of a defibrillation scene. Aperson82 is lying on their back.Person82 could be a patient in a hospital, or someone found unconscious, and then turned to be on their back.Person82 is experiencing a condition in their heart85, which could be Ventricular Fibrillation (VF).
A portableexternal defibrillator100 has been brought close toperson82. At least twodefibrillation electrodes104,108 are usually provided withexternal defibrillator100, and are sometimes calledelectrodes104,108.Electrodes104,108 are coupled withexternal defibrillator100 via respective electrode leads105,109. A rescuer (not shown) has attachedelectrodes104,108 to the skin ofperson82.Defibrillator100 is administering, viaelectrodes104,108, a brief, strongelectric pulse111 through the body ofperson82.Pulse111, also known as a defibrillation shock, goes also through heart85, in an attempt to restart it, for saving the life ofperson82.
Defibrillator100 can be one of different types, each with different sets of features and capabilities. The set of capabilities ofdefibrillator100 is determined by planning who would use it, and what training they would be likely to have. Examples are now described.
FIG.2 is a table listing two main types of external defibrillators, and who they are primarily intended to be used by. A first type ofdefibrillator100 is generally called a defibrillator-monitor, because it is typically formed as a single unit in combination with a patient monitor. A defibrillator-monitor is sometimes called monitor-defibrillator. A defibrillator-monitor is intended to be used by persons in the medical professions, such as doctors, nurses, paramedics, emergency medical technicians, etc. Such a defibrillator-monitor is intended to be used in a pre-hospital or hospital scenario.
As a defibrillator, the device can be one of different varieties, or even versatile enough to be able to switch among different modes that individually correspond to the varieties. One variety is that of an automated defibrillator, which can determine whether a shock is needed and, if so, charge to a predetermined energy level and instruct the user to administer the shock. Another variety is that of a manual defibrillator, where the user determines the need and controls administering the shock.
As a patient monitor, the device has features additional to what is minimally needed for mere operation as a defibrillator. These features can be for monitoring physiological indicators of a person in an emergency scenario. These physiological indicators are typically monitored as signals. For example, these signals can include a person's full ECG (electrocardiogram) signals, or impedance between two electrodes. Additionally, these signals can be about the person's temperature, non-invasive blood pressure (NIBP), arterial oxygen saturation/pulse oximetry (SpO2), the concentration or partial pressure of carbon dioxide in the respiratory gases, which is also known as capnography, and so on. These signals can be further stored and/or transmitted as patient data.
A second type ofexternal defibrillator100 is generally called an AED, which stands for “Automated External Defibrillator”. An AED typically makes the shock/no shock determination by itself, automatically. Indeed, it can sense enough physiological conditions of theperson82 via only the showndefibrillation electrodes104,108 ofFIG.1. In its present embodiments, an AED can either administer the shock automatically, or instruct the user to do so, e.g. by pushing a button. Being of a much simpler construction, an AED typically costs much less than a defibrillator-monitor. As such, it makes sense for a hospital, for example, to deploy AEDs at its various floors, in case the more expensive defibrillator-monitor is more critically being deployed at an Intensive Care Unit, and so on.
AEDs, however, can also be used by people who are not in the medical profession. More particularly, an AED can be used by many professional first responders, such as policemen, firemen, etc. Even a person with only first-aid training can use one. And AEDs increasingly can supply instructions to whoever is using them.
AEDs are thus particularly useful, because it is so critical to respond quickly, when a person suffers from VF. Indeed, the people who will first reach the VF sufferer may not be in the medical professions.
Increasing awareness has resulted in AEDs being deployed in public or semi-public spaces, so that even a member of the public can use one, if they have obtained first aid and CPR/AED training on their own initiative. This way, defibrillation can be administered soon enough after the onset of VF, to hopefully be effective in rescuing the person.
There are additional types of external defibrillators, which are not listed inFIG.2. For example, a hybrid defibrillator can have aspects of an AED, and also of a defibrillator-monitor. A usual such aspect is additional ECG monitoring capability.
FIG.3 is a block diagram of an external defibrillator medical device made according to embodiments, before an accessory has been attached. Amedical device300 may use anaccessory477 capable of collecting a parameter of a patient, such as thepatient82 ofFIG.1. Themedical device300 is capable of at least abasic functionality352, anadvanced functionality353, and of defibrillating thepatient351. Themedical device300 includes ahousing301 structured to couple with theaccessory477. Themedical device300 also includes anenergy storage module350 within thehousing301 for storing an electrical charge that is to be delivered to the patient for the defibrillating of the patient. Also within thehousing301 of themedical device300 is aprocessor330 structured to determine whether adata set479 received from theaccessory477 confirms or not a preset authentication criterion about the accessory. This authentication criterion is used by themedical device300 to determine if theaccessory477 is an authorized accessory, and, based on the determination of whether an authorized accessory is attached or coupled to the medical device, set a level of services or cause other actions to occur.
Theaccessory477 includes adata storage device478, which stores anaccessory data set479. Thedata set479 may be read by themedical device300, as described below, and a determination made from the data set used to set a level of functionality for the medical device. Thedata storage device478 may be, for example, a non-volatile memory device, such as a PROM, EPROM, or Flash memory. In other embodiments thedata storage device478 may be an RFID (Radio Frequency Identification) tag, bar code, etc. Similarly, thereader392 may be structured however necessary to read thedata set479,579 from thedata storage device478,578. For example, thereader392 may be an RFID reader, a bar code reader, an infrared reader, or a set of instructions in theprocessor330.
FIG.4 is a block diagram of the medical device ofFIG.3 after an authorized accessory has been attached or coupled to it, whileFIG.5 is a block diagram of the medical device ofFIG.3 after another authorized accessory has been attached using a different attachment method than inFIG.4. More particularly, inFIG.4, theaccessory477 is directly attached or coupled, for example wirelessly coupled to themedical device300, while inFIG.5, theaccessory577 is coupled through aport517 on themedical device300. If theaccessory577 is connected through theport517, themedical device300 could use, for example, inductive coupling to transfer connection and authentication information from the accessory to the medical device. Other types of potential coupling at theport517 may include optical coupling, infrared transmission, or a direct wired connection.
In some embodiments, theaccessory477 or577 may be a non-invasive blood pressure hose, a non-invasive blood pressure cuff, an ECG cable, an ECG electrode, pulse oximetry sensor, a respiration sensor, a communication accessory for transferring patient data, a communication accessory for notification of an event, or a communication accessory for interaction with medical personnel, for instance. If theaccessory477 is a patient parameter collecting accessory, the parameter may include capnography, pulse oximetry, non-invasive blood pressure, ECG with three or more leads, invasive blood pressure, temperature, heart rate, respiration rate or CPR performance monitoring, for example.
An accessory detector, which may or may not be part of areader392 determines if anaccessory477 is attached to themedical device300. After theaccessory477 is attached to themedical device300, regardless of how the accessory is attached or coupled, thereader392 reads thedata set479 stored in thedata storage device478 of theaccessory477. Theprocessor330 uses the data stored within theaccessory data set479 and read by thereader392 to determine if a preset authentication criterion is confirmed. Themedical device300, or theprocessor330 within, then uses this determination to control a level of functionality of the medical device. In some embodiments, instead of theprocessor330, an other processor determines whether operation of themedical device300 is to be according to the advanced functionality or the basic functionality
In some embodiments, when theaccessory477 is coupled to thehousing301, themedical device300 is capable of the defibrillating and thebasic functionality352. Further, in some embodiments, themedical device300 is additionally capable of the advanced functionality only when theaccessory477 is coupled to thehousing301 and it is determined that the preset authentication criterion is confirmed. An alternative operation method is for themedical device300 to not be enabled foradvanced functionality353 until an authorized accessory is attached to it.
When both thebasic functionality352 and theadvanced functionality353 are enabled on themedical device300, oftentimes the functionalities differ by level of service. For example, thebasic functionality352 of themedical device300 may be to report a first aspect of a parameter monitored through theaccessory477, such as an instantaneous value of the monitored parameter, and theadvanced functionality353 may be to report a second aspect of the monitored parameter, for example a trend of values of the monitored parameter. In another example, the first aspect may be an instantaneous value of an oxygen saturation reading, and the second aspect is one of carboxyhemoglobin and methemoglobin. In yet another example, the basic functionality may be to report on processing a 3-lead ECG, and the advanced functionality is to report on processing ECG based on more leads. In still a further example, thebasic functionality352 may be to report one of ventricular fibrillation and ventricular tachycardia, and theadvanced functionality353 is to report on a detected STEMI. In another example, theadvanced functionality353 is to provide a full set of data for ST plotting, but thebasic functionality352 is to provide less than the full set for ST plotting. In yet another example thebasic functionality352 is an AED mode while theadvanced functionality353 is a manual mode.
Other examples ofadvanced functionality353 of themedical device300 include an information display functionality, a synchronized cardioversion therapy, or a pacing therapy.
In some embodiments, to read thedata set479,579 of therespective accessory477,577, theprocessor330 of themedical device300 causes a query to be transmitted to the accessory. Then, thedata set479,579 is received responsive to the query. In other embodiments, thedata set479,579 is received responsive to attaching theaccessory477,577 to thehousing301. In other embodiments, thedata set479,579 is received responsive to power-on of themedical device300. In some embodiments thedata set479,579 received from theaccessory477,577 may be encrypted. In such a case a decryption algorithm is applied by theprocessor330 to determine whether the received data set confirms the authentication or does not confirm the authentication.
FIGS.6A,6B, and6C are block diagrams of themedical device300 ofFIG.3 after various example unauthorized accessories have been attached. Unlike the examples described with reference toFIGS.4 and5, where an authorized accessory was attached to themedical device300 and the medical device was therefore capable of all ofdefibrillation351,basic functionality352, andadvanced functionality353, inFIGS.6A,6B, and6C, anunauthorized accessory677A,677B, or677C, is attached to the medical device. In some embodiments of the invention, attaching an unauthorized accessory to themedical device300 causes the medical device to disable theadvanced functionality353 of the medical device.
Recall from above that themedical device300 may use various methods to read data from the accessory. The difference with reference toFIGS.6A,6B, and6C is that a valid set of data is not received from the accessory. In the example illustrated inFIG.6A, theaccessory677A includes anaccessory data set679A stored in adata storage device678A, however the data stored in the accessory data set does not satisfy the preset criterion at themedical device300 to indicate that the accessory677A is an authorized device. In the example ofFIG.6B, there is no data stored in thedata storage device678B, and therefore does not satisfy the preset criterion, because there is no data with which to make the determination. Finally, in the example ofFIG.6C, there is not even a data storage device present in the accessory677, thus it is impossible to read data from such an accessory, and therefore the preset criterion is also not satisfied.
Thus, in embodiments of the invention, if no data set is received from the accessory, such as the accessory677B or677C, the authentication is not confirmed, and theadvanced functionality353 of themedical device300 is disabled or is not enabled. Also, as stated above, if adata set679A is present in theaccessory677A, but the data within the data set does not indicate that the accessory is an authorized device, then theadvanced functionality353 of themedical device300 is disabled, or is not enabled.
In addition to disabling theadvanced functionality353 of themedical device300, the medical device may take additional action when an unauthorized accessory is attached. For example, if the authentication is not confirmed, themedical device300 may output a warning, such as a warning to the user that the advanced functionality is disabled because an unauthorized accessory is being used. Other actions may include themedical device300 sending a notification to a manufacturer of the medical device if the authentication is not confirmed. In other embodiments, if the authentication is not confirmed, themedical device300 generates and stores an internal record.
In some embodiments, theadvanced functionality353 of themedical device300 is enabled, or not disabled, for a limited time after it is determined that the preset authentication criterion is not confirmed. In other words, theadvanced functionality353 of the medical device may be enabled for a period of time, or for a number of operations or events before becoming disabled. Oftentimes when in this mode themedical device300 will generate a warning to the user, as described above, to alert the user that theadvanced functionality353 will be disabled before or in conjunction with the advanced functionality actually being disabled. This affords the user an opportunity to secure an authorized accessory and attach it to themedical device300 without losing theadvanced functionality353.
Embodiments of the invention are also directed to a control system for a medical device for use with an accessory capable of collecting a parameter of a patient. The medical device is capable of at least a basic functionality, an advanced functionality, and of defibrillating the patient. In such an embodiment, the control system may include, for example, with reference toFIG.3, areader392 structured to read a data set from the accessory, and aprocessor330 coupled to thereader392 and structured to determine whether the data set from the accessory confirms or not a preset authentication criterion about the accessory. In some embodiments the function of thereader392 is included within theprocessor330. When the accessory is coupled to the housing, the medical device is capable of the defibrillating and the basic functionality. Further, the control system is structured to enable the advanced functionality of the medical device only when the accessory is coupled to the housing and it is determined that the preset authentication criterion is confirmed. As described above, the control system may include thereader392 andprocessor330, or the control system may include other components adapted to control the operation of the medical device. Some of such components are described with reference toFIG.9 below.
FIG.7 is a conceptual diagram for explaining an operation of according to embodiments. In aprocedure730, themedical device300 determines whether the attached accessory is authorized or not authorized. If the accessory is an authorized device, themedical device300 operates in thefull mode782, wheredefibrillation351,basic functionality352, andadvanced functionality353 are all possible. If instead the accessory is not authorized, then themedical device300 operates inpartial mode781, wheredefibrillation351 andbasic functionality352 are possible, but whereadvanced functionality353 is not possible.
FIG.8 is a detailed block diagram showing components of anexternal defibrillator800 made according to embodiments, which may be an embodiment of themedical device300 ofFIG.3. These components can be, for example, inexternal defibrillator100 ofFIG.1. Plus, these components ofFIG.8 can be provided in ahousing801, which is also known ascasing801.
External defibrillator800 is intended for use by auser880, who would be the rescuer.Defibrillator800 typically includes adefibrillation port810, such as a socket inhousing801.Defibrillation port810 includesnodes814,818.Defibrillation electrodes804,808, which can be similar toelectrodes104,108, can be plugged indefibrillation port810, so as to make electrical contact withnodes814,818, respectively. It is also possible that electrodes can be connected continuously todefibrillation port810, etc. Either way,defibrillation port810 can be used for guiding via electrodes toperson82 an electrical charge that has been stored indefibrillator800, as will be seen later in this document.
Ifdefibrillator800 is actually a defibrillator-monitor, as was described with reference toFIG.2, then it will typically also have anECG port819 inhousing801, for plugging in ECG leads809. ECG leads809 can help sense an ECG signal, e.g. a 12-lead signal, or from a different number of leads. Moreover, a defibrillator-monitor could have additional ports (not shown), such as to receive accessories, and another component825 for the above described additional features, such as patient signals.
Defibrillator800 also includes ameasurement circuit820.Measurement circuit820 receives physiological signals fromECG port819, and also from other ports, if provided. These physiological signals are sensed, and information about them is rendered bycircuit820 as data, or other signals, etc.
Ifdefibrillator800 is actually an AED, it may lackECG port819.Measurement circuit820 can obtain physiological signals throughnodes814,818 instead, whendefibrillation electrodes804,808 are attached toperson82. In these cases, a person's ECG signal can be sensed as a voltage difference betweenelectrodes804,808. Plus, impedance betweenelectrodes804,808 can be sensed for detecting, among other things, whether theseelectrodes804,808 have been inadvertently disconnected from the person.
Defibrillator800 also includes aprocessor830.Processor830 may be implemented in any number of ways. Such ways include, by way of example and not of limitation, digital and/or analog processors such as microprocessors and digital-signal processors (DSPs); controllers such as microcontrollers; software running in a machine; programmable circuits such as Field Programmable Gate Arrays (FPGAs), Field-Programmable Analog Arrays (FPAAs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), any combination of one or more of these, and so on.
Processor830 can be considered to have a number of modules. One such module can be adetection module832, which senses outputs ofmeasurement circuit820.Detection module832 can include a VF detector. Thus, the person's sensed ECG can be used to determine whether the person is experiencing VF.
Another such module inprocessor830 can be anadvice module834, which arrives at advice based on outputs ofdetection module832.Advice module834 can include a Shock Advisory Algorithm, implement decision rules, and so on. The advice can be to shock, to not shock, to administer other forms of therapy, and so on. If the advice is to shock, some external defibrillator embodiments merely report that to the user, and prompt them to do it. Other embodiments further execute the advice, by administering the shock. If the advice is to administer CPR,defibrillator800 may further issue prompts for it, and so on.
Processor830 can include additional modules, such asmodule836, for other functions. In addition, ifother component825 is indeed provided, it may be operated in part byprocessor830, etc.
Areader892 may be included within theprocessor830 as areader module892, or may be a separate circuit or function. Thereader892 may be coupled to any or all of thedefibrillation port810, theECG port819, and any other port that receives an accessory. Thereader892 may read data from the accessory. Then, theprocessor830 may use a module, for example theother module836, to determine whether the accessory is an authorized accessory. The determination may be made based on the data read from the accessory by thereader892 and applying the read data to one or more preset authentication criteria. After it is determined whether or not the accessory is an authorized one, the processor may control which of the functionalities of thedefibrillator800 to enable or disable.
Defibrillator800 optionally further includes amemory838, which can work together withprocessor830.Memory838 may be implemented in any number of ways. Such ways include, by way of example and not of limitation, nonvolatile memories (NVM), read-only memories (ROM), random access memories (RAM), any combination of these, and so on.Memory838, if provided, can include programs forprocessor830, and so on. The programs can be operational for the inherent needs ofprocessor830, and can also include protocols and ways that decisions can be made byadvice module834. In addition,memory838 can store prompts foruser880, etc. Moreover,memory838 can store patient data.
Defibrillator800 may also include apower source840. To enable portability ofdefibrillator800,power source840 typically includes a battery. Such a battery is typically implemented as a battery pack, which can be rechargeable or not. Sometimes, a combination is used, of rechargeable and non-rechargeable battery packs. Other embodiments ofpower source840 can include AC power override, for where AC power will be available, and so on. In some embodiments,power source840 is controlled byprocessor830.
Defibrillator800 additionally includes anenergy storage module850.Module850 is where some electrical energy is stored, when preparing it for sudden discharge to administer a shock.Module850 can be charged frompower source840 to the right amount of energy, as controlled byprocessor830. In typical implementations,module850 includes one ormore capacitors852, and so on.
Defibrillator800 moreover includes adischarge circuit855.Circuit855 can be controlled to permit the energy stored inmodule850 to be discharged tonodes814,818, and thus also todefibrillation electrodes804,808.Circuit855 can include one ormore switches857. Those can be made in a number of ways, such as by an H-bridge, and so on.
Defibrillator800 further includes auser interface870 foruser880.User interface870 can be made in any number of ways. For example,interface870 may include a screen, to display what is detected and measured, provide visual feedback to the rescuer for their resuscitation attempts, and so on.Interface870 may also include a speaker, to issue voice prompts, etc.Interface870 may additionally include various controls, such as pushbuttons, keyboards, and so on. In addition,discharge circuit855 can be controlled byprocessor830, or directly byuser880 viauser interface870, and so on.
Defibrillator800 can optionally include other components. For example, acommunication module890 may be provided for communicating with other machines. Such communication can be performed wirelessly, or via wire, or by infrared communication, and so on. This way, data can be communicated, such as patient data, incident information, therapy attempted, CPR performance, and so on.
FIG.9 is a detailed flow diagram illustrating example methods according to embodiments of the invention. Anexample flow900, which accords to embodiments of the invention, operates within or in conjunction with a medical device for use with an accessory capable of collecting a parameter of a patient and capable of at least a basic functionality, an advanced functionality, and of defibrillating the patient. In theflow900, after the accessory is coupled to the medical device, aprocess904 receives a data set from the coupled accessory. Then, aprocess908 determines whether a data set received from the accessory confirms or not a preset authentication criterion about the coupled accessory.
If theprocess908 determines that the preset authentication criterion about the coupled accessory is not confirmed, then aprocess910 disables the advanced functionality and then aprocess914 collects the patient parameter. Instead, if theprocess908 determines that the preset authentication criterion about the coupled accessory is confirmed, then the patient parameter is collected in theprocess914 without the advanced functionality ever having been disabled in theprocess910.
Returning back to the beginning of theflow900, some of the optional processes that may be present in theflow900 are illustrated in dashed boxes. Before the data set is received from the coupled accessory in theprocess904, the accessory may be queried in aprocess902. Further, if the data set received from the accessory is encrypted, then the data set may be de-crypted in aprocess906. Finally, between theprocess910 that disables the advanced functionality and theprocess914 that collects the patient parameter, anoptional process912 generates a warning, for example, to the user, that the advanced functionality has been disabled. In other embodiments, the warning generated in theprocess912 may be sent as a notification to a manufacturer of the device, or may be stored as a record. Other method steps are also possible without deviating from the scope of the invention, such as the functions and operations of various components described above with reference to the above figures. For instance, other methods may optionally include detecting whether the accessory is attached or not attached to the housing.
In this description, numerous details have been set forth in order to provide a thorough understanding. In other instances, well-known features have not been described in detail in order to not obscure unnecessarily the description.
A person skilled in the art will be able to practice the present invention in view of this description, which is to be taken as a whole. The specific embodiments as disclosed and illustrated herein are not to be considered in a limiting sense. Indeed, it should be readily apparent to those skilled in the art that what is described herein may be modified in numerous ways. Such ways can include equivalents to what is described herein. In addition, the invention may be practiced in combination with other systems.
The following claims define certain combinations and subcombinations of elements, features, steps, and/or functions, which are regarded as novel and non-obvious. Additional claims for other combinations and subcombinations may be presented in this or a related document.