Movatterモバイル変換


[0]ホーム

URL:


USRE43399E1 - Electrode systems for electrochemical sensors - Google Patents

Electrode systems for electrochemical sensors
Download PDF

Info

Publication number
USRE43399E1
USRE43399E1US12/139,305US13930508AUSRE43399EUS RE43399 E1USRE43399 E1US RE43399E1US 13930508 AUS13930508 AUS 13930508AUS RE43399 EUSRE43399 EUS RE43399E
Authority
US
United States
Prior art keywords
sensor
auxiliary electrode
electrochemical sensor
electrochemical
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US12/139,305
Inventor
Peter C. Simpson
James R. Petisce
Victoria E. Carr-Brendel
James H. Brauker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexcom Inc
Original Assignee
Dexcom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexcom IncfiledCriticalDexcom Inc
Priority to US12/139,305priorityCriticalpatent/USRE43399E1/en
Assigned to DEXCOM, INC.reassignmentDEXCOM, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: CARR-BRENDEL, VICTORIA, BRAUKER, JAMES H., PETISCE, JAMES R., SIMPSON, PETER C.
Assigned to DEXCOM, INC.reassignmentDEXCOM, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: CARR-BRENDEL, VICTORIA, BRAUKER, JAMES H., PETISCE, JAMES R., SIMPSON, PETER C.
Priority to US13/475,770prioritypatent/US20120228134A1/en
Application grantedgrantedCritical
Publication of USRE43399E1publicationCriticalpatent/USRE43399E1/en
Priority to US14/014,216prioritypatent/US20140001042A1/en
Adjusted expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

The present invention relates generally to systems and methods for improved electrochemical measurement of analytes. The preferred embodiments employ electrode systems including an analyte-measuring electrode for measuring the analyte or the product of an enzyme reaction with the analyte and an auxiliary electrode configured to generate oxygen and/or reduce electrochemical interferants. Oxygen generation by the auxiliary electrode advantageously improves oxygen availability to the enzyme and/or counter electrode; thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions. Interferant modification by the auxiliary electrode advantageously renders them substantially non-reactive at the analyte-measuring electrode, thereby reducing or eliminating inaccuracies in the analyte signal due to electrochemical interferants.

Description

RELATED APPLICATION
This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/490,007, filed Jul. 25, 2003, the contents of which are hereby incorporated by reference in their entirety.
FIELD OF THE INVENTION
The present invention relates generally to systems and methods for improving electrochemical sensor performance.
BACKGROUND OF THE INVENTION
Electrochemical sensors are useful in chemistry and medicine to determine the presence or concentration of a biological analyte. Such sensors are useful, for example, to monitor glucose in diabetic patients and lactate during critical care events.
Diabetes mellitus is a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent) and/or in which insulin is not effective (Type 2 or non-insulin dependent). In the diabetic state, the victim suffers from high blood sugar, which causes an array of physiological derangements (kidney failure, skin ulcers, or bleeding into the vitreous of the eye) associated with the deterioration of small blood vessels. A hypoglycemic reaction (low blood sugar) is induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-lowering agent accompanied by extraordinary exercise or insufficient food intake.
Conventionally, a diabetic person carries a self-monitoring blood glucose (SMBG) monitor, which typically comprises uncomfortable finger pricking methods. Due to the lack of comfort and convenience, a diabetic will normally only measure his or her glucose level two to four times per day. Unfortunately, these time intervals are spread apart so far that the diabetic will likely find out too late, sometimes incurring dangerous side effects, of a hyperglycemic or hypoglycemic condition. It is not only unlikely that a diabetic will take a timely SMBG value, but additionally the diabetic will not know if their blood glucose value is going up (higher) or down (lower) based on conventional methods.
Consequently, a variety of transdermal and implantable electrochemical sensors are being developed for continuously detecting and/or quantifying blood glucose values. Many implantable glucose sensors suffer from complications within the body and provide only short-term or less-than-accurate working of blood glucose. Similarly, transdermal sensors have problems in accurately working and reporting back glucose values continuously over extended periods of time. Some efforts have been made to obtain blood glucose data from implantable devices and retrospectively determine blood glucose trends for analysis; however these efforts do not aid the diabetic in determining real-time blood glucose information. Some efforts have also been made to obtain blood glucose data from transdermal devices for prospective data analysis, however similar problems have occurred.
SUMMARY OF THE PREFERRED EMBODIMENTS
In contrast to the prior art, the sensors of preferred embodiments advantageously generate oxygen to allow the sensor to function at sufficient oxygen levels independent of the oxygen concentration in the surrounding environment. In another aspect of the preferred embodiments, systems and methods for modifying electrochemical interferants are provided.
Accordingly, in a first embodiment, an electrochemical sensor for determining a presence or a concentration of an analyte in a fluid is provided, the sensor comprising a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte; an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface.
In an aspect of the first embodiment, the auxiliary electrode comprises a conductive material selected from the group consisting of a conductive metal, a conductive polymer, and a blend of a conductive metal and a conductive polymer.
In an aspect of the first embodiment, the auxiliary electrode comprises a form selected from the group consisting of a mesh, a grid, and a plurality of spaced wires.
In an aspect of the first embodiment, the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode.
In an aspect of the first embodiment, the polymer comprises a material that is impermeable to glucose but is permeable to oxygen.
In an aspect of the first embodiment, the polymer comprises a material that is impermeable to glucose but is permeable to oxygen and permeable to interfering species.
In an aspect of the first embodiment, the polymer comprises a material having a molecular weight that blocks glucose and allows transport therethrough of oxygen, urate, ascorbate, and acetaminophen.
In an aspect of the first embodiment, the polymer comprises a material that is permeable to glucose and oxygen.
In an aspect of the first embodiment, the polymer comprises a material that is permeable to glucose, oxygen, and interfering species.
In an aspect of the first embodiment, the polymer comprises a material having a molecular weight that allows transport therethrough of oxygen, glucose, urate, ascorbate, and acetaminophen.
In an aspect of the first embodiment, the auxiliary electrode is configured to be set at a potential of at least about +0.6 V.
In an aspect of the first embodiment, the auxiliary electrode is configured to electrochemically modify an electrochemical interferant to render the electrochemical interferent substantially electrochemically non-reactive at the working electrode.
In an aspect of the first embodiment, the auxiliary electrode is configured to be set at a potential of at least about +0.1 V.
In a second embodiment, an electrochemical sensor for determining a presence or a concentration of an analyte in a fluid is provided, the sensor comprising a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte; an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and an auxiliary electrode comprising a conductive material and configured to modify an electrochemical interferant such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode.
In an aspect of the second embodiment, the auxiliary electrode comprises a conductive material selected from the group consisting of a conductive metal, a conductive polymer, and a blend of a conductive metal and a conductive polymer.
In an aspect of the second embodiment, the auxiliary electrode comprises a form selected from the group consisting of a mesh, a grid, and a plurality of spaced wires.
In an aspect of the second embodiment, the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode.
In an aspect of the second embodiment, the polymer comprises a material that is permeable to an electrochemical interferant.
In an aspect of the second embodiment, the polymer comprises a material that is impermeable to glucose but is permeable to oxygen.
In an aspect of the second embodiment, the polymer comprises a material that is impermeable to glucose but is permeable to oxygen and interferants.
In an aspect of the second embodiment, the polymer comprises a material having a molecular weight that blocks glucose and allows transport therethrough of oxygen, urate, ascorbate, and acetaminophen.
In an aspect of the second embodiment, the polymer comprises a material that is permeable to glucose and oxygen.
In an aspect of the second embodiment, the polymer comprises a material that is permeable to glucose, oxygen, and interferants.
In an aspect of the second embodiment, the polymer comprises a material having a molecular weight that allows transport therethrough of oxygen, glucose, urate, ascorbate, and acetaminophen.
In an aspect of the second embodiment, the auxiliary electrode is configured to be set at a potential of at least about +0.1V.
In an aspect of the second embodiment, the auxiliary electrode is configured to generate oxygen.
In an aspect of the second embodiment, the auxiliary electrode is configured to be set at a potential of at least about +0.6 V.
In a third embodiment, an electrochemical sensor is provided comprising an electroactive surface configured to measure an analyte; and an auxiliary interferant-modifying electrode configured to modify an electrochemical interferant such that the electrochemical interferant is rendered substantially non-reactive at the electroactive surface.
In an aspect of the third embodiment, the auxiliary interferant-modifying electrode comprises a conductive material selected from the group consisting of a conductive metal, a conductive polymer, and a blend of a conductive metal and a conductive polymer.
In an aspect of the third embodiment, the auxiliary interferant-modifying electrode comprises a form selected from the group consisting of a mesh, a grid, and a plurality of spaced wires.
In an aspect of the third embodiment, the auxiliary interferant-modifying electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary interferant-modifying electrode.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded perspective view of one exemplary embodiment of a implantable glucose sensor.
FIG. 2 is a block diagram that illustrates sensor electronics in one exemplary embodiment.
FIG. 3 is a graph that shows a raw data stream obtained from a glucose sensor without an auxiliary electrode of the preferred embodiments.
FIG. 4 is a side schematic illustration of a portion of an electrochemical sensor of the preferred embodiments, showing an auxiliary electrode placed proximal to the enzyme domain within a membrane system.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.
Definitions
In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.
The term “analyte” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensing regions, devices, and methods is glucose. However, other analytes are contemplated as well, including but not limited to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-β hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxycortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1, β); lysozyme; mefloquine; netilmicin; phenobarbitone; phenytoin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky's disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vitamins and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally present in the biological fluid or endogenous, for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body or exogenous, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyindoleacetic acid (FHIAA).
The terms “operable connection,” “operably connected,” and “operably linked” as used herein are broad terms and are used in their ordinary sense, including, without limitation, one or more components linked to another component(s) in a manner that allows transmission of signals between the components. For example, one or more electrodes can be used to detect the amount of analyte in a sample and convert that information into a signal; the signal can then be transmitted to a circuit. In this case, the electrode is “operably linked” to the electronic circuitry.
The term “host” as used herein is a broad term and is used in its ordinary sense, including, without limitation, mammals, particularly humans.
The term “sensor,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the portion or portions of an analyte-monitoring device that detects an analyte. In one embodiment, the sensor includes an electrochemical cell that has a working electrode, a reference electrode, and optionally a counter electrode passing through and secured within the sensor body forming an electrochemically reactive surface at one location on the body, an electronic connection at another location on the body, and a membrane system affixed to the body and covering the electrochemically reactive surface. During general operation of the sensor, a biological sample (for example, blood or interstitial fluid), or a portion thereof, contacts (directly or after passage through one or more membranes or domains) an enzyme (for example, glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the analyte level in the biological sample.
The term “signal output,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, an analog or digital signal directly related to the measured analyte from the analyte-measuring device. The term broadly encompasses a single point, or alternatively, a plurality of time spaced data points from a substantially continuous glucose sensor, which comprises individual measurements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes or longer.
The term “electrochemical cell,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a device in which chemical energy is converted to electrical energy. Such a cell typically consists of two or more electrodes held apart from each other and in contact with an electrolyte solution. Connection of the electrodes to a source of direct electric current renders one of them negatively charged and the other positively charged. Positive ions in the electrolyte migrate to the negative electrode (cathode) and there combine with one or more electrons, losing part or all of their charge and becoming new ions having lower charge or neutral atoms or molecules; at the same time, negative ions migrate to the positive electrode (anode) and transfer one or more electrons to it, also becoming new ions or neutral particles. The overall effect of the two processes is the transfer of electrons from the negative ions to the positive ions, a chemical reaction.
The term “potentiostat,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, an electrical system that controls the potential between the working and reference electrodes of a three-electrode cell at a preset value independent of resistance changes between the electrodes. It forces whatever current is necessary to flow between the working and counter electrodes to keep the desired potential, as long as the cell voltage and current do not exceed the compliance limits of the potentiostat.
The terms “electrochemically reactive surface” and “electroactive surface” as used herein are broad terms and are used in their ordinary sense, including, without limitation, the surface of an electrode where an electrochemical reaction takes place. In one example, a working electrode measures hydrogen peroxide produced by the enzyme catalyzed reaction of the analyte being detected reacts creating an electric current (for example, detection of glucose analyte utilizing glucose oxidase produces H2O2as a by product, H2O2reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2) which produces the electronic current being detected). In the case of the counter electrode, a reducible species, for example, O2is reduced at the electrode surface in order to balance the current being generated by the working electrode.
The term “sensing region” as used herein is a broad term and is used in its ordinary sense, including, without limitation, the region of a monitoring device responsible for the detection of a particular analyte. The sensing region generally comprises a non-conductive body, a working electrode, a reference electrode, and optionally a counter electrode passing through and secured within the body forming electrochemically reactive surfaces on the body and an electronic connective means at another location on the body, and a multi-domain membrane system affixed to the body and covering the electrochemically reactive surface.
The terms “raw data stream” and “data stream,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, an analog or digital signal directly related to the measured an analyte from an analyte sensor. In one example, the raw data stream is digital data in “counts” converted by an A/D converter from an analog signal (for example, voltage or amps) representative of a analyte concentration. The terms broadly encompass a plurality of time spaced data points from a substantially continuous analyte sensor, which comprises individual measurements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes or longer.
The term “counts,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a unit of measurement of a digital signal. In one example, a raw data stream measured in counts is directly related to a voltage (for example, converted by an A/D converter), which is directly related to current from the working electrode. In another example, counter electrode voltage measured in counts is directly related to a voltage.
The terms “electrical potential” and “potential” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, the electrical potential difference between two points in a circuit which is the cause of the flow of a current.
The term “ischemia,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, local and temporary deficiency of blood supply due to obstruction of circulation to a part (for example, a sensor). Ischemia can be caused by mechanical obstruction (for example, arterial narrowing or disruption) of the blood supply, for example.
The term “system noise,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, unwanted electronic or diffusion-related noise which can include Gaussian, motion-related, flicker, kinetic, or other white noise, for example.
The terms “signal artifacts” and “transient non-glucose related signal artifacts that have a higher amplitude than system noise,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, signal noise that is caused by substantially non-glucose reaction rate-limiting phenomena, such as ischemia, pH changes, temperature changes, pressure, and stress, for example. Signal artifacts, as described herein, are typically transient and characterized by a higher amplitude than system noise.
The term “low noise,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, noise that substantially decreases signal amplitude.
The terms “high noise” and “high spikes,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, noise that substantially increases signal amplitude.
The phrase “distal to” as used herein is a broad term and is used in its ordinary sense, including, without limitation, the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a device include a membrane system having a cell disruptive domain and a cell impermeable domain. If the sensor is deemed to be the point of reference and the cell disruptive domain is positioned farther from the sensor, then that domain is distal to the sensor.
The phrase “proximal to” as used herein is a broad term and is used in its ordinary sense, including, without limitation, the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a device include a membrane system having a cell disruptive domain and a cell impermeable domain. If the sensor is deemed to be the point of reference and the cell impermeable domain is positioned nearer to the sensor, then that domain is proximal to the sensor.
The terms “interferants” and “interfering species,” as used herein, are broad terms and are used in their ordinary sense, including, but not limited to, effects and/or species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte measurement. In one example of an electrochemical sensor, interfering species are compounds with an oxidation potential that overlaps with the analyte to be measured.
As employed herein, the following abbreviations apply: Eq and Eqs (equivalents); mEq (milliequivalents); M (molar); mM (millimolar) μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); μg (micrograms); Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); μL (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); h and hr (hours); min. (minutes); s and sec. (seconds); ° C. (degrees Centigrade).
Overview
The preferred embodiments relate to the use of an electrochemical sensor that measures a concentration of an analyte of interest or a substance indicative of the concentration or presence of the analyte in fluid. In some embodiments, the sensor is a continuous device, for example a subcutaneous, transdermal, or intravascular device. In some embodiments, the device can analyze a plurality of intermittent blood samples.
The sensor uses any known method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an output signal indicative of the concentration of the analyte of interest. The sensor is of the type that senses a product or reactant of an enzymatic reaction between an analyte and an enzyme in the presence of oxygen as a measure of the analyte in vivo or in vitro. Such a sensor typically comprises a membrane surrounding the enzyme through which a bodily fluid passes and in which an analyte within the bodily fluid reacts with an enzyme in the presence of oxygen to generate a product. The product is then measured using electrochemical methods and thus the output of an electrode system functions as a measure of the analyte. In some embodiments, the sensor can use an amperometric, coulometric, conductimetric, and/or potentiometric technique for measuring the analyte. In some embodiments, the electrode system can be used with any of a variety of known in vitro or in vivo analyte sensors or monitors.
FIG. 1 is an exploded perspective view of one exemplary embodiment of animplantable glucose sensor10 that utilizes an electrode system16. In this exemplary embodiment, a body with asensing region14 includes an electrode system (16a to16c), also referred to as the electroactive sensing surface, and sensor electronics, which are described in more detail with reference toFIG. 2.
In this embodiment, the electrode system16 is operably connected to the sensor electronics (FIG. 2) and includes electroactive surfaces (including two-, three- or more electrode systems), which are covered by amembrane system18. Themembrane system18 is disposed over the electroactive surfaces of the electrode system16 and provides one or more of the following functions: 1) protection of the exposed electrode surface from the biological environment (cell impermeable domain); 2) diffusion resistance (limitation) of the analyte (resistance domain); 3) a catalyst for enabling an enzymatic reaction (enzyme domain); 4) limitation or blocking of interfering species (interference domain); and/or 5) hydrophilicity at the electrochemically reactive surfaces of the sensor interface (electrolyte domain), for example, such as described in co-pending U.S. patent application Ser. No. 10/838,912, filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR,” the contents of which are incorporated herein by reference in their entirety. The membrane system can be attached to the sensor body by mechanical or chemical methods such as described in co-pending U.S. patent application Ser. No. 10/885,476, filed Jul. 6, 2004 and entitled, “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM” and U.S. patent application Ser. No. 10/838,912 filed May 3, 2004 and entitled, “IMPLANTABLE ANALYTE SENSOR”, which are incorporated herein by reference in their entirety.
In the embodiment ofFIG. 1, the electrode system16 includes three electrodes (workingelectrode16a,counter electrode16b, andreference electrode16c), wherein the counter electrode is provided to balance the current generated by the species being measured at the working electrode. In the case of a glucose oxidase based glucose sensor, the species measured at the working electrode is H2O2. Glucose oxidase, GOX, catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:
GOX+Glucose+O2→Gluconate+H2O2+reduced GOX
The change in H2O2can be monitored to determine glucose concentration because for each glucose molecule metabolized, there is a proportional change in the product H2O2. Oxidation of H2O2by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. The H2O2produced from the glucose oxidase reaction further reacts at the surface of working electrode and produces two protons (2H+), two electrons (2e−), and one oxygen molecule (O2). In such embodiments, because the counter electrode utilizes oxygen as an electron acceptor, the most likely reducible species for this system are oxygen or enzyme generated peroxide. There are two main pathways by which oxygen can be consumed at the counter electrode. These pathways include a four-electron pathway to produce hydroxide and a two-electron pathway to produce hydrogen peroxide. In addition to the counter electrode, oxygen is further consumed by the reduced glucose oxidase within the enzyme domain. Therefore, due to the oxygen consumption by both the enzyme and the counter electrode, there is a net consumption of oxygen within the electrode system. Theoretically, in the domain of the working electrode there is significantly less net loss of oxygen than in the region of the counter electrode. In some embodiments, there is a close correlation between the ability of the counter electrode to maintain current balance and sensor function.
In general, in electrochemical sensors wherein an enzymatic reaction depends on oxygen as a co-reactant, depressed function or inaccuracy can be experienced in low oxygen environments, for example in vivo. Subcutaneously implanted devices are especially susceptible to transient ischemia that can compromise device function; for example, because of the enzymatic reaction required for an implantable amperometric glucose sensor, oxygen must be in excess over glucose in order for the sensor to effectively function as a glucose sensor. If glucose becomes in excess, the sensor turns into an oxygen sensitive device. In vivo, glucose concentration can vary from about one hundred times or more that of the oxygen concentration. Consequently, one limitation of prior art enzymatic-based electrochemical analyte sensors can be caused by oxygen deficiencies, which is described in more detail with reference toFIG. 3.
FIG. 2 is a block diagram that illustrates sensor electronics in one exemplary embodiment; one skilled in the art appreciates however that a variety of sensor electronics configurations can be implemented with the preferred embodiments. In this embodiment, apotentiostat20 is shown, which is operatively connected to electrode system16 (FIG. 1) to obtain a current value, and includes a resistor (not shown) that translates the current into voltage. The A/D converter21 digitizes the analog signal into “counts” for processing. Accordingly, the resulting raw data signal in counts is directly related to the current measured by the potentiostat.
Amicroprocessor22 is the central control unit that housesEEPROM23 andSRAM24, and controls the processing of the sensor electronics. The alternative embodiments can utilize a computer system other than a microprocessor to process data as described herein. In some alternative embodiments, an application-specific integrated circuit (ASIC) can be used for some or all the sensor's central processing.EEPROM23 provides semi-permanent storage of data, storing data such as sensor ID and necessary programming to process data signals (for example, programming for data smoothing such as described elsewhere herein).SRAM24 is used for the system's cache memory, for example for temporarily storing recent sensor data.
Thebattery25 is operatively connected to themicroprocessor22 and provides the necessary power for the sensor. In one embodiment, the battery is a Lithium Manganese Dioxide battery, however any appropriately sized and powered battery can be used. In some embodiments, a plurality of batteries can be used to power the system.Quartz crystal26 is operatively connected to themicroprocessor22 and maintains system time for the computer system.
TheRF Transceiver27 is operably connected to themicroprocessor22 and transmits the sensor data from the sensor to a receiver. Although a RF transceiver is shown here, some other embodiments can include a wired rather than wireless connection to the receiver. In yet other embodiments, the sensor can be transcutaneously connected via an inductive coupling, for example. Thequartz crystal28 provides the system time for synchronizing the data transmissions from the RF transceiver. Thetransceiver27 can be substituted with a transmitter in one embodiment.
AlthoughFIGS. 1 and 2 and associated text illustrate and describe an exemplary embodiment of an implantable glucose sensor, the electrode systems of the preferred embodiments described below can be implemented with any known electrochemical sensor, including U.S. Pat. No. 6,001,067 to Shults et al.; U.S. Pat. No. 6,702,857 to Brauker et al.; U.S. Pat. No. 6,212,416 to Ward et al.; U.S. Pat. No. 6,119,028 to Schulman et al; U.S. Pat. No. 6,400,974 to Lesho; U.S. Pat. No. 6,595,919 to Berner et al.; U.S. Pat. No. 6,141,573 to Kurnik et al.; U.S. Pat. No. 6,122,536 to Sun et al.; European Patent Application EP 1153571 to Varall et al.; U.S. Pat. No. 6,512,939 to Colvin et al.; U.S. Pat. No. 5,605,152 to Slate et al.; U.S. Pat. No. 4,431,004 to Bessman et al.; U.S. Pat. No. 4,703,756 to Gough et al.; U.S. Pat. No. 6,514,718 to Heller et al; to U.S. Pat. No. 5,985,129 to Gough et al.; WO Patent Application Publication No. 2004/021877 to Caduff; U.S. Pat. No. 5,494,562 to Maley et al.; U.S. Pat. No. 6,120,676 to Heller et al.; and U.S. Pat. No. 6,542,765 to Guy et al., co-pending U.S. patent application Ser. No. 10/838,912 filed May 3, 2004 and entitled, “IMPLANTABLE ANALYTE SENSOR”; U.S. patent application Ser. No. 10/789,359 filed Feb. 26, 2004 and entitled, “INTEGRATED DELIVERY DEVICE FOR A CONTINUOUS GLUCOSE SENSOR”; “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA,” the contents of each of which are incorporated herein by reference in their entirety.
FIG. 3 is a graph that depicts a raw data stream obtained from a prior art glucose sensor such as described with reference toFIG. 1. The x-axis represents time in minutes. The y-axis represents sensor data in counts. In this example, sensor output in counts is transmitted every 30-seconds. Theraw data stream30 includes substantially smooth sensor output in some portions, however other portions exhibit erroneous or transient non-glucoserelated signal artifacts32. Particularly, referring to thesignal artifacts32, it is believed that effects of local ischemia on prior art electrochemical sensors creates erroneous (non-glucose) signal values due to oxygen deficiencies either at the enzyme within the membrane system and/or at the counter electrode on the electrode surface.
In one situation, when oxygen is deficient relative to the amount of glucose, then the enzymatic reaction is limited by oxygen rather than glucose. Thus, the output signal is indicative of the oxygen concentration rather than the glucose concentration, producing erroneous signals. Additionally, when an enzymatic reaction is rate-limited by oxygen, glucose is expected to build up in the membrane because it is not completely catabolized during the oxygen deficit. When oxygen is again in excess, there is also excess glucose due to the transient oxygen deficit. The enzyme rate then speeds up for a short period until the excess glucose is catabolized, resulting in spikes of non-glucose related increased sensor output. Accordingly, because excess oxygen (relative to glucose) is necessary for proper sensor function, transient ischemia can result in a loss of signal gain in the sensor data.
In another situation, oxygen deficiency can be seen at the counter electrode when insufficient oxygen is available for reduction, which thereby affects the counter electrode in that it is unable to balance the current coming from the working electrode. When insufficient oxygen is available for the counter electrode, the counter electrode can be driven in its electrochemical search for electrons all the way to its most negative value, which could be ground or 0.0 V, which causes the reference to shift, reducing the bias voltage, such is as described in more detail below. In other words, a common result of ischemia a drop off in sensor current as a function of glucose concentration (for example, lower sensitivity). This happens because the working electrode no longer oxidizes all of the H2O2arriving at its surface because of the reduced bias. In some extreme circumstances, an increase in glucose can produce no increase in current or even a decrease in current.
In some situations, transient ischemia can occur at high glucose levels, wherein oxygen can become limiting to the enzymatic reaction, resulting in a non-glucose dependent downward trend in the data. In some situations, certain movements or postures taken by the patient can cause transient signal artifacts as blood is squeezed out of the capillaries resulting in local ischemia and causing non-glucose dependent signal artifacts. In some situations, oxygen can also become transiently limited due to contracture of tissues around the sensor interface. This is similar to the blanching of skin that can be observed when one puts pressure on it. Under such pressure, transient ischemia can occur in both the epidermis and subcutaneous tissue. Transient ischemia is common and well tolerated by subcutaneous tissue. However, such ischemic periods can cause an oxygen deficit in implanted devices that can last for many minutes or even an hour or longer.
Although some examples of the effects of transient ischemia on a prior art glucose sensor are described above, similar effects can be seen with analyte sensors that use alternative catalysts to detect other analytes, for example, amino acids (amino acid oxidase), alcohol (alcohol oxidase), galactose (galactose oxidase), lactate (lactate oxidase), cholesterol (cholesterol oxidase), or the like.
Another problem with conventional electrochemical sensors is that they can electrochemically react not only with the analyte to be measured (or by-product of the enzymatic reaction with the analyte), but additionally can react with other electroactive species that are not intentionally being measured (for example, interfering species), which causes an increase in signal strength due to these “interfering species”. In other words, interfering species are compounds with an oxidation or reduction potential that overlaps with the analyte to be measured (or the by-product of the enzymatic reaction with the analyte). For example, in a conventional amperometric glucose oxidase-based glucose sensor wherein the sensor measures hydrogen peroxide, interfering species such as acetaminophen, ascorbate, and urate are known to produce inaccurate signal strength when they are not properly controlled.
Some conventional glucose sensors utilize a membrane system that blocks at least some interfering species, such as ascorbate and urate. In some such systems, at least one layer of the membrane system includes a porous structure that has a relatively impermeable matrix with a plurality of “micro holes” or pores of molecular dimensions, such that transfer through these materials is primarily due to passage of species through the pores (for example, the layer acts as a microporous barrier or sieve blocking interfering species of a particular size). In other such systems, at least one layer of the membrane system defines a permeability that allows selective dissolution and diffusion of species as solutes through the layer. Unfortunately, it is difficult to find membranes that are satisfactory or reliable in use, especially in vivo, which effectively block all interferants and/or interfering species in some embodiments.
Electrochemical Sensors of the Preferred Embodiments
In one aspect of the preferred embodiments, an electrochemical sensor is provided with an auxiliary electrode configured to generate oxygen in order to overcome the effects of transient ischemia. In another aspect of the preferred embodiments, an electrochemical sensor is provided with an auxiliary electrode configured to electrochemically modify (for example, oxidize or reduce) electrochemical interferants to render them substantially non-electroactively reactive at the electroactive sensing surface(s) in order to overcome the effects of interferants on the working electrode.
It is known that oxygen can be generated as a product of electrochemical reactions occurring at a positively charged electrode (for example, set at about +0.6 to about +1.2 V or more). One example of an oxygen producing reaction is the electrolysis of water, which creates oxygen at the anode (for example, the working electrode). In the exemplary electrochemical glucose sensor, glucose is converted to hydrogen peroxide by reacting with glucose oxidase and oxygen, after which the hydrogen peroxide is oxidized at the working electrode and oxygen is generated therefrom. It is noted that one challenge to generating oxygen electrochemically in this way is that while an auxiliary electrode does produce excess oxygen, the placement of the auxiliary electrode in proximity to the analyte-measuring working electrode can cause oxidation of hydrogen peroxide at the auxiliary electrode, resulting in reduced signals at the working electrode. It is also known that many electrochemical interferants can be reduced at a potential of from about +0.1V to +1.2V or more; for example, acetaminophen is reduced at a potential of about +0.4 V.
Accordingly, the sensors of preferred embodiments place an auxiliary electrode above the electrode system16, or other electroactive sensing surface, thereby reducing or eliminating the problem of inaccurate signals as described above.
FIG. 4 is a side schematic illustration of a portion of the sensing region of an electrochemical sensor of the preferred embodiments, showing an auxiliary electrode between the enzyme and the outside solution while the working (sensing) electrode is located below the enzyme and further from the outside solution. Particularly,FIG. 4 shows anexternal solution12, which represents the bodily or other fluid to which the sensor is exposed in vivo or in vitro.
Themembrane system18 includes a plurality of domains (for example, cell impermeable domain, resistance domain, enzyme domain, and/or other domains such as are described in U.S. Published Patent Application 2003/0032874 to Rhodes et al. and copending U.S. patent application Ser. No. 10/885,476, filed Jul. 6, 2004 and entitled, “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM”, the contents of which are incorporated herein by reference in their entireties) is located proximal to the external solution and finctions to transport fluids necessary for the enzymatic reaction, while protecting inner components of the sensor from harsh biohazards, for example. Although each domain is not independently shown, theenzyme38 is shown disposed between anauxiliary electrode36 and the workingelectrode16a in the illustrated embodiment.
Preferably, theauxiliary electrode36 is located within or adjacent to themembrane system18, for example, between the enzyme and other domains, although the auxiliary electrode can be placed anywhere between the electroactive sensing surface and the outside fluid. Theauxiliary electrode36 is formed from known working electrode materials (for example, platinum, palladium, graphite, gold, carbon, conductive polymer, or the like) and has a voltage setting that produces oxygen (for example, from about +0.6 V to +1.2 V or more) and/or that electrochemically modifies (for example, reduces) electrochemical interferants to render them substantially non-reactive at the electroactive sensing surface(s) (for example, from about +0.1 V to +1.2 V or more). The auxiliary electrode can be a mesh, grid, plurality of spaced wires or conductive polymers, or other configurations designed to allow analytes to penetrate therethrough.
In the aspect of the preferred embodiments wherein theauxiliary electrode36 is configured to generate oxygen, the oxygen generated from theauxiliary electrode36 diffuses upward and/or downward to be utilized by theenzyme38 and/or the counter electrode (depending on the placement of the auxiliary electrode). Additionally, the analyte (for example, glucose) from the outside solution (diffuses through the auxiliary electrode36) reacts with theenzyme38 and produces a measurable product (for example, hydrogen peroxide). Therefore, the product of the enzymatic reaction diffuses down to the workingelectrode16a for accurate measurement without being eliminated by theauxiliary electrode36.
In one alternative embodiment, theauxiliary electrode36 can be coated with a polymeric material, which is impermeable to glucose but permeable to oxygen. By this coating, glucose will not electroactively react at theauxiliary electrode36, which can otherwise cause at least some of the glucose to pre-oxidize as it passes through the auxiliary electrode36 (when placed above the enzyme), which can prevent accurate glucose concentration measurements at the working electrode in some sensor configurations. In one embodiment, the polymer coating comprises silicone, however any polymer that is selectively permeable to oxygen, but not glucose, can be used. The auxiliary electrode16 can be coated by any known process, such as dip coating or spray coating, after which is can be blown, blotted, or the like to maintain spaces within the electrode for glucose transport.
In another alternative embodiment, theauxiliary electrode36 can be coated with a polymeric material that is permeable to glucose and oxygen and can be placed between the enzyme and the outside fluid. Consequently, the polymeric coating will cause glucose from the outside fluid to electroactively react at theauxiliary electrode36, thereby limiting the amount of glucose that passes into theenzyme38, and thus reducing the amount of oxygen necessary to successfully react with all available glucose in the enzyme. The polymeric material can function in place of or in combination with the resistance domain in order to limit the amount of glucose that passes through the membrane system. This embodiment assumes a stoichiometric relationship between glucose oxidation and decreased sensor signal output, which can be compensated for by calibration in some sensor configurations. Additionally, the auxiliary electrode generates oxygen, further reducing the likelihood of oxygen becoming a rate-limiting factor in the enzymatic reaction and/or at the counter electrode, for example.
In another aspect of the preferred embodiments, theauxiliary electrode36 is configured to electrochemically modify (for example, oxidize or reduce) electrochemical interferants to render them substantially non-reactive at the electroactive sensing surface(s). In these embodiments, which can be in addition to or alternative to the above-described oxygen-generating embodiments, a polymer coating is chosen to selectively allow interferants (for example, urate, ascorbate, and/or acetaminophen such as described in U.S. Pat. No. 6,579,690 to Bonnecaze, et al.) to pass through the coating and electrochemically react with the auxiliary electrode, which effectively pre-oxidizes the interferants, rendering them substantially non-reactive at the workingelectrode16a. In one exemplary embodiment, silicone materials can be synthesized to allow the transport of oxygen, acetaminophen and other interferants, but not allow the transport of glucose. In some embodiments, the polymer coating material can be chosen with a molecular weight that blocks glucose and allows the transport of oxygen, urate, ascorbate, and acetaminophen. In another exemplary embodiment, silicone materials can be synthesized to allow the transport of oxygen, glucose, acetaminophen, and other interferants. In some embodiments, the polymer coating material is chosen with a molecular weight that allows the transport of oxygen, glucose, urate, ascorbate, and acetaminophen. The voltage setting necessary to react with interfering species depends on the target electrochemical interferants, for example, from about +0.1 V to about +1.2 V. In some embodiments, wherein the auxiliary electrode is set at a potential of from about +0.6 to about +1.2 V, both oxygen-generation and electrochemical interferant modification can be achieved. In some embodiments, wherein the auxiliary electrode is set at a potential below about +0.6 V, the auxiliary electrode will function mainly to electrochemically modify interferants, for example.
Therefore, the sensors of preferred embodiments reduce or eliminate oxygen deficiency problems within electrochemical sensors by producing oxygen at an auxiliary electrode located above the enzyme within an enzyme-based electrochemical sensor. Additionally or alternatively, the sensors of preferred embodiments reduce or eliminate interfering species problems by electrochemically reacting with interferants at the auxiliary electrode rendering them substantially non-reactive at the working electrode.
Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in co-pending U.S. patent application Ser. No. 10/842,716, filed May 10, 2004 and entitled, “MEMBRANE SYSTEMS INCORPORATING BIOACTIVE AGENTS”; co-pending U.S. patent application Ser. No. 10/838,912 filed May 3, 2004 and entitled, “IMPLANTABLE ANALYTE SENSOR”; U.S. patent application Ser. No. 10/789,359 filed Feb. 26, 2004 and entitled, “INTEGRATED DELIVERY DEVICE FOR A CONTINUOUS GLUCOSE SENSOR”; U.S. application Ser. No. 10/685,636 filed Oct. 28, 2003 and entitled, “SILICONE COMPOSITION FOR MEMBRANE SYSTEM”; U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003 and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”; U.S. application Ser. No. 10/646,333 filed Aug. 22, 2003 entitled, “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/647,065 filed Aug. 22, 2003 entitled, “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. Pat. No. 6,702,857 entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 09/916,711 filed Jul. 27, 2001 and entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE”; U.S. application Ser. No. 09/447,227 filed Nov. 22, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 10/153,356 filed May 22, 2002 and entitled “TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS”; U.S. application Ser. No. 09/489,588 filed Jan. 21, 2000 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 09/636,369 filed Aug. 11, 2000 and entitled “SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES”; and U.S. application Ser. No. 09/916,858 filed Jul. 27, 2001 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS,” as well as issued patents including U.S. Pat. No. 6,001,067 issued Dec. 14, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167 issued Feb. 19, 1991 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; and U.S. Pat. No. 4,757,022 filed Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; U.S. application Ser. No. 60/489,615 filed Jul. 23, 2003 and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 60/490,010 filed Jul. 25, 2003 and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE ASSEMBLY”; U.S. application Ser. No. 60/490,009 filed Jul. 25, 2003 and entitled “OXYGEN ENHANCING ENZYME MEMBRANE FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 60/490,007 filed Jul. 25, 2003 and entitled “OXYGEN-GENERATING ELECTRODE FOR USE IN ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/896,637 filed Jul. 21, 2004 and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 10/896,772 filed Jul. 21, 2004 and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE SYSTEM”; U.S. application Ser. No. 10/896,639 filed Jul. 21, 2004 and entitled “OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/897,377 filed Jul. 21, 2004 and entitled “ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS WITH INCREASED OXYGEN GENERATION”. The foregoing patent applications and patents are incorporated herein by reference in their entireties.
All references cited herein are incorporated herein by reference in their entireties. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims.

Claims (152)

1. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material that is directly impermeable to glucose but is permeable to oxygen.
13. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is directly situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material that is impermeable to glucose but is permeable to oxygen and permeable to interfering species.
25. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to modify an electrochemical interferant interferent such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material that is impermeable to glucose but is permeable to oxygen.
39. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme, wherein the enzyme reacts with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to modify an electrochemical interferant interferent such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material having a molecular weight that blocks glucose and allows transport therethrough of oxygen, urate, ascorbate, and acetaminophen.
51. An electrochemical sensor for measuring a concentration of an analyte in a biological fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material that is permeable or impermeable to glucose but is permeable to oxygen, and wherein the sensor is configured such that the auxiliary electrode is located between the electroactive surface of the working electrode and the biological fluid being measured.
60. An electrochemical sensor for measuring a concentration of an analyte in a biological fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated at a location directly between the electroactive surface and the biological fluid being measured such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is directly situated on a surface of the auxiliary electrode, and wherein the polymer comprises a material that is permeable or impermeable to glucose but is permeable to oxygen and permeable to one or more interfering species.
72. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to modify an electrochemical interferent such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode such that at least a portion of the polymer is located more distal to the electroactive surface than the auxiliary electrode, and wherein the polymer comprises a material that is permeable or impermeable to glucose but is permeable to oxygen.
86. An electrochemical sensor for determining a presence or a concentration of an analyte in a fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with the analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to modify an electrochemical interferent such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode, wherein the auxiliary electrode located within or adjacent to a membrane system such that at least a portion of the membrane system is located more distal to the electroactive surface than the auxiliary electrode, and wherein the membrane system comprises a polymer comprising a material having a molecular weight that allows transport therethrough of oxygen, urate, ascorbate, and acetaminophen.
116. An electrochemical sensor for continuous measurement of a concentration of an analyte in an in vivo biological environment, the sensor comprising:
a membrane comprising an outermost layer configured for protection of the sensor from the biological environment, wherein the membrane further comprises an enzyme configured to react with the analyte;
a working electrode comprising a conductive material and configured to measure a product of the reaction of the enzyme with the analyte; and
an auxiliary electrode located within or adjacent to the membrane and comprising a conductive material, wherein the auxiliary electrode is configured to modify an electrochemical interferent such that the electrochemical interferent is rendered substantially electrochemically non-reactive at the working electrode.
133. An electrochemical sensor for measuring a concentration of an analyte in a biological fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with an analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of a reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, wherein the polymer comprises a material that is permeable or impermeable to glucose but is permeable to oxygen, and wherein the sensor is configured such that the auxiliary electrode is located between the electroactive surface of the working electrode and a biological fluid in which a concentration of the analyte is being measured;
wherein the sensor is configured for insertion or implantation into a subcutaneous tissue of a host.
143. An electrochemical sensor for measuring a concentration of an analyte in a biological fluid, the sensor comprising:
a membrane system comprising an enzyme configured to react with an analyte;
an electroactive surface comprising a working electrode, the working electrode comprising a conductive material and configured to measure a product of a reaction of the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material and configured to generate oxygen, wherein the auxiliary electrode is situated such that the oxygen generated diffuses to the enzyme or to the electroactive surface, wherein the auxiliary electrode comprises a polymer, wherein the polymer is situated on a surface of the auxiliary electrode, wherein the polymer comprises a material that is permeable or impermeable to glucose but is permeable to oxygen, wherein the polymer comprises a material that is permeable to interfering species, and wherein the sensor is configured such that the auxiliary electrode is located between the electroactive surface of the working electrode and a biological fluid in which a concentration of the analyte is being measured.
US12/139,3052003-07-252008-06-13Electrode systems for electrochemical sensorsExpired - LifetimeUSRE43399E1 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US12/139,305USRE43399E1 (en)2003-07-252008-06-13Electrode systems for electrochemical sensors
US13/475,770US20120228134A1 (en)2003-07-252012-05-18Electrode systems for electrochemical sensors
US14/014,216US20140001042A1 (en)2003-07-252013-08-29Electrode systems for electrochemical sensors

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US49000703P2003-07-252003-07-25
US10/897,312US7074307B2 (en)2003-07-252004-07-21Electrode systems for electrochemical sensors
US12/139,305USRE43399E1 (en)2003-07-252008-06-13Electrode systems for electrochemical sensors

Related Parent Applications (2)

Application NumberTitlePriority DateFiling Date
US10/897,312ContinuationUS7074307B2 (en)2003-07-252004-07-21Electrode systems for electrochemical sensors
US10/897,312ReissueUS7074307B2 (en)2003-07-252004-07-21Electrode systems for electrochemical sensors

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US13/475,770ContinuationUS20120228134A1 (en)2003-07-252012-05-18Electrode systems for electrochemical sensors

Publications (1)

Publication NumberPublication Date
USRE43399E1true USRE43399E1 (en)2012-05-22

Family

ID=34115342

Family Applications (4)

Application NumberTitlePriority DateFiling Date
US10/897,312CeasedUS7074307B2 (en)2003-07-252004-07-21Electrode systems for electrochemical sensors
US12/139,305Expired - LifetimeUSRE43399E1 (en)2003-07-252008-06-13Electrode systems for electrochemical sensors
US13/475,770AbandonedUS20120228134A1 (en)2003-07-252012-05-18Electrode systems for electrochemical sensors
US14/014,216AbandonedUS20140001042A1 (en)2003-07-252013-08-29Electrode systems for electrochemical sensors

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US10/897,312CeasedUS7074307B2 (en)2003-07-252004-07-21Electrode systems for electrochemical sensors

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
US13/475,770AbandonedUS20120228134A1 (en)2003-07-252012-05-18Electrode systems for electrochemical sensors
US14/014,216AbandonedUS20140001042A1 (en)2003-07-252013-08-29Electrode systems for electrochemical sensors

Country Status (4)

CountryLink
US (4)US7074307B2 (en)
EP (1)EP1649260A4 (en)
JP (1)JP2007500336A (en)
WO (1)WO2005012873A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9956393B2 (en)2015-02-242018-05-01Elira, Inc.Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch
US10118035B2 (en)2015-02-242018-11-06Elira, Inc.Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US10335302B2 (en)2015-02-242019-07-02Elira, Inc.Systems and methods for using transcutaneous electrical stimulation to enable dietary interventions
US10376145B2 (en)2015-02-242019-08-13Elira, Inc.Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US10765863B2 (en)2015-02-242020-09-08Elira, Inc.Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
US10864367B2 (en)2015-02-242020-12-15Elira, Inc.Methods for using an electrical dermal patch in a manner that reduces adverse patient reactions
US10980461B2 (en)2008-11-072021-04-20Dexcom, Inc.Advanced analyte sensor calibration and error detection
US11000215B1 (en)2003-12-052021-05-11Dexcom, Inc.Analyte sensor
US11382539B2 (en)2006-10-042022-07-12Dexcom, Inc.Analyte sensor
US11478194B2 (en)2020-07-292022-10-25Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US11857344B2 (en)2021-05-082024-01-02Biolinq IncorporatedFault detection for microneedle array based continuous analyte monitoring device
US11950902B2 (en)2019-08-022024-04-09Bionime CorporationMicro biosensor and method for reducing measurement interference using the same
US11957895B2 (en)2015-02-242024-04-16Elira, Inc.Glucose-based modulation of electrical stimulation to enable weight loss
US11963796B1 (en)2017-04-292024-04-23Biolinq IncorporatedHeterogeneous integration of silicon-fabricated solid microneedle sensors and CMOS circuitry
US12109032B1 (en)2017-03-112024-10-08Biolinq IncorporatedMethods for achieving an isolated electrical interface between an anterior surface of a microneedle structure and a posterior surface of a support structure
US12336816B2 (en)2023-02-022025-06-24Biolinq IncorporatedMethod for improved sensor sensitivity of a microneedle-based continuous analyte monitoring system

Families Citing this family (421)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5593852A (en)1993-12-021997-01-14Heller; AdamSubcutaneous glucose electrode
SE9700384D0 (en)*1997-02-041997-02-04Biacore Ab Analytical method and apparatus
US9155496B2 (en)1997-03-042015-10-13Dexcom, Inc.Low oxygen in vivo analyte sensor
US6001067A (en)1997-03-041999-12-14Shults; Mark C.Device and method for determining analyte levels
US7899511B2 (en)2004-07-132011-03-01Dexcom, Inc.Low oxygen in vivo analyte sensor
US6862465B2 (en)1997-03-042005-03-01Dexcom, Inc.Device and method for determining analyte levels
US20050033132A1 (en)1997-03-042005-02-10Shults Mark C.Analyte measuring device
US7657297B2 (en)2004-05-032010-02-02Dexcom, Inc.Implantable analyte sensor
US8527026B2 (en)1997-03-042013-09-03Dexcom, Inc.Device and method for determining analyte levels
US6036924A (en)1997-12-042000-03-14Hewlett-Packard CompanyCassette of lancet cartridges for sampling blood
US6134461A (en)1998-03-042000-10-17E. Heller & CompanyElectrochemical analyte
US6391005B1 (en)1998-03-302002-05-21Agilent Technologies, Inc.Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8465425B2 (en)1998-04-302013-06-18Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066695B2 (en)1998-04-302015-06-30Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337B2 (en)1998-04-302013-01-01Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US6949816B2 (en)2003-04-212005-09-27Motorola, Inc.Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8480580B2 (en)1998-04-302013-07-09Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8974386B2 (en)1998-04-302015-03-10Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8688188B2 (en)1998-04-302014-04-01Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US6175752B1 (en)1998-04-302001-01-16Therasense, Inc.Analyte monitoring device and methods of use
US8641644B2 (en)2000-11-212014-02-04Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE10057832C1 (en)2000-11-212002-02-21Hartmann Paul AgBlood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US6560471B1 (en)2001-01-022003-05-06Therasense, Inc.Analyte monitoring device and methods of use
TW522127B (en)*2001-02-212003-03-01Daifuku KkCargo storage facility
EP1397068A2 (en)2001-04-022004-03-17Therasense, Inc.Blood glucose tracking apparatus and methods
US9427532B2 (en)2001-06-122016-08-30Sanofi-Aventis Deutschland GmbhTissue penetration device
US9795747B2 (en)2010-06-022017-10-24Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
JP4209767B2 (en)2001-06-122009-01-14ペリカン テクノロジーズ インコーポレイテッド Self-optimized cutting instrument with adaptive means for temporary changes in skin properties
EP1395185B1 (en)2001-06-122010-10-27Pelikan Technologies Inc.Electric lancet actuator
US7041068B2 (en)2001-06-122006-05-09Pelikan Technologies, Inc.Sampling module device and method
US8337419B2 (en)2002-04-192012-12-25Sanofi-Aventis Deutschland GmbhTissue penetration device
JP4272051B2 (en)2001-06-122009-06-03ペリカン テクノロジーズ インコーポレイテッド Blood sampling apparatus and method
US7344507B2 (en)2002-04-192008-03-18Pelikan Technologies, Inc.Method and apparatus for lancet actuation
US7981056B2 (en)2002-04-192011-07-19Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
AU2002344825A1 (en)2001-06-122002-12-23Pelikan Technologies, Inc.Method and apparatus for improving success rate of blood yield from a fingerstick
US7749174B2 (en)2001-06-122010-07-06Pelikan Technologies, Inc.Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US9226699B2 (en)2002-04-192016-01-05Sanofi-Aventis Deutschland GmbhBody fluid sampling module with a continuous compression tissue interface surface
WO2002101359A2 (en)2001-06-122002-12-19Pelikan Technologies, Inc.Integrated blood sampling analysis system with multi-use sampling module
US6702857B2 (en)2001-07-272004-03-09Dexcom, Inc.Membrane for use with implantable devices
US20030032874A1 (en)2001-07-272003-02-13Dexcom, Inc.Sensor head for use with implantable devices
US7344894B2 (en)2001-10-162008-03-18Agilent Technologies, Inc.Thermal regulation of fluidic samples within a diagnostic cartridge
US8364229B2 (en)2003-07-252013-01-29Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9282925B2 (en)2002-02-122016-03-15Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en)2003-08-222016-02-02Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7379765B2 (en)2003-07-252008-05-27Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US8010174B2 (en)2003-08-222011-08-30Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7613491B2 (en)2002-05-222009-11-03Dexcom, Inc.Silicone based membranes for use in implantable glucose sensors
US8260393B2 (en)2003-07-252012-09-04Dexcom, Inc.Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US9314194B2 (en)2002-04-192016-04-19Sanofi-Aventis Deutschland GmbhTissue penetration device
US7232451B2 (en)2002-04-192007-06-19Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US9795334B2 (en)2002-04-192017-10-24Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US7674232B2 (en)2002-04-192010-03-09Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7371247B2 (en)2002-04-192008-05-13Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7901362B2 (en)2002-04-192011-03-08Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7410468B2 (en)2002-04-192008-08-12Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7229458B2 (en)2002-04-192007-06-12Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US9248267B2 (en)2002-04-192016-02-02Sanofi-Aventis Deustchland GmbhTissue penetration device
US7141058B2 (en)2002-04-192006-11-28Pelikan Technologies, Inc.Method and apparatus for a body fluid sampling device using illumination
US7481776B2 (en)2002-04-192009-01-27Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8784335B2 (en)2002-04-192014-07-22Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US8579831B2 (en)2002-04-192013-11-12Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US7563232B2 (en)2002-04-192009-07-21Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8221334B2 (en)2002-04-192012-07-17Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US7524293B2 (en)2002-04-192009-04-28Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7297122B2 (en)2002-04-192007-11-20Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7976476B2 (en)2002-04-192011-07-12Pelikan Technologies, Inc.Device and method for variable speed lancet
US7331931B2 (en)2002-04-192008-02-19Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7892183B2 (en)2002-04-192011-02-22Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US7708701B2 (en)2002-04-192010-05-04Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device
US7909778B2 (en)2002-04-192011-03-22Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8702624B2 (en)2006-09-292014-04-22Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US7547287B2 (en)2002-04-192009-06-16Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7648468B2 (en)2002-04-192010-01-19Pelikon Technologies, Inc.Method and apparatus for penetrating tissue
US7582099B2 (en)2002-04-192009-09-01Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7717863B2 (en)2002-04-192010-05-18Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7291117B2 (en)2002-04-192007-11-06Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8267870B2 (en)2002-04-192012-09-18Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US7374544B2 (en)2002-04-192008-05-20Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7491178B2 (en)2002-04-192009-02-17Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7813780B2 (en)*2005-12-132010-10-12Medtronic Minimed, Inc.Biosensors and methods for making and using them
US7226978B2 (en)2002-05-222007-06-05Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US7993108B2 (en)2002-10-092011-08-09Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7727181B2 (en)*2002-10-092010-06-01Abbott Diabetes Care Inc.Fluid delivery device with autocalibration
DE60336834D1 (en)2002-10-092011-06-01Abbott Diabetes Care Inc FUEL FEEDING DEVICE, SYSTEM AND METHOD
US7381184B2 (en)2002-11-052008-06-03Abbott Diabetes Care Inc.Sensor inserter assembly
US8574895B2 (en)2002-12-302013-11-05Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US7811231B2 (en)2002-12-312010-10-12Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7134999B2 (en)2003-04-042006-11-14Dexcom, Inc.Optimized sensor geometry for an implantable glucose sensor
US7587287B2 (en)2003-04-042009-09-08Abbott Diabetes Care Inc.Method and system for transferring analyte test data
US7679407B2 (en)2003-04-282010-03-16Abbott Diabetes Care Inc.Method and apparatus for providing peak detection circuitry for data communication systems
US7875293B2 (en)2003-05-212011-01-25Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US7850621B2 (en)2003-06-062010-12-14Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US8460243B2 (en)2003-06-102013-06-11Abbott Diabetes Care Inc.Glucose measuring module and insulin pump combination
US8066639B2 (en)2003-06-102011-11-29Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
WO2006001797A1 (en)2004-06-142006-01-05Pelikan Technologies, Inc.Low pain penetrating
US8071028B2 (en)2003-06-122011-12-06Abbott Diabetes Care Inc.Method and apparatus for providing power management in data communication systems
EP1635700B1 (en)2003-06-132016-03-09Sanofi-Aventis Deutschland GmbHApparatus for a point of care device
US7722536B2 (en)*2003-07-152010-05-25Abbott Diabetes Care Inc.Glucose measuring device integrated into a holster for a personal area network device
WO2007120442A2 (en)*2003-07-252007-10-25Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7074307B2 (en)2003-07-252006-07-11Dexcom, Inc.Electrode systems for electrochemical sensors
US7424318B2 (en)2003-12-052008-09-09Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US9763609B2 (en)2003-07-252017-09-19Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7467003B2 (en)*2003-12-052008-12-16Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7460898B2 (en)2003-12-052008-12-02Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8423113B2 (en)2003-07-252013-04-16Dexcom, Inc.Systems and methods for processing sensor data
US7366556B2 (en)2003-12-052008-04-29Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20050176136A1 (en)*2003-11-192005-08-11Dexcom, Inc.Afinity domain for analyte sensor
US8160669B2 (en)2003-08-012012-04-17Dexcom, Inc.Transcutaneous analyte sensor
US8060173B2 (en)2003-08-012011-11-15Dexcom, Inc.System and methods for processing analyte sensor data
US8845536B2 (en)2003-08-012014-09-30Dexcom, Inc.Transcutaneous analyte sensor
US7774145B2 (en)2003-08-012010-08-10Dexcom, Inc.Transcutaneous analyte sensor
US7591801B2 (en)2004-02-262009-09-22Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US7986986B2 (en)2003-08-012011-07-26Dexcom, Inc.System and methods for processing analyte sensor data
US9135402B2 (en)2007-12-172015-09-15Dexcom, Inc.Systems and methods for processing sensor data
US8886273B2 (en)2003-08-012014-11-11Dexcom, Inc.Analyte sensor
US20100168657A1 (en)2003-08-012010-07-01Dexcom, Inc.System and methods for processing analyte sensor data
US8275437B2 (en)2003-08-012012-09-25Dexcom, Inc.Transcutaneous analyte sensor
US8761856B2 (en)2003-08-012014-06-24Dexcom, Inc.System and methods for processing analyte sensor data
US8369919B2 (en)2003-08-012013-02-05Dexcom, Inc.Systems and methods for processing sensor data
US7519408B2 (en)*2003-11-192009-04-14Dexcom, Inc.Integrated receiver for continuous analyte sensor
US7920906B2 (en)2005-03-102011-04-05Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US20140121989A1 (en)2003-08-222014-05-01Dexcom, Inc.Systems and methods for processing analyte sensor data
US8282576B2 (en)2003-09-292012-10-09Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
EP1680014A4 (en)2003-10-142009-01-21Pelikan Technologies Inc METHOD AND DEVICE FOR A VARIABLE USER INTERFACE
US7299082B2 (en)*2003-10-312007-11-20Abbott Diabetes Care, Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD902408S1 (en)2003-11-052020-11-17Abbott Diabetes Care Inc.Analyte sensor control unit
US9247900B2 (en)2004-07-132016-02-02Dexcom, Inc.Analyte sensor
US8423114B2 (en)2006-10-042013-04-16Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8364231B2 (en)2006-10-042013-01-29Dexcom, Inc.Analyte sensor
ATE480761T1 (en)2003-12-052010-09-15Dexcom Inc CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR
US20100185071A1 (en)*2003-12-052010-07-22Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8287453B2 (en)2003-12-052012-10-16Dexcom, Inc.Analyte sensor
US11633133B2 (en)2003-12-052023-04-25Dexcom, Inc.Dual electrode system for a continuous analyte sensor
EP2301428B1 (en)2003-12-092016-11-30Dexcom, Inc.Signal processing for continuous analyte sensor
US8668656B2 (en)2003-12-312014-03-11Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US7822454B1 (en)2005-01-032010-10-26Pelikan Technologies, Inc.Fluid sampling device with improved analyte detecting member configuration
US7637868B2 (en)*2004-01-122009-12-29Dexcom, Inc.Composite material for implantable device
WO2005089103A2 (en)2004-02-172005-09-29Therasense, Inc.Method and system for providing data communication in continuous glucose monitoring and management system
WO2009048462A1 (en)2007-10-092009-04-16Dexcom, Inc.Integrated insulin delivery system with continuous glucose sensor
US8808228B2 (en)2004-02-262014-08-19Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US20050209518A1 (en)*2004-03-172005-09-22Therafuse, Inc.Self-calibrating body analyte monitoring system
US8277713B2 (en)2004-05-032012-10-02Dexcom, Inc.Implantable analyte sensor
US8792955B2 (en)2004-05-032014-07-29Dexcom, Inc.Transcutaneous analyte sensor
WO2006011062A2 (en)2004-05-202006-02-02Albatros Technologies Gmbh & Co. KgPrintable hydrogel for biosensors
WO2005120365A1 (en)2004-06-032005-12-22Pelikan Technologies, Inc.Method and apparatus for a fluid sampling device
EP1810185A4 (en)2004-06-042010-01-06Therasense IncDiabetes care host-client architecture and data management system
US20060015020A1 (en)*2004-07-062006-01-19Dexcom, Inc.Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20070045902A1 (en)2004-07-132007-03-01Brauker James HAnalyte sensor
US8452368B2 (en)2004-07-132013-05-28Dexcom, Inc.Transcutaneous analyte sensor
US8565848B2 (en)2004-07-132013-10-22Dexcom, Inc.Transcutaneous analyte sensor
US20060016700A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US7654956B2 (en)2004-07-132010-02-02Dexcom, Inc.Transcutaneous analyte sensor
US7783333B2 (en)2004-07-132010-08-24Dexcom, Inc.Transcutaneous medical device with variable stiffness
US8886272B2 (en)2004-07-132014-11-11Dexcom, Inc.Analyte sensor
US9636450B2 (en)2007-02-192017-05-02Udo HossPump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8571624B2 (en)2004-12-292013-10-29Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US9743862B2 (en)2011-03-312017-08-29Abbott Diabetes Care Inc.Systems and methods for transcutaneously implanting medical devices
US8512243B2 (en)2005-09-302013-08-20Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US9572534B2 (en)2010-06-292017-02-21Abbott Diabetes Care Inc.Devices, systems and methods for on-skin or on-body mounting of medical devices
US9398882B2 (en)2005-09-302016-07-26Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor and data processing device
US9259175B2 (en)2006-10-232016-02-16Abbott Diabetes Care, Inc.Flexible patch for fluid delivery and monitoring body analytes
US7697967B2 (en)2005-12-282010-04-13Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US7883464B2 (en)2005-09-302011-02-08Abbott Diabetes Care Inc.Integrated transmitter unit and sensor introducer mechanism and methods of use
US9788771B2 (en)2006-10-232017-10-17Abbott Diabetes Care Inc.Variable speed sensor insertion devices and methods of use
US20090105569A1 (en)2006-04-282009-04-23Abbott Diabetes Care, Inc.Introducer Assembly and Methods of Use
US8029441B2 (en)2006-02-282011-10-04Abbott Diabetes Care Inc.Analyte sensor transmitter unit configuration for a data monitoring and management system
US10226207B2 (en)2004-12-292019-03-12Abbott Diabetes Care Inc.Sensor inserter having introducer
US8333714B2 (en)2006-09-102012-12-18Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7731657B2 (en)2005-08-302010-06-08Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US8652831B2 (en)2004-12-302014-02-18Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US7545272B2 (en)2005-02-082009-06-09Therasense, Inc.RF tag on test strips, test strip vials and boxes
US8133178B2 (en)2006-02-222012-03-13Dexcom, Inc.Analyte sensor
US20090076360A1 (en)2007-09-132009-03-19Dexcom, Inc.Transcutaneous analyte sensor
JP2008535548A (en)2005-03-212008-09-04アボット ダイアビーティーズ ケア インコーポレイテッド Method and system for providing an integrated pharmaceutical infusion / specimen monitoring system
US8744546B2 (en)2005-05-052014-06-03Dexcom, Inc.Cellulosic-based resistance domain for an analyte sensor
US8112240B2 (en)2005-04-292012-02-07Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en)2005-05-172010-08-03Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US7620437B2 (en)2005-06-032009-11-17Abbott Diabetes Care Inc.Method and apparatus for providing rechargeable power in data monitoring and management systems
JP2009507224A (en)2005-08-312009-02-19ユニヴァーシティー オブ ヴァージニア パテント ファンデーション Improving the accuracy of continuous glucose sensors
US9521968B2 (en)2005-09-302016-12-20Abbott Diabetes Care Inc.Analyte sensor retention mechanism and methods of use
US7756561B2 (en)2005-09-302010-07-13Abbott Diabetes Care Inc.Method and apparatus for providing rechargeable power in data monitoring and management systems
US8880138B2 (en)2005-09-302014-11-04Abbott Diabetes Care Inc.Device for channeling fluid and methods of use
US7583190B2 (en)2005-10-312009-09-01Abbott Diabetes Care Inc.Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en)2005-11-042010-08-03Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US8515518B2 (en)2005-12-282013-08-20Abbott Diabetes Care Inc.Analyte monitoring
US8160670B2 (en)*2005-12-282012-04-17Abbott Diabetes Care Inc.Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US8353881B2 (en)*2005-12-282013-01-15Abbott Diabetes Care Inc.Infusion sets for the delivery of a therapeutic substance to a patient
CA2636034A1 (en)2005-12-282007-10-25Abbott Diabetes Care Inc.Medical device insertion
US11298058B2 (en)2005-12-282022-04-12Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US9757061B2 (en)2006-01-172017-09-12Dexcom, Inc.Low oxygen in vivo analyte sensor
US7736310B2 (en)2006-01-302010-06-15Abbott Diabetes Care Inc.On-body medical device securement
US8344966B2 (en)2006-01-312013-01-01Abbott Diabetes Care Inc.Method and system for providing a fault tolerant display unit in an electronic device
ES2871822T3 (en)2006-02-222021-11-02Dexcom Inc Analyte sensor
US7885698B2 (en)2006-02-282011-02-08Abbott Diabetes Care Inc.Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en)2006-02-282010-11-02Abbott Diabetes Care Inc.Analyte sensors and methods of use
US7981034B2 (en)2006-02-282011-07-19Abbott Diabetes Care Inc.Smart messages and alerts for an infusion delivery and management system
EP4218548A1 (en)2006-03-092023-08-02Dexcom, Inc.Systems and methods for processing analyte sensor data
WO2007102842A2 (en)2006-03-092007-09-13Dexcom, Inc.Systems and methods for processing analyte sensor data
US8219173B2 (en)2008-09-302012-07-10Abbott Diabetes Care Inc.Optimizing analyte sensor calibration
US8583205B2 (en)2008-03-282013-11-12Abbott Diabetes Care Inc.Analyte sensor calibration management
US7630748B2 (en)2006-10-252009-12-08Abbott Diabetes Care Inc.Method and system for providing analyte monitoring
US8140312B2 (en)2007-05-142012-03-20Abbott Diabetes Care Inc.Method and system for determining analyte levels
US9675290B2 (en)2012-10-302017-06-13Abbott Diabetes Care Inc.Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8478557B2 (en)2009-07-312013-07-02Abbott Diabetes Care Inc.Method and apparatus for providing analyte monitoring system calibration accuracy
US9392969B2 (en)2008-08-312016-07-19Abbott Diabetes Care Inc.Closed loop control and signal attenuation detection
US7618369B2 (en)2006-10-022009-11-17Abbott Diabetes Care Inc.Method and system for dynamically updating calibration parameters for an analyte sensor
US7801582B2 (en)2006-03-312010-09-21Abbott Diabetes Care Inc.Analyte monitoring and management system and methods therefor
US8473022B2 (en)2008-01-312013-06-25Abbott Diabetes Care Inc.Analyte sensor with time lag compensation
US8374668B1 (en)2007-10-232013-02-12Abbott Diabetes Care Inc.Analyte sensor with lag compensation
US8346335B2 (en)2008-03-282013-01-01Abbott Diabetes Care Inc.Analyte sensor calibration management
US9326709B2 (en)2010-03-102016-05-03Abbott Diabetes Care Inc.Systems, devices and methods for managing glucose levels
US7653425B2 (en)2006-08-092010-01-26Abbott Diabetes Care Inc.Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8226891B2 (en)2006-03-312012-07-24Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8224415B2 (en)2009-01-292012-07-17Abbott Diabetes Care Inc.Method and device for providing offset model based calibration for analyte sensor
US7620438B2 (en)2006-03-312009-11-17Abbott Diabetes Care Inc.Method and system for powering an electronic device
WO2007120381A2 (en)2006-04-142007-10-25Dexcom, Inc.Analyte sensor
WO2007143225A2 (en)2006-06-072007-12-13Abbott Diabetes Care, Inc.Analyte monitoring system and method
US9119582B2 (en)2006-06-302015-09-01Abbott Diabetes Care, Inc.Integrated analyte sensor and infusion device and methods therefor
US8932216B2 (en)2006-08-072015-01-13Abbott Diabetes Care Inc.Method and system for providing data management in integrated analyte monitoring and infusion system
US8206296B2 (en)2006-08-072012-06-26Abbott Diabetes Care Inc.Method and system for providing integrated analyte monitoring and infusion system therapy management
GB0617276D0 (en)*2006-09-042006-10-11SuresensorsDevice
EP2767826B2 (en)*2006-10-042020-11-11Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7831287B2 (en)2006-10-042010-11-09Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8135548B2 (en)2006-10-262012-03-13Abbott Diabetes Care Inc.Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8579853B2 (en)2006-10-312013-11-12Abbott Diabetes Care Inc.Infusion devices and methods
US8121857B2 (en)2007-02-152012-02-21Abbott Diabetes Care Inc.Device and method for automatic data acquisition and/or detection
US20080199894A1 (en)2007-02-152008-08-21Abbott Diabetes Care, Inc.Device and method for automatic data acquisition and/or detection
US8930203B2 (en)2007-02-182015-01-06Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US8732188B2 (en)2007-02-182014-05-20Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US8123686B2 (en)2007-03-012012-02-28Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US20100113897A1 (en)*2007-03-192010-05-06Bayer Health Care LlcContinuous analyte monitoring assembly and methods of using the same
WO2008118919A1 (en)2007-03-262008-10-02Dexcom, Inc.Analyte sensor
US10111608B2 (en)2007-04-142018-10-30Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in medical communication system
EP2137637A4 (en)2007-04-142012-06-20Abbott Diabetes Care IncMethod and apparatus for providing data processing and control in medical communication system
WO2008130898A1 (en)2007-04-142008-10-30Abbott Diabetes Care, Inc.Method and apparatus for providing data processing and control in medical communication system
CA2683953C (en)2007-04-142016-08-02Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in medical communication system
WO2008130895A2 (en)2007-04-142008-10-30Abbott Diabetes Care, Inc.Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
WO2008130897A2 (en)2007-04-142008-10-30Abbott Diabetes Care, Inc.Method and apparatus for providing data processing and control in medical communication system
US8665091B2 (en)2007-05-082014-03-04Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US8461985B2 (en)2007-05-082013-06-11Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7928850B2 (en)2007-05-082011-04-19Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8456301B2 (en)2007-05-082013-06-04Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7996158B2 (en)2007-05-142011-08-09Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en)2007-05-142013-05-21Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en)2007-05-142012-08-07Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en)2007-05-142015-09-08Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en)2007-05-142013-12-03Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en)2007-05-142012-09-04Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en)2007-05-142013-10-15Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en)2007-05-142018-06-19Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en)2007-05-142012-01-24Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US20200037874A1 (en)2007-05-182020-02-06Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
WO2008150917A1 (en)2007-05-312008-12-11Abbott Diabetes Care, Inc.Insertion devices and methods
WO2008154312A1 (en)2007-06-082008-12-18Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
WO2008157820A1 (en)2007-06-212008-12-24Abbott Diabetes Care, Inc.Health management devices and methods
AU2008265542B2 (en)2007-06-212014-07-24Abbott Diabetes Care Inc.Health monitor
US8641618B2 (en)2007-06-272014-02-04Abbott Diabetes Care Inc.Method and structure for securing a monitoring device element
US8085151B2 (en)2007-06-282011-12-27Abbott Diabetes Care Inc.Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en)2007-06-292012-04-17Abbott Diabetes Care Inc.Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en)2007-07-312014-09-16Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor calibration
US7768386B2 (en)2007-07-312010-08-03Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US20090043183A1 (en)*2007-08-082009-02-12Lifescan, Inc.Integrated stent and blood analyte monitoring system
US7747302B2 (en)*2007-08-082010-06-29Lifescan, Inc.Method for integrating facilitated blood flow and blood analyte monitoring
US20120046533A1 (en)2007-08-292012-02-23Medtronic Minimed, Inc.Combined sensor and infusion sets
US9968742B2 (en)2007-08-292018-05-15Medtronic Minimed, Inc.Combined sensor and infusion set using separated sites
US8216138B1 (en)2007-10-232012-07-10Abbott Diabetes Care Inc.Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en)2007-10-232013-04-02Abbott Diabetes Care Inc.Assessing measures of glycemic variability
US8377031B2 (en)2007-10-232013-02-19Abbott Diabetes Care Inc.Closed loop control system with safety parameters and methods
EP4250312A3 (en)2007-10-252023-11-01DexCom, Inc.Systems and methods for processing sensor data
US8417312B2 (en)2007-10-252013-04-09Dexcom, Inc.Systems and methods for processing sensor data
US8290559B2 (en)2007-12-172012-10-16Dexcom, Inc.Systems and methods for processing sensor data
US20090164239A1 (en)2007-12-192009-06-25Abbott Diabetes Care, Inc.Dynamic Display Of Glucose Information
EP2252196A4 (en)2008-02-212013-05-15Dexcom IncSystems and methods for processing, transmitting and displaying sensor data
KR100964225B1 (en)*2008-03-192010-06-17삼성모바일디스플레이주식회사 Organic light emitting display device
US8396528B2 (en)2008-03-252013-03-12Dexcom, Inc.Analyte sensor
US8682408B2 (en)2008-03-282014-03-25Dexcom, Inc.Polymer membranes for continuous analyte sensors
US11730407B2 (en)2008-03-282023-08-22Dexcom, Inc.Polymer membranes for continuous analyte sensors
WO2009121026A1 (en)*2008-03-282009-10-01Dexcom, Inc.Polymer membranes for continuous analyte sensors
US8583204B2 (en)2008-03-282013-11-12Dexcom, Inc.Polymer membranes for continuous analyte sensors
EP2982383B1 (en)2008-04-102019-05-15Abbott Diabetes Care, Inc.Method for sterilizing an analyte sensor
EP2265324B1 (en)2008-04-112015-01-28Sanofi-Aventis Deutschland GmbHIntegrated analyte measurement system
US7826382B2 (en)2008-05-302010-11-02Abbott Diabetes Care Inc.Close proximity communication device and methods
US8924159B2 (en)2008-05-302014-12-30Abbott Diabetes Care Inc.Method and apparatus for providing glycemic control
US8591410B2 (en)2008-05-302013-11-26Abbott Diabetes Care Inc.Method and apparatus for providing glycemic control
US8876755B2 (en)2008-07-142014-11-04Abbott Diabetes Care Inc.Closed loop control system interface and methods
WO2010027771A1 (en)2008-08-272010-03-11Edwards Lifesciences CorporationAnalyte sensor
US9943644B2 (en)2008-08-312018-04-17Abbott Diabetes Care Inc.Closed loop control with reference measurement and methods thereof
US8622988B2 (en)2008-08-312014-01-07Abbott Diabetes Care Inc.Variable rate closed loop control and methods
US8734422B2 (en)2008-08-312014-05-27Abbott Diabetes Care Inc.Closed loop control with improved alarm functions
US20100057040A1 (en)2008-08-312010-03-04Abbott Diabetes Care, Inc.Robust Closed Loop Control And Methods
EP4227675B1 (en)2008-09-192024-12-11DexCom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US8986208B2 (en)2008-09-302015-03-24Abbott Diabetes Care Inc.Analyte sensor sensitivity attenuation mitigation
KR101278605B1 (en)2008-11-042013-06-25파나소닉 주식회사 Measuring device, insulin injection device, measuring method, control method and program of insulin injection device
US9326707B2 (en)2008-11-102016-05-03Abbott Diabetes Care Inc.Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en)2009-01-292012-01-24Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en)2009-01-302016-06-28Sanofi-Aventis Deutschland GmbhCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8560082B2 (en)2009-01-302013-10-15Abbott Diabetes Care Inc.Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US9402544B2 (en)2009-02-032016-08-02Abbott Diabetes Care Inc.Analyte sensor and apparatus for insertion of the sensor
US9446194B2 (en)2009-03-272016-09-20Dexcom, Inc.Methods and systems for promoting glucose management
US8497777B2 (en)2009-04-152013-07-30Abbott Diabetes Care Inc.Analyte monitoring system having an alert
WO2010129375A1 (en)2009-04-282010-11-11Abbott Diabetes Care Inc.Closed loop blood glucose control algorithm analysis
WO2010127050A1 (en)2009-04-282010-11-04Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US8368556B2 (en)2009-04-292013-02-05Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en)2009-04-292013-01-09Abbott Diabetes Care Inc METHOD AND SYSTEM FOR PROVIDING REAL-TIME ANALYTE SENSOR CALIBRATION WITH RETROSPECTIVE FILLING
WO2010135646A1 (en)2009-05-222010-11-25Abbott Diabetes Care Inc.Usability features for integrated insulin delivery system
WO2010138856A1 (en)2009-05-292010-12-02Abbott Diabetes Care Inc.Medical device antenna systems having external antenna configurations
US8613892B2 (en)2009-06-302013-12-24Abbott Diabetes Care Inc.Analyte meter with a moveable head and methods of using the same
EP2448486B1 (en)2009-07-022021-08-25Dexcom, Inc.Analyte sensors and methods of manufacturing same
US8798934B2 (en)2009-07-232014-08-05Abbott Diabetes Care Inc.Real time management of data relating to physiological control of glucose levels
DK3689237T3 (en)2009-07-232021-08-16Abbott Diabetes Care Inc Method of preparation and system for continuous analyte measurement
US9314195B2 (en)2009-08-312016-04-19Abbott Diabetes Care Inc.Analyte signal processing device and methods
LT4147999T (en)2009-08-312024-10-10Abbott Diabetes Care, Inc. MEDICAL DEVICE DISPLAYS
EP3001194B1 (en)2009-08-312019-04-17Abbott Diabetes Care, Inc.Medical devices and methods
US8993331B2 (en)2009-08-312015-03-31Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US9320461B2 (en)2009-09-292016-04-26Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en)2009-09-302011-04-07Abbott Diabetes Care Inc.Interconnect for on-body analyte monitoring device
US20110082356A1 (en)*2009-10-012011-04-07Medtronic Minimed, Inc.Analyte sensor apparatuses having interference rejection membranes and methods for making and using them
WO2011053881A1 (en)2009-10-302011-05-05Abbott Diabetes Care Inc.Method and apparatus for detecting false hypoglycemic conditions
US20110288388A1 (en)2009-11-202011-11-24Medtronic Minimed, Inc.Multi-conductor lead configurations useful with medical device systems and methods for making and using them
US8660628B2 (en)2009-12-212014-02-25Medtronic Minimed, Inc.Analyte sensors comprising blended membrane compositions and methods for making and using them
USD924406S1 (en)2010-02-012021-07-06Abbott Diabetes Care Inc.Analyte sensor inserter
US10448872B2 (en)2010-03-162019-10-22Medtronic Minimed, Inc.Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
LT3622883T (en)2010-03-242021-08-25Abbott Diabetes Care, Inc.Medical device inserters and processes of inserting and using medical devices
US8965476B2 (en)2010-04-162015-02-24Sanofi-Aventis Deutschland GmbhTissue penetration device
US8235897B2 (en)2010-04-272012-08-07A.D. Integrity Applications Ltd.Device for non-invasively measuring glucose
US9215995B2 (en)2010-06-232015-12-22Medtronic Minimed, Inc.Sensor systems having multiple probes and electrode arrays
US8635046B2 (en)2010-06-232014-01-21Abbott Diabetes Care Inc.Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en)2010-06-292018-10-09Abbott Diabetes Care Inc.Calibration of analyte measurement system
US11064921B2 (en)2010-06-292021-07-20Abbott Diabetes Care Inc.Devices, systems and methods for on-skin or on-body mounting of medical devices
EP2608715B1 (en)*2010-08-242016-06-22Microchips, Inc.Implantable biosensor device and methods of use thereof
US11213226B2 (en)2010-10-072022-01-04Abbott Diabetes Care Inc.Analyte monitoring devices and methods
US10136845B2 (en)2011-02-282018-11-27Abbott Diabetes Care Inc.Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CN107019515B (en)2011-02-282021-02-26雅培糖尿病护理公司Method of displaying sensor readings and analyte monitoring device and method of operating the same
EP2693945B1 (en)2011-04-082019-03-13Dexcom, Inc.Systems and methods for processing and transmitting sensor data
US9008744B2 (en)2011-05-062015-04-14Medtronic Minimed, Inc.Method and apparatus for continuous analyte monitoring
US9974472B2 (en)2011-06-162018-05-22Abbott Diabetes Care Inc.Temperature-compensated analyte monitoring devices, systems, and methods thereof
EP3505065B1 (en)2011-09-232021-03-03Dexcom, Inc.Systems and methods for processing and transmitting sensor data
US9069536B2 (en)2011-10-312015-06-30Abbott Diabetes Care Inc.Electronic devices having integrated reset systems and methods thereof
US9622691B2 (en)2011-10-312017-04-18Abbott Diabetes Care Inc.Model based variable risk false glucose threshold alarm prevention mechanism
WO2013070794A2 (en)2011-11-072013-05-16Abbott Diabetes Care Inc.Analyte monitoring device and methods
US9317656B2 (en)2011-11-232016-04-19Abbott Diabetes Care Inc.Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en)2011-11-232014-04-29Abbott Diabetes Care Inc.Mitigating single point failure of devices in an analyte monitoring system and methods thereof
WO2013078426A2 (en)2011-11-252013-05-30Abbott Diabetes Care Inc.Analyte monitoring system and methods of use
EP2713879B1 (en)2011-12-112017-07-26Abbott Diabetes Care, Inc.Analyte sensor devices, connections, and methods
WO2013138369A1 (en)2012-03-162013-09-19Dexcom, Inc.Systems and methods for processing analyte sensor data
US9931065B2 (en)2012-04-042018-04-03Dexcom, Inc.Transcutaneous analyte sensors, applicators therefor, and associated methods
US9493807B2 (en)2012-05-252016-11-15Medtronic Minimed, Inc.Foldover sensors and methods for making and using them
US10453573B2 (en)2012-06-052019-10-22Dexcom, Inc.Dynamic report building
US10881339B2 (en)2012-06-292021-01-05Dexcom, Inc.Use of sensor redundancy to detect sensor failures
US10598627B2 (en)2012-06-292020-03-24Dexcom, Inc.Devices, systems, and methods to compensate for effects of temperature on implantable sensors
US20140012115A1 (en)2012-07-032014-01-09Medtronic Minimed, Inc.Plasma deposited adhesion promoter layers for use with analyte sensors
US20140012118A1 (en)2012-07-092014-01-09Dexcom, Inc.Systems and methods for leveraging smartphone features in continuous glucose monitoring
US10132793B2 (en)2012-08-302018-11-20Abbott Diabetes Care Inc.Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en)2012-09-172018-05-15Abbott Diabetes Care Inc.Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
WO2014052136A1 (en)2012-09-262014-04-03Abbott Diabetes Care Inc.Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9788765B2 (en)2012-09-282017-10-17Dexcom, Inc.Zwitterion surface modifications for continuous sensors
US20140129151A1 (en)2012-11-072014-05-08Dexcom, Inc.Systems and methods for managing glycemic variability
US10194840B2 (en)2012-12-062019-02-05Medtronic Minimed, Inc.Microarray electrodes useful with analyte sensors and methods for making and using them
US9801541B2 (en)2012-12-312017-10-31Dexcom, Inc.Remote monitoring of analyte measurements
US9730621B2 (en)2012-12-312017-08-15Dexcom, Inc.Remote monitoring of analyte measurements
US10426383B2 (en)2013-01-222019-10-01Medtronic Minimed, Inc.Muting glucose sensor oxygen response and reducing electrode edge growth with pulsed current plating
ES2969238T3 (en)2013-03-142024-05-17Dexcom Inc Systems and methods for processing and transmitting sensor data
US10335075B2 (en)2013-03-142019-07-02Dexcom, Inc.Advanced calibration for analyte sensors
US9445445B2 (en)2013-03-142016-09-13Dexcom, Inc.Systems and methods for processing and transmitting sensor data
US9474475B1 (en)2013-03-152016-10-25Abbott Diabetes Care Inc.Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9737250B2 (en)2013-03-152017-08-22Dexcom, Inc.Membrane for continuous analyte sensors
US10433773B1 (en)2013-03-152019-10-08Abbott Diabetes Care Inc.Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US10076285B2 (en)2013-03-152018-09-18Abbott Diabetes Care Inc.Sensor fault detection using analyte sensor data pattern comparison
US20150122647A1 (en)2013-11-072015-05-07Medtronic Minimed, Inc.Enzyme matrices for use with ethylene oxide sterilization
WO2015100142A1 (en)*2013-12-272015-07-02Abbott Diabetes Care Inc.Application interface and display control in an analyte monitoring environment
WO2015102745A1 (en)2013-12-312015-07-09Abbott Diabetes Care Inc.Self-powered analyte sensor and devices using the same
US20170185748A1 (en)2014-03-302017-06-29Abbott Diabetes Care Inc.Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
WO2015155171A1 (en)2014-04-082015-10-15Novartis AgOphthalmic lenses with oxygen-generating elements therein
JP6925804B2 (en)2014-04-102021-08-25デックスコム・インコーポレーテッド A method for making a sensor device for measuring the concentration of an analyte in a host and a sensor device configured to be embedded in the host without using an inserter.
WO2016183493A1 (en)2015-05-142016-11-17Abbott Diabetes Care Inc.Compact medical device inserters and related systems and methods
US10213139B2 (en)2015-05-142019-02-26Abbott Diabetes Care Inc.Systems, devices, and methods for assembling an applicator and sensor control device
WO2016196516A1 (en)2015-06-032016-12-08William Kenneth WardMeasurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
DE202016009220U1 (en)2015-07-102024-07-09Abbott Diabetes Care, Inc. Device and system for dynamic glucose profile response to physiological parameters
EP3364861B1 (en)2015-10-212022-01-05Dexcom, Inc.Transcutaneous analyte sensors, applicators therefor, and associated methods
WO2017116692A1 (en)2015-12-282017-07-06Dexcom, Inc.Systems and methods for remote and host monitoring communications
EP3397163B1 (en)2015-12-302023-09-13DexCom, Inc.Diffusion resistance layer for analyte sensors
CA3007516C (en)2016-03-312021-11-23Dexcom, Inc.Systems and methods for display device and sensor electronics unit communication
US10324058B2 (en)2016-04-282019-06-18Medtronic Minimed, Inc.In-situ chemistry stack for continuous glucose sensors
US11179078B2 (en)2016-06-062021-11-23Medtronic Minimed, Inc.Polycarbonate urea/urethane polymers for use with analyte sensors
EP3570749B1 (en)2017-01-182025-06-04Dexcom, Inc.Sensors for continuous analyte monitoring
CN110418605A (en)2017-01-192019-11-05德克斯康公司 Flexible Analyte Sensors
US11071478B2 (en)2017-01-232021-07-27Abbott Diabetes Care Inc.Systems, devices and methods for analyte sensor insertion
US11134868B2 (en)2017-03-172021-10-05Medtronic Minimed, Inc.Metal pillar device structures and methods for making and using them in electrochemical and/or electrocatalytic applications
WO2018175489A1 (en)2017-03-212018-09-27Abbott Diabetes Care Inc.Methods, devices and system for providing diabetic condition diagnosis and therapy
EP4111949B1 (en)2017-06-232023-07-26Dexcom, Inc.Transcutaneous analyte sensors, applicators therefor, and needle hub comprising anti-rotation feature
US10856784B2 (en)2017-06-302020-12-08Medtronic Minimed, Inc.Sensor initialization methods for faster body sensor response
US11331022B2 (en)2017-10-242022-05-17Dexcom, Inc.Pre-connected analyte sensors
US20190120785A1 (en)2017-10-242019-04-25Dexcom, Inc.Pre-connected analyte sensors
US12042284B2 (en)2018-01-232024-07-23Medtronic Minimed, Inc.Implantable polymer surfaces exhibiting reduced in vivo inflammatory responses
US11186859B2 (en)2018-02-072021-11-30Medtronic Minimed, Inc.Multilayer electrochemical analyte sensors and methods for making and using them
US11583213B2 (en)2018-02-082023-02-21Medtronic Minimed, Inc.Glucose sensor electrode design
US11220735B2 (en)2018-02-082022-01-11Medtronic Minimed, Inc.Methods for controlling physical vapor deposition metal film adhesion to substrates and surfaces
EP3794135A1 (en)2018-05-162021-03-24Medtronic MiniMed, Inc.Thermally stable glucose limiting membrane for glucose sensors
CN112423664B (en)2018-06-072025-01-21雅培糖尿病护理公司 Focused sterilization and sterilized sub-assemblies for analyte monitoring systems
USD926325S1 (en)2018-06-222021-07-27Dexcom, Inc.Wearable medical monitoring device
TWI672499B (en)*2018-07-262019-09-21劉茂誠Non-invasive nitrate detection apparatus and method for fruits/vegetables
USD1002852S1 (en)2019-06-062023-10-24Abbott Diabetes Care Inc.Analyte sensor device
US11718865B2 (en)2019-07-262023-08-08Medtronic Minimed, Inc.Methods to improve oxygen delivery to implantable sensors
US11523757B2 (en)2019-08-012022-12-13Medtronic Minimed, Inc.Micro-pillar working electrodes design to reduce backflow of hydrogen peroxide in glucose sensor
CN111060573B (en)*2019-12-192022-07-08衡阳师范学院CoFe Prussian blue analogue modified electrode and application thereof in simultaneous determination of dopamine and 5-hydroxytryptamine contents
US12082924B2 (en)2020-07-312024-09-10Medtronic Minimed, Inc.Sensor identification and integrity check design
CA3188510A1 (en)2020-08-312022-03-03Vivek S. RAOSystems, devices, and methods for analyte sensor insertion
US20220133190A1 (en)2020-10-292022-05-05Medtronic Minimed, Inc.Glucose biosensors comprising direct electron transfer enzymes and methods of making and using them
USD999913S1 (en)2020-12-212023-09-26Abbott Diabetes Care IncAnalyte sensor inserter
US11998330B2 (en)2021-01-292024-06-04Medtronic Minimed, Inc.Interference rejection membranes useful with analyte sensors
WO2022212867A1 (en)2021-04-022022-10-06Dexcom, Inc.Personalized modeling of blood glucose concentration impacted by individualized sensor characteristics and individualized physiological characteristics
US20220338768A1 (en)2021-04-092022-10-27Medtronic Minimed, Inc.Hexamethyldisiloxane membranes for analyte sensors
CN113804744B (en)*2021-08-122024-03-26云南警官学院Quick morphine detection method based on carboxylated multiwall carbon nanotube modified electrode
US12433515B2 (en)2021-08-132025-10-07Medtronic Minimed, Inc.Dry electrochemical impedance spectroscopy metrology for conductive chemical layers
EP4401634A1 (en)2021-09-152024-07-24Dexcom, Inc.Bioactive releasing membrane for analyte sensor
US12201421B2 (en)2021-10-082025-01-21Medtronic Minimed, Inc.Immunosuppressant releasing coatings
EP4174188A1 (en)2021-10-142023-05-03Medtronic Minimed, Inc.Sensors for 3-hydroxybutyrate detection
US20230172497A1 (en)2021-12-022023-06-08Medtronic Minimed, Inc.Ketone limiting membrane and dual layer membrane approach for ketone sensing
US20230408437A1 (en)*2022-05-182023-12-21Apex Biotechnology Corp.Electrochemical system and implantable biochemical test chip
US20240023849A1 (en)2022-07-202024-01-25Medtronic Minimed, Inc.Acrylate hydrogel membrane for dual function of diffusion limiting membrane as well as attenuation to the foreign body response
EP4382611A1 (en)2022-08-312024-06-12Medtronic MiniMed, Inc.Sensors for 3-hydroxybutyrate detection

Citations (424)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1564641A (en)1922-04-101925-12-08Chicago Miniature Lamp WorksDetector for wireless systems
US2402306A (en)1943-10-071946-06-18Turkel HenryRetaining guard guide for needles
US3210578A (en)1962-01-121965-10-05Westinghouse Electric CorpMultispeed motor connector
US3381371A (en)1965-09-271968-05-07Sanders Associates IncMethod of constructing lightweight antenna
US3775182A (en)1972-02-251973-11-27Du PontTubular electrochemical cell with coiled electrodes and compressed central spindle
US3826244A (en)1973-07-201974-07-30Us Health Education & WelfareThumbtack microelectrode and method of making same
US3838033A (en)1971-09-091974-09-24Hoffmann La RocheEnzyme electrode
US3933593A (en)1971-02-221976-01-20Beckman Instruments, Inc.Rate sensing batch analysis method
GB1442303A (en)1972-09-081976-07-14Radiometer AsCell for electro-chemical analysis
US3982530A (en)1975-04-221976-09-28Egon StorchPenial appliance
US4052754A (en)1975-08-141977-10-11Homsy Charles AImplantable structure
US4067322A (en)1974-07-191978-01-10Johnson Joseph HDisposable, pre-gel body electrodes
US4197840A (en)1975-11-061980-04-15Bbc Brown Boveri & Company, LimitedPermanent magnet device for implantation
US4240889A (en)1978-01-281980-12-23Toyo Boseki Kabushiki KaishaEnzyme electrode provided with immobilized enzyme membrane
US4255500A (en)1979-03-291981-03-10General Electric CompanyVibration resistant electrochemical cell having deformed casing and method of making same
US4324257A (en)1978-02-201982-04-13U.S. Philips CorporationDevice for the transcutaneous measurement of the partial oxygen pressure in blood
US4374013A (en)*1980-03-051983-02-15Enfors Sven OlofOxygen stabilized enzyme electrode
US4378016A (en)1981-07-151983-03-29Biotek, Inc.Artificial endocrine gland containing hormone-producing cells
US4388166A (en)1979-08-141983-06-14Tokyo Shibaura Denki Kabushiki KaishaElectrochemical measuring apparatus provided with an enzyme electrode
US4402694A (en)1981-07-161983-09-06Biotek, Inc.Body cavity access device containing a hormone source
US4418148A (en)1981-11-051983-11-29Miles Laboratories, Inc.Multilayer enzyme electrode membrane
EP0098592A2 (en)1982-07-061984-01-18Fujisawa Pharmaceutical Co., Ltd.Portable artificial pancreas
US4431507A (en)*1981-01-141984-02-14Matsushita Electric Industrial Co., Ltd.Enzyme electrode
US4431004A (en)1981-10-271984-02-14Bessman Samuel PImplantable glucose sensor
US4442841A (en)1981-04-301984-04-17Mitsubishi Rayon Company LimitedElectrode for living bodies
US4477314A (en)1982-07-301984-10-16Siemens AktiengesellschaftMethod for determining sugar concentration
US4484987A (en)1983-05-191984-11-27The Regents Of The University Of CaliforniaMethod and membrane applicable to implantable sensor
US4494950A (en)1982-01-191985-01-22The Johns Hopkins UniversityPlural module medication delivery system
USRE31916E (en)1970-11-101985-06-18Becton Dickinson & CompanyElectrochemical detection cell
US4545382A (en)1981-10-231985-10-08Genetics International, Inc.Sensor for components of a liquid mixture
US4571292A (en)1982-08-121986-02-18Case Western Reserve UniversityApparatus for electrochemical measurements
US4578215A (en)1983-08-121986-03-25Micro-Circuits CompanyElectrical conductivity-enhancing and protecting material
US4650547A (en)1983-05-191987-03-17The Regents Of The University Of CaliforniaMethod and membrane applicable to implantable sensor
US4655880A (en)1983-08-011987-04-07Case Western Reserve UniversityApparatus and method for sensing species, substances and substrates using oxidase
JPS6283849U (en)1985-11-121987-05-28
JPS6283649U (en)1985-11-141987-05-28
US4671288A (en)1985-06-131987-06-09The Regents Of The University Of CaliforniaElectrochemical cell sensor for continuous short-term use in tissues and blood
US4672970A (en)1984-07-301987-06-16Mitsubishi Rayon Company, Ltd.Electrode for living body
US4680268A (en)1985-09-181987-07-14Children's Hospital Medical CenterImplantable gas-containing biosensor and method for measuring an analyte such as glucose
US4685463A (en)1986-04-031987-08-11Williams R BruceDevice for continuous in vivo measurement of blood glucose concentrations
US4703756A (en)1986-05-061987-11-03The Regents Of The University Of CaliforniaComplete glucose monitoring system with an implantable, telemetered sensor module
US4711245A (en)1983-05-051987-12-08Genetics International, Inc.Sensor for components of a liquid mixture
US4726381A (en)1986-06-041988-02-23Solutech, Inc.Dialysis system and method
US4750496A (en)1987-01-281988-06-14Xienta, Inc.Method and apparatus for measuring blood glucose concentration
US4757022A (en)1986-04-151988-07-12Markwell Medical Institute, Inc.Biological fluid measuring device
US4763658A (en)1986-06-041988-08-16Solutech, Inc.Dialysis system 2nd method
US4776944A (en)1986-03-201988-10-11Jiri JanataChemical selective sensors utilizing admittance modulated membranes
US4781798A (en)1985-04-191988-11-01The Regents Of The University Of CaliforniaTransparent multi-oxygen sensor array and method of using same
US4786657A (en)1987-07-021988-11-22Minnesota Mining And Manufacturing CompanyPolyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate
JPS6367560B2 (en)1984-07-201988-12-26Kawasaki Steel Co
US4795542A (en)1986-04-241989-01-03St. Jude Medical, Inc.Electrochemical concentration detector device
US4813424A (en)1987-12-231989-03-21University Of New MexicoLong-life membrane electrode for non-ionic species
WO1989002720A1 (en)1987-10-051989-04-06Rijksuniversiteit Te GroningenA process and system and measuring cell assembly for glucose determination
US4822336A (en)1988-03-041989-04-18Ditraglia JohnBlood glucose level sensing
EP0320109A1 (en)1987-11-051989-06-14MediSense, Inc.Improved sensing system
US4858615A (en)1981-11-101989-08-22Sentron V.O.F.Catheter sensor and memory unit
US4861830A (en)1980-02-291989-08-29Th. Goldschmidt AgPolymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4871440A (en)1987-07-061989-10-03Daiken Industries, Ltd.Biosensor
US4883057A (en)1984-05-091989-11-28Research Foundation, The City University Of New YorkCathodic electrochemical current arrangement with telemetric application
US4886740A (en)1985-06-051989-12-12Imperial Chemical Industries PlcEnzyme-electrode sensor with organosilane treated membrane
US4890620A (en)1985-09-201990-01-02The Regents Of The University Of CaliforniaTwo-dimensional diffusion glucose substrate sensing electrode
US4890621A (en)1988-01-191990-01-02Northstar Research Institute, Ltd.Continuous glucose monitoring and a system utilized therefor
JPH022913Y2 (en)1982-03-121990-01-24
EP0353328A1 (en)1988-08-031990-02-07Dräger Nederland B.V.A polarographic-amperometric three-electrode sensor
US4909908A (en)1986-04-241990-03-20Pepi RossElectrochemical cncentration detector method
US4919141A (en)1987-01-031990-04-24Institute fur Diabetestechnologie Gemeinnutzige Forschungs- und Entwicklungsgesellschaft mbHImplantable electrochemical sensor
US4927407A (en)1989-06-191990-05-22Regents Of The University Of MinnesotaCardiac assist pump with steady rate supply of fluid lubricant
WO1990007575A1 (en)1988-12-301990-07-12Anderson David MStabilized microporous materials and hydrogel materials
US4953552A (en)1989-04-211990-09-04Demarzo Arthur PBlood glucose monitoring system
US4955861A (en)1988-04-211990-09-11Therex Corp.Dual access infusion and monitoring system
EP0390390A1 (en)1989-03-201990-10-03Associated Universities, Inc.Electrochemical biosensor based on immobilized enzymes and redox polymers
US4970145A (en)1986-05-271990-11-13Cambridge Life Sciences PlcImmobilized enzyme electrodes
EP0396788A1 (en)1989-05-081990-11-14Dräger Nederland B.V.Process and sensor for measuring the glucose content of glucosecontaining fluids
US4973320A (en)1987-08-041990-11-27Firma Carl FreudenbergTissue-compatible medical device and method for manufacturing the same
US4974929A (en)1987-09-221990-12-04Baxter International, Inc.Fiber optical probe connector for physiologic measurement devices
US4975175A (en)1987-03-271990-12-04Isao KarubeMiniaturized oxygen electrode and miniaturized biosensor and production process thereof
US4992794A (en)1988-10-101991-02-12Texas Instruments IncorporatedTransponder and method for the production thereof
US4994167A (en)1986-04-151991-02-19Markwell Medical Institute, Inc.Biological fluid measuring device
WO1991009302A1 (en)1989-12-141991-06-27The Regents Of The University Of CaliforniaMethod for increasing the service life of an implantable sensor
FR2656423A1 (en)1989-12-221991-06-28Rhone Poulenc ChimieElectrochemical biosensor
US5030333A (en)1984-09-131991-07-09Children's Hospital Medical CenterPolarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
US5034112A (en)1988-05-191991-07-23Nissan Motor Company, Ltd.Device for measuring concentration of nitrogen oxide in combustion gas
US5050612A (en)1989-09-121991-09-24Matsumura Kenneth NDevice for computer-assisted monitoring of the body
US5063081A (en)1988-11-141991-11-05I-Stat CorporationMethod of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
JPH03293556A (en)1990-04-111991-12-25Kokuritsu Shintai Shiyougaishiya Rehabilitation Center SouchiyouAnalysis using organic function substance immobilized electrode
US5089112A (en)1989-03-201992-02-18Associated Universities, Inc.Electrochemical biosensor based on immobilized enzymes and redox polymers
EP0127958B1 (en)1983-05-051992-03-11MediSense, Inc.Sensor electrode systems
WO1992007525A1 (en)1990-10-311992-05-14Baxter International Inc.Close vascularization implant material
WO1992013271A1 (en)1991-01-251992-08-06Markwell Medical Institute, Inc.Implantable biological fluid measuring device
US5140985A (en)1989-12-111992-08-25Schroeder Jon MNoninvasive blood glucose measuring device
US5155149A (en)1991-10-101992-10-13Boc Health Care, Inc.Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds
US5165407A (en)1990-04-191992-11-24The University Of KansasImplantable glucose sensor
US5171689A (en)1984-11-081992-12-15Matsushita Electric Industrial Co., Ltd.Solid state bio-sensor
US5183549A (en)1990-01-261993-02-02Commtech International Management CorporationMulti-analyte sensing electrolytic cell
US5190041A (en)1989-08-111993-03-02Palti Yoram ProfSystem for monitoring and controlling blood glucose
US5198771A (en)1991-09-031993-03-30Transducer Research, Inc.Potentiostatic apparatus and methods
US5200051A (en)1988-11-141993-04-06I-Stat CorporationWholly microfabricated biosensors and process for the manufacture and use thereof
US5202261A (en)1990-07-191993-04-13Miles Inc.Conductive sensors and their use in diagnostic assays
EP0539625A1 (en)1991-10-281993-05-05Dräger Medical Electronics B.V.Electrochemical sensor for measuring the glucose content of glucose containing fluids
US5212050A (en)1988-11-141993-05-18Mier Randall MMethod of forming a permselective layer
WO1993014693A1 (en)1992-02-011993-08-05The Victoria University Of ManchesterElectrode
US5242835A (en)1987-11-031993-09-07Radiometer A/SMethod and apparatus for determining the concentration of oxygen
US5249576A (en)1991-10-241993-10-05Boc Health Care, Inc.Universal pulse oximeter probe
US5250439A (en)1990-07-191993-10-05Miles Inc.Use of conductive sensors in diagnostic assays
WO1993023744A1 (en)1992-05-081993-11-25E. Heller & CompanyImproved enzyme electrodes
US5266179A (en)1990-07-201993-11-30Matsushita Electric Industrial Co., Ltd.Quantitative analysis method and its system using a disposable sensor
US5281319A (en)1991-07-091994-01-25Agency Of Industrial Science And TechnologyCarbon micro-sensor electrode and method for preparing it
US5282848A (en)1990-08-281994-02-01Meadox Medicals, Inc.Self-supporting woven vascular graft
US5284140A (en)1992-02-111994-02-08Eli Lilly And CompanyAcrylic copolymer membranes for biosensors
US5286364A (en)1987-06-081994-02-15Rutgers UniversitySurface-modified electochemical biosensor
US5298144A (en)1992-09-151994-03-29The Yellow Springs Instrument Company, Inc.Chemically wired fructose dehydrogenase electrodes
US5299571A (en)1993-01-221994-04-05Eli Lilly And CompanyApparatus and method for implantation of sensors
US5307263A (en)1992-11-171994-04-26Raya Systems, Inc.Modular microprocessor-based health monitoring system
US5310469A (en)1991-12-311994-05-10Abbott LaboratoriesBiosensor with a membrane containing biologically active material
US5312361A (en)1991-09-131994-05-17Zadini Filiberto PAutomatic cannulation device
US5322063A (en)1991-10-041994-06-21Eli Lilly And CompanyHydrophilic polyurethane membranes for electrochemical glucose sensors
US5330634A (en)1992-08-281994-07-19Via Medical CorporationCalibration solutions useful for analyses of biological fluids and methods employing same
US5337747A (en)1989-10-061994-08-16Frederic NeftelImplantable device for estimating glucose levels
US5352348A (en)1987-04-091994-10-04Nova Biomedical CorporationMethod of using enzyme electrode
US5352351A (en)1993-06-081994-10-04Boehringer Mannheim CorporationBiosensing meter with fail/safe procedures to prevent erroneous indications
US5354449A (en)1991-01-101994-10-11Band David MpH electrode
WO1994022367A1 (en)1993-03-301994-10-13Pfizer Inc.Radiotelemetry impedance plethysmography device
US5372133A (en)1992-02-051994-12-13N.V. Nederlandsche Apparatenfabriek NedapImplantable biomedical sensor device, suitable in particular for measuring the concentration of glucose
US5384028A (en)1992-08-281995-01-24Nec CorporationBiosensor with a data memory
US5387327A (en)1992-10-191995-02-07Duquesne University Of The Holy GhostImplantable non-enzymatic electrochemical glucose sensor
US5390671A (en)1994-03-151995-02-21Minimed Inc.Transcutaneous sensor insertion set
US5391250A (en)1994-03-151995-02-21Minimed Inc.Method of fabricating thin film sensors
US5411866A (en)1993-03-301995-05-02National Research Council Of CanadaMethod and system for determining bioactive substances
US5411647A (en)1992-11-231995-05-02Eli Lilly And CompanyTechniques to improve the performance of electrochemical sensors
US5425717A (en)1993-05-071995-06-20The Kendall CompanyEpidural catheter system utilizing splittable needle
US5428123A (en)1992-04-241995-06-27The Polymer Technology GroupCopolymers and non-porous, semi-permeable membrane thereof and its use for permeating molecules of predetermined molecular weight range
US5431160A (en)1989-07-191995-07-11University Of New MexicoMiniature implantable refillable glucose sensor and material therefor
US5438984A (en)1988-09-081995-08-08Sudor PartnersApparatus and method for the collection of analytes on a dermal patch
US5462645A (en)1991-09-201995-10-31Imperial College Of Science, Technology & MedicineDialysis electrode device
US5474552A (en)1994-06-271995-12-12Cb-Carmel Biotechnology Ltd.Implantable drug delivery pump
US5482473A (en)1994-05-091996-01-09Minimed Inc.Flex circuit connector
US5482008A (en)1991-09-131996-01-09Stafford; Rodney A.Electronic animal identification system
US5486776A (en)1994-09-291996-01-23Xilinx, Inc.Antifuse-based programmable logic circuit
US5494562A (en)1994-06-271996-02-27Ciba Corning Diagnostics Corp.Electrochemical sensors
US5496453A (en)1991-05-171996-03-05Kyoto Daiichi Kagaku Co., Ltd.Biosensor and method of quantitative analysis using the same
EP0534074B1 (en)1991-09-161996-03-06Institut für Diabetestechnologie gemeinnützige Forschungs- und Entwicklungsgesellschaft mbHMethod and instrument for testing the concentration of body fluid constituents
US5497772A (en)1993-11-191996-03-12Alfred E. Mann Foundation For Scientific ResearchGlucose monitoring system
US5502396A (en)1993-09-211996-03-26Asulab S.A.Measuring device with connection for a removable sensor
US5508509A (en)1993-11-301996-04-16Minnesota Mining And Manufacturing CompanySensing elements and methods for uniformly making individual sensing elements
US5507288A (en)1994-05-051996-04-16Boehringer Mannheim GmbhAnalytical system for monitoring a substance to be analyzed in patient-blood
WO1996014026A1 (en)1994-11-041996-05-17Elan Medical Technologies LimitedAnalyte-controlled liquid delivery device and analyte monitor
US5531878A (en)1992-05-291996-07-02The Victoria University Of ManchesterSensor devices
WO1996025089A1 (en)1995-02-161996-08-22Minimed Inc.Transcutaneous sensor insertion set
WO1996030431A1 (en)1995-03-271996-10-03Minimed Inc.Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5564439A (en)1991-05-131996-10-15George J. PichaInfusion device for soft tissue
US5569186A (en)1994-04-251996-10-29Minimed Inc.Closed loop infusion pump system with removable glucose sensor
US5569462A (en)1993-09-241996-10-29Baxter International Inc.Methods for enhancing vascularization of implant devices
US5571395A (en)1993-11-041996-11-05Goldstar Co., Ltd.Breath alcohol analyzer using a biosensor
US5575930A (en)1992-10-071996-11-19Tietje-Girault; JordisMethod of making gas permeable membranes for amperometric gas electrodes
US5582497A (en)1992-01-291996-12-10Wing Labo Co., Ltd.Automatic warehouse system
US5582184A (en)1993-10-131996-12-10Integ IncorporatedInterstitial fluid collection and constituent measurement
US5593852A (en)1993-12-021997-01-14Heller; AdamSubcutaneous glucose electrode
WO1997001986A1 (en)1995-07-061997-01-23Thomas Jefferson UniversityImplantable sensor and system for measurement and control of blood constituent levels
US5605152A (en)1994-07-181997-02-25Minimed Inc.Optical glucose sensor
WO1997006727A1 (en)1995-08-181997-02-27Cardiac Crc Nominees Pty. Ltd.A multipolar transmural probe
US5607565A (en)1995-03-271997-03-04Coulter CorporationApparatus for measuring analytes in a fluid sample
US5611900A (en)1995-07-201997-03-18Michigan State UniversityMicrobiosensor used in-situ
EP0476980B1 (en)1990-09-171997-04-09Fujitsu LimitedOxygen electrode and process for the production thereof
US5624537A (en)1994-09-201997-04-29The University Of British Columbia - University-Industry Liaison OfficeBiosensor and interface membrane
US5628890A (en)1995-09-271997-05-13Medisense, Inc.Electrochemical sensor
US5640954A (en)1994-01-191997-06-24Pfeiffer; ErnstMethod and apparatus for continuously monitoring the concentration of a metabolyte
US5653863A (en)1995-05-051997-08-05Bayer CorporationMethod for reducing bias in amperometric sensors
US5665222A (en)1995-10-111997-09-09E. Heller & CompanySoybean peroxidase electrochemical sensor
US5676820A (en)1995-02-031997-10-14New Mexico State University Technology Transfer Corp.Remote electrochemical sensor
US5682884A (en)1983-05-051997-11-04Medisense, Inc.Strip electrode with screen printing
US5686829A (en)1994-06-031997-11-11Metrohm AgVoltammetric method and apparatus
US5703359A (en)1996-07-291997-12-30Leybold Inficon, Inc.Composite membrane and support assembly
US5704354A (en)1994-06-231998-01-06Siemens AktiengesellschaftElectrocatalytic glucose sensor
US5707502A (en)1996-07-121998-01-13Chiron Diagnostics CorporationSensors for measuring analyte concentrations and methods of making same
US5711861A (en)1995-11-221998-01-27Ward; W. KennethDevice for monitoring changes in analyte concentration
US5735273A (en)1995-09-121998-04-07Cygnus, Inc.Chemical signal-impermeable mask
US5741634A (en)1993-08-031998-04-21A & D Company LimitedThrowaway type chemical sensor
US5746898A (en)1990-08-101998-05-05Siemens AktiengesellschaftElectrochemical-enzymatic sensor
WO1998019159A1 (en)1996-10-301998-05-07Mercury Diagnostics, Inc.Synchronized analyte testing system
US5776324A (en)1996-05-171998-07-07Encelle, Inc.Electrochemical biosensors
US5791344A (en)1993-11-191998-08-11Alfred E. Mann Foundation For Scientific ResearchPatient monitoring system
US5795774A (en)1996-07-101998-08-18Nec CorporationBiosensor
US5795453A (en)1996-01-231998-08-18Gilmartin; Markas A. T.Electrodes and metallo isoindole ringed compounds
WO1998038906A1 (en)1997-03-041998-09-11Markwell Medical Institute, Inc.Device and method for determining analyte levels
US5833603A (en)1996-03-131998-11-10Lipomatrix, Inc.Implantable biosensing transponder
US5840148A (en)1995-06-301998-11-24Bio Medic Data Systems, Inc.Method of assembly of implantable transponder
US5851197A (en)1997-02-051998-12-22Minimed Inc.Injector for a subcutaneous infusion set
US5863400A (en)1994-04-141999-01-26Usf Filtration & Separations Group Inc.Electrochemical cells
US5879373A (en)1994-12-241999-03-09Boehringer Mannheim GmbhSystem and method for the determination of tissue properties
US5895235A (en)1995-04-121999-04-20Em Microelectronic-Marin SaProcess for manufacturing transponders of small dimensions
WO1998024358A3 (en)1996-12-041999-04-29Enact Health Management SystemSystem for downloading and reporting medical information
FR2760962B1 (en)1997-03-201999-05-14Sillonville Francis Klefstad REMOTE MEDICAL ASSISTANCE AND SURVEILLANCE SYSTEM
US5914026A (en)1997-01-061999-06-22Implanted Biosystems Inc.Implantable sensor employing an auxiliary electrode
US5928130A (en)1998-03-161999-07-27Schmidt; BrunoApparatus and method for implanting radioactive seeds in tissue
US5944661A (en)1997-04-161999-08-31Giner, Inc.Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
US5954643A (en)1997-06-091999-09-21Minimid Inc.Insertion set for a transcutaneous sensor
US5954954A (en)1992-10-161999-09-21Suprex CorporationMethod and apparatus for determination of analyte concentration
US5957854A (en)1993-09-041999-09-28Besson; MarcusWireless medical diagnosis and monitoring equipment
US5963132A (en)1996-10-111999-10-05Avid Indentification Systems, Inc.Encapsulated implantable transponder
US5964993A (en)1996-12-191999-10-12Implanted Biosystems Inc.Glucose sensor
US5972199A (en)1995-10-111999-10-26E. Heller & CompanyElectrochemical analyte sensors using thermostable peroxidase
WO1999056613A1 (en)1998-04-301999-11-11Therasense, Inc.Analyte monitoring device and methods of use
US5985129A (en)1989-12-141999-11-16The Regents Of The University Of CaliforniaMethod for increasing the service life of an implantable sensor
WO1999058051A1 (en)1998-05-131999-11-18Cygnus, Inc.Monitoring of physiological analytes
US5989409A (en)1995-09-111999-11-23Cygnus, Inc.Method for glucose sensing
US5999848A (en)1997-09-121999-12-07Alfred E. Mann FoundationDaisy chainable sensors and stimulators for implantation in living tissue
EP0967788A2 (en)1998-06-261999-12-29Hewlett-Packard CompanyDynamic generation of multi-resolution and tile-based images from flat compressed images
US6011984A (en)1995-11-222000-01-04Minimed Inc.Detection of biological molecules using chemical amplification and optical sensors
US6013113A (en)1998-03-062000-01-11Wilson Greatbatch Ltd.Slotted insulator for unsealed electrode edges in electrochemical cells
US6030827A (en)1998-01-232000-02-29I-Stat CorporationMicrofabricated aperture-based sensor
US6049727A (en)1996-07-082000-04-11Animas CorporationImplantable sensor and system for in vivo measurement and control of fluid constituent levels
US6051389A (en)1996-11-142000-04-18Radiometer Medical A/SEnzyme sensor
US6059946A (en)1997-04-142000-05-09Matsushita Electric Industrial Co., Ltd.Biosensor
US6066083A (en)1998-11-272000-05-23Syntheon LlcImplantable brachytherapy device having at least partial deactivation capability
US6066448A (en)*1995-03-102000-05-23Meso Sclae Technologies, Llc.Multi-array, multi-specific electrochemiluminescence testing
WO2000033065A1 (en)1998-12-022000-06-08Ut-Battelle, LlcIn vivo biosensor apparatus and method of use
WO2000032098A1 (en)1998-11-302000-06-08Health Hero Network, Inc.Networked system for interactive communication and remote monitoring of drug delivery
US6081735A (en)1991-03-072000-06-27Masimo CorporationSignal processing apparatus
US6081736A (en)1997-10-202000-06-27Alfred E. Mann FoundationImplantable enzyme-based monitoring systems adapted for long term use
US6088608A (en)1997-10-202000-07-11Alfred E. Mann FoundationElectrochemical sensor and integrity tests therefor
US6093172A (en)1997-02-052000-07-25Minimed Inc.Injector for a subcutaneous insertion set
US6093156A (en)1996-12-062000-07-25Abbott LaboratoriesMethod and apparatus for obtaining blood for diagnostic tests
WO2000019887A9 (en)1998-10-082000-08-31Minimed IncTelemetered characteristic monitor system
US6117290A (en)1997-09-262000-09-12Pepex Biomedical, LlcSystem and method for measuring a bioanalyte such as lactate
US6119028A (en)1997-10-202000-09-12Alfred E. Mann FoundationImplantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6120676A (en)1997-02-062000-09-19Therasense, Inc.Method of using a small volume in vitro analyte sensor
US6134461A (en)1998-03-042000-10-17E. Heller & CompanyElectrochemical analyte
US6144871A (en)1998-03-312000-11-07Nec CorporationCurrent detecting sensor and method of fabricating the same
US6189536B1 (en)1999-04-152001-02-20Medtronic Inc.Method for protecting implantable devices
US6233471B1 (en)1998-05-132001-05-15Cygnus, Inc.Signal processing for measurement of physiological analysis
WO2000074753A9 (en)1999-06-032001-05-17Minimed IncClosed loop system for controlling insulin infusion
US6248067B1 (en)1999-02-052001-06-19Minimed Inc.Analyte sensor and holter-type monitor system and method of using the same
US6256522B1 (en)1992-11-232001-07-03University Of Pittsburgh Of The Commonwealth System Of Higher EducationSensors for continuous monitoring of biochemicals and related method
US6259937B1 (en)1997-09-122001-07-10Alfred E. Mann FoundationImplantable substrate sensor
US6264825B1 (en)*1998-06-232001-07-24Clinical Micro Sensors, Inc.Binding acceleration techniques for the detection of analytes
US6268161B1 (en)1997-09-302001-07-31M-Biotech, Inc.Biosensor
US6274285B1 (en)1919-11-112001-08-14Agfa-Gevaert NvRadiation-sensitive recording material for the production of driographic offset printing plates
US6275717B1 (en)1997-06-162001-08-14Elan Corporation, PlcDevice and method of calibrating and testing a sensor for in vivo measurement of an analyte
US6285897B1 (en)1999-04-072001-09-04Endonetics, Inc.Remote physiological monitoring system
WO2001068901A2 (en)2000-03-172001-09-20Roche Diagnostics GmbhImplantable analyte sensor
US6294281B1 (en)1998-06-172001-09-25Therasense, Inc.Biological fuel cell and method
US6293925B1 (en)1997-12-312001-09-25Minimed Inc.Insertion device for an insertion set and method of using the same
US6300002B1 (en)1999-05-132001-10-09Moltech Power Systems, Inc.Notched electrode and method of making same
US6309526B1 (en)1997-07-102001-10-30Matsushita Electric Industrial Co., Ltd.Biosensor
EP1153571A1 (en)2000-05-082001-11-14A. Menarini Industrie Farmaceutiche Riunite S.R.L.Apparatus for measurement and control of the content of glucose, lactate or other metabolites in biological fluids
WO2001088524A1 (en)2000-05-122001-11-22Therasense, Inc.Electrodes with multilayer membranes and methods of using and making the electrodes
US6325979B1 (en)1996-10-152001-12-04Robert Bosch GmbhDevice for gas-sensoring electrodes
US6343225B1 (en)1999-09-142002-01-29Implanted Biosystems, Inc.Implantable glucose sensor
WO2000059373A9 (en)1999-04-072002-02-07Spectrx IncAssay device for measuring characteristics of a fluid on a continual basis
US6360888B1 (en)1999-02-252002-03-26Minimed Inc.Glucose sensor package system
US6366794B1 (en)1998-11-202002-04-02The University Of ConnecticutGeneric integrated implantable potentiostat telemetry unit for electrochemical sensors
US6368274B1 (en)1999-07-012002-04-09Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US6400974B1 (en)2000-06-292002-06-04Sensors For Medicine And Science, Inc.Implanted sensor processing system and method for processing implanted sensor output
US6407195B2 (en)1996-04-252002-06-183M Innovative Properties CompanyTackified polydiorganosiloxane oligourea segmented copolymers and a process for making same
US6409674B1 (en)1998-09-242002-06-25Data Sciences International, Inc.Implantable sensor with wireless communication
US6413393B1 (en)1999-07-072002-07-02Minimed, Inc.Sensor including UV-absorbing polymer and method of manufacture
US20020084196A1 (en)1999-11-042002-07-04Therasense, Inc.Small volume in vitro analyte sensor and methods
JP2002189015A (en)2000-12-202002-07-05Sankyo Co LtdReaction-current measuring method by enzyme electrode
US6418332B1 (en)1999-02-252002-07-09MinimedTest plug and cable for a glucose monitor
US6424847B1 (en)1999-02-252002-07-23Medtronic Minimed, Inc.Glucose monitor calibration methods
US20020099997A1 (en)2000-10-102002-07-25Philippe PiretTurbocoding methods with a large minimum distance, and systems for implementing them
US6442413B1 (en)2000-05-152002-08-27James H. SilverImplantable sensor
US6447448B1 (en)1998-12-312002-09-10Ball Semiconductor, Inc.Miniature implanted orthopedic sensors
US6454710B1 (en)2001-04-112002-09-24Motorola, Inc.Devices and methods for monitoring an analyte
US6459917B1 (en)2000-05-222002-10-01Ashok GowdaApparatus for access to interstitial fluid, blood, or blood plasma components
US6461496B1 (en)1998-10-082002-10-08Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
WO2002053764A3 (en)2000-12-292002-10-17Medtronic Minimed IncHydrophilic polymeric material for coating biosensors
WO2001058348A9 (en)2000-02-102002-10-17Minimed IncImproved analyte sensor and method of making the same
US6484045B1 (en)2000-02-102002-11-19Medtronic Minimed, Inc.Analyte sensor and method of making the same
US20020177763A1 (en)2001-05-222002-11-28Burns David W.Integrated lancets and methods
US20020188185A1 (en)2001-06-122002-12-12Borzu SohrabPercutaneous biological fluid sampling and analyte measurement devices and methods
WO2002089666A3 (en)2001-05-082002-12-12Isense CorpImplantable analyte sensor
US6498941B1 (en)2000-03-092002-12-24Advanced Cardiovascular Systems, Inc.Catheter based probe and method of using same for detecting chemical analytes
US20030004457A1 (en)2001-06-262003-01-02Andersson Stig O.Hypodermic implant device
US20030006669A1 (en)2001-05-222003-01-09Sri InternationalRolled electroactive polymers
US6510329B2 (en)2001-01-242003-01-21Datex-Ohmeda, Inc.Detection of sensor off conditions in a pulse oximeter
WO2003011131A2 (en)2001-07-272003-02-13Dexcom, Inc.Sensor head for monitoring glucose for use with implantable devices
US20030036773A1 (en)2001-08-032003-02-20Whitehurst Todd K.Systems and methods for treatment of coronary artery disease
US20030050546A1 (en)2001-06-222003-03-13Desai Shashi P.Methods for improving the performance of an analyte monitoring system
US6534711B1 (en)1998-04-142003-03-18The Goodyear Tire & Rubber CompanyEncapsulation package and method of packaging an electronic circuit module
US6542765B1 (en)1988-01-292003-04-01The Regent Of The University Of CaliforniaMethod for the iontophoretic non-invasive determination of the in vivo concentration level of an inorganic or organic substance
US6546268B1 (en)1999-06-022003-04-08Ball Semiconductor, Inc.Glucose sensor
US6547839B2 (en)2001-01-232003-04-15Skc Co., Ltd.Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US6551496B1 (en)2000-03-032003-04-22Ysi IncorporatedMicrostructured bilateral sensor
US6553241B2 (en)2000-08-312003-04-22Mallinckrodt Inc.Oximeter sensor with digital memory encoding sensor expiration data
US6558320B1 (en)2000-01-202003-05-06Medtronic Minimed, Inc.Handheld personal data assistant (PDA) with a medical device and method of using the same
US6560471B1 (en)2001-01-022003-05-06Therasense, Inc.Analyte monitoring device and methods of use
US6558321B1 (en)1997-03-042003-05-06Dexcom, Inc.Systems and methods for remote monitoring and modulation of medical devices
US20030097082A1 (en)2001-07-132003-05-22Board Of Regents, The University Of Texas SystemMethods and apparatuses for navigating the subarachnoid space
US6579498B1 (en)1998-03-202003-06-17David EgliseImplantable blood glucose sensor system
US20030125613A1 (en)2001-12-272003-07-03Medtronic Minimed, Inc.Implantable sensor flush sleeve
US20030130616A1 (en)1999-06-032003-07-10Medtronic Minimed, Inc.Closed loop system for controlling insulin infusion
US20030138674A1 (en)1998-07-092003-07-24Zeikus Gregory J.Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration
US6612984B1 (en)1999-12-032003-09-02Kerr, Ii Robert A.System and method for collecting and transmitting medical data
US6615078B1 (en)1999-04-222003-09-02Cygnus, Inc.Methods and devices for removing interfering species
EP0838230B1 (en)1996-10-222003-09-17Terumo Kabushiki KaishaGuide wire
US20030203498A1 (en)2002-04-252003-10-30Home Diagnostics, Inc.System and methods for blood glucose sensing
US20030211625A1 (en)2002-04-052003-11-13Cohan Bruce E.Method and apparatus for non-invasive monitoring of blood substances using self-sampled tears
US20030211050A1 (en)2002-05-092003-11-13The Procter & Gamble CompanyCompositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
US6654625B1 (en)1999-06-182003-11-25Therasense, Inc.Mass transport limited in vivo analyte sensor
US20030225324A1 (en)2002-06-032003-12-04Anderson Edward J.Noninvasive detection of a physiologic Parameter within a body tissue of a patient
US20030225437A1 (en)2002-04-042003-12-04Ferguson Patrick J.Device for retaining material
US20030235817A1 (en)2002-03-222003-12-25Miroslaw BartkowiakMicroprocessors, devices, and methods for use in analyte monitoring systems
US20040006263A1 (en)2002-06-032004-01-08Anderson Edward J.Noninvasive detection of a physiologic parameter within a body tissue of a patient
US20040015063A1 (en)2001-12-212004-01-22Denuzzio John D.Minimally-invasive system and method for monitoring analyte levels
US6689265B2 (en)1995-10-112004-02-10Therasense, Inc.Electrochemical analyte sensors using thermostable soybean peroxidase
US6699383B2 (en)1999-11-252004-03-02Siemens AktiengesellschaftMethod for determining a NOx concentration
US6702857B2 (en)2001-07-272004-03-09Dexcom, Inc.Membrane for use with implantable devices
US20040045879A1 (en)1997-03-042004-03-11Dexcom, Inc.Device and method for determining analyte levels
WO2004021877A1 (en)2002-09-042004-03-18Pendragon Medical Ltd.Method and device for measuring glucose
US20040063167A1 (en)2002-07-122004-04-01Peter KaastrupMinimising calibration problems of in vivo glucose sensors
US6721587B2 (en)2001-02-152004-04-13Regents Of The University Of CaliforniaMembrane and electrode structure for implantable sensor
US20040078219A1 (en)2001-12-042004-04-22Kimberly-Clark Worldwide, Inc.Healthcare networks with biosensors
US20040074785A1 (en)2002-10-182004-04-22Holker James D.Analyte sensors and methods for making them
US6730200B1 (en)1999-06-182004-05-04Abbott LaboratoriesElectrochemical sensor for analysis of liquid samples
US6737158B1 (en)2002-10-302004-05-18Gore Enterprise Holdings, Inc.Porous polymeric membrane toughened composites
US20040133164A1 (en)2002-11-052004-07-08Funderburk Jeffery V.Sensor inserter device and methods of use
US20040138543A1 (en)2003-01-132004-07-15Russell Geoffrey A.Assembly of single use sensing elements
US20040143173A1 (en)1999-07-012004-07-22Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US6773565B2 (en)2000-06-222004-08-10Kabushiki Kaisha RikenNOx sensor
US20040167801A1 (en)1998-04-302004-08-26James SayAnalyte monitoring device and methods of use
US6784274B2 (en)1995-03-272004-08-31Minimed Inc.Hydrophilic, swellable coatings for biosensors
US20040173472A1 (en)2001-09-282004-09-09Marine Biological LaboratorySelf-referencing enzyme-based microsensor and method of use
US20040176672A1 (en)2000-05-152004-09-09Silver James H.Implantable, retrievable, thrombus minimizing sensors
US20040180391A1 (en)2002-10-112004-09-16Miklos GratzlSliver type autonomous biosensors
US6793802B2 (en)2001-01-042004-09-21Tyson Bioresearch, Inc.Biosensors having improved sample application and measuring properties and uses thereof
US6801041B2 (en)2002-05-142004-10-05Abbott LaboratoriesSensor having electrode for determining the rate of flow of a fluid
US6809507B2 (en)2001-10-232004-10-26Medtronic Minimed, Inc.Implantable sensor electrodes and electronic circuitry
US20040224001A1 (en)2003-05-082004-11-11Pacetti Stephen D.Stent coatings comprising hydrophilic additives
US20040234575A1 (en)2002-05-092004-11-25Roland HorresMedical products comprising a haemocompatible coating, production and use thereof
US20040242982A1 (en)2001-09-112004-12-02Tetsuya SakataMeasuring instrument, installation body, and density measurer
US20040254433A1 (en)2003-06-122004-12-16Bandis Steven D.Sensor introducer system, apparatus and method
US20050027181A1 (en)2003-08-012005-02-03Goode Paul V.System and methods for processing analyte sensor data
US20050027182A1 (en)2001-12-272005-02-03Uzair SiddiquiSystem for monitoring physiological characteristics
US20050033132A1 (en)1997-03-042005-02-10Shults Mark C.Analyte measuring device
US20050031689A1 (en)2003-05-212005-02-10Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US20050038332A1 (en)2001-12-272005-02-17Frank SaidaraSystem for monitoring physiological characteristics
US20050043598A1 (en)2003-08-222005-02-24Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US6862465B2 (en)1997-03-042005-03-01Dexcom, Inc.Device and method for determining analyte levels
US20050054909A1 (en)2003-07-252005-03-10James PetisceOxygen enhancing membrane systems for implantable devices
US20050051427A1 (en)2003-07-232005-03-10Brauker James H.Rolled electrode array and its method for manufacture
US20050051440A1 (en)2003-07-252005-03-10Simpson Peter C.Electrochemical sensors including electrode systems with increased oxygen generation
US20050056551A1 (en)2001-06-282005-03-17Cranfield UniversityElectrochemical detection of analytes
US20050056552A1 (en)2003-07-252005-03-17Simpson Peter C.Increasing bias for oxygen production in an electrode system
US20050070770A1 (en)2001-12-172005-03-31Holger DiracMethod and device for monitoring analyte concentration by optical detection
US20050077584A1 (en)2001-06-282005-04-14Uhland Scott A.Hermetically sealed microchip reservoir devices
US20050090607A1 (en)2003-10-282005-04-28Dexcom, Inc.Silicone composition for biocompatible membrane
US6895263B2 (en)2000-02-232005-05-17Medtronic Minimed, Inc.Real time self-adjusting calibration algorithm
US6893552B1 (en)1997-12-292005-05-17Arrowhead Center, Inc.Microsensors for glucose and insulin monitoring
US20050112169A1 (en)2003-05-212005-05-26Dexcom, Inc.Porous membranes for use with implantable devices
US20050115832A1 (en)2003-07-252005-06-02Simpson Peter C.Electrode systems for electrochemical sensors
US20050143635A1 (en)2003-12-052005-06-30Kamath Apurv U.Calibration techniques for a continuous analyte sensor
US20050176136A1 (en)2003-11-192005-08-11Dexcom, Inc.Afinity domain for analyte sensor
US20050181012A1 (en)2004-01-122005-08-18Sean SaintComposite material for implantable device
US20050182451A1 (en)2004-01-122005-08-18Adam GriffinImplantable device with improved radio frequency capabilities
US20050183954A1 (en)2003-03-262005-08-25Hitchcock Robert W.Implantable biosensor system, apparatus and method
US20050192557A1 (en)2004-02-262005-09-01DexcomIntegrated delivery device for continuous glucose sensor
WO2005057175A3 (en)2003-12-092005-09-01Dexcom IncSignal processing for continuous analyte sensor
US20050197554A1 (en)2004-02-262005-09-08Michael PolchaComposite thin-film glucose sensor
US20050215871A1 (en)2004-02-092005-09-29Feldman Benjamin JAnalyte sensor, and associated system and method employing a catalytic agent
US20050211571A1 (en)2002-06-282005-09-29Jurgen SchuleinElectrochemical detection method and device
WO2005026689A9 (en)2003-09-102005-10-13I Stat CorpImmunoassay device with immuno-reference electrode
US20050245795A1 (en)2004-05-032005-11-03Dexcom, Inc.Implantable analyte sensor
US20050242479A1 (en)2004-05-032005-11-03Petisce James RImplantable analyte sensor
US20050245799A1 (en)2004-05-032005-11-03Dexcom, Inc.Implantable analyte sensor
US20050258037A1 (en)2001-03-232005-11-24Kiamars HajizadehElectrochemical sensor
US20050261563A1 (en)2004-05-202005-11-24Peter ZhouTransducer for embedded bio-sensor using body energy as a power source
US6972080B1 (en)1999-06-102005-12-06Matsushita Electric Industrial Co., Ltd.Electrochemical device for moving particles covered with protein
US20050272989A1 (en)2004-06-042005-12-08Medtronic Minimed, Inc.Analyte sensors and methods for making and using them
US20060015024A1 (en)2004-07-132006-01-19Mark BristerTranscutaneous medical device with variable stiffness
US20060015020A1 (en)2004-07-062006-01-19Dexcom, Inc.Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060020186A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060016700A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US7003336B2 (en)2000-02-102006-02-21Medtronic Minimed, Inc.Analyte sensor method of making the same
US7008979B2 (en)2002-04-302006-03-07Hydromer, Inc.Coating composition for multiple hydrophilic applications
US20060078908A1 (en)2004-06-092006-04-13Pitner James BMultianalyte sensor
US20060079740A1 (en)2000-05-152006-04-13Silver James HSensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
WO2006018425A3 (en)2004-08-162006-06-08Novo Nordisk AsMultiphase biocompatible semi-permeable membrane for biosensors
US20060142651A1 (en)2004-07-132006-06-29Mark BristerAnalyte sensor
US7070580B2 (en)2003-04-012006-07-04Unomedical A/SInfusion device and an adhesive sheet material and a release liner
US7078582B2 (en)2001-01-172006-07-183M Innovative Properties CompanyStretch removable adhesive articles and methods
US7081195B2 (en)2003-12-082006-07-25Dexcom, Inc.Systems and methods for improving electrochemical analyte sensors
US20060177379A1 (en)2004-12-302006-08-10Soheil AsgariComposition comprising an agent providing a signal, an implant material and a drug
US20060183871A1 (en)2003-05-212006-08-17Ward Robert SBiosensor membrane material
US20060195029A1 (en)2004-07-132006-08-31Shults Mark CLow oxygen in vivo analyte sensor
US20060200022A1 (en)2003-04-042006-09-07Brauker James HOptimized sensor geometry for an implantable glucose sensor
US7115884B1 (en)1997-10-062006-10-03Trustees Of Tufts CollegeSelf-encoding fiber optic sensor
US20060222566A1 (en)2003-08-012006-10-05Brauker James HTranscutaneous analyte sensor
US20060229512A1 (en)2005-04-082006-10-12Petisce James RCellulosic-based interference domain for an analyte sensor
US20060258761A1 (en)2002-05-222006-11-16Robert BoockSilicone based membranes for use in implantable glucose sensors
US20060263839A1 (en)2005-05-172006-11-23Isense CorporationCombined drug delivery and analyte sensor apparatus
US20060270923A1 (en)2004-07-132006-11-30Brauker James HAnalyte sensor
US20060275859A1 (en)2005-05-172006-12-07Kjaer ThomasEnzyme sensor including a water-containing spacer layer
US20060275857A1 (en)2005-05-172006-12-07Kjaer ThomasEnzyme sensor with a cover membrane layer covered by a hydrophilic polymer
US7153265B2 (en)2002-04-222006-12-26Medtronic Minimed, Inc.Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US20060289307A1 (en)2004-08-242006-12-28University Of South FloridaEpoxy Enhanced Polymer Membrane to Increase Durability of Biosensors
US20070007133A1 (en)2003-09-302007-01-11Andre MangSensor with increased biocompatibility
US20070027385A1 (en)2003-12-052007-02-01Mark BristerDual electrode system for a continuous analyte sensor
US20070027384A1 (en)2003-12-052007-02-01Mark BristerDual electrode system for a continuous analyte sensor
US20070032717A1 (en)2003-12-052007-02-08Mark BristerDual electrode system for a continuous analyte sensor
US7207974B2 (en)1997-02-052007-04-24Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US20070093704A1 (en)2003-12-052007-04-26Mark BristerDual electrode system for a continuous analyte sensor
US20070135698A1 (en)2005-12-132007-06-14Rajiv ShahBiosensors and methods for making and using them
US20070173709A1 (en)2005-04-082007-07-26Petisce James RMembranes for an analyte sensor
US20070173711A1 (en)2005-09-232007-07-26Medtronic Minimed, Inc.Sensor with layered electrodes
US20070197889A1 (en)2006-02-222007-08-23Mark BristerAnalyte sensor
US20070203966A1 (en)2003-08-012007-08-30Dexcom, Inc.Transcutaneous analyte sensor
US20070208246A1 (en)2003-08-012007-09-06Brauker James HTranscutaneous analyte sensor
US20070213611A1 (en)2003-07-252007-09-13Simpson Peter CDual electrode system for a continuous analyte sensor
US20070227907A1 (en)2006-04-042007-10-04Rajiv ShahMethods and materials for controlling the electrochemistry of analyte sensors
US20070235331A1 (en)2003-07-252007-10-11Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20070259217A1 (en)2006-05-022007-11-08The Penn State Research FoundationMaterials and configurations for scalable microbial fuel cells
WO2006105146A3 (en)2005-03-292007-11-15Arkal Medical IncDevices, systems, methods and tools for continuous glucose monitoring
US20070275193A1 (en)2004-02-132007-11-29Desimone Joseph MFunctional Materials and Novel Methods for the Fabrication of Microfluidic Devices
US20070299385A1 (en)2000-03-022007-12-27Microchips, Inc.Device for the controlled exposure of reservoir-based sensors
US20080027301A1 (en)2006-07-282008-01-31Ward W KennethAnalyte sensing and response system
US20080033269A1 (en)2004-12-082008-02-07San Medi Tech (Huzhou) Co., Ltd.Catheter-free implantable needle biosensor
US20080034972A1 (en)2006-08-102008-02-14The Regents Of The University Of CaliforniaMembranes with controlled permeability to polar and apolar molecules in solution and methods of making same
US20080154101A1 (en)2006-09-272008-06-26Faquir JainImplantable Biosensor and Methods of Use Thereof
US20080214918A1 (en)2006-10-042008-09-04Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20080242961A1 (en)2004-07-132008-10-02Dexcom, Inc.Transcutaneous analyte sensor
US20080262334A1 (en)1998-09-302008-10-23Animas Technologies, Llc.Method and device for predicting physiological values
US20090076360A1 (en)2007-09-132009-03-19Dexcom, Inc.Transcutaneous analyte sensor
US20090124879A1 (en)2004-07-132009-05-14Dexcom, Inc.Transcutaneous analyte sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0629873B2 (en)*1985-09-061994-04-20株式会社島津製作所 Enzyme functional electrode
JPS6283849A (en)1985-10-041987-04-17Reiji YoshinakaMethod of purifying collagen
JPH07122621B2 (en)*1986-09-091995-12-25鐘淵化学工業株式会社 Enzyme electrode
DE19653436C1 (en)*1996-12-201998-08-13Inst Chemo Biosensorik Electrochemical sensor
US6872297B2 (en)*2001-05-312005-03-29Instrumentation Laboratory CompanyAnalytical instruments, biosensors and methods thereof

Patent Citations (564)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6274285B1 (en)1919-11-112001-08-14Agfa-Gevaert NvRadiation-sensitive recording material for the production of driographic offset printing plates
US1564641A (en)1922-04-101925-12-08Chicago Miniature Lamp WorksDetector for wireless systems
US2402306A (en)1943-10-071946-06-18Turkel HenryRetaining guard guide for needles
US3210578A (en)1962-01-121965-10-05Westinghouse Electric CorpMultispeed motor connector
US3381371A (en)1965-09-271968-05-07Sanders Associates IncMethod of constructing lightweight antenna
USRE31916E (en)1970-11-101985-06-18Becton Dickinson & CompanyElectrochemical detection cell
US3933593A (en)1971-02-221976-01-20Beckman Instruments, Inc.Rate sensing batch analysis method
US3838033A (en)1971-09-091974-09-24Hoffmann La RocheEnzyme electrode
US3775182A (en)1972-02-251973-11-27Du PontTubular electrochemical cell with coiled electrodes and compressed central spindle
GB1442303A (en)1972-09-081976-07-14Radiometer AsCell for electro-chemical analysis
US3826244A (en)1973-07-201974-07-30Us Health Education & WelfareThumbtack microelectrode and method of making same
US4067322A (en)1974-07-191978-01-10Johnson Joseph HDisposable, pre-gel body electrodes
US3982530A (en)1975-04-221976-09-28Egon StorchPenial appliance
US4052754A (en)1975-08-141977-10-11Homsy Charles AImplantable structure
US4197840A (en)1975-11-061980-04-15Bbc Brown Boveri & Company, LimitedPermanent magnet device for implantation
US4240889A (en)1978-01-281980-12-23Toyo Boseki Kabushiki KaishaEnzyme electrode provided with immobilized enzyme membrane
US4324257A (en)1978-02-201982-04-13U.S. Philips CorporationDevice for the transcutaneous measurement of the partial oxygen pressure in blood
US4255500A (en)1979-03-291981-03-10General Electric CompanyVibration resistant electrochemical cell having deformed casing and method of making same
US4388166A (en)1979-08-141983-06-14Tokyo Shibaura Denki Kabushiki KaishaElectrochemical measuring apparatus provided with an enzyme electrode
US4861830A (en)1980-02-291989-08-29Th. Goldschmidt AgPolymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4374013A (en)*1980-03-051983-02-15Enfors Sven OlofOxygen stabilized enzyme electrode
US4431507A (en)*1981-01-141984-02-14Matsushita Electric Industrial Co., Ltd.Enzyme electrode
US4442841A (en)1981-04-301984-04-17Mitsubishi Rayon Company LimitedElectrode for living bodies
US4378016A (en)1981-07-151983-03-29Biotek, Inc.Artificial endocrine gland containing hormone-producing cells
US4402694A (en)1981-07-161983-09-06Biotek, Inc.Body cavity access device containing a hormone source
US4545382A (en)1981-10-231985-10-08Genetics International, Inc.Sensor for components of a liquid mixture
US4431004A (en)1981-10-271984-02-14Bessman Samuel PImplantable glucose sensor
US4418148A (en)1981-11-051983-11-29Miles Laboratories, Inc.Multilayer enzyme electrode membrane
US4858615A (en)1981-11-101989-08-22Sentron V.O.F.Catheter sensor and memory unit
US4494950A (en)1982-01-191985-01-22The Johns Hopkins UniversityPlural module medication delivery system
JPH022913Y2 (en)1982-03-121990-01-24
EP0098592A2 (en)1982-07-061984-01-18Fujisawa Pharmaceutical Co., Ltd.Portable artificial pancreas
US4477314A (en)1982-07-301984-10-16Siemens AktiengesellschaftMethod for determining sugar concentration
US4571292A (en)1982-08-121986-02-18Case Western Reserve UniversityApparatus for electrochemical measurements
US5682884A (en)1983-05-051997-11-04Medisense, Inc.Strip electrode with screen printing
EP0127958B1 (en)1983-05-051992-03-11MediSense, Inc.Sensor electrode systems
US4711245A (en)1983-05-051987-12-08Genetics International, Inc.Sensor for components of a liquid mixture
US4650547A (en)1983-05-191987-03-17The Regents Of The University Of CaliforniaMethod and membrane applicable to implantable sensor
US4484987A (en)1983-05-191984-11-27The Regents Of The University Of CaliforniaMethod and membrane applicable to implantable sensor
US4655880A (en)1983-08-011987-04-07Case Western Reserve UniversityApparatus and method for sensing species, substances and substrates using oxidase
US4578215A (en)1983-08-121986-03-25Micro-Circuits CompanyElectrical conductivity-enhancing and protecting material
US4883057A (en)1984-05-091989-11-28Research Foundation, The City University Of New YorkCathodic electrochemical current arrangement with telemetric application
JPS6367560B2 (en)1984-07-201988-12-26Kawasaki Steel Co
US4672970A (en)1984-07-301987-06-16Mitsubishi Rayon Company, Ltd.Electrode for living body
US5030333A (en)1984-09-131991-07-09Children's Hospital Medical CenterPolarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
US5171689A (en)1984-11-081992-12-15Matsushita Electric Industrial Co., Ltd.Solid state bio-sensor
US4781798A (en)1985-04-191988-11-01The Regents Of The University Of CaliforniaTransparent multi-oxygen sensor array and method of using same
US4886740A (en)1985-06-051989-12-12Imperial Chemical Industries PlcEnzyme-electrode sensor with organosilane treated membrane
US4671288A (en)1985-06-131987-06-09The Regents Of The University Of CaliforniaElectrochemical cell sensor for continuous short-term use in tissues and blood
US4721677A (en)1985-09-181988-01-26Children's Hospital Medical CenterImplantable gas-containing biosensor and method for measuring an analyte such as glucose
US4680268A (en)1985-09-181987-07-14Children's Hospital Medical CenterImplantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en)1985-09-201990-01-02The Regents Of The University Of CaliforniaTwo-dimensional diffusion glucose substrate sensing electrode
JPS6283849U (en)1985-11-121987-05-28
JPS6283649U (en)1985-11-141987-05-28
US4776944A (en)1986-03-201988-10-11Jiri JanataChemical selective sensors utilizing admittance modulated membranes
US4685463A (en)1986-04-031987-08-11Williams R BruceDevice for continuous in vivo measurement of blood glucose concentrations
US4757022A (en)1986-04-151988-07-12Markwell Medical Institute, Inc.Biological fluid measuring device
US4994167A (en)1986-04-151991-02-19Markwell Medical Institute, Inc.Biological fluid measuring device
US4795542A (en)1986-04-241989-01-03St. Jude Medical, Inc.Electrochemical concentration detector device
US4909908A (en)1986-04-241990-03-20Pepi RossElectrochemical cncentration detector method
US4703756A (en)1986-05-061987-11-03The Regents Of The University Of CaliforniaComplete glucose monitoring system with an implantable, telemetered sensor module
US4970145A (en)1986-05-271990-11-13Cambridge Life Sciences PlcImmobilized enzyme electrodes
US4726381A (en)1986-06-041988-02-23Solutech, Inc.Dialysis system and method
US4763658A (en)1986-06-041988-08-16Solutech, Inc.Dialysis system 2nd method
US4919141A (en)1987-01-031990-04-24Institute fur Diabetestechnologie Gemeinnutzige Forschungs- und Entwicklungsgesellschaft mbHImplantable electrochemical sensor
US4750496A (en)1987-01-281988-06-14Xienta, Inc.Method and apparatus for measuring blood glucose concentration
US4975175A (en)1987-03-271990-12-04Isao KarubeMiniaturized oxygen electrode and miniaturized biosensor and production process thereof
EP0284518B1 (en)1987-03-271992-10-07Isao KarubeMiniaturized oxygen electrode and miniaturized biosensor and production process thereof
US5352348A (en)1987-04-091994-10-04Nova Biomedical CorporationMethod of using enzyme electrode
US5286364A (en)1987-06-081994-02-15Rutgers UniversitySurface-modified electochemical biosensor
US4786657A (en)1987-07-021988-11-22Minnesota Mining And Manufacturing CompanyPolyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate
US4871440A (en)1987-07-061989-10-03Daiken Industries, Ltd.Biosensor
US4973320A (en)1987-08-041990-11-27Firma Carl FreudenbergTissue-compatible medical device and method for manufacturing the same
US4974929A (en)1987-09-221990-12-04Baxter International, Inc.Fiber optical probe connector for physiologic measurement devices
WO1989002720A1 (en)1987-10-051989-04-06Rijksuniversiteit Te GroningenA process and system and measuring cell assembly for glucose determination
US5242835A (en)1987-11-031993-09-07Radiometer A/SMethod and apparatus for determining the concentration of oxygen
EP0320109A1 (en)1987-11-051989-06-14MediSense, Inc.Improved sensing system
US4813424A (en)1987-12-231989-03-21University Of New MexicoLong-life membrane electrode for non-ionic species
US4890621A (en)1988-01-191990-01-02Northstar Research Institute, Ltd.Continuous glucose monitoring and a system utilized therefor
US6542765B1 (en)1988-01-292003-04-01The Regent Of The University Of CaliforniaMethod for the iontophoretic non-invasive determination of the in vivo concentration level of an inorganic or organic substance
US4822336A (en)1988-03-041989-04-18Ditraglia JohnBlood glucose level sensing
US4955861A (en)1988-04-211990-09-11Therex Corp.Dual access infusion and monitoring system
US5034112A (en)1988-05-191991-07-23Nissan Motor Company, Ltd.Device for measuring concentration of nitrogen oxide in combustion gas
EP0353328A1 (en)1988-08-031990-02-07Dräger Nederland B.V.A polarographic-amperometric three-electrode sensor
US5438984A (en)1988-09-081995-08-08Sudor PartnersApparatus and method for the collection of analytes on a dermal patch
US4992794A (en)1988-10-101991-02-12Texas Instruments IncorporatedTransponder and method for the production thereof
US5466575A (en)1988-11-141995-11-14I-Stat CorporationProcess for the manufacture of wholly microfabricated biosensors
US5200051A (en)1988-11-141993-04-06I-Stat CorporationWholly microfabricated biosensors and process for the manufacture and use thereof
US5063081A (en)1988-11-141991-11-05I-Stat CorporationMethod of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5212050A (en)1988-11-141993-05-18Mier Randall MMethod of forming a permselective layer
US5837454A (en)1988-11-141998-11-17I-Stat CorporationProcess for the manufacture of wholly microfabricated biosensors
WO1990007575A1 (en)1988-12-301990-07-12Anderson David MStabilized microporous materials and hydrogel materials
US5089112A (en)1989-03-201992-02-18Associated Universities, Inc.Electrochemical biosensor based on immobilized enzymes and redox polymers
EP0390390A1 (en)1989-03-201990-10-03Associated Universities, Inc.Electrochemical biosensor based on immobilized enzymes and redox polymers
US4953552A (en)1989-04-211990-09-04Demarzo Arthur PBlood glucose monitoring system
EP0396788A1 (en)1989-05-081990-11-14Dräger Nederland B.V.Process and sensor for measuring the glucose content of glucosecontaining fluids
US4927407A (en)1989-06-191990-05-22Regents Of The University Of MinnesotaCardiac assist pump with steady rate supply of fluid lubricant
US5431160A (en)1989-07-191995-07-11University Of New MexicoMiniature implantable refillable glucose sensor and material therefor
US5476776A (en)1989-07-191995-12-19University Of New MexicoImmobilized enzymes for use in an electrochemical sensor
US5190041A (en)1989-08-111993-03-02Palti Yoram ProfSystem for monitoring and controlling blood glucose
US5050612A (en)1989-09-121991-09-24Matsumura Kenneth NDevice for computer-assisted monitoring of the body
US5337747A (en)1989-10-061994-08-16Frederic NeftelImplantable device for estimating glucose levels
US5140985A (en)1989-12-111992-08-25Schroeder Jon MNoninvasive blood glucose measuring device
US5985129A (en)1989-12-141999-11-16The Regents Of The University Of CaliforniaMethod for increasing the service life of an implantable sensor
WO1991009302A1 (en)1989-12-141991-06-27The Regents Of The University Of CaliforniaMethod for increasing the service life of an implantable sensor
FR2656423A1 (en)1989-12-221991-06-28Rhone Poulenc ChimieElectrochemical biosensor
US5183549A (en)1990-01-261993-02-02Commtech International Management CorporationMulti-analyte sensing electrolytic cell
JPH03293556A (en)1990-04-111991-12-25Kokuritsu Shintai Shiyougaishiya Rehabilitation Center SouchiyouAnalysis using organic function substance immobilized electrode
US5165407A (en)1990-04-191992-11-24The University Of KansasImplantable glucose sensor
US5202261A (en)1990-07-191993-04-13Miles Inc.Conductive sensors and their use in diagnostic assays
US5250439A (en)1990-07-191993-10-05Miles Inc.Use of conductive sensors in diagnostic assays
US5266179A (en)1990-07-201993-11-30Matsushita Electric Industrial Co., Ltd.Quantitative analysis method and its system using a disposable sensor
US5746898A (en)1990-08-101998-05-05Siemens AktiengesellschaftElectrochemical-enzymatic sensor
US5282848A (en)1990-08-281994-02-01Meadox Medicals, Inc.Self-supporting woven vascular graft
EP0476980B1 (en)1990-09-171997-04-09Fujitsu LimitedOxygen electrode and process for the production thereof
WO1992007525A1 (en)1990-10-311992-05-14Baxter International Inc.Close vascularization implant material
US5741330A (en)1990-10-311998-04-21Baxter International, Inc.Close vascularization implant material
US5354449A (en)1991-01-101994-10-11Band David MpH electrode
WO1992013271A1 (en)1991-01-251992-08-06Markwell Medical Institute, Inc.Implantable biological fluid measuring device
US20060003398A1 (en)1991-03-042006-01-05Therasense, Inc.Subcutaneous glucose electrode
US6881551B2 (en)1991-03-042005-04-19Therasense, Inc.Subcutaneous glucose electrode
US6514718B2 (en)1991-03-042003-02-04Therasense, Inc.Subcutaneous glucose electrode
US20070218097A1 (en)1991-03-042007-09-20Abbott Diabetes Care, Inc.Subcutaneous Glucose Electrode
US20070215491A1 (en)1991-03-042007-09-20Abbott Diabetes Care, Inc.Subcutaneous Glucose Electrode
US20030134347A1 (en)1991-03-042003-07-17Therasense, Inc.Subcutaneous glucose electrode
US6081735A (en)1991-03-072000-06-27Masimo CorporationSignal processing apparatus
US5564439A (en)1991-05-131996-10-15George J. PichaInfusion device for soft tissue
US5706807A (en)1991-05-131998-01-13Applied Medical ResearchSensor device covered with foam membrane
US5496453A (en)1991-05-171996-03-05Kyoto Daiichi Kagaku Co., Ltd.Biosensor and method of quantitative analysis using the same
US5281319A (en)1991-07-091994-01-25Agency Of Industrial Science And TechnologyCarbon micro-sensor electrode and method for preparing it
US5198771A (en)1991-09-031993-03-30Transducer Research, Inc.Potentiostatic apparatus and methods
US5482008A (en)1991-09-131996-01-09Stafford; Rodney A.Electronic animal identification system
US5312361A (en)1991-09-131994-05-17Zadini Filiberto PAutomatic cannulation device
EP0534074B1 (en)1991-09-161996-03-06Institut für Diabetestechnologie gemeinnützige Forschungs- und Entwicklungsgesellschaft mbHMethod and instrument for testing the concentration of body fluid constituents
US5462645A (en)1991-09-201995-10-31Imperial College Of Science, Technology & MedicineDialysis electrode device
US5322063A (en)1991-10-041994-06-21Eli Lilly And CompanyHydrophilic polyurethane membranes for electrochemical glucose sensors
EP0535898B1 (en)1991-10-041997-02-05Eli Lilly And CompanyHydrophilic polyurethane membranes for electrochemical glucose sensors
US5155149A (en)1991-10-101992-10-13Boc Health Care, Inc.Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds
US5249576A (en)1991-10-241993-10-05Boc Health Care, Inc.Universal pulse oximeter probe
EP0539625A1 (en)1991-10-281993-05-05Dräger Medical Electronics B.V.Electrochemical sensor for measuring the glucose content of glucose containing fluids
US5310469A (en)1991-12-311994-05-10Abbott LaboratoriesBiosensor with a membrane containing biologically active material
US5582497A (en)1992-01-291996-12-10Wing Labo Co., Ltd.Automatic warehouse system
US5749832A (en)1992-02-011998-05-12The Victoria University Of ManchesterMonitoring systems
WO1993014693A1 (en)1992-02-011993-08-05The Victoria University Of ManchesterElectrode
US5372133A (en)1992-02-051994-12-13N.V. Nederlandsche Apparatenfabriek NedapImplantable biomedical sensor device, suitable in particular for measuring the concentration of glucose
US5476094A (en)1992-02-111995-12-19Eli Lilly And CompanyAcrylic copolymer membranes for biosensors
US5284140A (en)1992-02-111994-02-08Eli Lilly And CompanyAcrylic copolymer membranes for biosensors
US5756632A (en)1992-04-241998-05-26The Polymer Technology GroupSystems for premeating molecules of predetermined molecular weight range
US5428123A (en)1992-04-241995-06-27The Polymer Technology GroupCopolymers and non-porous, semi-permeable membrane thereof and its use for permeating molecules of predetermined molecular weight range
WO1993023744A1 (en)1992-05-081993-11-25E. Heller & CompanyImproved enzyme electrodes
US5531878A (en)1992-05-291996-07-02The Victoria University Of ManchesterSensor devices
US5384028A (en)1992-08-281995-01-24Nec CorporationBiosensor with a data memory
US5330634A (en)1992-08-281994-07-19Via Medical CorporationCalibration solutions useful for analyses of biological fluids and methods employing same
US5298144A (en)1992-09-151994-03-29The Yellow Springs Instrument Company, Inc.Chemically wired fructose dehydrogenase electrodes
US5575930A (en)1992-10-071996-11-19Tietje-Girault; JordisMethod of making gas permeable membranes for amperometric gas electrodes
US5954954A (en)1992-10-161999-09-21Suprex CorporationMethod and apparatus for determination of analyte concentration
US5469846A (en)1992-10-191995-11-28Duquesne University Of The Holy GhostImplantable non-enzymatic electrochemical glucose sensor
US5387327A (en)1992-10-191995-02-07Duquesne University Of The Holy GhostImplantable non-enzymatic electrochemical glucose sensor
US5307263A (en)1992-11-171994-04-26Raya Systems, Inc.Modular microprocessor-based health monitoring system
US5411647A (en)1992-11-231995-05-02Eli Lilly And CompanyTechniques to improve the performance of electrochemical sensors
US6256522B1 (en)1992-11-232001-07-03University Of Pittsburgh Of The Commonwealth System Of Higher EducationSensors for continuous monitoring of biochemicals and related method
US5299571A (en)1993-01-221994-04-05Eli Lilly And CompanyApparatus and method for implantation of sensors
WO1994022367A1 (en)1993-03-301994-10-13Pfizer Inc.Radiotelemetry impedance plethysmography device
US5411866A (en)1993-03-301995-05-02National Research Council Of CanadaMethod and system for determining bioactive substances
US5425717A (en)1993-05-071995-06-20The Kendall CompanyEpidural catheter system utilizing splittable needle
US5352351A (en)1993-06-081994-10-04Boehringer Mannheim CorporationBiosensing meter with fail/safe procedures to prevent erroneous indications
US5741634A (en)1993-08-031998-04-21A & D Company LimitedThrowaway type chemical sensor
US5957854A (en)1993-09-041999-09-28Besson; MarcusWireless medical diagnosis and monitoring equipment
US5502396A (en)1993-09-211996-03-26Asulab S.A.Measuring device with connection for a removable sensor
US5569462A (en)1993-09-241996-10-29Baxter International Inc.Methods for enhancing vascularization of implant devices
US5582184A (en)1993-10-131996-12-10Integ IncorporatedInterstitial fluid collection and constituent measurement
US5571395A (en)1993-11-041996-11-05Goldstar Co., Ltd.Breath alcohol analyzer using a biosensor
US5791344A (en)1993-11-191998-08-11Alfred E. Mann Foundation For Scientific ResearchPatient monitoring system
US5660163A (en)1993-11-191997-08-26Alfred E. Mann Foundation For Scientific ResearchGlucose sensor assembly
US5497772A (en)1993-11-191996-03-12Alfred E. Mann Foundation For Scientific ResearchGlucose monitoring system
US5508509A (en)1993-11-301996-04-16Minnesota Mining And Manufacturing CompanySensing elements and methods for uniformly making individual sensing elements
US6162611A (en)1993-12-022000-12-19E. Heller & CompanySubcutaneous glucose electrode
US5965380A (en)1993-12-021999-10-12E. Heller & CompanySubcutaneous glucose electrode
US5593852A (en)1993-12-021997-01-14Heller; AdamSubcutaneous glucose electrode
US6121009A (en)1993-12-022000-09-19E. Heller & CompanyElectrochemical analyte measurement system
US6284478B1 (en)1993-12-022001-09-04E. Heller & CompanySubcutaneous glucose electrode
US6329161B1 (en)1993-12-022001-12-11Therasense, Inc.Subcutaneous glucose electrode
US6083710A (en)1993-12-022000-07-04E. Heller & CompanyElectrochemical analyte measurement system
US5640954A (en)1994-01-191997-06-24Pfeiffer; ErnstMethod and apparatus for continuously monitoring the concentration of a metabolyte
US5391250A (en)1994-03-151995-02-21Minimed Inc.Method of fabricating thin film sensors
US5390671A (en)1994-03-151995-02-21Minimed Inc.Transcutaneous sensor insertion set
US5863400A (en)1994-04-141999-01-26Usf Filtration & Separations Group Inc.Electrochemical cells
US5569186A (en)1994-04-251996-10-29Minimed Inc.Closed loop infusion pump system with removable glucose sensor
US5507288A (en)1994-05-051996-04-16Boehringer Mannheim GmbhAnalytical system for monitoring a substance to be analyzed in patient-blood
US5507288B1 (en)1994-05-051997-07-08Boehringer Mannheim GmbhAnalytical system for monitoring a substance to be analyzed in patient-blood
US5482473A (en)1994-05-091996-01-09Minimed Inc.Flex circuit connector
US5686829A (en)1994-06-031997-11-11Metrohm AgVoltammetric method and apparatus
US5704354A (en)1994-06-231998-01-06Siemens AktiengesellschaftElectrocatalytic glucose sensor
US5494562A (en)1994-06-271996-02-27Ciba Corning Diagnostics Corp.Electrochemical sensors
US5474552A (en)1994-06-271995-12-12Cb-Carmel Biotechnology Ltd.Implantable drug delivery pump
US5605152A (en)1994-07-181997-02-25Minimed Inc.Optical glucose sensor
US5624537A (en)1994-09-201997-04-29The University Of British Columbia - University-Industry Liaison OfficeBiosensor and interface membrane
US5486776A (en)1994-09-291996-01-23Xilinx, Inc.Antifuse-based programmable logic circuit
US5800420A (en)1994-11-041998-09-01Elan Medical Technologies LimitedAnalyte-controlled liquid delivery device and analyte monitor
WO1996014026A1 (en)1994-11-041996-05-17Elan Medical Technologies LimitedAnalyte-controlled liquid delivery device and analyte monitor
US5807375A (en)1994-11-041998-09-15Elan Medical Technologies LimitedAnalyte-controlled liquid delivery device and analyte monitor
US5820622A (en)1994-11-041998-10-13Elan Medical Technologies LimitedAnalyte-controlled liquid delivery device and analyte monitor
US5879373A (en)1994-12-241999-03-09Boehringer Mannheim GmbhSystem and method for the determination of tissue properties
US5676820A (en)1995-02-031997-10-14New Mexico State University Technology Transfer Corp.Remote electrochemical sensor
WO1996025089A1 (en)1995-02-161996-08-22Minimed Inc.Transcutaneous sensor insertion set
US5568806A (en)1995-02-161996-10-29Minimed Inc.Transcutaneous sensor insertion set
US6066448A (en)*1995-03-102000-05-23Meso Sclae Technologies, Llc.Multi-array, multi-specific electrochemiluminescence testing
US6784274B2 (en)1995-03-272004-08-31Minimed Inc.Hydrophilic, swellable coatings for biosensors
US5882494A (en)1995-03-271999-03-16Minimed, Inc.Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5777060A (en)1995-03-271998-07-07Minimed, Inc.Silicon-containing biocompatible membranes
EP0817809B1 (en)1995-03-272002-07-31Medtronic MiniMed, Inc.Homogenous polymer compositions containing silicone for biosensor membranes
WO1996030431A1 (en)1995-03-271996-10-03Minimed Inc.Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5607565A (en)1995-03-271997-03-04Coulter CorporationApparatus for measuring analytes in a fluid sample
US5895235A (en)1995-04-121999-04-20Em Microelectronic-Marin SaProcess for manufacturing transponders of small dimensions
US5653863A (en)1995-05-051997-08-05Bayer CorporationMethod for reducing bias in amperometric sensors
US5840148A (en)1995-06-301998-11-24Bio Medic Data Systems, Inc.Method of assembly of implantable transponder
WO1997001986A1 (en)1995-07-061997-01-23Thomas Jefferson UniversityImplantable sensor and system for measurement and control of blood constituent levels
US6122536A (en)1995-07-062000-09-19Animas CorporationImplantable sensor and system for measurement and control of blood constituent levels
US5611900A (en)1995-07-201997-03-18Michigan State UniversityMicrobiosensor used in-situ
WO1997006727A1 (en)1995-08-181997-02-27Cardiac Crc Nominees Pty. Ltd.A multipolar transmural probe
US5989409A (en)1995-09-111999-11-23Cygnus, Inc.Method for glucose sensing
US5735273A (en)1995-09-121998-04-07Cygnus, Inc.Chemical signal-impermeable mask
US6141573A (en)1995-09-122000-10-31Cygnus, Inc.Chemical signal-impermeable mask
US5628890A (en)1995-09-271997-05-13Medisense, Inc.Electrochemical sensor
US6689265B2 (en)1995-10-112004-02-10Therasense, Inc.Electrochemical analyte sensors using thermostable soybean peroxidase
US5972199A (en)1995-10-111999-10-26E. Heller & CompanyElectrochemical analyte sensors using thermostable peroxidase
US5665222A (en)1995-10-111997-09-09E. Heller & CompanySoybean peroxidase electrochemical sensor
US6466810B1 (en)1995-11-222002-10-15Legacy Good Samaritan Hospital And Medical CenterImplantable device for monitoring changes in analyte concentration
US6011984A (en)1995-11-222000-01-04Minimed Inc.Detection of biological molecules using chemical amplification and optical sensors
US6212416B1 (en)1995-11-222001-04-03Good Samaritan Hospital And Medical CenterDevice for monitoring changes in analyte concentration
US5711861A (en)1995-11-221998-01-27Ward; W. KennethDevice for monitoring changes in analyte concentration
US5795453A (en)1996-01-231998-08-18Gilmartin; Markas A. T.Electrodes and metallo isoindole ringed compounds
US5833603A (en)1996-03-131998-11-10Lipomatrix, Inc.Implantable biosensing transponder
US6407195B2 (en)1996-04-252002-06-183M Innovative Properties CompanyTackified polydiorganosiloxane oligourea segmented copolymers and a process for making same
US5776324A (en)1996-05-171998-07-07Encelle, Inc.Electrochemical biosensors
US6049727A (en)1996-07-082000-04-11Animas CorporationImplantable sensor and system for in vivo measurement and control of fluid constituent levels
US5795774A (en)1996-07-101998-08-18Nec CorporationBiosensor
US5707502A (en)1996-07-121998-01-13Chiron Diagnostics CorporationSensors for measuring analyte concentrations and methods of making same
US5703359A (en)1996-07-291997-12-30Leybold Inficon, Inc.Composite membrane and support assembly
US5963132A (en)1996-10-111999-10-05Avid Indentification Systems, Inc.Encapsulated implantable transponder
US6325979B1 (en)1996-10-152001-12-04Robert Bosch GmbhDevice for gas-sensoring electrodes
EP0838230B1 (en)1996-10-222003-09-17Terumo Kabushiki KaishaGuide wire
WO1998019159A1 (en)1996-10-301998-05-07Mercury Diagnostics, Inc.Synchronized analyte testing system
US6051389A (en)1996-11-142000-04-18Radiometer Medical A/SEnzyme sensor
WO1998024358A3 (en)1996-12-041999-04-29Enact Health Management SystemSystem for downloading and reporting medical information
US6093156A (en)1996-12-062000-07-25Abbott LaboratoriesMethod and apparatus for obtaining blood for diagnostic tests
US5964993A (en)1996-12-191999-10-12Implanted Biosystems Inc.Glucose sensor
US5914026A (en)1997-01-061999-06-22Implanted Biosystems Inc.Implantable sensor employing an auxiliary electrode
US6093172A (en)1997-02-052000-07-25Minimed Inc.Injector for a subcutaneous insertion set
US5851197A (en)1997-02-051998-12-22Minimed Inc.Injector for a subcutaneous infusion set
US7207974B2 (en)1997-02-052007-04-24Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US6120676A (en)1997-02-062000-09-19Therasense, Inc.Method of using a small volume in vitro analyte sensor
US20050033132A1 (en)1997-03-042005-02-10Shults Mark C.Analyte measuring device
US6558321B1 (en)1997-03-042003-05-06Dexcom, Inc.Systems and methods for remote monitoring and modulation of medical devices
US20070032718A1 (en)1997-03-042007-02-08Shults Mark CDevice and method for determining analyte levels
US20040045879A1 (en)1997-03-042004-03-11Dexcom, Inc.Device and method for determining analyte levels
US6741877B1 (en)1997-03-042004-05-25Dexcom, Inc.Device and method for determining analyte levels
US20080296155A1 (en)1997-03-042008-12-04Dexcom, Inc.Low oxygen in vivo analyte sensor
US6862465B2 (en)1997-03-042005-03-01Dexcom, Inc.Device and method for determining analyte levels
US7136689B2 (en)1997-03-042006-11-14Dexcom, Inc.Device and method for determining analyte levels
US20080208025A1 (en)1997-03-042008-08-28Dexcom, Inc.Low oxygen in vivo analyte sensor
WO1998038906A1 (en)1997-03-041998-09-11Markwell Medical Institute, Inc.Device and method for determining analyte levels
US6001067A (en)1997-03-041999-12-14Shults; Mark C.Device and method for determining analyte levels
US20050177036A1 (en)1997-03-042005-08-11Shults Mark C.Device and method for determining analyte levels
US7110803B2 (en)1997-03-042006-09-19Dexcom, Inc.Device and method for determining analyte levels
FR2760962B1 (en)1997-03-201999-05-14Sillonville Francis Klefstad REMOTE MEDICAL ASSISTANCE AND SURVEILLANCE SYSTEM
US6059946A (en)1997-04-142000-05-09Matsushita Electric Industrial Co., Ltd.Biosensor
US5944661A (en)1997-04-161999-08-31Giner, Inc.Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
US6368141B1 (en)1997-06-092002-04-09Vanantwerp Nannette M.Insertion set for a transcutenous sensor with cable connector lock mechanism
US5954643A (en)1997-06-091999-09-21Minimid Inc.Insertion set for a transcutaneous sensor
US20020119711A1 (en)1997-06-092002-08-29Minimed, Inc.Insertion set for a transcutaneous sensor
US6275717B1 (en)1997-06-162001-08-14Elan Corporation, PlcDevice and method of calibrating and testing a sensor for in vivo measurement of an analyte
US6309526B1 (en)1997-07-102001-10-30Matsushita Electric Industrial Co., Ltd.Biosensor
US6259937B1 (en)1997-09-122001-07-10Alfred E. Mann FoundationImplantable substrate sensor
US5999848A (en)1997-09-121999-12-07Alfred E. Mann FoundationDaisy chainable sensors and stimulators for implantation in living tissue
US6117290A (en)1997-09-262000-09-12Pepex Biomedical, LlcSystem and method for measuring a bioanalyte such as lactate
US6268161B1 (en)1997-09-302001-07-31M-Biotech, Inc.Biosensor
US7115884B1 (en)1997-10-062006-10-03Trustees Of Tufts CollegeSelf-encoding fiber optic sensor
US20020042561A1 (en)1997-10-202002-04-11Schulman Joseph H.Implantable sensor and integrity tests therefor
US6088608A (en)1997-10-202000-07-11Alfred E. Mann FoundationElectrochemical sensor and integrity tests therefor
US6512939B1 (en)1997-10-202003-01-28Medtronic Minimed, Inc.Implantable enzyme-based monitoring systems adapted for long term use
US20030065254A1 (en)1997-10-202003-04-03Alfred E. Mann Foundation For Scientific ResearchImplantable enzyme-based monitoring system having improved longevity due to improved exterior surfaces
US6119028A (en)1997-10-202000-09-12Alfred E. Mann FoundationImplantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6081736A (en)1997-10-202000-06-27Alfred E. Mann FoundationImplantable enzyme-based monitoring systems adapted for long term use
US6893552B1 (en)1997-12-292005-05-17Arrowhead Center, Inc.Microsensors for glucose and insulin monitoring
US6293925B1 (en)1997-12-312001-09-25Minimed Inc.Insertion device for an insertion set and method of using the same
US6030827A (en)1998-01-232000-02-29I-Stat CorporationMicrofabricated aperture-based sensor
US6134461A (en)1998-03-042000-10-17E. Heller & CompanyElectrochemical analyte
US6484046B1 (en)1998-03-042002-11-19Therasense, Inc.Electrochemical analyte sensor
US20030088166A1 (en)1998-03-042003-05-08Therasense, Inc.Electrochemical analyte sensor
US6013113A (en)1998-03-062000-01-11Wilson Greatbatch Ltd.Slotted insulator for unsealed electrode edges in electrochemical cells
US5928130A (en)1998-03-161999-07-27Schmidt; BrunoApparatus and method for implanting radioactive seeds in tissue
US6579498B1 (en)1998-03-202003-06-17David EgliseImplantable blood glucose sensor system
US6144871A (en)1998-03-312000-11-07Nec CorporationCurrent detecting sensor and method of fabricating the same
US6534711B1 (en)1998-04-142003-03-18The Goodyear Tire & Rubber CompanyEncapsulation package and method of packaging an electronic circuit module
US20040236200A1 (en)1998-04-302004-11-25James SayAnalyte monitoring device and methods of use
WO1999056613A1 (en)1998-04-301999-11-11Therasense, Inc.Analyte monitoring device and methods of use
US20040167801A1 (en)1998-04-302004-08-26James SayAnalyte monitoring device and methods of use
US20040106859A1 (en)1998-04-302004-06-03James SayAnalyte monitoring device and methods of use
US6565509B1 (en)1998-04-302003-05-20Therasense, Inc.Analyte monitoring device and methods of use
US6175752B1 (en)1998-04-302001-01-16Therasense, Inc.Analyte monitoring device and methods of use
US20050121322A1 (en)1998-04-302005-06-09Therasense, Inc.Analyte monitoring device and methods of use
US20030187338A1 (en)1998-04-302003-10-02Therasense, Inc.Analyte monitoring device and methods of use
US6356776B1 (en)1998-05-132002-03-12Cygnus, Inc.Device for monitoring of physiological analytes
US6144869A (en)1998-05-132000-11-07Cygnus, Inc.Monitoring of physiological analytes
US6595919B2 (en)1998-05-132003-07-22Cygnus, Inc.Device for signal processing for measurement of physiological analytes
WO1999058051A1 (en)1998-05-131999-11-18Cygnus, Inc.Monitoring of physiological analytes
US6233471B1 (en)1998-05-132001-05-15Cygnus, Inc.Signal processing for measurement of physiological analysis
US6294281B1 (en)1998-06-172001-09-25Therasense, Inc.Biological fuel cell and method
US6264825B1 (en)*1998-06-232001-07-24Clinical Micro Sensors, Inc.Binding acceleration techniques for the detection of analytes
EP0967788A2 (en)1998-06-261999-12-29Hewlett-Packard CompanyDynamic generation of multi-resolution and tile-based images from flat compressed images
US20030138674A1 (en)1998-07-092003-07-24Zeikus Gregory J.Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration
US6409674B1 (en)1998-09-242002-06-25Data Sciences International, Inc.Implantable sensor with wireless communication
US20080262334A1 (en)1998-09-302008-10-23Animas Technologies, Llc.Method and device for predicting physiological values
US6461496B1 (en)1998-10-082002-10-08Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6809653B1 (en)1998-10-082004-10-26Medtronic Minimed, Inc.Telemetered characteristic monitor system and method of using the same
WO2000019887A9 (en)1998-10-082000-08-31Minimed IncTelemetered characteristic monitor system
US6618934B1 (en)1998-10-082003-09-16Therasense, Inc.Method of manufacturing small volume in vitro analyte sensor
US6366794B1 (en)1998-11-202002-04-02The University Of ConnecticutGeneric integrated implantable potentiostat telemetry unit for electrochemical sensors
US6066083A (en)1998-11-272000-05-23Syntheon LlcImplantable brachytherapy device having at least partial deactivation capability
WO2000032098A1 (en)1998-11-302000-06-08Health Hero Network, Inc.Networked system for interactive communication and remote monitoring of drug delivery
WO2000033065A1 (en)1998-12-022000-06-08Ut-Battelle, LlcIn vivo biosensor apparatus and method of use
US6447448B1 (en)1998-12-312002-09-10Ball Semiconductor, Inc.Miniature implanted orthopedic sensors
US6248067B1 (en)1999-02-052001-06-19Minimed Inc.Analyte sensor and holter-type monitor system and method of using the same
US6892085B2 (en)1999-02-252005-05-10Medtronic Minimed, Inc.Glucose sensor package system
US6424847B1 (en)1999-02-252002-07-23Medtronic Minimed, Inc.Glucose monitor calibration methods
US6520326B2 (en)1999-02-252003-02-18Medtronic Minimed, Inc.Glucose sensor package system
US6418332B1 (en)1999-02-252002-07-09MinimedTest plug and cable for a glucose monitor
US6360888B1 (en)1999-02-252002-03-26Minimed Inc.Glucose sensor package system
WO2000059373A9 (en)1999-04-072002-02-07Spectrx IncAssay device for measuring characteristics of a fluid on a continual basis
US6285897B1 (en)1999-04-072001-09-04Endonetics, Inc.Remote physiological monitoring system
US6189536B1 (en)1999-04-152001-02-20Medtronic Inc.Method for protecting implantable devices
US6615078B1 (en)1999-04-222003-09-02Cygnus, Inc.Methods and devices for removing interfering species
US20030199745A1 (en)1999-04-222003-10-23Cygnus, Inc.Methods and devices for removing interfering species
US6300002B1 (en)1999-05-132001-10-09Moltech Power Systems, Inc.Notched electrode and method of making same
US6546268B1 (en)1999-06-022003-04-08Ball Semiconductor, Inc.Glucose sensor
US6558351B1 (en)1999-06-032003-05-06Medtronic Minimed, Inc.Closed loop system for controlling insulin infusion
WO2000074753A9 (en)1999-06-032001-05-17Minimed IncClosed loop system for controlling insulin infusion
US20030130616A1 (en)1999-06-032003-07-10Medtronic Minimed, Inc.Closed loop system for controlling insulin infusion
US7267665B2 (en)1999-06-032007-09-11Medtronic Minimed, Inc.Closed loop system for controlling insulin infusion
US6972080B1 (en)1999-06-102005-12-06Matsushita Electric Industrial Co., Ltd.Electrochemical device for moving particles covered with protein
US6654625B1 (en)1999-06-182003-11-25Therasense, Inc.Mass transport limited in vivo analyte sensor
US20040111017A1 (en)1999-06-182004-06-10Therasense, Inc.Mass transport limited in vivo analyte sensor
US6730200B1 (en)1999-06-182004-05-04Abbott LaboratoriesElectrochemical sensor for analysis of liquid samples
US20040143173A1 (en)1999-07-012004-07-22Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US7166074B2 (en)1999-07-012007-01-23Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US6368274B1 (en)1999-07-012002-04-09Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US6413393B1 (en)1999-07-072002-07-02Minimed, Inc.Sensor including UV-absorbing polymer and method of manufacture
WO2001020019A9 (en)1999-09-142002-08-29Implanted Biosystems IncImplantable glucose sensor
US6343225B1 (en)1999-09-142002-01-29Implanted Biosystems, Inc.Implantable glucose sensor
US20020084196A1 (en)1999-11-042002-07-04Therasense, Inc.Small volume in vitro analyte sensor and methods
US6699383B2 (en)1999-11-252004-03-02Siemens AktiengesellschaftMethod for determining a NOx concentration
US6612984B1 (en)1999-12-032003-09-02Kerr, Ii Robert A.System and method for collecting and transmitting medical data
US6558320B1 (en)2000-01-202003-05-06Medtronic Minimed, Inc.Handheld personal data assistant (PDA) with a medical device and method of using the same
US7003336B2 (en)2000-02-102006-02-21Medtronic Minimed, Inc.Analyte sensor method of making the same
WO2001058348A9 (en)2000-02-102002-10-17Minimed IncImproved analyte sensor and method of making the same
US6484045B1 (en)2000-02-102002-11-19Medtronic Minimed, Inc.Analyte sensor and method of making the same
US6895263B2 (en)2000-02-232005-05-17Medtronic Minimed, Inc.Real time self-adjusting calibration algorithm
US20070299385A1 (en)2000-03-022007-12-27Microchips, Inc.Device for the controlled exposure of reservoir-based sensors
US6551496B1 (en)2000-03-032003-04-22Ysi IncorporatedMicrostructured bilateral sensor
US6498941B1 (en)2000-03-092002-12-24Advanced Cardiovascular Systems, Inc.Catheter based probe and method of using same for detecting chemical analytes
WO2001068901A2 (en)2000-03-172001-09-20Roche Diagnostics GmbhImplantable analyte sensor
EP1153571A1 (en)2000-05-082001-11-14A. Menarini Industrie Farmaceutiche Riunite S.R.L.Apparatus for measurement and control of the content of glucose, lactate or other metabolites in biological fluids
WO2001088524A1 (en)2000-05-122001-11-22Therasense, Inc.Electrodes with multilayer membranes and methods of using and making the electrodes
US20040219664A1 (en)2000-05-122004-11-04Therasense, Inc.Electrodes with multilayer membranes and methods of using and making the electrodes
US6895265B2 (en)2000-05-152005-05-17James H. SilverImplantable sensor
US7033322B2 (en)2000-05-152006-04-25Silver James HImplantable sensor
US20040176672A1 (en)2000-05-152004-09-09Silver James H.Implantable, retrievable, thrombus minimizing sensors
US20060079740A1 (en)2000-05-152006-04-13Silver James HSensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US20030009093A1 (en)2000-05-152003-01-09Silver James H.Implantable sensor
US6442413B1 (en)2000-05-152002-08-27James H. SilverImplantable sensor
US6459917B1 (en)2000-05-222002-10-01Ashok GowdaApparatus for access to interstitial fluid, blood, or blood plasma components
US6773565B2 (en)2000-06-222004-08-10Kabushiki Kaisha RikenNOx sensor
US6400974B1 (en)2000-06-292002-06-04Sensors For Medicine And Science, Inc.Implanted sensor processing system and method for processing implanted sensor output
US6553241B2 (en)2000-08-312003-04-22Mallinckrodt Inc.Oximeter sensor with digital memory encoding sensor expiration data
US20020099997A1 (en)2000-10-102002-07-25Philippe PiretTurbocoding methods with a large minimum distance, and systems for implementing them
JP2002189015A (en)2000-12-202002-07-05Sankyo Co LtdReaction-current measuring method by enzyme electrode
WO2002053764A3 (en)2000-12-292002-10-17Medtronic Minimed IncHydrophilic polymeric material for coating biosensors
US6642015B2 (en)2000-12-292003-11-04Minimed Inc.Hydrophilic polymeric material for coating biosensors
US6560471B1 (en)2001-01-022003-05-06Therasense, Inc.Analyte monitoring device and methods of use
US6793802B2 (en)2001-01-042004-09-21Tyson Bioresearch, Inc.Biosensors having improved sample application and measuring properties and uses thereof
US7078582B2 (en)2001-01-172006-07-183M Innovative Properties CompanyStretch removable adhesive articles and methods
US6547839B2 (en)2001-01-232003-04-15Skc Co., Ltd.Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US6510329B2 (en)2001-01-242003-01-21Datex-Ohmeda, Inc.Detection of sensor off conditions in a pulse oximeter
US6721587B2 (en)2001-02-152004-04-13Regents Of The University Of CaliforniaMembrane and electrode structure for implantable sensor
US20040106857A1 (en)2001-02-152004-06-03Regents Of The University Of CaliforniaMembrane and electrode structure for implantable sensor
US20050258037A1 (en)2001-03-232005-11-24Kiamars HajizadehElectrochemical sensor
US6454710B1 (en)2001-04-112002-09-24Motorola, Inc.Devices and methods for monitoring an analyte
WO2002089666A3 (en)2001-05-082002-12-12Isense CorpImplantable analyte sensor
US6613379B2 (en)2001-05-082003-09-02Isense Corp.Implantable analyte sensor
US20030006669A1 (en)2001-05-222003-01-09Sri InternationalRolled electroactive polymers
US20020177763A1 (en)2001-05-222002-11-28Burns David W.Integrated lancets and methods
US6891317B2 (en)2001-05-222005-05-10Sri InternationalRolled electroactive polymers
US20020188185A1 (en)2001-06-122002-12-12Borzu SohrabPercutaneous biological fluid sampling and analyte measurement devices and methods
US20030050546A1 (en)2001-06-222003-03-13Desai Shashi P.Methods for improving the performance of an analyte monitoring system
US20030004457A1 (en)2001-06-262003-01-02Andersson Stig O.Hypodermic implant device
US20050077584A1 (en)2001-06-282005-04-14Uhland Scott A.Hermetically sealed microchip reservoir devices
US20050056551A1 (en)2001-06-282005-03-17Cranfield UniversityElectrochemical detection of analytes
US20030097082A1 (en)2001-07-132003-05-22Board Of Regents, The University Of Texas SystemMethods and apparatuses for navigating the subarachnoid space
US20050103625A1 (en)2001-07-272005-05-19Rathbun RhodesSensor head for use with implantable devices
US20090045055A1 (en)2001-07-272009-02-19Dexcom, Inc.Sensor head for use with implantable devices
US20030032874A1 (en)2001-07-272003-02-13Dexcom, Inc.Sensor head for use with implantable devices
WO2003011131A2 (en)2001-07-272003-02-13Dexcom, Inc.Sensor head for monitoring glucose for use with implantable devices
US6702857B2 (en)2001-07-272004-03-09Dexcom, Inc.Membrane for use with implantable devices
US20030036773A1 (en)2001-08-032003-02-20Whitehurst Todd K.Systems and methods for treatment of coronary artery disease
US20040242982A1 (en)2001-09-112004-12-02Tetsuya SakataMeasuring instrument, installation body, and density measurer
US6802957B2 (en)2001-09-282004-10-12Marine Biological LaboratorySelf-referencing enzyme-based microsensor and method of use
US20040173472A1 (en)2001-09-282004-09-09Marine Biological LaboratorySelf-referencing enzyme-based microsensor and method of use
US6809507B2 (en)2001-10-232004-10-26Medtronic Minimed, Inc.Implantable sensor electrodes and electronic circuitry
US20040078219A1 (en)2001-12-042004-04-22Kimberly-Clark Worldwide, Inc.Healthcare networks with biosensors
US20050070770A1 (en)2001-12-172005-03-31Holger DiracMethod and device for monitoring analyte concentration by optical detection
US7248906B2 (en)2001-12-172007-07-24Danfoss A/SMethod and device for monitoring analyte concentration by optical detection
US20050096519A1 (en)2001-12-212005-05-05Denuzzio John D.Minimally-invasive system and method for monitoring analyte levels
US6952604B2 (en)2001-12-212005-10-04Becton, Dickinson And CompanyMinimally-invasive system and method for monitoring analyte levels
US20040015063A1 (en)2001-12-212004-01-22Denuzzio John D.Minimally-invasive system and method for monitoring analyte levels
US20050027182A1 (en)2001-12-272005-02-03Uzair SiddiquiSystem for monitoring physiological characteristics
US20050038332A1 (en)2001-12-272005-02-17Frank SaidaraSystem for monitoring physiological characteristics
US20030125613A1 (en)2001-12-272003-07-03Medtronic Minimed, Inc.Implantable sensor flush sleeve
US20030235817A1 (en)2002-03-222003-12-25Miroslaw BartkowiakMicroprocessors, devices, and methods for use in analyte monitoring systems
US20030225437A1 (en)2002-04-042003-12-04Ferguson Patrick J.Device for retaining material
US20030211625A1 (en)2002-04-052003-11-13Cohan Bruce E.Method and apparatus for non-invasive monitoring of blood substances using self-sampled tears
US7153265B2 (en)2002-04-222006-12-26Medtronic Minimed, Inc.Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US6743635B2 (en)2002-04-252004-06-01Home Diagnostics, Inc.System and methods for blood glucose sensing
US20030203498A1 (en)2002-04-252003-10-30Home Diagnostics, Inc.System and methods for blood glucose sensing
US7008979B2 (en)2002-04-302006-03-07Hydromer, Inc.Coating composition for multiple hydrophilic applications
US20030211050A1 (en)2002-05-092003-11-13The Procter & Gamble CompanyCompositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
US20040234575A1 (en)2002-05-092004-11-25Roland HorresMedical products comprising a haemocompatible coating, production and use thereof
US6801041B2 (en)2002-05-142004-10-05Abbott LaboratoriesSensor having electrode for determining the rate of flow of a fluid
US20060258761A1 (en)2002-05-222006-11-16Robert BoockSilicone based membranes for use in implantable glucose sensors
US20040006263A1 (en)2002-06-032004-01-08Anderson Edward J.Noninvasive detection of a physiologic parameter within a body tissue of a patient
US20030225324A1 (en)2002-06-032003-12-04Anderson Edward J.Noninvasive detection of a physiologic Parameter within a body tissue of a patient
US20050211571A1 (en)2002-06-282005-09-29Jurgen SchuleinElectrochemical detection method and device
US20040063167A1 (en)2002-07-122004-04-01Peter KaastrupMinimising calibration problems of in vivo glucose sensors
WO2004021877A1 (en)2002-09-042004-03-18Pendragon Medical Ltd.Method and device for measuring glucose
US20040180391A1 (en)2002-10-112004-09-16Miklos GratzlSliver type autonomous biosensors
US20040074785A1 (en)2002-10-182004-04-22Holker James D.Analyte sensors and methods for making them
US6737158B1 (en)2002-10-302004-05-18Gore Enterprise Holdings, Inc.Porous polymeric membrane toughened composites
US20040133164A1 (en)2002-11-052004-07-08Funderburk Jeffery V.Sensor inserter device and methods of use
US20040138543A1 (en)2003-01-132004-07-15Russell Geoffrey A.Assembly of single use sensing elements
US6965791B1 (en)2003-03-262005-11-15Sorenson Medical, Inc.Implantable biosensor system, apparatus and method
US20050183954A1 (en)2003-03-262005-08-25Hitchcock Robert W.Implantable biosensor system, apparatus and method
US7070580B2 (en)2003-04-012006-07-04Unomedical A/SInfusion device and an adhesive sheet material and a release liner
US20060200022A1 (en)2003-04-042006-09-07Brauker James HOptimized sensor geometry for an implantable glucose sensor
US7134999B2 (en)2003-04-042006-11-14Dexcom, Inc.Optimized sensor geometry for an implantable glucose sensor
US20060224108A1 (en)2003-04-042006-10-05Brauker James HOptimized sensor geometry for an implantable glucose sensor
US20060211921A1 (en)2003-04-042006-09-21Brauker James HOptimized sensor geometry for an implantable glucose sensor
US20040224001A1 (en)2003-05-082004-11-11Pacetti Stephen D.Stent coatings comprising hydrophilic additives
US7279174B2 (en)2003-05-082007-10-09Advanced Cardiovascular Systems, Inc.Stent coatings comprising hydrophilic additives
US20050031689A1 (en)2003-05-212005-02-10Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US20060198864A1 (en)2003-05-212006-09-07Mark ShultsBiointerface membranes incorporating bioactive agents
US20060204536A1 (en)2003-05-212006-09-14Mark ShultsBiointerface membranes incorporating bioactive agents
US20060183871A1 (en)2003-05-212006-08-17Ward Robert SBiosensor membrane material
US7192450B2 (en)2003-05-212007-03-20Dexcom, Inc.Porous membranes for use with implantable devices
US20050112169A1 (en)2003-05-212005-05-26Dexcom, Inc.Porous membranes for use with implantable devices
US20040254433A1 (en)2003-06-122004-12-16Bandis Steven D.Sensor introducer system, apparatus and method
US20050051427A1 (en)2003-07-232005-03-10Brauker James H.Rolled electrode array and its method for manufacture
US20090076356A1 (en)2003-07-252009-03-19Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20070213611A1 (en)2003-07-252007-09-13Simpson Peter CDual electrode system for a continuous analyte sensor
US20060189856A1 (en)2003-07-252006-08-24James PetisceOxygen enhancing membrane systems for implantable devices
US20060200019A1 (en)2003-07-252006-09-07James PetisceOxygen enhancing membrane systems for implantable devices
US20070235331A1 (en)2003-07-252007-10-11Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20050115832A1 (en)2003-07-252005-06-02Simpson Peter C.Electrode systems for electrochemical sensors
WO2005012873A3 (en)2003-07-252006-04-13Dexcom IncElectrode systems for electrochemical sensors
US20050056552A1 (en)2003-07-252005-03-17Simpson Peter C.Increasing bias for oxygen production in an electrode system
US20050051440A1 (en)2003-07-252005-03-10Simpson Peter C.Electrochemical sensors including electrode systems with increased oxygen generation
US20050054909A1 (en)2003-07-252005-03-10James PetisceOxygen enhancing membrane systems for implantable devices
US20060222566A1 (en)2003-08-012006-10-05Brauker James HTranscutaneous analyte sensor
US20070208246A1 (en)2003-08-012007-09-06Brauker James HTranscutaneous analyte sensor
US20070203966A1 (en)2003-08-012007-08-30Dexcom, Inc.Transcutaneous analyte sensor
US20050027181A1 (en)2003-08-012005-02-03Goode Paul V.System and methods for processing analyte sensor data
US20050027463A1 (en)2003-08-012005-02-03Goode Paul V.System and methods for processing analyte sensor data
US20090012379A1 (en)2003-08-012009-01-08Dexcom, Inc.System and methods for processing analyte sensor data
US20050027180A1 (en)2003-08-012005-02-03Goode Paul V.System and methods for processing analyte sensor data
US20080306368A1 (en)2003-08-012008-12-11Dexcom, Inc.System and methods for processing analyte sensor data
US20080021666A1 (en)2003-08-012008-01-24Dexcom, Inc.System and methods for processing analyte sensor data
US20050043598A1 (en)2003-08-222005-02-24Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
WO2005026689A9 (en)2003-09-102005-10-13I Stat CorpImmunoassay device with immuno-reference electrode
US20070007133A1 (en)2003-09-302007-01-11Andre MangSensor with increased biocompatibility
WO2005045394A3 (en)2003-10-282005-11-17Dexcom IncSilicone composition for biocompatible membrane
US20080045824A1 (en)2003-10-282008-02-21Dexcom, Inc.Silicone composition for biocompatible membrane
US20050090607A1 (en)2003-10-282005-04-28Dexcom, Inc.Silicone composition for biocompatible membrane
US20050176136A1 (en)2003-11-192005-08-11Dexcom, Inc.Afinity domain for analyte sensor
US20070027384A1 (en)2003-12-052007-02-01Mark BristerDual electrode system for a continuous analyte sensor
US20070032717A1 (en)2003-12-052007-02-08Mark BristerDual electrode system for a continuous analyte sensor
US20070027385A1 (en)2003-12-052007-02-01Mark BristerDual electrode system for a continuous analyte sensor
WO2005057168A3 (en)2003-12-052007-03-22Dexcom IncCalibration techniques for a continuous analyte sensor
US20090099436A1 (en)2003-12-052009-04-16Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20070093704A1 (en)2003-12-052007-04-26Mark BristerDual electrode system for a continuous analyte sensor
US20050143635A1 (en)2003-12-052005-06-30Kamath Apurv U.Calibration techniques for a continuous analyte sensor
US7081195B2 (en)2003-12-082006-07-25Dexcom, Inc.Systems and methods for improving electrochemical analyte sensors
WO2005057175A3 (en)2003-12-092005-09-01Dexcom IncSignal processing for continuous analyte sensor
US20050182451A1 (en)2004-01-122005-08-18Adam GriffinImplantable device with improved radio frequency capabilities
US20050181012A1 (en)2004-01-122005-08-18Sean SaintComposite material for implantable device
US20050215871A1 (en)2004-02-092005-09-29Feldman Benjamin JAnalyte sensor, and associated system and method employing a catalytic agent
US20070275193A1 (en)2004-02-132007-11-29Desimone Joseph MFunctional Materials and Novel Methods for the Fabrication of Microfluidic Devices
US20050197554A1 (en)2004-02-262005-09-08Michael PolchaComposite thin-film glucose sensor
US20050192557A1 (en)2004-02-262005-09-01DexcomIntegrated delivery device for continuous glucose sensor
US20050245795A1 (en)2004-05-032005-11-03Dexcom, Inc.Implantable analyte sensor
US20050245799A1 (en)2004-05-032005-11-03Dexcom, Inc.Implantable analyte sensor
US20050242479A1 (en)2004-05-032005-11-03Petisce James RImplantable analyte sensor
US20090062633A1 (en)2004-05-032009-03-05Dexcorn, Inc.Implantable analyte sensor
US20050261563A1 (en)2004-05-202005-11-24Peter ZhouTransducer for embedded bio-sensor using body energy as a power source
US20050272989A1 (en)2004-06-042005-12-08Medtronic Minimed, Inc.Analyte sensors and methods for making and using them
US20060078908A1 (en)2004-06-092006-04-13Pitner James BMultianalyte sensor
US20060015020A1 (en)2004-07-062006-01-19Dexcom, Inc.Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060235285A1 (en)2004-07-132006-10-19Mark BristerTranscutaneous analyte sensor
WO2006017358A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20060020189A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060183984A1 (en)2004-07-132006-08-17Dobbles J MAnalyte sensor
US20060036143A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20060270922A1 (en)2004-07-132006-11-30Brauker James HAnalyte sensor
US20060019327A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20070038044A1 (en)2004-07-132007-02-15Dobbles J MAnalyte sensor
US20070045902A1 (en)2004-07-132007-03-01Brauker James HAnalyte sensor
US20060016700A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060270923A1 (en)2004-07-132006-11-30Brauker James HAnalyte sensor
US20060020192A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060036144A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20060036141A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20070163880A1 (en)2004-07-132007-07-19Dexcom, Inc.Analyte sensor
US20060020191A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060036142A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20080188731A1 (en)2004-07-132008-08-07Dexcom, Inc.Transcutaneous analyte sensor
US20090124879A1 (en)2004-07-132009-05-14Dexcom, Inc.Transcutaneous analyte sensor
US20060020187A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060020186A1 (en)2004-07-132006-01-26Dexcom, Inc.Transcutaneous analyte sensor
US20060036140A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20060015024A1 (en)2004-07-132006-01-19Mark BristerTranscutaneous medical device with variable stiffness
US20060036139A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20060036145A1 (en)2004-07-132006-02-16Dexcom, Inc.Transcutaneous analyte sensor
US20080194938A1 (en)2004-07-132008-08-14Dexcom, Inc.Transcutaneous medical device with variable stiffness
US20070232879A1 (en)2004-07-132007-10-04Mark BristerTranscutaneous analyte sensor
US20080242961A1 (en)2004-07-132008-10-02Dexcom, Inc.Transcutaneous analyte sensor
US20060200970A1 (en)2004-07-132006-09-14Mark BristerTranscutaneous analyte sensor
US20060142651A1 (en)2004-07-132006-06-29Mark BristerAnalyte sensor
US20080214915A1 (en)2004-07-132008-09-04Dexcom, Inc.Transcutaneous analyte sensor
US20060155180A1 (en)2004-07-132006-07-13Mark BristerAnalyte sensor
US20060200020A1 (en)2004-07-132006-09-07Mark BristerTranscutaneous analyte sensor
US20060195029A1 (en)2004-07-132006-08-31Shults Mark CLow oxygen in vivo analyte sensor
US20090143660A1 (en)2004-07-132009-06-04Dexcom, Inc.Transcutaneous analyte sensor
US20080194935A1 (en)2004-07-132008-08-14Dexcom, Inc.Transcutaneous analyte sensor
US20060183985A1 (en)2004-07-132006-08-17Mark BristerAnalyte sensor
WO2006018425A3 (en)2004-08-162006-06-08Novo Nordisk AsMultiphase biocompatible semi-permeable membrane for biosensors
US20060289307A1 (en)2004-08-242006-12-28University Of South FloridaEpoxy Enhanced Polymer Membrane to Increase Durability of Biosensors
US20080033269A1 (en)2004-12-082008-02-07San Medi Tech (Huzhou) Co., Ltd.Catheter-free implantable needle biosensor
US20060177379A1 (en)2004-12-302006-08-10Soheil AsgariComposition comprising an agent providing a signal, an implant material and a drug
WO2006105146A3 (en)2005-03-292007-11-15Arkal Medical IncDevices, systems, methods and tools for continuous glucose monitoring
US20070173710A1 (en)2005-04-082007-07-26Petisce James RMembranes for an analyte sensor
US20060229512A1 (en)2005-04-082006-10-12Petisce James RCellulosic-based interference domain for an analyte sensor
US20070173709A1 (en)2005-04-082007-07-26Petisce James RMembranes for an analyte sensor
US20060263839A1 (en)2005-05-172006-11-23Isense CorporationCombined drug delivery and analyte sensor apparatus
US20060275859A1 (en)2005-05-172006-12-07Kjaer ThomasEnzyme sensor including a water-containing spacer layer
US20060275857A1 (en)2005-05-172006-12-07Kjaer ThomasEnzyme sensor with a cover membrane layer covered by a hydrophilic polymer
US20070173711A1 (en)2005-09-232007-07-26Medtronic Minimed, Inc.Sensor with layered electrodes
US20070135698A1 (en)2005-12-132007-06-14Rajiv ShahBiosensors and methods for making and using them
US20070197889A1 (en)2006-02-222007-08-23Mark BristerAnalyte sensor
US20070227907A1 (en)2006-04-042007-10-04Rajiv ShahMethods and materials for controlling the electrochemistry of analyte sensors
WO2007114943A3 (en)2006-04-042008-03-06Medtronic Minimed IncMethods and materials for controlling the electrochemistry of analyte sensors
US20070259217A1 (en)2006-05-022007-11-08The Penn State Research FoundationMaterials and configurations for scalable microbial fuel cells
US20080027301A1 (en)2006-07-282008-01-31Ward W KennethAnalyte sensing and response system
US20080034972A1 (en)2006-08-102008-02-14The Regents Of The University Of CaliforniaMembranes with controlled permeability to polar and apolar molecules in solution and methods of making same
US20080154101A1 (en)2006-09-272008-06-26Faquir JainImplantable Biosensor and Methods of Use Thereof
US20080214918A1 (en)2006-10-042008-09-04Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20090076360A1 (en)2007-09-132009-03-19Dexcom, Inc.Transcutaneous analyte sensor

Non-Patent Citations (338)

* Cited by examiner, † Cited by third party
Title
Aalders et al. 1991. Development of a wearable glucose sensor; studies in healthy volunteers and in diabetic patients. The International Journal of Artificial Organs 14(2):102-108.
Abe et al. 1992. Characterization of glucose microsensors for intracellular measurements. Anal. Chem. 64(18):2160-2163.
Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell, Biomed. Biochim. Acta 43(5):577-584.
Abel, P. U.; von Woedtke, T. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosens Bioelectron 2002, 17, 1059-1070.
Armour, et al. Dec. 1990. Application of Chronic Intravascular Blood Glucose Sensor in Dogs. Diabetes 39:1519-1526.
Asberg et al. 2003. Hydrogels of a Conducting Conjugated Polymer as 3-D Enzyme Electrode. Biosensors Bioelectronics. pp. 199-207.
Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology and Bioengineering 43:262-266.
Atanasov et al. 1997. Implantation of a refillable glucose monitoring-telemetry device. Biosens Bioelectron 12:669-680.
Aussedat, et al. 1997. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm. Biosensors & Bioelectronics 12(11):1061-1071.
Baker et al. 1993. Dynamic concentration challenges for biosensor characterization. Biosensors & Bioelectronics, 8:433-441.
Baker, et al. 1996. Dynamic delay and maximal dynamic error in continuous biosensors. Anal Chem 68(8):1292-1297.
Bani Amer, M. M. 2002. An accurate amperometric glucose sensor based glucometer with eliminated cross-sensitivity. J Med Eng Technol 26(5):208-213.
Bard et al. 1980. Electrochemical Methods. John Wiley & Sons, pp. 173-175.
Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245.
Bellucci et al. Jan. 1986. Electrochemical behaviour of graphite-epoxy composite materials (GECM) in aqueous salt solutions, Journal of Applied Electrochemistry, 16(1):15-22.
Bessman et al., Progress toward a glucose sensor for the artificial pancreas, Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973, Boston, MA, 189-197.
Bindra et al. 1989. Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal Chem, 61:2566-2570.
Bindra et al. 1991. Design and in Vitro Studies of a Needle-Type Glucose Senso for Subcutaneous Monitoring. Anal. Chem 63:1692-96.
Bisenberger et al. 1995. A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors and Actuators, B 28:181-189.
Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technol Ther, 2(Suppl 1):S35-41.
Bott, A. 1998. Electrochemical methods for the determination of glucose. Current Separations, 17(1)25-31.
Bott, A. W. 1997. A comparison of cyclic voltammetry and cyclic staircase voltammetry. Current Separations, 16(1):23-26.
Bott, A.W. 1997. A Comparison of cyclic voltammetry and staircase voltammetry. Current Separations, 16(1):23-26.*
Bowman,et al. 1986. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng BME33(2):248-255.
Brooks, et al. "Development of an on-line glucose sensor for fermentation monitoring," Biosensors, 3:45-56 (1987/88).
CAI et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76(4):4038-4043.
Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314.
Cass et al. "Ferrocene-mediated enzyme electrodes for amperometric determination of glucose," Anal. Chem., 36:667-71 (1984).
Cassidy et al., Apr. 1993. Novel electrochemical device for the detection of cholesterol or glucose, Analyst, 118:415-418.
Chen et al. 2006. A noninterference polypyrrole glucose biosensor. Biosensors and Bioelectronics 22:639-643.
Chia et al. 2004. Glucose sensors: toward closed loop insulin delivery. Endocrinol Metab Clin North Am 33:175-95.
Choleau et al. 2002. Calibration of a subcutaneo amperometric glucose sensor. Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current. Biosensors and Bioelectronics, 17:641-646.
Choleau, et al. 2002. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Biosensors and Bioelectronics 17:647-654.
Claremont et al. Jul. 1986. Potentially-implantable, ferrocene-mediated glucose sensor. J. Biomed. Eng. 8:272-274.
Clark et al. 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials, Clin. Chem. 27(12):1978-1982.
Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliablity of implanted electrodes, IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society, pp. 0782-0783.
Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. Trans Am Soc Artif Intern Organs 34:259-265.
CLSI. Performance metrics for continuous interstitial glucose monitoring; approved guideline, CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute: 2008 28(33), 72 pp.
Csoregi et al., 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Anal Chem. 66(19):3131-3138.
Danielsson et al. 1988. Enzyme thermistors, Methods in Enzymology, 137:181-197.
Davies, et al. 1992. Polymer membranes in clinical sensor applications. I. An overview of membrane function, Biomaterials, 13(14):971-978.
Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb. Technol., vol. 5, September, 383-388.
Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. Journal of Neuroscience Methods, 119:135-142.
Durliat et al. 1976. Spectrophotometric and electrochemical determinations of L(+)-lactate in blood by use of lactate dehydrogenase from yeast, Clin. Chem. 22(11):1802-1805.
El Deheigy et al. 1986. Optimization of an implantable coated wire glucose sensor. J. Biomed Eng. 8: 121-129.
Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors & Bioelectronics 13(3-4):459-470.
Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology—results from a 3-day trial in patients with type 1 diabetes. Diabetes Technol Ther 5(5):769-779.
Fischer et al. 1989. Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors. Biomed. Biochem 11/12:965-972.
Fischer et al. 1995. Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study, Horm. Metab. Rese. 27:53.
Frohnauer, et al. 2001. Graphical human insulin time-activity profiles using standardized definitions. Diabetes Technology & Therapeutics 3(3):419-429.
Frost, et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641.
Ganesh et al., Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers, Journal of Diabetese Science and Technology, 2(2):182-193, Mar. 2008.
Gilligan et al. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technol. Ther. 2004, 6, 378-386.
Gilligan, B. C.; Shults, M.; Rhodes, R. K.; Jacobs, P. G.; Brauker, J. H.; Pintar, T. J.; Updike, S. J. Feasibility of continuo long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technol. Ther. 2004, 6, 378-386.
Godsland, et al. 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. The Biochemical Society and the Medical Research Society, 1-9.
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochimica Acta, 43(5-6):579-588.
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. Electrochimica Acta; 43(14-15):2015-2024.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. Electrochimica Acta, 44:2455-2462.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. Electrochimica Acta, 44:4573-4582.
Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. Electrochimica Acta, 45:3573-3579.
Hashiguchi et al. (1994). "Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients," Diabetes Care, 17(5): 387-396.
Heller, "Electrical wiring of redox enzymes," Acc. Chem. Res., 23:128-134 (1990).
Heller, A. 1992. Electrical Connection of Enzyme Redox Centers to Electrodes. J. Phys. Chem. 96:3579-3587.
Heller, A. 2003. Plugging metal connectors into enzymes. Nat Biotechnol 21:631-2.
Heller, A. Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1999, 1, 153-175.
Hicks, 1985. In Situ Monitoring, Clinical Chemistry, 31(12):1931-1935.
Hitchman, M. L. 1978. "Measurement of Dissolved Oxygen." In Elving et al. (Eds.). Chemical Analysis, vol. 49, Chap. 3, pp. 34-49, 59-123. New York: John Wiley & Sons.
Hu, et al. 1993. A needle-type enzyme-based lactate sensor for in vivo monitoring, Analytica Chimica Acta, 281:503-511.
Huang et al. Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Aniodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode, pp. 1-116, Aug. 1975.
IPRP for PCT/US04/024178 filed Jul. 21, 2004.
ISR and WO for PCT/US04/024178 filed Jul. 21, 2004.
Jablecki et al. 2000. Simulations of the frequency response of Implantable glucose sensors. Analytical Chemistry, 72:1853-1859.
Jaremko et al. 1998. Advances toward the implantable artificial pancreas for treatment of diabetes. Diabetes Care, 21(3):444-450.
Jensen et al. 1997. Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Analytical Chemistry, 69(9):1776-1781.
Johnson (1991). "Reproducible electrodeposition of biomolecules for the fabrication of miniature electroenzymatic biosensors," Sensors and Actuators B, 5:85-89.
Johnson et al. 1992. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors & Bioelectronics, 7:709-714.
Kacaniklic, May-Jun. 1994. Electroanalysis, 6(5-6):381-390.
Kang et al. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Anal Sci 2003, 19, 1481-1486.
Kang, S. K.; Jeong, R.A.; Park, S.; Chung, T. D.; Park, S.; Kim, H.C. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Anal Sci 2003, 19, 1481-1486.
Karube et al. 1993. Microbiosensors for acetylcholine and glucose. Biosensors & Bioelectronics 8:219-228.
Kawagoe et al. 1991. Enzyme-modified organic conducting salt microelectrode, Anal. Chem. 63:2961-2965.
Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. Biosensors & Bioelectronics, 6: 491-499.
Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose, Horm Metab Res Suppl. 20:8-13.
Kerner, et al. "The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma," Biosensors & Bioelectronics, 8:473-482 (1993).
Ko, Wen H. 1985. Implantable Sensors for Closed-Loop Prosthetic Systems, Futura Pub. Co., Inc., Mt. Kisco, NY, Chapter 15:197-210.
Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. Diabetes Care. 5(3):218-221.
Koschinsky, et al. 1998. New approach to technical and clinical evaluation of devices for self-monitoring of blood glucose. Diabetes Care 11(8): 619-619.
Koudelka et al. 1989. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomed Biochim Acta 48(11-12):953-956.
Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36.
Kraver et al. A mixed-signal sensor interface microinstrument. Sensors and Actuators A: Physical 2001, 91, 266-277.
Kraver, K.; Gutha, M. R.; Strong, T.; Bird, P.; Cha, G.; Hoeld, W., Brown, R. A mixed-signal sensor interface microinstrument. Sensors and Actuators A: Physical 2001, 91, 266-277.
LaCourse et al. 1993. Optimization of waveforms for pulsed amperometric detection of carbohydrates based on pulsed voltammetry. Analytical Chemistry, 65:50-52.
Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci., 428:263-278.
Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Anal. Chem., 56:2896-2904.
Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158.
Lowe, 1984. Biosensors, Trends in Biotechnology, 2(3):59-65.
Luong et al. 2004. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2):132-139.
Maidan et al. 1992. Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors, Analytical Chemistry, 64:2889-2896.
Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-2294.
Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12): 1507-1512.
Mastrototaro, et al. "An electroenzymatic glucose sensor fabricated on a flexible substrate," Sensors and Actuators B, 5:139-44 (1991).
Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252.
McGrath et al. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosens Bioelectron 1995, 10, 937-943.
McGrath, M. J.; Iwuoha, E. I.; Diamond, D.; Smyth, M. R. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosens Bioelectron 1995, 10, 937-943.
McKean, et al. Jul. 7, 1988. A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors. Transactions on Biomedical Engineering 35:526-532.
Memoli et al. A comparison between different immobilised glucoseoxidase-based electrodes. J Pharm Biomed Anal 2002, 29, 1045-1052.
Moatti-Sirat et al., Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man, Diabetologia 37(6):610-616, Jun. 1994.
Moatti-Sirat, D, et al. 1992. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor. Biosensors and Bioelectronics 7:345-352.
Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):0483-0484.
Mosbach et al. 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme termistor and its use for the assay of metobolites, Biochim. Biophys. Acta. (Enzymology), 403:256-265.
Motonaka et al. 1993. Determination of cholesteral and cholesteral ester with novel enzyme microsensors, Anal. Chem. 65:3258-3261.
Mowery et al. 2000. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials 21:9-21.
Murphy, et al. 1992. Polymer membranes in clinical sensor applications. II. The design and fabrication of permselective hydrogels for electrochemical devices, Biomaterials, 13(14):979-990.
Myler et al. 2002. Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes. Biosens Bioelectron 17:35-43.
Neuburger et al. 1987. Pulsed amperometric detection of carbohydrates at gold electrodes with a two-step potential waveform. Anal. Chem., 59:150-154.
Office Action dated Apr. 10, 2007 in U.S. Appl. 11/077,714.
Office Action dated Apr. 10, 2007 in U.S. Appl. No. 11/077,715.
Office Action dated Apr. 11, 2007 in U.S. Appl. No. 10/896,639.
Office Action dated Apr. 12, 2010 in U.S. Appl. No. 11/333,837.
Office Action dated Apr. 16, 2009 in U.S. Appl. 11/077,714.
Office Action dated Apr. 21, 2008 in U.S. Appl. No. 11/077,643.
Office Action dated Apr. 27, 2010 in U.S. Appl. No. 11/078,232.
Office Action dated Apr. 4, 2006 in U.S. Appl. No. 09/447,227.
Office Action dated Apr. 6, 2006 in U.S. Appl. No. 10/896,639.
Office Action dated Apr. 6, 2009 in U.S. Appl. No. 11/077,883.
Office Action dated Aug. 1, 2006 in U.S. Appl. No. 09/447,227.
Office Action dated Aug. 11, 2008 in U.S. Appl. No. 11/360,819.
Office Action dated Aug. 15, 2001 in U.S. Appl. No. 09/447,227.
Office Action dated Aug. 22, 2006 in U.S. Appl. No. 10/896,639.
Office Action dated Dec. 11, 2008 in U.S. Appl. No. 09/447,227.
Office Action dated Dec. 12, 2007 in U.S. Appl. No. 11/543,707.
Office Action dated Dec. 14, 2005 in U.S. Appl. No. 10/896,772.
Office Action dated Dec. 23, 2004 in U.S. Appl. No. 09/916,711.
Office Action dated Dec. 24, 2008 in U.S. Appl. No. 10/885,476.
Office Action dated Dec. 26, 2007 in U.S. Appl. No. 11/021,046.
Office Action dated Dec. 26, 2008 in U.S. Appl. No. 11/360,819.
Office Action dated Dec. 3, 2008 in U.S. Appl. No. 11/675,063.
Office Action dated Dec. 30, 2008 in U.S. Appl. No. 11/034,343.
Office Action dated Dec. 7, 1998 in U.S. Appl. No. 08/811,473.
Office Action dated Feb. 10, 2009 in U.S. Appl. No. 11/077,713.
Office Action dated Feb. 11, 2004 in U.S. Appl. No. 09/916,711.
Office Action dated Feb. 14, 2006 in U.S. Appl. No. 09/916,711.
Office Action dated Feb. 19, 2010 in U.S. Appl. No. 11/675,063.
Office Action dated Feb. 23, 2009 in U.S. Appl. No. 11/439,630.
Office Action dated Feb. 23, 2010 in U.S. Appl. No. 12/113,508.
Office Action dated Feb. 24, 2006 in U.S. Appl. No. 10/646,333.
Office Action dated Feb. 4, 2009 in U.S. Appl. No. 11/021,046.
Office Action dated Feb. 9, 2006 in U.S. Appl. No. 10/897,312.
Office Action dated Jan. 10, 2008 in U.S. Appl. 11/077,714.
Office Action dated Jan. 11, 2005 in U.S. Appl. No. 10/896,772.
Office Action dated Jan. 15, 2008 in U.S. Appl. No. 11/034,344.
Office Action dated Jan. 16, 2003 in U.S. Appl. No. 09/447,227.
Office Action dated Jan. 17, 2002 in U.S. Appl. No. 09/447,227.
Office Action dated Jan. 20, 2010 in U.S. Appl. No. 11/077,713.
Office Action dated Jan. 22, 2009 in U.S. Appl. No. 11/692,154.
Office Action dated Jan. 22, 2010 in U.S. Appl. No. 11/439,630.
Office Action dated Jan. 23, 2008 in U.S. Appl. No. 09/447,227.
Office Action dated Jan. 26, 2009 in U.S. Appl. No. 11/078,230.
Office Action dated Jan. 27, 2006 in U.S. Appl. No. 11/007,635.
Office Action dated Jan. 28, 2008 in U.S. Appl. No. 11/077,715.
Office Action dated Jan. 29, 2009, in U.S. Appl. No. 11/360,252.
Office Action dated Jan. 3, 2008 in U.S. Appl. No. 11/157,746.
Office Action dated Jan. 30, 2007 in U.S. Appl. No. 11/077,763.
Office Action dated Jan. 7, 2009 in U.S. Appl. No. 11/157,365.
Office Action dated Jul. 1, 2005 in U.S. Appl. No. 09/916,711.
Office Action dated Jul. 10, 2008 in U.S. Appl. No. 11/034,343.
Office Action dated Jul. 10, 2008 in U.S. Appl. No. 11/077,759.
Office Action dated Jul. 15, 2002 in U.S. Appl. No. 09/447,227.
Office Action dated Jul. 16, 2008 in U.S. Appl. No. 10/838,912.
Office Action dated Jul. 17, 2007 in U.S. Appl. No. 09/447,227.
Office Action dated Jul. 19, 2005 in U.S. Appl. No. 10/896,772.
Office Action dated Jul. 23, 2004 in U.S. Appl. No. 09/916,711.
Office Action dated Jul. 26, 2007 in U.S. Appl. No. 11/077,715.
Office Action dated Jul. 27, 2007 in U.S. Appl. 11/077,714.
Office Action dated Jul. 9, 2003 in U.S. Appl. No. 09/447,227.
Office Action dated Jun. 10, 2009 in U.S. Appl. No. 11/675,063.
Office Action dated Jun. 12, 2008 in U.S. Appl. No. 09/447,227.
Office Action dated Jun. 19, 2008 in U.S. Appl. No. 11/021,162.
Office Action dated Jun. 23, 2008 in U.S. Appl. No. 11/021,046.
Office Action dated Jun. 24, 2008 in U.S. Appl. No. 11/077,883.
Office Action dated Jun. 24, 2010 in U.S. Appl. No. 12/113,724.
Office Action dated Jun. 26, 2008 in U.S. Appl. No. 11/157,365.
Office Action dated Jun. 29, 2009 in U.S. Appl. No. 11/333,837.
Office Action dated Jun. 30, 2008 in U.S. Appl. No. 11/078,230.
Office Action dated Jun. 30, 2008 in U.S. Appl. No. 11/360,252.
Office Action dated Jun. 6, 2005 in U.S. Appl. No. 10/646,333.
Office Action dated Mar. 11, 2009 in U.S. Appl. No. 11/077,643.
Office Action dated Mar. 11, 2010 in U.S. Appl. No. 11/280,672.
Office Action dated Mar. 14, 2007 in U.S. Appl. No. 10/695,636.
Office Action dated Mar. 24, 2008 in U.S. Appl. No. 10/838,912.
Office Action dated Mar. 31, 2008 in U.S. Appl. No. 11/077,759.
Office Action dated Mar. 4, 2009 in U.S. Appl. No. 10/991,353.
Office Action dated Mar. 5, 2009 in U.S. Appl. No. 10/896,637.
Office Action dated Mar. 5, 2009 in U.S. Appl. No. 11/078,232.
Office Action dated Mar. 9, 2007 in U.S. Appl. No. 09/447,227.
Office Action dated May 1, 2008 in U.S. Appl. No. 11/157,746.
Office Action dated May 11, 2006 in U.S. Appl. No. 10/897,377.
Office Action dated May 12, 2008 in U.S. Appl. No. 11/077,715.
Office Action dated May 17, 2007 in U.S. Appl. No. 11/077,759.
Office Action dated May 22, 2006 in U.S. Appl. No. 10/896,772.
Office Action dated May 5, 2008 in U.S. Appl. No. 11/077,713.
Office Action dated May 5, 2008 in U.S. Appl. No. 11/078,232.
Office Action dated Nov. 1, 2007 in U.S. Appl. No. 11/034,343.
Office Action dated Nov. 12, 2008 in U.S. Appl. No. 11/078,232.
Office Action dated Nov. 12, 2008, 2008 in U.S. Appl. No. 11/077,715.
Office Action dated Nov. 28, 2003 in U.S. Appl. No. 09/447,227.
Office Action dated Nov. 28, 2008 in U.S. App. No. 11/333,837.
Office Action dated Nov. 28, 2008 in U.S. App. No. 11/360,250.
Office Action dated Oct. 1, 2008 in U.S. Appl. No. 11/077,643.
Office Action dated Oct. 11, 2006 in U.S. Appl. 11/077,714.
Office Action dated Oct. 18, 2005 in U.S. Appl. No. 10/897,377.
Office Action dated Oct. 29, 2009 in U.S. Appl. No. 11/280,672.
Office Action dated Oct. 31, 2006 in U.S. Appl. No. 11/077,715.
Office Action dated Oct. 5, 2007 in U.S. Appl. No. 10/896,639.
Office Action dated Oct. 8, 2008 in U.S. Appl. No. 10/896,637.
Office Action dated Oct. 9, 2007 in U.S. Appl. No. 11/077,883.
Office Action dated Sep. 12, 2008 in U.S. Appl. No. 10/991,353.
Office Action dated Sep. 16, 2008 in U.S. Appl. 11/077,714.
Office Action dated Sep. 18, 2007 in U.S. Appl. No. 11/078,230.
Office Action dated Sep. 18, 2008 in U.S. Appl. No. 11/077,883.
Office Action dated Sep. 18, 2008 in U.S. Appl. No. 11/439,630.
Office Action dated Sep. 2, 2009 in U.S. Appl. No. 11/077,713.
Office Action dated Sep. 2, 2009 in U.S. Appl. No. 11/078,072.
Office Action dated Sep. 21, 2007 in U.S. Appl. No. 10/838,912.
Office Action dated Sep. 22, 2004 in U.S. Appl. No. 10/646,333.
Office Action dated Sep. 22, 2005 in U.S. Appl. No. 09/447,227.
Office Action dated Sep. 23, 2005 in U.S. Appl. No. 10/896,639.
Office Action dated Sep. 24, 2003 in U.S. Appl. No. 09/916,711.
Office Action dated Sep. 5, 2006 in U.S. Appl. No. 09/916,711.
Office Action dated Sep. 5, 2008 in U.S. Appl. No. 11/078,230.
Office Action mailed Dec. 12, 2007 in U.S. Appl. No. 11/543,539.
Office Action mailed Dec. 12, 2007 in U.S. Appl. No. 11/543,683.
Office Action mailed Dec. 17, 2007 in U.S. Appl. No. 11/543,734.
Office Action mailed Jun. 5, 2007 in U.S. Appl. No. 11/543,734.
Office Action mailed Jun. 5, 2008 in U.S. Appl. No. 10/838,909.
Office Action mailed Mar. 16, 2009 in U.S. Appl. No. 10/838,909.
Office Action mailed May 18, 2007 in U.S. Appl. No. 11/543,683.
Office Action mailed May 18, 2007 in U.S. Appl. No. 11/543,707.
Office Action mailed May 23, 2007 in U.S. Appl. No. 11/543,539.
Ohara et al. 1994. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451-2457.
Okuda et al. 1971. Mutarotase effect on micro determinations of D-glucose and its anomers with β-D-glucose oxidase. Anal Biochem 43:312-315.
Patel et al. 2003. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report. Biosens Bioelectron 18:1073-6.
Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy, Horm Metab Res Suppl. 24:154-164.
Pickup et al. 1988. Progress towards in vivo glucose sensing with a ferrocene-mediated amperometric enzyme electrode. 34-36.
Pickup et al. 1989. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability. Biosensors 4:109-119.
Pickup et al. 1993. Developing glucose sensors for in vivo use. Elsevier Science Publishers Ltd (UK), TIBTECH vol. 11: 285-291.
Pickup, et al. "Implantable glucose sensors: choosing the appropriate sensor strategy," Biosensors, 3:335-346 (1987/88).
Pickup, et al. "In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer," Diabetologia, 32:213-217 (1989).
Pishko, et al. "Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels," Anal. Chem., 63:2268-72 (1991).
Poitout, et al. 1991. In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor, ASAIO Transactions, 37:M298-M300.
Poitout, et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663.
Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry, 68:2951-2958.
Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode, Electrochimica Acta 26(6):725-729.
Quinn et al. 1997. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18:1665-1670.
Rabah et al., 1991. Electrochemical wear of graphite anodes during electrolysis of brine, Carbon, 29(2):165-171.
Rebrin et al. 1992. Subcutaenous glucose monitoring by means of electrochemical sensors: fiction or reality? J. Biomed. Eng. 14:33-40.
Rebrin, et al. "Automated feedback control of subcutaneous glucose concentration in diabetic dogs," Diabetologia, 32:573-76 (1989).
Rhodes et al. 1994. Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital simulation analysis. Analytical Chemistry, 66(9):1520-1529.
Rhodes, et al. 1994 Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital simulation analysis. Analytical Chemistry, 66(9):1520-1529.
Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif. Organs Today 2(2):145-158.
Sansen et al. 1985. "Glucose sensor with telemetry system." in Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems. Chap. 12, pp. 167-175, Mount Kisco, NY: Futura Publishing Co.
Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators, B 1:298-302.
Sansen, et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators, B 1:298-302.
Schmidt et al. 1993. Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700.
Schmidtke et al., Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proc Natl Aced Sci U S A 1998, 95, 294-299.
Schoemaker et al. 2003. The SCGM1 system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608.
Schoonen et al. 1990 Development of a potentially wearable glucose sensor for patients with diabetes mellitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46.
Schuler et al. 1999. Modified gas-permeable silicone rubber membranes for covalent immobilisation of enzymes and their use in biosensor development. Analyst 124:1181-1184.
Selam, J. L. 1997. Management of diabetes with glucose sensors and implantable insulin pumps. From the dream of the 60s to the realities of the 90s. ASAIO J, 43:137-142.
Shaw, et al. "In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients," Biosensors & Bioelectronics, 6:401-406 (1991).
Shichiri et al. 1982. Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2:1129-1131.
Shichiri et al. 1985. Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas in Implantable Sensors 197-210.
Shichiri, et al. 1983. Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas. Diabetologia 24:179-184.
Shichiri, et al. 1986. Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals. Diabetes Care, Inc. 9(3):298-301.
Shults, et al. 1994. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Transactions on Biomedical Engineering 41(10):937-942.
Sokol et al. 1980, Immobilized-enzyme rate-determination method for glucose analysis, Clin. Chem. 26(1):89-92.
Stern et al., 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104(1):56-63.
Sternberg et al. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 69:2781-2786.
Stokes. 1988. Polyether Polyurethanes: Biostable or Not? J. Biomat. Appl. 3:228-259.
Thome et al. 1995. Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis, Horm. Metab. Res. 27:53.
Thomé-Duret et al. 1996. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. Diabetes Metabolism, 22:174-178.
Thome-Duret et al. 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68:3822-3826.
Thompson, et al., In Vivo Probes: Problems and Perspectives, Department of Chemistry, University of Toronto, Canada, pp. 255-261, 1986.
Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technol Ther 2:199-207.
Torjman et al., Glucose monitoring in acute care: technologies on the horizon, Journal of Deabetes Science and Technology, 2(2):178-181, Mar. 2008.
Tse et al. 1987. Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase. Biotechnol. Bioeng. 29:705-713.
Turner and Pickup, "Diabetes mellitus: biosensors for research and management," Biosensors, 1:85-115 (1985).
Turner, A.P.F. 1988. Amperometric biosensor based on mediator-modified electrodes. Methods in Enzymology 137:90-103.
TURNERet al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its use in a Carbon Monoxide Sensor. Analytica Chimica Acta, 163: 161-174.
U.S. Appl. No. 09/447,227, filed Nov. 22, 2999.
U.S. Appl. No. 10/838,658, filed May 3, 2004.
U.S. Appl. No. 10/838,909, filed May 3, 2004.
U.S. Appl. No. 10/838,912, filed May 3, 2004.
U.S. Appl. No. 10/885,476, filed Jul. 6, 2004.
U.S. Appl. No. 10/897,377, filed Jul. 21, 2004.
Updike et al. 1967. The enzyme electrode. Nature, 214:986-988.
Updike et al. 1988. Laboratory Evaluation of New Reusable Blood Glucose Sensor. Diabetes Care, 11:801-807.
Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23(2):208-214.
Updike, et al. 1979. Continuous glucose monitor based on an immobilized enzyme electrode detector. J Lab Clin Med, 93(4):518-527.
Updike, et al. 1994 Enzymatic glucose sensor: Improved long-term performance in vitro and in vivo. ASAIO Journal, 40(2):157-163.
Updike, et al. 1997. Principles of long-term fully impleated sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC). In Fraser, ed., Biosensors in the Body. New York. John Wiley & Sons, pp. 117-137.
Vadgama, P. Nov. 1981. Enzyme electrodes as practical biosensors. Journal of Medical Engineering & Technology 5(6):293-298.
Vadgama. 1988. Diffusion limited enzyme electrodes. NATO ASI Series: Series C, Math and Phys. Sci. 226:359-377.
Velho et al. 1989. Strategies for calibrating a subcutaneous glucose sensor. Biomed Biochim Acta 48(11/12):957-964.
Wagner, et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. Proc. Natl. Acad. Sci. A, 95:6379-6382.
Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. Anal. Chem. 66:3600-3603.
Wang et al. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Anal Chem 1997, 69, 4482-4489.
Wang, X.; Pardue, H. L. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Anal Chem 1997, 69, 4482-4489.
Ward et al. 2000. Rise in background current over time in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics, 15:53-61.
Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. Biosensors & Bioelectronics, 17:181-189.
Ward et al. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and e of a Nonenzyme Containing Electrode. ASAIO Journal 2000, 540-546.
Ward, et al. 1999. Assessment of chronically implanted subcutaneous glucose sensors in dogs: The effect of surrounding fluid masses. ASAIO Journal, 45:555-561.
Ward, et al. 2000. Rise in background current over time in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics, 15:53-61.
Ward, et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation, Biosensors & Bioelectronics, 17:181-189.
Ward, W. K.; Wood, M. D.; Troupe, J. E. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and e of a Nonenzyme Containing Electrode. ASAIO Journal 2000, 540-546.
Wientjes, K. J. C. Development of a glucose sensor for diabetic patients. 2000.
Wilkins et al. 1988. The coated wire electrode glucose sensor, Horm Metab Res Suppl., 20:50-55.
Wilkins et al. 1995. Integrated implantable device for long-term glucose monitoring. Biosens. Bioelectron 10:485-494.
Wilkins et al. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 1995, 18, 273-288.
Wilkins, et al. 1995. Integrated implantable device for long-term glucose monitoring. Biosens. Bioelectron., 10:485-494.
Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Clin. Chem., 38(9):1613-1617.
Wilson, et al. 1992. Progress toward the development of an implantable sensor for glucose. Clin. Chem., 38(9):1613-1617.*
Wilson, et al. 2000. Enzyme-based biosensors for in vivo measurements. Chem. Rev., 100:2693-2704.
Worsley et al., Measurement of glucose in blood with a phenylboronic acid optical sensor, Journal of Diabetes Science and Technology, 2(2):213-220, Mar. 2008.
Wright et al., Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)- modified myoglobin, Electrochemistry Communications 1 (1999) 603-611.
Wu et al. 1999. In situ electrochemical oxygen generation with an immunoisolation device. Ann. N.Y. Acad. Sci., 875:105-125.
Yamasaki, Yoshimitsu. Sep. 1984. The development of a needle-type glucose sensor for wearable artificial endocrine pancreas. Medical Journal of Osaka University 35(1-2):25-34.
Yamasakiet al. 1989. Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta. 93:93-98.
Yang et al (1996). "A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma," Biomedical Instrumentation & Technology, 30:55-61.
Yang, et al. 2004. A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes. Journal Of Membrane Science 237:145-161.
Yanget al. 1998. Development of needle-type glucose sensor with high selectivity. Science and Actuators B 46:249-256.
Zamzow et al. 1990. Development and evaluation of a wearable blood glucose monitor, ASAIO Transactions; 36(3): pp. M588-M591.
Zhang et al (1993). Electrochemical oxidation of H202 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H202-based biosensors. J. Electroanal. Chem., 345:253-271.
Zhang et al. 1993. In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Analytica Chimica Acta, 281:513-520.
Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry 66(7):1183-1188.
Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry, 66(7):1183-1188.
Zhu et al. (1994). "Fabrication and characterization of glucose sensors based on a microarray H202 electrode." Biosensors & Bioelectronics, 9: 295-300.
Zhu et al. 2002. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. Sensors, 2:127-136.

Cited By (26)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11020031B1 (en)2003-12-052021-06-01Dexcom, Inc.Analyte sensor
US11000215B1 (en)2003-12-052021-05-11Dexcom, Inc.Analyte sensor
US11382539B2 (en)2006-10-042022-07-12Dexcom, Inc.Analyte sensor
US10980461B2 (en)2008-11-072021-04-20Dexcom, Inc.Advanced analyte sensor calibration and error detection
US10376145B2 (en)2015-02-242019-08-13Elira, Inc.Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US10765863B2 (en)2015-02-242020-09-08Elira, Inc.Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
US10864367B2 (en)2015-02-242020-12-15Elira, Inc.Methods for using an electrical dermal patch in a manner that reduces adverse patient reactions
US11957895B2 (en)2015-02-242024-04-16Elira, Inc.Glucose-based modulation of electrical stimulation to enable weight loss
US10335302B2 (en)2015-02-242019-07-02Elira, Inc.Systems and methods for using transcutaneous electrical stimulation to enable dietary interventions
US10143840B2 (en)2015-02-242018-12-04Elira, Inc.Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US11197613B2 (en)2015-02-242021-12-14Elira, Inc.Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US10118035B2 (en)2015-02-242018-11-06Elira, Inc.Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US11712562B2 (en)2015-02-242023-08-01Elira, Inc.Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
US9956393B2 (en)2015-02-242018-05-01Elira, Inc.Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch
US12369830B2 (en)2017-03-112025-07-29Biolinq IncorporatedMethods for achieving an isolated electrical interface between an anterior surface of a microneedle structure and a posterior surface of a support structure
US12109032B1 (en)2017-03-112024-10-08Biolinq IncorporatedMethods for achieving an isolated electrical interface between an anterior surface of a microneedle structure and a posterior surface of a support structure
US11963796B1 (en)2017-04-292024-04-23Biolinq IncorporatedHeterogeneous integration of silicon-fabricated solid microneedle sensors and CMOS circuitry
US11950902B2 (en)2019-08-022024-04-09Bionime CorporationMicro biosensor and method for reducing measurement interference using the same
US12023150B2 (en)2019-08-022024-07-02Bionime CorporationImplantable micro-biosensor
US11872055B2 (en)2020-07-292024-01-16Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US12011294B2 (en)2020-07-292024-06-18Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US12279888B2 (en)2020-07-292025-04-22Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US12285271B2 (en)2020-07-292025-04-29Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US11478194B2 (en)2020-07-292022-10-25Biolinq IncorporatedContinuous analyte monitoring system with microneedle array
US11857344B2 (en)2021-05-082024-01-02Biolinq IncorporatedFault detection for microneedle array based continuous analyte monitoring device
US12336816B2 (en)2023-02-022025-06-24Biolinq IncorporatedMethod for improved sensor sensitivity of a microneedle-based continuous analyte monitoring system

Also Published As

Publication numberPublication date
EP1649260A4 (en)2010-07-07
JP2007500336A (en)2007-01-11
WO2005012873A2 (en)2005-02-10
WO2005012873A3 (en)2006-04-13
US20120228134A1 (en)2012-09-13
US7074307B2 (en)2006-07-11
EP1649260A2 (en)2006-04-26
US20050115832A1 (en)2005-06-02
US20140001042A1 (en)2014-01-02

Similar Documents

PublicationPublication DateTitle
USRE43399E1 (en)Electrode systems for electrochemical sensors
US10610140B2 (en)Oxygen enhancing membrane systems for implantable devices
US7108778B2 (en)Electrochemical sensors including electrode systems with increased oxygen generation
US10188333B2 (en)Calibration techniques for a continuous analyte sensor
US20050056552A1 (en)Increasing bias for oxygen production in an electrode system

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:DEXCOM, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMPSON, PETER C.;PETISCE, JAMES R.;CARR-BRENDEL, VICTORIA;AND OTHERS;SIGNING DATES FROM 20050103 TO 20050111;REEL/FRAME:021106/0346

ASAssignment

Owner name:DEXCOM, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMPSON, PETER C.;PETISCE, JAMES R.;CARR-BRENDEL, VICTORIA;AND OTHERS;SIGNING DATES FROM 20050103 TO 20050111;REEL/FRAME:024693/0657

CCCertificate of correction
FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:8

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp