Movatterモバイル変換


[0]ホーム

URL:


USRE37846E1 - Projection optical system and exposure apparatus using the same - Google Patents

Projection optical system and exposure apparatus using the same
Download PDF

Info

Publication number
USRE37846E1
USRE37846E1US09/709,518US70951800AUSRE37846EUS RE37846 E1USRE37846 E1US RE37846E1US 70951800 AUS70951800 AUS 70951800AUS RE37846 EUSRE37846 EUS RE37846E
Authority
US
United States
Prior art keywords
lens
lens group
optical system
negative
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/709,518
Inventor
Hitoshi Matsuzawa
Misako Kobayashi
Kazumasa Endo
Yutaka Suenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon CorpfiledCriticalNikon Corp
Priority to US09/709,518priorityCriticalpatent/USRE37846E1/en
Application grantedgrantedCritical
Publication of USRE37846E1publicationCriticalpatent/USRE37846E1/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

The present invention relates to an exposure apparatus using a projection optical system to realize a small size and the bitelecentricity as securing a wide exposure area and a large numerical aperture and to realize extremely good correction for aberrations, particularly for distortion. The projection optical system comprises a first lens group G1with a positive refracting power, a second lens group G2with a negative refracting power, a third lens group G3with a positive refracting power, a fourth lens group G4with a negative refracting power, a fifth lens group G5with a positive refracting power, and a sixth lens group G6with a positive refracting power in order from the side of the first object R, wherein the second lens group G2comprises a front lens L2Fwith a negative refracting power, a rear lens L2Rof a negative meniscus shape, and an intermediate lens group G2Mdisposed between the front lens and the rear lens, and wherein the intermediate lens group G2Mhas a first lens LM1with a positive refracting power, a second lens LM2with a negative refracting power, and a third lens LM3with a negative refracting power in order from the side of the first object R. The system is arranged to satisfy within suitable ranges of focal lengths for the first to sixth lens groups G1-G6, based on the above arrangement.

Description

This is a continuation of application Ser. No. 08/516,903, filed Aug. 18, 1995, now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an exposure apparatus having a projection optical system for projecting a pattern of a first object onto a photosensitive substrate etc. as a second object, and more particularly to a projection optical system suitably applicable to projection exposure of a pattern for semiconductor or liquid crystal formed on a reticle (mask) as the first object onto the substrate (semiconductor wafer, plate, etc.) as the second object.
2. Related Background Art
As the patterns of integrated circuits become finer and finer, the resolving power required for the exposure apparatus used in printing of wafer also becomes higher and higher. In addition to the improvement in resolving power, the projection optical systems of the exposure apparatus are required to decrease image stress. In order to get ready for the finer tendency of transfer patterns, light sources for exposure have recently been changing from those emitting the light of exposure wavelength of the g-line (436 nm) to those emitting the light of exposure wavelength of the i-line (365 nm) that are mainly used at present. Further, a trend is to use light sources emitting shorter wavelengths, for example the excimer laser (KrF:248 nm, ArF:193 nm).
Here, the image stress includes those due to bowing etc. of the printed wafer on the image side of projection optical system and those due to bowing etc. of the reticle with circuit pattern etc. written therein, on the object side of projection optical system, as well as distortion caused by the projection optical system.
With a recent further progress of fineness tendency of transfer patterns, demands to decrease the image stress are also becoming harder.
Then, in order to decrease effects of the wafer bowing on the image stress, the conventional technology has employed the so-called image-side telecentric optical system that located the exit pupil position at a farther point on the image side of projection optical system.
On the other hand, the image stress due to the bowing of reticle can also be reduced by employing a so-called object-side telecentric optical system that locates the entrance pupil position of projection optical system at a farther point from the object plane, and there are suggestions to locate the entrance pupil position of projection optical system at a relatively far position from the object plane as described. Examples of those suggestions are described for example in Japanese Laid-open Patent Applications No. 63-118115 and No. 5-173065 and U.S. Pat. No. 5,260,832.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a high-performance projection optical system which can achieve the bitelecentricity in a compact design as securing a wide exposure area and a large numerical aperture and which can be well corrected for aberrations, particularly which can be very well corrected for distortion. The projection optical system can be applied to an exposure apparatus.
To achieve the above object, an exposure apparatus according to the present invention comprises at least a wafer stage allowing a photosensitive substrate to be held on a main surface thereof, an illumination optical system for emitting exposure light of a predetermined wavelength and transferring a predetermined pattern of a mask (reticle) onto the substrate, a projection optical system provided between a first surface on which the mask as a first object is disposed and a second surface on which a surface of the substrate as a second object is corresponded, for projecting an image of the pattern of the mask onto the substrate. The illumination optical system includes as alignment optical system for adjusting a relative positions between the mask and the wafer, and the mask is disposed on a reticle stage which is movable in parallel with respect to the main surface of the wafer stage. The projection optical system has a space permitting an aperture stop to be set therein. The photosensitive substrate comprises a wafer such as a silicon wafer or a glass plate, etc., and a photosensitive material such as a photoresist or the like coating a surface of the wafer. In particular, as shown in FIG. 1, the projection optical system includes a first lens group (G1) with a positive refracting power, a second lens group (G2) with a negative refracting power, a third lens group (G3) with a positive refracting power, a fourth lens group (G4) with a negative refracting power, a fifth lens group (G5) with a positive refracting power, and a sixth lens group (G6) with a positive refracting power in order from the side of the first object (for example, a mask).
The second lens group (G2) comprises a front lens (L2F) with a negative refracting power disposed as closest to the first object and shaded with a concave surface to the second object, a rear lens (L2R) of a negative meniscus shape disposed as closest to the substrate and shaped with a concave surface to the mask, and an intermediate lens group (G2M) disposed between the front lens (L2F) and the rear lens (L2R). In particular, the intermediate lens group (G2M) has a first lens (LM1) with a positive refracting power, a second lens (LM2) with a negative refracting power, and a third lens (LM3) with a negative refracting power in order from the side of the first object.
Further, the projection optical system according to the present invention is arranged to satisfy the following conditions (1) to (6) when f1is a focal length of the first lens group (G1), f2is a focal length of the second lens group (G2), f3is a focal length of the third lens group (G3), f4is a focal length of the fourth lens group (G4), f5is a focal length of the fifth lens group (G5), f6is a focal length of the sixth lens group (G6), and L is a distance from the first object to the second object:
(1) f1/L<0.8
(2) −0.033<f2/L
(3) 0.01<f3/L<1.0
(4) f4/L<−0.005
(5) 0.01<f5/L<0.9
(6) 0.02<f6/L<1.6.
The projection optical system is so arranged as to have at least the first lens group (G1) with positive refracting power, the second lens group (G2) with negative refracting power, the third lens group (G3) with positive refracting power, the fourth lens group (G4) with negative refracting power, the fifth lens group (G5) with positive refracting power, and the sixth lens group (G6) with positive refracting power in the named order from the first object side.
First, the first lens group (G1) with positive refracting power contributes mainly to a correction of distortion while maintaining telecentricity, and specifically, the first lens group (G1) is arranged to generate a positive distortion to correct in a good balance negative distortions caused by the plurality of lens groups located on the second object side after the first lens group (G1). The second lens group (G2) with negative refracting power and the fourth lens group (G4) with negative refracting power contribute mainly to a correction of Petzval sum to make the image plane flat. The two lens groups of the second lens group (G2) with negative refracting power and the third lens group (G3) with positive refracting power form an inverse telescopic system to contribute to guarantee of back focus (a distance from an optical surface such as a lens surface closest to the second object in the projection optical system to the second object) in the projection optical system. The fifth lens group (G5) with positive refracting power and the sixth lens group (G6) similarly with positive refracting power contribute mainly to suppressing generation of distortion and suppressing generation particularly of spherical aberration as much as possible in order to fully support high NA structure on the second object side.
Based on the above arrangement, the front lens (L2F) with the negative refracting power disposed as closest to the first object in the second lens group (G2) and shaped with the concave surface to the second object contributes to correction for curvature of field and coma, and the rear lens (L2R) of the negative meniscus shape disposed as closest to the second object in the second lens group (G2) and shaped with the concave surface to the first object contributes mainly to correction for coma. The rear lens (L2R) also contributes to correction for curvature of field. Further, in the intermediate lens group (G2M) disposed between the front lens (L2F) and the rear lens (L2R), the first lens (LM1) with the positive refracting power contributes to correction for negative distortion generated by the second lens (LM2) and third lens (LM3) of the negative refracting powers greatly contributing to correction for curvature of field.
Condition (1) defines an optimum ratio between the focal length f1of the first lens group (G1) with the positive refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). This condition (1) is mainly for well-balanced correction for distortion.
Above the upper limit of condition (1), large negative distortion will appear. In order to achieve a compact design as securing a reduction magnification and a wide exposure area and to achieve good correction for distortion, the upper limit of condition (1) is preferably set to 0.14, as f1/L<0.14. In order to suppress appearance of spherical aberration of pupil, the lower limit of condition (1) is preferably set to 0.02, as 0.02<f1/L.
Condition (2) defines an optimum ratio between the focal length f2of the second lens group (G2) with the negative refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). This condition (2) is a condition for achieving a compact design as securing a wide exposure region and achieving good correction for Petzval sum.
Here, below the lower limit of condition (2), it becomes difficult to achieve the compact design as securing the wide exposure region and positive Petzval sum will appear, thus not preferred. In order to achieve further compact design or superior correction for Petzval sum, the lower limit of condition (2) is preferably set to −0.032, as −0.032<f2/L. In order to suppress appearance of negative distortion, the upper limit of condition (2) is preferably set to −0.005, as f2/L<−0.005.
Condition (3) defines an optimum ratio between the focal length f3of the third lens group (G3) with the positive refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). Here, below the lower limit of condition (3), the refractive power of the second lens group (G2) or the fourth lens group (G4) becomes too strong, resulting in giving rise to negative distortion and coma in the second lens group (G2) or giving rise to coma in the fourth lens group (G4). On the other hand, above the upper limit of condition (3), the refractive power of the second lens group (G2) or the fourth lens group (G4) becomes too weak, failing to well correct Petzval sum.
Condition (4) defines an optimum ratio between the focal length f4of the fourth lens group (G4) with the negative refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.).
Here, above the upper limit of condition (4), coma will appear, thus not preferred. Further, in order to suppress appearance of coma, the upper limit of condition (4) is preferably set to −0.047, as f4/L<−0.047.
In order to well correct spherical aberration, the lower limit of condition (4) is preferably set to −0.098, as −0.098<f4/L.
Condition (5) defines an optimum ratio between the focal length f5of the fifth lens group (G5) with the positive refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). This condition (5) is for achieving well-balanced correction for spherical aberration, distortion, and Petzval sum as maintaining a large numerical aperture. Below the lower limit of this condition (5), the refracting power of the fifth lens group (G5) becomes too strong, resulting in giving rise to great negative spherical aberration in addition to negative distortion in the fifth lens group (G5). Above the upper limit of this condition (5), the refracting power of the fifth lens group (G5) becomes too weak, which inevitably weakens the refracting power of the fourth lens group (G4) with the negative refracting power. As a consequence, Petzval sum will not be well corrected.
Condition (6) defines an optimum ratio between the focal length f6of the sixth lens group (G6) with the positive refracting power and the distance (object-to-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). This condition (6) is for suppressing appearance of higher-order spherical aberration and negative distortion as maintaining a large numerical aperture. Below the lower limit of this condition (6), the sixth lens group (G6) itself gives rise to great negative distortion; above the upper limit of this condition (6), higher-order spherical aberration will appear.
On the basis of the above composition it is preferred that when I is an axial distance from the first object to a first-object-side focal point F of the entire projection optical system and L is the distance from the first object to the second object, the following condition be satisfied:
1.0<I/L.  (7)
The condition (7) defines an optimum ratio between the axial distance I from the first object to the first-object-side focal point F of the entire projection optical system and the distance (object-image distance) L from the first object (reticle etc.) to the second object (wafer etc.). Here, the first-object-side focal point F of the entire projection optical system means an intersecting point of outgoing light from the projection optical system with the optical axis after collimated light beams are let to enter the projection optical system on the second object side in the paraxial region with respect to the optical axis of the projection optical system and when the light beams in the paraxial region are outgoing from the projection optical system.
Below the lower limit of this condition (7) the first-object-side telecentricity of the projection optical system will become considerably destroyed, so that changes of magnification and distortion due to an axial deviation of the first object will become large. As a result, it becomes difficult to faithfully project an image of the first object at a desired magnification onto the second object. In order to fully suppress the changes of magnification and distortion due to the axial deviation of the first object, the lower limit of the above condition (7) is preferably set to 1.7, i.e., 1.7<I/L. Further, in order to correct a spherical aberration and a distortion of the pupil both in a good balance while maintaining the compact design of the projection optical system, the upper limit of the above condition (7) is preferably set to 6.8, i.e., I/L<6.8.
It is also preferred that the fourth lens group (G4) have a front lens group disposed as closest to the first object and a rear lens group disposed as closest to the second object, that an intermediate lens group having a first negative lens (L43) and a second negative lens (L44) in order from the side of the first object be disposed between the front lens group in the fourth lens group (G4) and the rear lens group in the fourth lens group (G4), that the front lens group have two negative meniscus lenses (L41, L42) each shaped with a concave surface to the second object, that the rear lens group has a negative lens (L46) with a concave surface to the first object, and that when f4Ais a focal length of the first negative lens (L43) in the fourth lens group (G4) and f4Bis a focal length of the second negative lens (L44) in the fourth lens group (G4), the following condition be satisfied:
0.05<f4A/f4B<20.  (8)
Below the lower limit of condition (8), the refractive power of the first negative lens (L43) becomes strong relative to the refractive power of the second negative lens (L44), so that the first negative lens (L43) will give rise to higher-order spherical aberration and higher-order coma. In order to suppress appearance of the higher-order spherical aberration and higher-order coma, the lower limit of the above condition (8) is preferably set to 0.1, as 0.1<f4A/f4B. On the other hand, above the upper limit of condition (8), the refracting power of the second negative lens (L44) becomes strong relative to the refracting power of the first negative lens (L43), so that the second negative lens (L44) will give rise to higher-order spherical aberration and higher-order coma. In order to further suppress appearance of higher-order spherical aberration and higher-order coma, the upper limit of the above condition (8) is preferably set to 10, as f4A/f4B<10.
It is also preferred that when r2Ffis a radius of curvature of a first-object-side surface of the front lens (L2F) and r2Fris a radius of curvature of a second-object-side surface of the front lens (L2F), the front lens (L2F) in the second lens group (G2) satisfy the following condition:
1.00≦(r2Ff−r2Fr)/(r2Ff+r2Fr)<5.0.  (9)
Below the lower limit of this condition (9), sufficient correction for spherical aberration of pupil becomes impossible, thus not preferred. On the other hand, above the upper limit of this condition (9), coma will appear, thus not preferred.
It is also preferred that the fourth lens group (G4) have a front lens group having a negative lens (L41) disposed as closest to the first object and shaped with a concave surface to the second object, and a rear lens group having a negative lens (L46) disposed as closest to the second object and shaped with a concave surface to the first object, that an intermediate lens group having at least a negative lens (L44) and a positive lens (L45) with a convex surface adjacent to a concave surface of the negative lens (L44) be disposed between the front lens group in the fourth lens group (G4) and the rear lens group in the fourth lens group (G4), and that when r4Nis a radius of curvature of the concave surface of the negative lens (L44) in the intermediate lens group and r4Pis a radius of curvature of the convex surface of the positive lens (L45) in the intermediate lens group, the following condition be satisfied:
−0.9<(r4N−r4P)/(r4N+r4P)<0.9,  (10)
provided that when L is the distance from the first object to the second object, the concave surface of the negative lens (L44) in the intermediate lens group or the convex surface of the positive lens (L45) in the intermediate lens group satisfies at least one of the following conditions:
|r4N/L|<2.0  (11)
|r4P/L|<2.0.  (12)
Conditions (10) to (12) define an optimum configuration of a gas lens formed by the concave surface of the negative lens (L44) in the intermediate lens group and the convex surface of the positive lens (L45) in the intermediate lens group. When condition (11) or (12) is satisfied, this gas lens can correct higher-order spherical aberration. For further correction of higher-order spherical aberration, the upper limits of condition (11) and condition (12) are preferably set to 0.8, as |r4N/L|<0.8 and |r4P/L|<0.8. Here, above the upper limit or below the lower limit of condition (10), coma will appear, thus not preferred. If neither condition (11) nor condition (12) is satisfied, correction for higher-order spherical aberration is impossible even if condition (10) is satisfied, thus not preferred.
It is also preferred that when f22is a focal length of the second lens (LM2) with the negative refracting power in the second lens group (G2) and f23is a focal length of the third lens (LM3) with the negative refracting power in the second lens group (G2), the following condition be satisfied:
0.1<f22/f23<10.  (13)
Below the lower limit of the condition (13) the refracting power of the second negative lens (LM2) becomes strong relative to the refracting power of the third negative lens (LM3), so that the second negative lens (LM2) generates a large coma and a large negative distortion. In order to correct the negative distortion in a better balance, the lower limit of the above condition (13) is preferably set to 0.7, i.e., 0.7<f22/f23. Above the upper limit of this condition (13) the refracting power of the third negative lens (LM3) becomes strong relative to the refracting power of the second negative lens (LM2), so that the third negative lens generates a large coma and a large negative distortion. In order to correct the negative distortion in a better balance while well correcting the coma, the upper limit of the above condition (13) is preferably set to 1.5, i.e., f24/f23<1.5.
It is also preferred that the fifth lens group (G5) have a negative meniscus lens (for example, L54), and a positive lens (for example, L53) disposed as adjacent to a concave surface of the negative meniscus lens and having a convex surface opposed to the concave surface of the negative meniscus lens and that when r5nis a radius of curvature of the concave surface of the negative meniscus lens in the fifth lens group (G5) and r5Pis a radius of curvature of the convex surface, opposed to the concave surface of the negative meniscus lens, of the positive lens disposed as adjacent to the concave surface of the negative meniscus lens in the fifth lens group (G5), the following condition be satisfied:
0<(r5P−r5n)/(r5P+r5n)<1.  (14)
In this case, it is preferred that the negative meniscus lens (for example, L54) and the positive lens (L53) adjacent to the concave surface of the negative meniscus lens be disposed between at least one positive lens (for example, L52) in the fifth lens group G5and at least one positive lens (for example, L55) in the fifth lens group (G5).
In this case, in order to suppress the negative distortion without generating the higher-order spherical aberrations in the lens (L61) located closest to the first object in the sixth lens group (G6), it is desirable that the lens surface closest to the first object have a shape with a convex surface to the first object and that the following condition be satisfied when a radius of curvature on the second object side, of the negative lens (L58) placed as closest to the second object in the fifth lens group (G5) is r5Rand a radius of curvature on the first object side, of the lens (L61) placed as closest to the first object in the sixth lens group (G6) is r6F.
−0.90<(r5R−r6F)/(r5R+r6F)<−0.001  (15)
This condition (15) defines an optimum shape of a gas lens formed between the fifth lens group (G5) and the sixth lens group (G6). Below the lower limit of this condition (15) a curvature of the second-object-side concave surface of the negative lens (L58) located closest to the second object in the fifth lens group (G5) becomes too strong, thereby generating higher-order comas. Above the upper limit of this condition (15) refracting power of the gas lens itself formed between the fifth lens group (G5) and the sixth lens group (G6) becomes weak, so that a quantity of the positive distortion generated by this gas lens becomes small, which makes it difficult to well correct a negative distortion generated by the positive lens in the fifth lens group (G5). In order to fully suppress the generation of higher-order comas, the lower limit of the above condition (15) is preferably set to −0.30, i.e., −0.30<(r5R−r6F)/(r5R+r6F).
Also, it is further preferable that the following condition be satisfied when a lens group separation between the fifth lens group (G5) and the sixth lens group (G6) is d56and the distance from the first object to the second object is L.
d56/L<0.017  (16)
Above the upper limit of this condition (16), the lens group separation between the fifth lens group (G5) and the sixth lens group (G6) becomes too large, so that a quantity of the positive distortion generated becomes small. As a result, it becomes difficult to correct the negative distortion generated by the positive lens in the fifth lens group (G5) in a good balance.
Also, it is more preferable that the following condition be satisfied when a radius of curvature of the lens surface closest to the first object in the sixth lens group (G6) is r6Fand an axial distance from the lens surface closest to the first object in the sixth lens group (G6) to the second object is d6.
0.50<d6/r6F<1.50  (17)
Below the lower limit of this condition (17), the positive refracting power of the lens surface closest to the first object in the sixth lens group (G6) becomes too strong, so that a large negative distortion and a large coma are generated. Above the upper limit of this condition (17), the positive refracting power of the lens surface closest to the first object in the sixth lens group (G6) becomes too weak, thus generating a large coma. In order to further suppress the generation of coma, the lower limit of the condition (17) is preferably set to 0.84, i.e., 0.84<d6/r6F.
Also, it is to be more desired that said fifth lens group (G5) have a negative lens (L58) placed as closest to the second object and having a concave surface opposed to the second object and that the following condition be satisfied when a radius of curvature on the first object side in the negative lens (L58) closest to the second object in said fifth lens group (G5) is r5Fand a radius of curvature on the second object side in the negative lens (L58) closest to the second object in said fifth lens group (G5) is r5R:
0.30<(r5F−r5R)/(r5F+r5R)<1.28.  (18)
Below the lower limit of this condition (18), it becomes difficult to correct both the Petzval sum and the coma; above the upper limit of this condition (18), large higher-order comas appear, which is not preferable. In order to further prevent the generation of higher-order comas, the upper limit of the condition (18) is preferably set to 0.93, i.e., (r5F−r5R)/(r5F+r5R)<0.93.
It is more desired that when f21is a focal length of the first lens (LM1) with the positive refracting power in the intermediate lens group (G2M) in the second lens group (G2) and L is the distance from the first object to the second object, the following condition be satisfied:
0.230<f21/L<0.40.  (19)
Below the lower limit of condition (19), positive distortion will appear; above the upper limit of condition (19), negative distortion will appear, either of which is thus not preferred. Further, in order to further correct the negative distortion, the second-object-side lens surface of the first lens (LM1) is preferably formed in a lens configuration shaped with a convex surface facing the second object.
It is also preferred that when f2Fis a focal length of the front lens (L2F) with the negative refracting power disposed as closest to the first object in the second lens group (G2) and shaped with the concave surface to the second object and f2Ris a focal length of the rear lens (L2R) with the negative refracting power disposed as closest to the second object in the second lens group (G2) and shaped with the concave surface to the first object, the following condition be satisfied:
0≦f2F/f2R<18.  (20)
Also, the front lens (L2F) and the rear lens (L2R) in the second lens group (G2) preferably satisfy the following condition when the focal length of the front lens (L2F) placed as closest to the first object in the second lens group (G2) and having the negative refracting power with a concave surface to the second object is f2Fand the focal length of the rear lens (L2R) placed as closest to the second object in the second lens group (G2) and having the negative refracting power with a concave surface to the second object is f2R.
0≦f2F/f2R<18  (20)
The condition (20) defines an optimum ratio between the focal length f2Rof the rear lens (L2R) in the second lens group (G2) and the focal length f2Fof the front lens (L2F) in the second lens group (G2). Below the lower limit and above the upper limit of this condition (20), a balance is destroyed for refracting power of the first lens group (G1) or the third lens group (G3), which makes it difficult to correct the distortion well or to correct the Petzval sum and the astigmatism simultaneously well.
In order to further well correct Petzval sum, the intermediate lens group (G2M) in the second lens group (G2) preferably has a negative refracting power.
For the above lens groups to achieve satisfactory aberration correction functions, specifically, they are desired to be constructed in the following arrangements.
First, for the fist lens group (G1) to have a function to suppress appearance of higher-order distortion and appearance of spherical aberration of pupil, the first lens group (G1) preferably has at least two positive lenses; for the third lens group (G3) to have a function to suppress degradation of spherical aberration and Petzval sum, the third lens group (G3) preferably has at least three positive lenses; further, for the fourth lens group (G4) to have a function to suppress appearance of coma as correcting Petzval sum, the fourth lens group (G4) preferably has at least three negative lenses. For the fifth lens group (G5) to have a function to suppress appearance of negative distortion and spherical aberration, the fifth lens group (G5) preferably has at least five positive lenses; further, for the fifth lens group (G5) to have a function to correct negative distortion and Petzval sum, the fifth lens group (G5) preferably has at least one negative lens. For the sixth lens group (G6) to effect focus on the second object so as not to give rise to large spherical aberration, the sixth lens group (G6) preferably has at least one positive lens.
For further compact design, the intermediate lens group in the second lens group desirably comprises only two negative lenses.
For the sixth lens group (G6) to have a function to further suppress appearance of negative distortion, the sixth lens group (G6) is preferably arranged to comprise three or less lenses including at least one lens surface satisfying the following condition (21).
1/|ΦL|<20  (21)
where
Φ: a refractive power of the lens surface; and
L: the distance (object-to-image distance) from the first object to the second object.
The refractive power of lens surface, stated here, is given by the following equation where r is a radius of curvature of the lens surface, n1a refractive index of a medium on the first object side of the lens surface, and n2a refractive index of a medium on the second object side of the lens surface.
Φ=(n2−n1)/r
Here, if there are four or more lenses having the lens surface satisfying this condition (21), the number of lens surfaces with some curvature, located near the second object, becomes increased, which generates the distortion, thus not preferable.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not to be considered as limiting the present invention.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art form this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a drawing to show parameters defined in embodiments of the present invention.
FIG. 2 is a drawing to show schematic structure of an exposure apparatus to which the projection optical system according to the present invention is applied.
FIG. 3 is a lens arrangement drawing of the projection optical system in the first embodiment according to the present invention.
FIG. 4 is a lens arrangement drawing of the projection optical system in the second embodiment according to the present invention.
FIG. 5 is a lens arrangement drawing of the projection optical system in the third embodiment according to the present invention.
FIG. 6 is a lens arrangement drawing of the projection optical system in the fourth embodiment according to the present invention.
FIGS. 7-10 are aberration diagrams to show aberrations in the projection optical system of the first embodiment.
FIGS. 11-14 are aberration diagrams to show aberrations in the projection optical system of the second embodiment.
FIGS. 15-18 are aberration diagrams to show aberrations in the projection optical system of the third embodiment.
FIGS. 19-22 are aberration diagrams to show aberrations in the projection optical system of the fourth embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Various embodiments of the projection optical system according to the present invention will be described with reference to the drawings. In the examples, the present invention is applied to the projection optical system in the projection exposure apparatus for projecting an image of patterns of reticle onto a wafer coated with a photoresist. FIG. 2 shows a basic structure of the exposure apparatus according to the present invention. As shown in FIG. 2, an exposure apparatus of the present invention comprises at least awafer stage3 allowing a photosensitive substrate W to be held on a main surface3a thereof, an illumination optical system1 for emitting exposure light of a predetermined wavelength and transferring a predetermined pattern of a mask (reticle R) onto the substrate W, alight source100 for supplying an exposure light to the illumination optical system1, a projectionoptical system5 provided between a first surface P1 (object plane) on which the mask R is disposed and a second surface P2 (image plane) to which a surface of the substrate W is corresponded, for projecting an image of the pattern of the mask R onto the substrate W. The illumination optical system1 includes an alignment optical system110 for adjusting a relative positions between the mask R and the wafer W, and the mask R is disposed on areticle stage2 which is movable in parallel with respect to the main surface of thewafer stage3. Areticle exchange system200 conveys and changes a reticle (mask R) to be set on thereticle stage2. Thereticle exchange system200 includes a stage driver for moving thereticle stage2 in parallel with respect to the main surface3a of thewafer stage3. The projectionoptical system5 has a space permitting anaperture stop6 to be set therein. The sensitive substrate W comprises awafer8 such as a silicon wafer or a glass plate, etc., and aphotosensitive material7 such as a photoresist or the like coating a surface of thewafer8. Thewafer stage3 is moved in parallel with respect to a object plane P1 by astage control system300. Further, since amain control section400 such as a computer system controls thelight source100, thereticle exchange system200, thestage control system300 or the like, the exposure apparatus can perform a harmonious action as a whole.
The techniques relating to an exposure apparatus of the present invention are described, for example, in U.S. patent applications Ser. Nos. 255,927, 260,398, 299,305, U.S. Pat. Nos. 4,497,015, 4,666,273, 5,194,893, 5,253,110, 5,333,035, 5,365,051, 5,379,091, or the like. The reference of U.S. patent application Ser. No. 255,927 teaches an illumination optical system (using a laser source) applied to a scan type exposure apparatus. The reference of U.S. patent application Ser. No. 260,398 teaches an illumination optical system (using a lamp source) applied to a scan type exposure apparatus. The reference of U.S. patent application Ser. No. 299,305 teaches an alignment optical system applied to a scan type exposure apparatus. The reference of U.S. Pat. No. 4,497,015 teaches an illumination optical system (using a lamp source) applied to a scan type exposure apparatus. The reference of U.S. Pat. No. 4,666,273 teaches a step-and repeat type exposure apparatus capable of using the projection optical system of the present invention. The reference of U.S. Pat. No. 5,194,893 teaches an illumination optical system, an illumination region, mask-side and reticle-side interferometers, a focusing optical system, alignment optical system, or the like. The reference of U.S. Pat. No. 5,253,110 teaches an illumination optical system (using a laser source) applied to a step-and-repeat type exposure apparatus. The '110 reference can be applied to a scan type exposure apparatus. The reference of U.S. Pat. No. 5,333,035 teaches an application of an illumination optical system applied to an exposure apparatus. The reference of U.S. Pat. No. 5,365,051 teaches a auto-focusing system applied to an exposure apparatus. The reference of U.S. Pat. No. 5,379,091 teaches an illumination optical system (using a laser source) applied to a scan type exposure apparatus.
As described above, a reticle R (first object) as a projection mask with specific circuit patterns formed therein is disposed on the object plane (P1) of the projection optical system1 and a wafer W (second object) as a substrate on the image plane (P2) of the projection optical system1. Here, the reticle R is held on areticle stage2 and the wafer W on awafer stage3 arranged as movable on a two-dimensional basis. Disposed above the reticle R is an illumination optical system1 for uniformly illuminating the reticle R.
In the above arrangement, light supplied from thelight source100 through the illumination optical system1 illuminates the reticle R to form an image at the pupil position of the projection optical system1 (the position of aperture stop6). Namely, the illumination optical system1 uniformly illuminates the reticle R under Köhler illumination. Then the pattern image of reticle R illuminated under Köhler illumination is projected (or transferred) onto the wafer W.
The present embodiment shows an example of which thelight source100 is a mercury lamp for supplying the i-line (365 nm). The structure of the projection optical system in each embodiment will be described by reference to FIG. 3 to FIG.6. FIG. 3 to FIG. 6 are lens structural drawings of the projection optical systems1 in the first to fourth embodiments, respectively, according to the present invention.
As shown in FIG. 3 to FIG. 6, the projection optical system1 in each embodiment has a first lens group G1with a positive refractive power, a second lens group G2with a negative refractive power, a third lens group G3with a positive refractive power, a fourth lens group G4with a negative refractive power, a fifth lens group G5with a positive refractive power, and a sixth lens unit G6with a positive refractive power in order from the side of reticle R as a first object, is arranged as substantially telecentric on the object side (reticle R side) and on the image side (wafer W side), and has a reduction magnification.
In the projection optical system1 in each of the embodiments shown in FIG. 3 to FIG. 6, an object-to-image distance (a distance along the optical axis from the object plane to the image plane, or a distance along the optical axis from the reticle R to wafer W) L is 1100, an image-side numerical aperture NA is 0.57, a projection magnification β is ⅕, and a diameter of an exposure area on the wafer W is 31.2. The object-to-image distance L and the diameter of the exposure area are expressed in a same unit, and the unit corresponds to a unit of r and d shown in the following tables 1, 3, 5 and 7.
First described is a specific lens arrangement of the first embodiment shown in FIG.3. The first lens group G1has a negative meniscus lens L11shaped with a concave surface to the image, a positive lens (positive lens of a biconvex shape) L12shaped with a convex surface to the object, and two positive lenses (positive lenses of biconvex shapes) L13, L14each shaped with a strong-curvature surface to the object in order from the object side.
Further, the second lens group G2has a negative lens (negative lens of a biconcave shape: front lens) L2Fdisposed as closest to the object and shaped with a concave surface to the image, a negative meniscus lens (rear lens) L2Rdisposed as closest to the image and shaped with a concave surface to the object, and an intermediate lens group G2Mwith a negative refractive power disposed between these negative lens L2Fand negative lens L2R. This intermediate lens group G2Mhas a positive lens (positive lens of a biconvex shape: first lens) LM1shaped with a strong-curvature surface to the image, a negative lens (negative lens of a biconcave shape: second lens) LM2shaped with a strong-curvature surface to the image, and a negative lens (negative lens of a biconcave shape: third lens) LM3shaped with a strong-curvature surface to the object in order from the object side.
The third lens group G3has two positive lenses (positive meniscus lenses) L31, L32each shaped with a strong-curvature surface to the image, a positive lens L33of a biconvex shape, a positive lens (positive lens of a biconvex shape) L34shaped with a strong-curvature surface to the object, and a positive lens (positive meniscus lens) L35shaped with a strong-curvature surface to the object in order from the object side.
The fourth lens group G4has two negative meniscus lenses (front lens group) L41, L42each shaped with a concave surface to the image, a negative lens (negative meniscus lens: first negative lens) L43shaped with a concave surface to the object, a negative lens (second negative lens: negative lens with a concave surface to the image) L44of a biconcave shape, a positive lens (positive meniscus lens: positive lens having a convex surface adjacent to the concave surface of the negative lens L44) L45shaped with a convex surface to the object, and a negative lens (negative lens of a biconcave shape: rear lens group) L46shaped with a concave surface to the object in order from the object side.
The fifth lens group G5has two positive lenses (positive lenses of biconvex shapes) L51, L52each shaped with a convex surface to the image, a positive lens L53of a biconvex shape, a negative meniscus lens L54shaped with a concave surface to the object, a positive lens L55shaped with a stronger-curvature surface to the object, two positive lenses (positive meniscus lenses) L56, L57each shaped with a stronger-curvature surface to the object, and a negative meniscus lens L58shaped with a concave surface to the image in order from the object side.
Further, the sixth lens group G6is composed of a positive lens (positive lens of a biconvex shape) L61shaped with a stronger-curvature surface to the object, and a negative lens (negative lens of a biconcave shape) L62with a concave surface to the object in order from the object side.
In the present embodiment, anaperture stop6 is disposed between the positive meniscus lens L45with the convex surface to the object and the negative lens L46of the biconcave shape, that is, between the intermediate lens group in the fourth lens group G4and the rear lens group in the fourth lens group G4.
In the first lens group G1in the present embodiment, the concave surface of the negative meniscus lens L11with the concave surface to the image and the object-side lens surface of the positive biconvex lens L12have nearly equal curvatures and are arranged as relatively close to each other, and these two lens surfaces correct higher-order distortion.
Since the first lens LM1with the positive refractive power in the second lens group G2Mis constructed in the biconvex shape with the convex surface to the image and also with the other convex surface to the object, it can suppress appearance of spherical aberration of pupil.
Since the fourth lens group G4is so arranged that the negative meniscus lens L41with the concave surface to the image is disposed on the object side of the negative lens (negative biconcave lens) L44and that the negative lens L46with the concave surface to the object is disposed on the image side of the negative lens (negative biconcave lens) L44, it can correct Petzval sum as suppressing appearance of coma.
Since in the first embodiment theaperture stop6 is placed between the image-side concave surface of the negative meniscus lens L41and the object-side concave surface of the negative lens L46in the fourth lens group G4, the lens group of from the third lend group G3to the sixth lens group G6can be arranged around theaperture stop6 with a more or less reduction magnification and without destroying the symmetry too much, thus enabling to suppress asymmetric aberration, particularly coma and distortion. Since the positive lens L53in the fifth lens group G5has a convex surface opposed to the negative meniscus lens L54and the other lens surface on the opposite side to the negative meniscus lens L54is also a convex surface, higher-order spherical aberration can be prevented from appearing with an increase of numerical aperture.
The specific lens arrangement of the second embodiment shown in FIG. 4 is similar to that of the first embodiment as shown in FIG.3 and described above. The third lens group G3in the second embodiment is different from that in the first embodiment in that the third lens group G3is composed of two positive lenses (positive meniscus lenses) L31, L32each shaped with a strong-curvature surface to the image, a positive lens L33of a biconvex shape, a positive lens (positive lens of a biconvex shape) L34shaped with a strong-curvature surface to the object, and a positive lens (positive lens of a biconvex shape) L35shaped with a strong-curvature surface to the object in order from the object side.
In the second embodiment, the fourth lens group G4is different from that in the first embodiment in that the fourth lens group G4is composed of two negative meniscus lenses (front lens group) L41, L42each shaped with a concave surface to the image, a negative lens (negative lens of a biconcave shape: first negative lens) L43shaped with a concave surface to the object, a negative lens (second negative lens: negative lens with a concave surface to the image) L44of a biconcave shape, a positive lens (positive meniscus lens: positive lens having a convex surface adjacent to the concave surface of the negative lens L44) L45shaped with a convex surface to the object, and a negative lens (negative lens of a biconcave shape: rear lens group) L46shaped with a stronger concave surface to the object in order from the object side, but the function thereof is the same as that in the first embodiment as described above.
Further, the first and second lens groups G1, G2and the fifth and sixth lens groups G5, G6in the second embodiment achieve the same functions as those in the first embodiment as described above.
The specific lens arrangement of the third embodiment shown in FIG. 5 is similar to that of the first embodiment shown in FIG.3 and described previously. The first lens group G1of the present embodiment is different from that of the first embodiment in that the first lens group G1is composed of a negative meniscus lens L11shaped with a concave surface to the image, a positive lens (positive lens of a biconvex shape) L12shaped with a convex surface to the object, a positive lens (positive lens of a plano-convex shape) L13shaped with a strong-curvature surface to the object, and a positive lens (positive lens of a biconvex shape) L14shaped with a strong-curvature surface to the object in order from the object side, but the function thereof is the same as that in the first embodiment as described previously.
The second to sixth lens groups G2-G6in the third embodiment achieve the same functions as those in the first embodiment as described previously.
The specific lens arrangement of the fourth embodiment of FIG. 6 is similar to that of the first embodiment shown in FIG.3 and described previously. The fourth lens group G4in the present embodiment is different from that of the first embodiment in that the fourth lens group G4is composed of two negative meniscus lenses (front lens group) L41, L42each with a concave surface to the image, a negative lens (negative lens of a biconcave shape: first negative lens) L43shaped with a concave surface to the object, a negative lens (second negative lens: negative lens with a concave surface to the image) L44of a biconcave shape, a positive lens (positive meniscus lens: a positive lens having a convex surface adjacent to the concave surface of the negative lens L44) L45shaped with a convex surface to the object, and a negative lens (negative lens of a biconcave shape: rear lens group) L46shaped with a concave surface to the object in order from the object side, but the function thereof is the same as that in the first embodiment as described previously.
Further, in the fourth embodiment, the sixth lens group G6is different from that of the first embodiment in that the sixth lens group G6is composed of a positive lens (positive lens of a biconvex shape) L61shaped with a stronger-curvature surface to the object and a negative lens (negative meniscus lens) L62shaped with a concave surface to the object in order from the object side.
The first to third lens groups G1to G3and the fifth lens group G5in the present embodiment achieve the same functions as those in the first embodiment described previously.
Table 1 to Table 8 to follow list values of specifications and correspondent values to the conditions for the respective embodiments in the present invention.
In the tables, left-end numerals represent orders from the object side (reticle R side), r radii of curvatures of lens surfaces, d separations between lens surfaces, n refractive indices of glass materials for exposure wavelength λ of 365 nm, dothe distance along the optical axis from the first object (reticle R) to the lens surface (first lens surface) closest to the object (reticle R) in the first lens group G1, β the projection magnification of projection optical systems, Bf the distance along the optical axis from the lens surface closest to the image (wafer W) in the sixth lens group G6to the image plane P2 (wafer W plane), NA the numerical aperture on the image side (wafer W side), of projection optical system, and L is the object-to-image distance from the object plane P1 (reticle R plane) to the image plane P2 (wafer W plane). Further, in the tables, f1represents the focal length of the first lens group G1, f2the focal length of the second lens group G2, f3the focal length of the third lens group G3, f4the focal length of the fourth lens group G4, f5the focal length of the fifth lens group G5, f6the focal length of the sixth lens group G6, L the distance (object-to-image distance) from the object plane (reticle plane) to the image plane (wafer plane), I the axial distance from the first object (reticle) to the first-object-side focal point F of the entire projection optical system (provided that the first-object-side focal point F of the entire projection optical system means an intersecting point of emergent light with the optical axis when parallel light in the paraxial region with respect to the optical axis of the projection optical system is made incident from the second object side of the projection optical system and the light in the paraxial region is emergent from the projection optical system), f4Athe focal length of the first negative lens (L43) in the intermediate lens group in the fourth lens group G4, f4the focal length of the second negative lens (L44) in the intermediate lens group in the fourth lens group G4, r2Ffthe radius of curvature of the first-object-side lens surface of the front lens L2Fin the second lens group G2, R2Ffthe radius of curvature of the second-object-side lens surface of the front lens L2Fin the second lens group G2, r4Nthe radius of curvature of the second-object-side concave surface of the negative lens (L44) in the intermediate lens group in the fourth lens group G4, r4Pthe radius of curvature of the first-object-side convex surface of the positive lens (L45) in the intermediate lens group in the fourth lens group G4, f22the focal length of the second lens with the negative refractive power in the second lens group, f23the focal length of the third lens with the negative refractive power in the second lens group G2, r5nthe radius of curvature of the concave surface in the negative meniscus lens in the fifth lens group G5, r5pthe radius of curvature of the convex surface opposed to the concave surface of the negative meniscus lens in the positive lens disposed as adjacent to the concave surface of the negative meniscus lens in the fifth lens group G5, r5Rthe radius of curvature of the second-object-side surface of the negative lens disposed as closest to the second object in the fifth lens group G5, r6Fthe radius of curvature of the first-object-side surface of the lens disposed as closest to the first object in the sixth lens group G6, d56the lens group separation between the fifth lens group G5and the sixth lens group G6, d6the axial distance from the lens surface closest to the first object in the sixth lens group G6to the second object, r5Fthe radius of curvature of the first-object-side surface in the negative lens disposed as closest to the second object in the fifth lens group G5, f21the focal length of the first lens with the positive refractive power in the intermediate lens group G2Min the second lens group G2, f2Fthe focal length of the front lens with the negative refractive power disposed as closest to the first object in the second lens group G2and shaped with the concave surface to the second object, and f2Rthe focal length of the rear lens of the negative meniscus shape disposed as closest to the second object in the second lens group G2and shaped with the concave surface to the object.
TABLE 1
First Embodiment
dO = 94.97557
β = ⅕
NA = 0.57
Bf = 22.68864
L = 1100
rdn
1758.5937218.019621.66638
2273.074098.00000
3407.2560034.438061.53627
4−305.980820.50000
5200.0000036.315121.53627
6−950.899200.50000
7251.3567036.000001.53627
8−1111.201005.00000
9−3000.0000013.000001.66638
10103.5332619.34714
11583.4373121.862391.53627
12−202.732623.71513
13−389.0755013.000001.53627
14118.3934625.82991
15−119.2998413.000001.53627
16228.6806535.35939
17−118.7823115.614391.53627
18−2000.0000015.00000
19−534.2197030.588061.53627
20−172.963670.50000
21−3045.9590030.550541.53627
22−252.310050.50000
23787.9564231.339601.53627
24−470.114860.50000
25429.0551931.107391.53627
26−1033.561000.50000
27276.5422829.826711.53627
283383.807000.50000
29200.5608225.000001.53627
30149.8220651.17799
31191.3823225.000001.53627
32122.3420425.15581
33−276.6550113.000001.66638
34−597.900439.14516
35−190.1819413.000001.66638
36360.797563.75310
37434.4576313.000001.53627
38643.5640831.17056
39−951.3948720.000001.66638
40360.755413.46004
41395.4123933.291911.53627
42−229.240430.50000
43405.0217721.769521.53627
44−1456.273000.50000
45334.6214934.870651.53627
46−316.028868.19653
47−226.6697520.000001.66638
48−421.191190.50000
49245.0095927.625921.53627
50−6478.644000.50000
51118.6488724.826641.53627
52182.848040.50000
53106.9435429.805171.53627
54305.863462.86446
55330.1268513.000001.66638
5665.692527.67289
5776.6339229.800771.53627
58−405.457932.41289
59−314.0411720.422501.53627
601180.34006(Bf)
TABLE 2
Correspondent Values to the Conditions for First
Embodiment
(1) f1/L = 0.129
(2) f2/L = −0.0299
(3) f3/L = 0.106
(4) f4/L = −0.0697
(5) f5/L = 0.0804
(6) f6/L = 0.143
(7) I/L = 2.02
(8) f4A/f4B = 4.24
(9) (r2Ff − r2Fr)/(r2Ff + r2Fr) = 1.07
(10) (r4N − r4P)/(r4N + r4PY) = −0.0926
(11) |r4N/L| = 0.328
(12) |r4P/L| = 0.395
(13) f22/f23 = 1.16
(14) (r5p − r5n)/(r5p + r5n) = 0.165
(15) (r5R − r6F)/(r5R + r6F) = −0.0769
(16) d56/L = 0.00698
(17) d6/r6F = 0.983
(18) (r5F − r5R)/(r5F + r5R) = 0.668
(19) f21/L = 0.258
(20) f2F/f2R = 0.635
TABLE 3
Second Embodiment
dO = 98.09086
β = ⅕
NA = 0.57
Bf = 22.68864
L = 1100
rdn
1715.7982518.019621.66638
2257.119938.00000
3402.8120234.438061.53627
4−298.913620.50000
5200.0000036.315121.53627
6−811.208410.50000
7202.3008136.000001.53627
8−912.77876−0.24598
9−3000.0000013.000001.66638
10100.1675719.34714
11515.5099221.862391.53627
12−211.089833.71513
13−334.8504813.000001.53627
14119.2836724.34073
15−124.5382513.000001.53627
16196.5665435.64064
17−122.8391315.614391.53627
18−2000.0000015.00000
19−319.0140330.588061.53627
20−192.957900.50000
21−1320.5300030.550541.53627
22−229.096270.50000
231670.4160031.339601.53627
24−355.677490.50000
25505.9435131.107391.53627
26−669.942390.50000
27272.7875529.826711.53627
28−11188.962000.50000
29205.3243325.000001.53627
30156.9107568.35861
31170.8186025.000001.53627
32119.4116625.17539
33−221.5152113.000001.66638
343749.279007.91441
35−299.5305613.000001.66638
36360.797563.75310
37434.4576313.000001.53627
38643.5640818.53967
39−6417.3330020.000001.66638
40300.163083.46004
41329.7771933.291911.53627
42−264.125230.50000
43804.8524821.769521.53627
44−784.297880.50000
45273.7315934.870651.53627
46−325.588148.19653
47−214.5251720.000001.66638
48−405.912930.50000
49396.0999727.625921.53627
50−579.805140.50000
51115.7135124.826641.53627
52255.345800.50000
53104.8622629.805171.53627
54211.500032.86446
55312.2550013.000001.66638
5666.115667.67289
5776.7805829.800771.53627
58−437.189682.41289
59−324.3204020.422501.53627
602434.44700(Bf)
TABLE 4
Correspondent Values to the Conditions for Second
Embodiment
(1) f1/L = 0.119
(2) f2/L = −0.0292
(3) f3/L = 0.111
(4) f4/L = −0.0715
(5) f5/L = 0.0806
(6) f6/L = 0.140
(7) I/L = 2.02
(8) f4A/f4B = 1.29
(9) (r2Ff − r2Fr)/(r2Ff + r2Fr) = 1.07
(10) (r4N − r4P)/(r4N + r4P) = −0.0926
(11) |r4N/L| = 0.328
(12) |r4P/L| = 0.395
(13) f22/f23 = 1.16
(14) (r5p − r5n)/(rsp + r5n) = 0.206
(15) (r5R − r6F)/(r5R + r6F) = −0.0114
(16) d56/L = 0.00698
(17) d6/r6F = 0.981
(18) (r5F − r5R)/(r5F + r5R) = 0.673
(19) f21/L = 0.257
(20) f2F/f2R = 0.593
TABLE 5
Third Embodiment
dO = 105.97406
β = ⅕
NA = 0.57
Bf = 21.09296
L = 1100
rdn
1835.9345019.000741.61298
2349.000026.60188
3493.7382330.010231.61536
4−364.999991.12825
5189.6735732.714241.61536
61.25667
7219.6892526.279741.61536
8−2935.500002.86486
9−1456.0300015.600001.61298
1098.8790125.83515
11572.7774219.487351.48734
12−245.994923.28431
13−517.0130816.352091.61536
14118.7819522.95916
15−151.8325612.944781.61536
16196.8650533.74710
17−129.2578012.896771.61536
18−491.9589513.46314
19−246.1243522.582451.61536
20−166.519970.39125
21−1477.3050028.553061.61536
22−216.047010.72991
23425.3693733.510751.61536
24−524.959990.96043
25438.3579825.740841.48734
26−1678.660000.33363
27292.5167323.697821.48734
281518.720000.83738
29218.4239626.387751.48734
30148.3540333.09868
31203.9572627.764541.61536
32133.4380130.67100
33−211.8621613.015381.61298
34−1024.5700015.53690
35−160.7558413.150201.61298
36270.915020.55149
37250.9265015.666631.48734
38702.0299623.07586
39−827.2595115.362001.61298
402298.000000.73901
412301.6200027.621621.48734
42−223.082050.51051
43488.6744034.239331.48734
44−319.008020.49298
45500.9837934.156841.61536
46−369.129099.55181
47−242.5928918.846861.61298
48−613.529980.50392
49347.1020630.003321.61536
50−1728.400000.49017
51180.8164430.271841.48734
52728.320040.48766
53119.0225838.205471.48734
54609.840033.61782
551650.3100019.052171.61298
5677.8679517.17240
5781.0707330.618821.48734
58−335.264992.16189
59−316.9629026.151911.61536
60−848.55009(Bf)
TABLE 6
Correspondent Values to the Conditions for Third
Embodiment
(1) f1/L = 0.117
(2) f2/L = −0.0288
(3) f3/L = 0.106
(4) f4/L = −0.0762
(5) f5/L = 0.0868
(6) f6/L = 0.147
(7) I/L = 2.87
(8) f4A/f4B = 2.69
(9) (r2Ff − r2Fr)/(r2Ff + r2Fr) = 1.15
(10) (r4N − r4P)/(r4N + r4P) = 0.0383
(11) |r4N/L| = 0.246
(12) |r4P/L| = 0.228
(13) f22/f23 = 1.13
(14) (r5p − r5n)/(r5p + r5n) = 0.207
(15) (r5R − r6F)/(r5R + r6F) = −0.0202
(16) d56/L = 0.00156
(17) d6/r6F = 0.987
(18) (r5F − r5R)/(r5F + r5R) = 0.910
(19) f21/L = 0.324
(20) f2F/f2R = 0.521
TABLE 7
Fourth Embodiment
dO = 83.70761
β = ⅕
NA = 0.57
Bf = 21.09296
L = 1100
rdn
11185.7080019.000741.61298
2477.184006.60188
31060.8880030.010231.61536
4−338.640421.12825
5200.0000032.714241.61536
6−2276.779001.25667
7248.8275826.279741.61536
8−1078.612003.19741
9−726.4962915.600001.61298
10110.5395725.83515
112000.0000019.487351.48734
12−236.038003.28431
13−3000.0000016.352091.61536
14109.8665332.21675
15−153.7894812.944781.61536
16226.9445135.22505
17−132.3166212.896771.61536
18−830.4381715.00000
19−330.5299622.582451.61536
20−184.597860.39125
21−1874.0380028.553061.61536
22−221.735700.72991
23558.1031833.510751.61536
24−552.835680.96043
25478.8437625.740841.48734
26−906.263150.33363
27287.0351423.697821.48734
282359.179000.83738
29201.4606826.387751.48734
30155.1971046.91024
31198.6696227.764541.61536
32122.4009926.77778
33−220.1975213.015381.61298
343835.7470012.87579
35−180.5789713.150201.61298
36270.915010.55149
37250.9265015.666631.48734
38702.0299725.47244
39−1387.5260015.362001.61298
40404.607330.73901
41437.5688527.621621.48734
42−242.825240.51051
43476.8945534.239331.48734
44−364.555460.49298
45500.1172134.156841.61536
46−381.646619.55181
47−243.2285718.846861.61298
48−378.779180.50392
49355.9506130.003321.61536
506474.812000.49017
51171.5009830.271841.48734
52722.006260.48766
53113.4484138.205471.48734
54442.834503.61782
55730.6753719.052171.61298
5673.5913617.17240
5778.9299830.618821.48734
58−315.111372.16189
59−286.1180126.151911.61536
60−878.71576(Bf)
TABLE 8
Correspondent Values to the Conditions for Fourth
Embodiment
(1) f1/L = 0.119
(2) f2/L = −0.0278
(3) f3/L = 0.106
(4) f4/L = −0.0675
(5) f5/L = 0.0805
(6) f6/L = 0.146
(7) I/L = 2.29
(8) f4A/f4B = 1.94
(9) (r2Ff − r2Fr)/(r2Ff + r2Fr) = 1.36
(10) (r4N − r4P)/(r4N + r4P) = 0.0383
(11) |r4N/L| = 0.246
(12) |r4P/L| = 0.228
(13) f22/f23 = 1.17
(14) (r5p − r5n)/(r5p + r5n) = 0.222
(15) (r5R − r6F)/(r5R + r6F) = −0.0350
(16) d56/L = 0.00156
(17) d6/r6F = 1.01
(18) (r5F − r5R)/(r5F + r5R) = 0.817
(19) f21/L = 0.395
(20) f2F/f2R = 0.603
Letting L be the distance (object-to-image distance) from the object plane P1 (reticle plane) to the image plane P2 (wafer plane) and Φ be a refractive power of lens surface in the sixth lens group G6, in the first embodiment as described previously, 1/|ΦL|=0.130 for the object-side lens surface of the positive lens L61and 1/|ΦL|=0.532 for the object-side lens surface of the negative lens L62, thus satisfying the condition (21). In the second embodiment, 1/|ΦL|=0.130 for the object-side lens surface of the positive lens L61and 1/|ΦL|=0.550 for the object-side lens surface of the negative lens L62, thus satisfying the condition (21). In the third embodiment, 1/|ΦL|=0.151 for the object-side lens surface of the positive lens L61and 1/|ΦL|=0.468 for the object-side lens surface of the negative lens L62, thus satisfying the condition (21). In the fourth embodiment, 1/|ΦL|=0.147 for the object-side lens surface of the positive lens L61and 1/|ΦL|=0.423 for the object-side lens surface of the negative lens L62, thus satisfying the condition (21).
As described above, the sixth lens group G6in each embodiment is composed of three or less lenses including the lens surfaces satisfying the condition (21).
It is understood from the above values of specifications for the respective embodiments that the projection optical systems according to the embodiments achieved satisfactory telecentricity on the object side (reticle R side) and on the image side (wafer W side) as securing the large numerical apertures and wide exposure areas.
FIG. 7 to FIG. 22 are respectively aberration diagrams to show aberrations in the first to fourth embodiments. Each of FIGS. 7,11,15, and19 shows a spherical aberration of each embodiment. Each of FIGS. 8,12,16, and20 shows an astigmatism of each embodiment. Each of FIGS. 9,13,17, and21 shows a distortion of each embodiment. Each of FIGS. 10,14,18, and22 shows a coma of each embodiment.
Here, in each aberration diagram, NA represents the numerical aperture of the projection optical system1, and Y the image height, and in each astigmatism diagram, the dashed line represents the meridional image surface and the solid line the sagittal image surface.
It is understood from comparison of the aberation diagrams that the aberrations are corrected in a good balance in each embodiment even with a wide exposure area (image height) and a large numerical aperture, particularly, distortion is extremely well corrected up to nearly zero throughout the entire image, thus achieving the projection optical system with high resolving power in a wide exposure area.
The above-described embodiments showed the examples using the mercury lamp as a light source for supplying the exposure light of the i-line (365 nm), but it is needless to mention that the invention is not limited to the examples; for example, the invention may employ light sources including a mercury lamp supplying the exposure light of the g-line (435 nm), and extreme ultraviolet light sources such as excimer lasers supplying light of 193 nm or 248 nm.
In the above each embodiment the lenses constituting the projection optical system are not cemented to each other, which can avoid a problem of a change of cemented surfaces with time. Although in the above each embodiment the lenses constituting the projection optical system are made of a plurality of optic materials, they may be made of a single glass material, for example quartz (SiO2) if the wavelength region of the light source is not a wide band.
As described above, the projection optical system according to the present invention can achieve the bitelecentricity in a compact design as securing a wide exposure area and a large numerical aperture, and the invention can achieve the projection optical system with high resolving power corrected in a good balance for aberrations, particularly extremely well corrected for distortion.
From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. The basic Japanese Application No. 872/1995 filed on Jan. 6, 1995 is hereby incorporated by reference.

Claims (90)

What is claimed is:
1. A projection optical system provided between a first object and a second object, for projecting an image of a first object onto a second object, said projection optical system comprising a first lens group with a positive refracting power, a second lens group with a negative refracting power, a third lens group with a positive refracting power, a fourth lens group with a negative refracting power, a fifth lens group with a positive refracting power, and a sixth lens group with a positive refracting power in order from the side of said first object,
wherein said second lens group comprises a front lens with a negative refracting power disposed as closest to said first object and shaped with a concave surface to said second object, a rear lens of a negative meniscus shape disposed as closest to said second object and shaped with a concave surface to said first object, and an intermediate lens group disposed between said front lens and said rear lens, said intermediate lens group having a first lens with a positive refracting power, a second lens with a negative refracting power, and a third lens with a negative refracting power in order from the side of said first object, and
wherein when f1is a focal length of said first lens group, f2is a focal length of said second lens group, f3is a focal length of said third lens group, f4is a focal length of said fourth lens group, f5is a focal length of said fifth lens group, f6is a focal length of said sixth lens group, and L is a distance from said first object to said second object, the following conditions are satisfied:
f1/L<0.8
−0.033<f2/L
0.01<f3/L<1.0
f4/L<−0.005
0.01<f5/L<0.9
0.02<f6/L<1.6.
2. A projection optical system according toclaim 1, wherein when I is an axial distance from said first object to a first-object-side focal point of said entire projection optical system and L is the distance from said first object to said second object, the following condition is satisfied:
1.0<I/L.
3. A projection optical system according toclaim 1, wherein said fourth lens group comprises:
a front lens group disposed as closest to the first object, said front lens group having two negative meniscus lenses each shaped with a concave surface to said second object;
a rear lens disposed as closest to the second object, said rear lens group having a negative lens with a concave surface to said first object; and
an intermediate lens group disposed between said front lens group in said fourth lens group and said rear lens group in said fourth lens group, said intermediate lens group having first and second negative lenses in order from the side of said first object, and
wherein when f4Ais a focal length of said first negative lens in said fourth lens group and f4Bis a focal length of said second negative lens in said fourth lens group, the following condition is satisfied:
0.05<f4A/f4B<20.
4. A projection optical system according toclaim 1, wherein when r2Ffis a radius of curvature of a first-object-side surface of said front lens and r2Fris a radius of curvature of a second-object-side surface of said front lens, the front lens in said second lens group satisfies the following condition:
1.00≦(r2Ff−r2Fr)/(r2Ff+r2Fr)<5.0.
5. A projection optical system according toclaim 1, wherein said fourth lens group has:
a front lens group having a negative lens disposed as closest to said first object and shaped with a concave surface to said second object;
a rear lens group having a negative lens disposed as closest to the second object and shaped with a concave surface to said first object; and
an intermediate lens group having a negative lens and a positive lens with a convex surface adjacent to a concave surface of said negative lens is disposed between said front lens group in said fourth lens group and said rear lens group in said fourth lens group, and
wherein when r4Nis a radius of curvature of said concave surface of the negative lens in said intermediate lens group and r4Pis a radius of curvature of said convex surface of the positive lens in said intermediate lens group, the following condition is satisfied:
−0.9<(r4N−r4P)/(rrN+r4P)<0.9,
provided that when L is the distance from said first object to said second object, said concave surface of said negative lens in said intermediate lens group or said convex surface of said positive lens in said intermediate lens group satisfies at least one of the following conditions:
|r4N/L|<2.0
|r4P/L|<2.0.
6. A projection optical system according toclaim 1, wherein when f22is a focal length of the second lens with the negative refracting power in said second lens group and f23is a focal length of the third lens with the negative refracting power in said second lens group, the following condition is satisfied:
0.1<f22/f23<10.
7. A projection optical system according toclaim 1, wherein said fifth lens group has a negative meniscus lens, and a positive lens disposed as adjacent to a concave surface of said negative meniscus lens and having a convex surface opposed to the concave surface of said negative meniscus lens, and
wherein when r5nis a radius of curvature of the concave surface of said negative meniscus lens in said fifth lens group and r5Pis a radius of curvature of the convex surface, opposed to the concave surface of the negative meniscus lens, of the positive lens disposed as adjacent to the concave surface of said negative meniscus lens in said fifth lens group, the following condition is satisfied:
0<(r5P−r5n)/(r5P+r5n)<1.
8. A projection optical system according toclaim 7, wherein said negative meniscus lens and said positive lens adjacent to the concave surface of said negative meniscus lens are disposed between at least one positive lens in said fifth lens group and at least one positive lens in said fifth lens group.
9. A projection optical system according toclaim 1, wherein said fifth lens group has a negative lens disposed as closest to the second object and shaped with a concave surface to the second object and the sixth lens group has a lens disposed as closest to the first object and shaped with a convex surface to the first object, and
wherein when r5Ris a radius of curvature of a second-object-side surface of the negative lens disposed as closest to the second object in said fifth lens group and r6Fis a radius of curvature of a first-object-side surface of the lens disposed as closest to the first object in said sixth lens group, the following condition is satisfied:
−0.90<(r5R−r6F)/(r5R+r5F)<−0.001.
10. A projection optical system according toclaim 1, wherein when d56is a lens group separation between said fifth lens group and said sixth lens group and L is the distance from said first object to said second object, the following condition is satisfied:
d56/L<0.017.
11. A projection optical system according toclaim 1, wherein when r6Fis a radius of curvature of a lens surface closest to the first object in said sixth lens group and d6is an axial distance from the lens surface closest to the first object in said sixth lens group to the second object, the following condition is satisfied:
0.50<d6/r6F<1.50.
12. A projection optical system according toclaim 1, wherein said fifth lens group has a negative lens disposed as closest to the second object and shaped with a concave surface to the second object, and wherein when r5Fis a radius of curvature of a first-object-side surface of the negative lens disposed as closest to the second object in said fifth lens group and r5Ris a radius of curvature of a second-object-side surface of the negative lens disposed as closest to the second object in said fifth lens group, the following condition is satisfied:
0.30<(r5F−r5R)/(r5F+r5R)<1.28.
13. A projection optical system according toclaim 1, wherein when f2is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
14. A projection optical system according toclaim 1, wherein when f2Fis a focal length of the front lens with the negative refracting power disposed as closest to the first object in said second lens group and shaped with the concave surface to said second object and f2Ris a focal length of the rear lens with the negative refracting power disposed as closest to the second object in said second lens group and shaped with the concave surface to said first object, the following condition is satisfied:
0<f2F/f2R<18.
15. A projection optical system according toclaim 1, wherein the intermediate lens group in said second lens group has a negative refracting power.
16. A projection optical system according toclaim 1, wherein said first lens group has at least two positive lenses, said third lens group has at least three positive lenses, said fourth lens group has at least three negative lenses, said fifth lens group has at least five positive lenses and at least one negative lens, and said sixth lens group has at least one positive lens.
17. A projection optical system according toclaim 1, wherein said sixth lens group comprises three or less lenses having at least one lens surface satisfying the following condition:
1/|φL|<20
where φ: a refractive power of said lens surface, and L: the object-to-image distance from said first object to said second object.
18. A projection optical system according toclaim 1, wherein a magnification of said projection optical system is ⅕.
19. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 1; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
20. A projection optical system according toclaim 1, wherein said fifth lens group comprises a negative lens placed as closet to the second object and having a concave surface opposed to the second object.
21. A projection optical system according toclaim 20, wherein when d56is a lens group separation between said fifth lens group and said sixth lens group and L is the distance from said first object to said second object, the following condition is satisfied:
d56/L<0.017.
22. A projection optical system according toclaim 20, wherein when r6Fis a radius of curvature of a lens surface closest to the first object in said sixth lens group and d6is an axial distance from the lens surface closest to the first object in said sixth lens group to the second object, the following condition is satisfied:
0.50<d6/r6F<1.50.
23. A projection optical system according toclaim 20, wherein said sixth lens group comprises three or less lenses having at least one lens surface satisfying the following condition:
1/|φL|<20
where φ: a refractive power of said lens surface, and
L: the object-to-image distance from said first object to said second object.
24. A projection optical system according toclaim 16, wherein when I is an axial distance from said first object to a first-object-side focal point of said entire projection optical system and L is the distance from said first object to said second object, the following condition is satisfied:
1.0<I/L.
25. A projection optical system according toclaim 24, wherein said fifth lens group has a negative meniscus lens, and a positive lens disposed as adjacent to a concave surface of said negative meniscus lens and having a convex surface opposed to the concave surface of said negative meniscus lens, and
wherein when r5nis a radius of curvature of the concave surface of said negative meniscus lens in said fifth lens group and r5Pis a radius of curvature of the convex surface, opposed to the concave surface of the negative meniscus lens, of the positive lens disposed as adjacent to the concave surface of said negative meniscus lens in said fifth lens group, the following condition is satisfied:
0<(r5p−r5n)/(r5p+r5n)<1.
26. A projection optical system according toclaim 25, wherein said negative meniscus lens and said positive lens adjacent to the concave surface of said negative meniscus lens are disposed between at least one positive lens in said fifth lens group and at least one positive lens in said fifth lens group.
27. A projection optical system according toclaim 26, wherein said fifth lens group comprises a negative lens placed as closest to the second object and having a concave surface opposed to the second object.
28. A projection optical system according toclaim 27, wherein when r6Fis a radius of curvature of a lens surface closest to the first object in said sixth lens group and d6is an axial distance from the lens surface closest to the first object in said sixth lens group to the second object, the following condition is satisfied:
0.50<d6/r6F<1.50.
29. A projection optical system according toclaim 28, wherein when f22is a focal length of the second lens with the negative refracting power in said second lens group and f23is a focal length of the third lens with the negative refracting power in said second lens group, the following condition is satisfied:
0.1<f22/f23<10.
30. A projection optical system according toclaim 29, wherein when f21is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
31. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 30; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
32. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 28; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
33. A projection optical system according toclaim 24, wherein said fourth lens group comprises:
a front lens group disposed as closest to the first object, said front lens group having two negative meniscus lenses each shaped with a concave surface to said second object;
a rear lens group disposed as closest to the second object, said rear lens group having a negative lens with a concave surface to said first object; and
an intermediate lens group disposed between said front lens group in said fourth lens group and said rear lens group in said fourth lens group, said intermediate lens group having first and second negative lenses in order from the side of said first object, and
wherein when f4Ais a focal length of said first negative lens in said fourth lens group and f4Bis a focal length of said second negative lens in said fourth lens group, the following condition is satisfied:
0.05<f4A/f4B<20.
34. A projection optical system according toclaim 24, wherein when rFfis a radius of curvature of a first-object-side surface of said front lens and rFris a radius of curvature of a second-object-side surface of said front lens, the front lens in said second lens group satisfies the following condition:
1.00<(r2Ff−r2Fr)/(r2Ff+r2Fr)<5.0
35. A projection optical system according toclaim 24, wherein said fourth lens group has:
a front lens group having a negative lens disposed as closest to said first object and shaped with a concave surface to said second object;
a rear lens group having a negative lens disposed as closest to the second object and shaped with a concave surface to said first object; and
an intermediate lens group having a negative lens and a positive lens with a convex surface adjacent to a concave surface of said negative lens is disposed between said front lens group in said fourth lens group and said rear lens group in said fourth lens group, and
wherein when r4Nis a radius of curvature of said concave surface of the negative lens in said intermediate lens group and r4Pis a radius of curvature of said convex surface of the positive lens in said intermediate lens group, the following condition is satisfied:
−0.9<(r4N−r4P)/(r4N+r4P)<0.9,
provided that when L is the distance from said first object to said second object, said concave surface of said negative lens in said intermediate lens group or said convex surface of said positive lens in said intermediate lens group satisfies at least one of the following conditions:
|r4N/L|<2.0
|r4P/L|<2.0.
36. A projection optical system according toclaim 24, wherein said fifth lens group comprises a negative lens placed as closest to the second object and having a concave surface opposed to the second object.
37. A projection optical system according toclaim 36, wherein when r6Fis a radius of curvature of a lens surface closest to the first object in said sixth lens group and d6is an axial distance from the lens surface closest to the first object in said sixth lens group to the second object, the following condition is satisfied:
0.50<d6/r6F<1.50.
38. A projection optical system according toclaim 37, wherein when f22s a focal length of the second lens with the negative refracting power in said second lens group and f23is a focal length of the third lens with the negative refracting power in said second lens group, the following condition is satisfied:
0.1<f22/f23<10.
39. A projection optical system according toclaim 38, wherein when f21is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
40. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 39; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
41. A projection optical system according toclaim 24, wherein when f22, is a focal length of the second lens with the negative refracting power in said second lens group and f23is a focal length of the third lens with the negative refracting power in said second lens group, the following condition is satisfied:
0.1<f22/f23<10.
42. A projection optical system according toclaim 41, wherein when f21is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
43. A projection optical system according toclaim 24, wherein when f21is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
44. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 24; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
45. A projection optical system according toclaim 16, wherein said fifth lens group has a negative meniscus lens, and a positive lens disposed as adjacent to a concave surface of said negative meniscus lens and having a convex surface opposed to the concave surface of said negative meniscus lens, and
wherein when r5nis a radius of curvature of the concave surface of said negative meniscus lens in said fifth lens group and r5Pis a radius of curvature of the convex surface, opposed to the concave surface of the negative meniscus lens, of the positive lens disposed as adjacent to the concave surface of said negative meniscus lens in said fifth lens group, the following condition is satisfied:
0<(r5p−r5n)/(r5p+r5n)<1.
46. A projection optical system according toclaim 45, wherein said negative meniscus lens and said positive lens adjacent to the concave surface of said negative meniscus lens are disposed between at least one positive lens in said fifth lens group and at least one positive lens in said fifth lens group.
47. A method for manufacturing integrated circuits, said method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, said exposure process comprising the steps of:
supplying said exposure light;
introducing said exposure light to said mask;
making said exposure light passing through said mask incident on a projection optical system according toclaim 46; and
introducing said exposure light passing through said projection optical system onto said photosensitive substrate.
48. An exposure apparatus comprising:
a stage allowing a photosensitive substrate to be held on a main surface thereof;
an illumination optical system for emitting exposure light of a predetermined wavelength and transferring a predetermined pattern of a mask onto said substrate; and
a projection optical system provided between said mask and said substrate, said projection optical system including a first lens group with a positive refracting power, a second lens group with a negative refracting power, a third lens group with a positive refracting power, a fourth lens group with a negative refracting power, a fifth lens group with a positive refracting power, and a sixth lens group with a positive refracting power in order from the side of said mask,
wherein said second lens group comprises a front lens with a negative refracting power disposed as closest to said first object and shaped with a concave surface to said second object, a rear lens of a negative meniscus shape disposed as closest to said second object and shaped with a concave surface to said mask, and an intermediate lens group disposed between said front lens and said rear lens, said intermediate lens group having a first lens with a positive refracting power, a second lens with a negative refracting power, and a third lens with a negative refracting power in order from the side of said mask, and
wherein when f1is a focal length of said first lens group, f2is a focal length of said second lens group, f3is a focal length of said third lens group, f4is a focal length of said fourth lens group, f5is a focal length of said fifth lens group, f6is a focal length of said sixth lens group, and L is a distance from said mask to said substrate, the following conditions are satisfied:
f1/L<0.8
−0.033<f2/L
0.01<f3/L<1.0
f4/L<−0.005
0.01<f5/L<0.9
0.02<f6/L<1.6.
49. An exposure apparatus according toclaim 48, wherein a magnification of said projection optical system is ⅕.
50. An exposure apparatus according toclaim 48, wherein said first lens group has at least two positive lenses, said third lens group has at least three positive lenses, said fourth lens group has at least three negative lenses, said fifth lens group has at least five positive lenses and at least one negative lens, and said sixth lens group has at least one positive lens.
51. An exposure apparatus according toclaim 50, wherein when I is an axial distance from said first object to a first-object-side focal point of said entire projection optical system and L is the distance from said first object to said second object, the following condition is satisfied:
1.0<I/L.
52. An exposure apparatus according toclaim 51, wherein said fifth lens group has a negative meniscus lens, and a positive lens disposed as adjacent to a concave surface of said negative meniscus lens and having a convex surface opposed to the concave surface of said negative meniscus lens, and
wherein when r5nis a radius of curvature of the concave surface of said negative meniscus lens in said fifth lens group and r5Pis a radius of curvature of the convex surface, opposed to the concave surface of the negative meniscus lens, of the positive lens disposed as adjacent to the concave surface of said negative meniscus lens in said fifth lens group, the following condition is satisfied:
0<(r5p−r5n)/(r5P+r5n)<1.
53. An exposure apparatus according toclaim 52, wherein said negative meniscus lens and said positive lens adjacent to the concave surface of said negative meniscus lens are disposed between at least one positive lens in said fifth lens group and at least one positive lens in said fifth lens group.
54. An exposure apparatus according toclaim 51, wherein said fifth lens group comprises a negative lens placed as closest to the second object and having a concave surface opposed to the second object.
55. An exposure apparatus according toclaim 54, wherein when r6Fis a radius of curvature of a lens surface closest to the first object in said sixth lens group and d6is an axial distance from the lens surface closest to the first object in said sixth lens group to the second object, the following condition is satisfied:
0.50<d6/r6F<1.50.
56. An exposure apparatus according toclaim 51, wherein when f22is focal length of the second lens with the negative refracting power in said second lens group and f23is a focal length of the third lens with the negative refracting power in said second lens group, the following condition is satisfied:
0.1<f22/f23<10.
57. An exposure apparatus according toclaim 51, wherein when f21is a focal length of the first lens with the positive refracting power in the intermediate lens group in said second lens group and L is the distance from said first object to said second object, the following condition is satisfied:
0.230<f21/L<0.40.
58. A projection optical system for projecting a reduced image of a first surface onto a second surface, comprising:
a first lens group with a positive refracting power arranged in an optical path between the first surface and the second surface;
a second lens group with a negative refracting power arranged in an optical path between said first positive lens group and the second surface;
a third lens group with a positive refracting power arranged in an optical path between said second lens group and the second surface; and
additional lens groups arranged in an optical path between said third lens group and the second surface and comprising
a first pair of lenses,
a second pair of lenses, and
an aperture stop located between the first and second pairs of lenses,
wherein at least one of the first and second pairs of lenses comprises a negative lens.
59. The projection optical system according toclaim 58, wherein at least one of the first and second pairs of lenses has a negative refractive power.
60. The projection optical system according toclaim 59, wherein the negative lens in said additional lens groups is juxtaposed to the aperture stop.
61. The projection optical system according toclaim 60, further comprising a meniscus-shaped space juxtaposed to the negative lens in said additional lens groups.
62. The projection optical system according toclaim 58, wherein the negative lens in said additional lens groups is juxtaposed to the aperture stop.
63. The projection optical system according toclaim 62, further comprising a meniscus-shaped space juxtaposed to the negative lens in said additional lens groups.
64. The projection optical system according toclaim 58, further comprising a space juxtaposed to the negative lens in said additional lens groups and having a shape with an on-axis distance along an optical axis longer than a peripheral distance along a direction parallel to the optical axis.
65. The projection optical system according toclaim 64, wherein said space comprises a meniscus shape.
66. The projection optical system according toclaim 64, wherein said space is arranged in an optical path between said third lens group and the aperture stop.
67. The projection optical system according toclaim 58, wherein
the first pair of lenses comprises a space juxtaposed to the negative lens in said additional lens groups and having a shape with an on-axis distance along an optical axis longer than a peripheral distance along a direction parallel to the optical axis, and
the second pair of lenses comprises a space juxtaposed to the negative lens in said additional lens groups and comprising a shape with an on-axis distance along an optical axis longer than a peripheral distance along a direction parallel to the optical axis.
68. The projection optical system according toclaim 58, wherein each of the lenses in the projection optical system consists of a non-cemented lens.
69. The projection optical system according toclaim 58, wherein said third lens group comprises three positive lenses.
70. The projection optical system according toclaim 58, wherein the projection optical system is a bitelecentric optical system.
71. The projection optical system according toclaim 58, wherein said first lens group comprises a negative lens disposed at a side closest to the first surface.
72. The projection optical system according toclaim 58, wherein said additional lens groups further comprise a lens group with a positive refractive power.
73. The projection optical system according toclaim 58, wherein each of said lenses in the projection optical system comprises a single glass material.
74. The projection optical system according toclaim 73, wherein the single glass material comprises SiO2.
75. The projection optical system according toclaim 58, wherein each of said lenses in the projection optical system comprises a plurality of optical materials.
76. The projection optical system according toclaim 58, wherein the first pair of lenses comprises a negative lens, and the second pair of lenses comprises a negative lens.
77. The projection optical system according toclaim 58, wherein at least one of the first and second pairs of lenses comprises a positive lens and a negative lens.
78. The projection optical system according toclaim 58, wherein the first and second pairs of lenses comprise a positive lens and a negative lens, respectively.
79. The projection optical system according toclaim 58, wherein said additional lens groups further comprise
a fourth lens group arranged in an optical path between said third lens group and the second surface,
a fifth lens group arranged in an optical path between the fourth lens group and the second surface, and
a sixth lens group arranged in an optical path between the fifth lens group and the second surface.
80. The projection optical system according toclaim 79, wherein
said first lens group comprises two positive lenses,
said third lens group comprises three positive lenses,
the fourth lens group comprises three negative lenses,
the fifth lens group comprises five positive lenses and a negative lens, and
the sixth lens group comprises a positive lens.
81. The projection optical system according toclaim 58, wherein said first lens group comprises two positive lenses, and said third lens group comprises three positive lenses.
82. An exposure apparatus for transferring a pattern of mask arranged on a first surface onto a workpiece arranged on a second surface, the apparatus comprising:
a light source to provide an exposure light of a predetermined wavelength;
an illumination optical system arranged in an optical path between said light source and the first surface and illuminating the mask with the exposure light; and
a projection optical system arranged between the first surface and the second surface and projecting a reduced image of the pattern with the exposure light onto the workpiece and comprising:
a first lens group with a positive refracting power arranged in an optical path between the first surface and the second surface;
a second lens group with a negative refracting power arranged in an optical path between the first positive lens group and the second surface;
a third lens group with positive refracting power arranged in an optical path between the second lens group and the second surface; and
additional lens groups arranged in an optical path between the third lens group and the second surface and comprising a first pair of lenses, a second pair of lenses, and an aperture stop located between the first and second pairs of lenses, wherein the at least one of the first and second pairs of lenses comprises a negative lens.
83. The exposure apparatus according toclaim 82, wherein each of the lenses in said projection optical system consists of a non-cemented lens.
84. The exposure apparatus according toclaim 82, wherein said projection optical system is a bitelecentric optical system.
85. A method for manufacturing integrated circuits, the method including an exposure process of projecting an image of a pattern on a mask onto a photosensitive substrate with an exposure light of a predetermined wavelength, the exposure process comprising:
supplying the exposure light;
introducing the exposure light to the mask;
passing the exposure light through the mask incident on a projection optical system according toclaim 58; and
introducing the exposure light passing through the projection optical system onto the photosensitive substrate.
86. The method according toclaim 85, wherein the light introduced onto the photosensitive substrate through the projection optical system does not pass through a cemented lens.
87. The method according toclaim 85, wherein the projection optical system is a both-side-telecentric optical system.
88. An imaging method for imaging an image of a first surface onto a second surface, comprising:
introducing a light beam toward a first lens group with positive refracting power;
introducing the light beam from the first lens group toward a second lens group with negative refractive power;
introducing the light beam from the second lens group toward a third lens group with positive refractive power; and
introducing the light beam from the third lens group toward an additional lens groups comprising a first pair of lenses, a second pair of lenses, and an aperture stop located between the first and second pairs of lenses;
wherein at least one of the first and second pairs of lenses comprises a negative lens.
89. The method according toclaim 88, wherein the light does not pass through a cemented lens.
90. The method according toclaim 88, wherein the lenses defines an optical system that is a both-side-telecentric optical system.
US09/709,5181995-01-062000-11-13Projection optical system and exposure apparatus using the sameExpired - LifetimeUSRE37846E1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US09/709,518USRE37846E1 (en)1995-01-062000-11-13Projection optical system and exposure apparatus using the same

Applications Claiming Priority (5)

Application NumberPriority DateFiling DateTitle
JP7-0008721995-01-06
JP00087295AJP3454390B2 (en)1995-01-061995-01-06 Projection optical system, projection exposure apparatus, and projection exposure method
US51690395A1995-08-181995-08-18
US08/882,802US5835285A (en)1995-01-061997-06-30Projection optical system and exposure apparatus using the same
US09/709,518USRE37846E1 (en)1995-01-062000-11-13Projection optical system and exposure apparatus using the same

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US08/882,802ReissueUS5835285A (en)1995-01-061997-06-30Projection optical system and exposure apparatus using the same

Publications (1)

Publication NumberPublication Date
USRE37846E1true USRE37846E1 (en)2002-09-17

Family

ID=11485769

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US08/882,802CeasedUS5835285A (en)1995-01-061997-06-30Projection optical system and exposure apparatus using the same
US09/709,518Expired - LifetimeUSRE37846E1 (en)1995-01-062000-11-13Projection optical system and exposure apparatus using the same

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US08/882,802CeasedUS5835285A (en)1995-01-061997-06-30Projection optical system and exposure apparatus using the same

Country Status (5)

CountryLink
US (2)US5835285A (en)
EP (2)EP0721150B1 (en)
JP (1)JP3454390B2 (en)
KR (1)KR100387149B1 (en)
DE (1)DE69526568T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USRE38465E1 (en)*1994-12-142004-03-16Nikon CorporationExposure apparatus
US20040228001A1 (en)*2000-12-222004-11-18Carl Zeiss Semiconductor Manufacturing Technologies Ag.Lithographic objective having a first lens group including only lenses having a positive refractive power
EP2256533A1 (en)*2009-05-262010-12-01Fujinon CorporationImaging lens and image pickup apparatus
US12172313B2 (en)2022-02-242024-12-24Samsung Electronics Co., Ltd.Substrate processing apparatus and substrate alignment method using the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP3500745B2 (en)*1994-12-142004-02-23株式会社ニコン Projection optical system, projection exposure apparatus, and projection exposure method
JP3819048B2 (en)*1995-03-152006-09-06株式会社ニコン Projection optical system, exposure apparatus including the same, and exposure method
JPH1048517A (en)*1996-08-071998-02-20Nikon Corp Projection optical system
JPH1079345A (en)*1996-09-041998-03-24Nikon Corp Projection optical system and exposure apparatus
JP3757536B2 (en)*1996-10-012006-03-22株式会社ニコン Projection optical system, exposure apparatus including the same, and device manufacturing method
JPH116957A (en)*1997-04-251999-01-12Nikon Corp Projection optical system, projection exposure apparatus, and projection exposure method
JP3925576B2 (en)1997-07-242007-06-06株式会社ニコン Projection optical system, exposure apparatus including the optical system, and device manufacturing method using the apparatus
JPH1195095A (en)1997-09-221999-04-09Nikon CorpProjection optical system
JPH11214293A (en)1998-01-221999-08-06Nikon Corp Projection optical system, exposure apparatus having the optical system, and device manufacturing method
US6700645B1 (en)1998-01-222004-03-02Nikon CorporationProjection optical system and exposure apparatus and method
DE19855108A1 (en)1998-11-302000-05-31Zeiss Carl Fa Microlithographic reduction lens, projection exposure system and method
DE19855157A1 (en)*1998-11-302000-05-31Zeiss Carl Fa Projection lens
US6600550B1 (en)*1999-06-032003-07-29Nikon CorporationExposure apparatus, a photolithography method, and a device manufactured by the same
WO2001023933A1 (en)*1999-09-292001-04-05Nikon CorporationProjection optical system
DE50012452D1 (en)*1999-12-292006-05-11Zeiss Carl Smt Ag PROJECTION LENS WITH ADJUSTABLE ASPHARIC LENS SURFACES
KR100866818B1 (en)*2000-12-112008-11-04가부시키가이샤 니콘Projection optical system and exposure apparatus comprising the same
WO2002052303A2 (en)2000-12-222002-07-04Carl Zeiss Smt AgProjection lens
JP2002244034A (en)2001-02-212002-08-28Nikon CorpProjection optical system and exposure device provided with it
JP2002323652A (en)2001-02-232002-11-08Nikon Corp Projection optical system, projection exposure apparatus including the projection optical system, and projection exposure method
EP1553435A4 (en)*2002-10-152012-02-15Panasonic Corp ZOOM LENS, VIDEO PROGRAMMING / PROJECTION SYSTEM, VIDEO PROJECTOR, R CKPROJECTOR AND MULTIVISION SYSTEM
WO2005015316A2 (en)*2003-08-122005-02-17Carl Zeiss Smt AgProjection objective for microlithography
US8208198B2 (en)2004-01-142012-06-26Carl Zeiss Smt GmbhCatadioptric projection objective
US20080151365A1 (en)2004-01-142008-06-26Carl Zeiss Smt AgCatadioptric projection objective
CN100483174C (en)2004-05-172009-04-29卡尔蔡司Smt股份公司Catadioptric projection objective with intermediate images
JP4466630B2 (en)2006-03-312010-05-26株式会社カシオ日立モバイルコミュニケーションズ Hinge device and portable electronic device
CN102540419B (en)*2010-12-312014-01-22上海微电子装备有限公司Large-view-field projection lithography objective lens
DE102015218328B4 (en)2015-09-242019-01-17Carl Zeiss Smt Gmbh Optical system for field imaging and / or pupil imaging

Citations (75)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3504961A (en)1968-04-011970-04-07Perkin Elmer CorpModified double gauss objective
US3737215A (en)1972-04-061973-06-05Eastman Kodak CoSix element unit magnification lens
US3897138A (en)1971-11-241975-07-29Canon KkProjection lens for mask pattern printing
US3909115A (en)1972-12-261975-09-30Canon KkLens with high resolving power but relatively small reduction ratio
US3955883A (en)1974-03-071976-05-11Asahi Kogaku Kogyo Kabushiki KaishaWide angle photographic lens
US4080048A (en)1975-10-141978-03-21Olympus Optical Co., Ltd.Ultra-high resolution reducing lens system
JPS5512902A (en)*1978-06-191980-01-29Asahi Optical Co LtdUnity-magnification copying lens having resolution power of refraction limit
JPS584112A (en)1981-06-301983-01-11Olympus Optical Co LtdStandard lens with wide picture angle
JPS5878115A (en)1981-11-041983-05-11Nippon Kogaku Kk <Nikon> Auxiliary condenser lens for telecentric lighting
US4386828A (en)1980-05-261983-06-07Nippon Kogaku K. K.Telecentric illumination system
US4497015A (en)1982-02-261985-01-29Nippon Kogaku K.K.Light illumination device
US4592625A (en)1982-03-041986-06-03Nippon Kogaku K. K.Double-conjugate maintaining optical system
JPS61156737A (en)1984-12-271986-07-16Canon Inc Circuit manufacturing method and exposure equipment
US4666273A (en)1983-10-051987-05-19Nippon Kogaku K. K.Automatic magnification correcting system in a projection optical apparatus
US4701035A (en)1984-08-141987-10-20Canon Kabushiki KaishaReflection optical system
EP0243950A2 (en)1986-05-021987-11-04Matsushita Electric Industrial Co., Ltd.Optical projection system
JPS63118115A (en)1986-11-061988-05-23Sigma:KkProjection lens
JPS63163319A (en)1986-12-171988-07-06エスヴィージー・リトグラフィー・システムズ・インコーポレイテッドOptical system
US4770477A (en)1986-12-041988-09-13The Perkin-Elmer CorporationLens usable in the ultraviolet
US4772107A (en)*1986-11-051988-09-20The Perkin-Elmer CorporationWide angle lens with improved flat field characteristics
US4779966A (en)1984-12-211988-10-25The Perkin-Elmer CorporationSingle mirror projection optical system
US4811055A (en)*1984-02-271989-03-07Canon Kabushiki KaishaProjection exposure apparatus
US4812028A (en)1984-07-231989-03-14Nikon CorporationReflection type reduction projection optical system
US4851978A (en)1986-12-241989-07-25Nikon CorporationIllumination device using a laser
US4891663A (en)*1983-12-281990-01-02Canon Kabushiki KaishaProjection exposure apparatus
JPH0266510A (en)1988-07-151990-03-06Perkin Elmer Corp:TheReflection refraction optical reduction optical system
US4974919A (en)1986-10-301990-12-04Canon Kabushiki KaishaIlluminating device
US5052763A (en)1990-08-281991-10-01International Business Machines CorporationOptical system with two subsystems separately correcting odd aberrations and together correcting even aberrations
JPH03282527A (en)1990-03-301991-12-12Nikon Corp Catadioptric reduction projection optical system
JPH0442208A (en)1990-06-081992-02-12Dainippon Screen Mfg Co LtdTelecentric projection lens
US5089913A (en)1990-07-111992-02-18International Business Machines CorporationHigh resolution reduction catadioptric relay lens
US5097291A (en)*1991-04-221992-03-17Nikon CorporationEnergy amount control device
US5105075A (en)*1988-09-191992-04-14Canon Kabushiki KaishaProjection exposure apparatus
JPH04157412A (en)1990-10-221992-05-29Olympus Optical Co LtdProjector lens system
US5159496A (en)*1990-04-041992-10-27Dainippon Screen Mfg. Co., Ltd.Lens system with four meniscus lenses made of anomalous dispersion glass
US5170207A (en)*1990-12-121992-12-08Olympus Optical Co., Ltd.Projection lens system
US5172275A (en)*1990-12-141992-12-15Eastman Kodak CompanyApochromatic relay lens systems suitable for use in a high definition telecine apparatus
WO1993004391A1 (en)1991-08-231993-03-04Eastman Kodak CompanyHigh aperture lens system and printer using the lens system
US5194893A (en)1991-03-061993-03-16Nikon CorporationExposure method and projection exposure apparatus
JPH0572478A (en)1991-02-081993-03-26Carl Zeiss:FaCatadioptric reduction objective lens
US5212593A (en)1992-02-061993-05-18Svg Lithography Systems, Inc.Broad band optical reduction system using matched multiple refractive element materials
US5220454A (en)1990-03-301993-06-15Nikon CorporationCata-dioptric reduction projection optical system
JPH05173065A (en)1991-10-241993-07-13Olympus Optical Co LtdReduction projection lens
US5241423A (en)1990-07-111993-08-31International Business Machines CorporationHigh resolution reduction catadioptric relay lens
US5245384A (en)*1991-06-171993-09-14Nikon CorporationIlluminating optical apparatus and exposure apparatus having the same
US5253110A (en)1988-12-221993-10-12Nikon CorporationIllumination optical arrangement
US5323263A (en)1993-02-011994-06-21Nikon Precision Inc.Off-axis catadioptric projection system
US5333035A (en)1992-05-151994-07-26Nikon CorporationExposing method
JPH06313845A (en)1993-04-281994-11-08Olympus Optical Co LtdProjection lens system
US5365051A (en)1992-07-201994-11-15Nikon CorporationProjection exposure apparatus
US5402267A (en)1991-02-081995-03-28Carl-Zeiss-StiftungCatadioptric reduction objective
US5406415A (en)1992-09-221995-04-11Kelly; Shawn L.Imaging system for a head-mounted display
US5414551A (en)1992-05-271995-05-09Dainippon Screen Mfg. Co.Afocal optical system and multibeam recording apparatus comprising the same
JPH07140385A (en)1993-11-151995-06-02Nikon Corp Projection optical system and projection exposure apparatus
JPH07140384A (en)1993-11-151995-06-02Nikon Corp Projection optical system and projection exposure apparatus
US5506684A (en)1991-04-041996-04-09Nikon CorporationProjection scanning exposure apparatus with synchronous mask/wafer alignment system
US5515207A (en)1993-11-031996-05-07Nikon Precision Inc.Multiple mirror catadioptric optical system
EP0712019A2 (en)1994-11-101996-05-15Nikon CorporationProjection optical system and projection exposure apparatus
EP0717299A1 (en)1994-12-141996-06-19Nikon CorporationExposure apparatus
US5534970A (en)1993-06-111996-07-09Nikon CorporationScanning exposure apparatus
US5537260A (en)1993-01-261996-07-16Svg Lithography Systems, Inc.Catadioptric optical reduction system with high numerical aperture
EP0736789A2 (en)1995-04-071996-10-09Nikon CorporationCatadioptric optical system and exposure apparatus having the same
US5583696A (en)1992-12-141996-12-10Canon Kabushiki KaishaReflection and refraction optical system and projection exposure apparatus using the same
US5591958A (en)1993-06-141997-01-07Nikon CorporationScanning exposure method and apparatus
US5592329A (en)1993-02-031997-01-07Nikon CorporationCatadioptric optical system
EP0770895A2 (en)1995-10-121997-05-02Nikon CorporationProjection optical system and exposure apparatus provided therewith
US5636066A (en)1993-03-121997-06-03Nikon CorporationOptical apparatus
US5668673A (en)1991-08-051997-09-16Nikon CorporationCatadioptric reduction projection optical system
US5691802A (en)1994-11-071997-11-25Nikon CorporationCatadioptric optical system and exposure apparatus having the same
US5694241A (en)1995-01-301997-12-02Nikon CorporationCatadioptric reduction projection optical system and exposure apparatus employing the same
DE19726058A1 (en)1996-06-201998-01-02Nikon CorpCatadioptric system for object image projection ion photolithography
US5742436A (en)1994-05-191998-04-21Carl-Zeiss-StiftungMaximum aperture catadioptric reduction objective for microlithography
US5808805A (en)1994-04-281998-09-15Nikon CorporationExposure apparatus having catadioptric projection optical system
US5856884A (en)*1997-09-051999-01-05Nikon CorporationProjection lens systems
JP3282527B2 (en)1996-12-272002-05-13富士ゼロックス株式会社 Image coding device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3685884A (en)*1971-01-291972-08-22Olympus Optical Co1 x objective for projection printing
JPS60209713A (en)*1984-04-031985-10-22Minolta Camera Co LtdMicrofilm projection optical system
JP2694084B2 (en)1992-03-191997-12-24株式会社クボタ Automatic transmission structure of work vehicle

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3504961A (en)1968-04-011970-04-07Perkin Elmer CorpModified double gauss objective
US3897138A (en)1971-11-241975-07-29Canon KkProjection lens for mask pattern printing
US3737215A (en)1972-04-061973-06-05Eastman Kodak CoSix element unit magnification lens
US3909115A (en)1972-12-261975-09-30Canon KkLens with high resolving power but relatively small reduction ratio
US3955883A (en)1974-03-071976-05-11Asahi Kogaku Kogyo Kabushiki KaishaWide angle photographic lens
US4080048A (en)1975-10-141978-03-21Olympus Optical Co., Ltd.Ultra-high resolution reducing lens system
JPS5512902A (en)*1978-06-191980-01-29Asahi Optical Co LtdUnity-magnification copying lens having resolution power of refraction limit
US4386828A (en)1980-05-261983-06-07Nippon Kogaku K. K.Telecentric illumination system
JPS584112A (en)1981-06-301983-01-11Olympus Optical Co LtdStandard lens with wide picture angle
JPS5878115A (en)1981-11-041983-05-11Nippon Kogaku Kk <Nikon> Auxiliary condenser lens for telecentric lighting
US4497015A (en)1982-02-261985-01-29Nippon Kogaku K.K.Light illumination device
US4592625A (en)1982-03-041986-06-03Nippon Kogaku K. K.Double-conjugate maintaining optical system
US4666273A (en)1983-10-051987-05-19Nippon Kogaku K. K.Automatic magnification correcting system in a projection optical apparatus
US4891663A (en)*1983-12-281990-01-02Canon Kabushiki KaishaProjection exposure apparatus
US4977426A (en)*1983-12-281990-12-11Canon Kabushiki KaishaProjection exposure apparatus
US4811055A (en)*1984-02-271989-03-07Canon Kabushiki KaishaProjection exposure apparatus
US4812028A (en)1984-07-231989-03-14Nikon CorporationReflection type reduction projection optical system
US4701035A (en)1984-08-141987-10-20Canon Kabushiki KaishaReflection optical system
US4779966A (en)1984-12-211988-10-25The Perkin-Elmer CorporationSingle mirror projection optical system
JPS61156737A (en)1984-12-271986-07-16Canon Inc Circuit manufacturing method and exposure equipment
US4685777A (en)1984-12-271987-08-11Canon Kabushiki KaishaReflection and refraction optical system
EP0243950A2 (en)1986-05-021987-11-04Matsushita Electric Industrial Co., Ltd.Optical projection system
US4974919A (en)1986-10-301990-12-04Canon Kabushiki KaishaIlluminating device
US4772107A (en)*1986-11-051988-09-20The Perkin-Elmer CorporationWide angle lens with improved flat field characteristics
JPS63118115A (en)1986-11-061988-05-23Sigma:KkProjection lens
US4770477A (en)1986-12-041988-09-13The Perkin-Elmer CorporationLens usable in the ultraviolet
JPS63163319A (en)1986-12-171988-07-06エスヴィージー・リトグラフィー・システムズ・インコーポレイテッドOptical system
US4851978A (en)1986-12-241989-07-25Nikon CorporationIllumination device using a laser
JPH0266510A (en)1988-07-151990-03-06Perkin Elmer Corp:TheReflection refraction optical reduction optical system
US4953960A (en)1988-07-151990-09-04Williamson David MOptical reduction system
US5105075A (en)*1988-09-191992-04-14Canon Kabushiki KaishaProjection exposure apparatus
US5253110A (en)1988-12-221993-10-12Nikon CorporationIllumination optical arrangement
JPH03282527A (en)1990-03-301991-12-12Nikon Corp Catadioptric reduction projection optical system
US5220454A (en)1990-03-301993-06-15Nikon CorporationCata-dioptric reduction projection optical system
US5159496A (en)*1990-04-041992-10-27Dainippon Screen Mfg. Co., Ltd.Lens system with four meniscus lenses made of anomalous dispersion glass
JPH0442208A (en)1990-06-081992-02-12Dainippon Screen Mfg Co LtdTelecentric projection lens
US5089913A (en)1990-07-111992-02-18International Business Machines CorporationHigh resolution reduction catadioptric relay lens
US5241423A (en)1990-07-111993-08-31International Business Machines CorporationHigh resolution reduction catadioptric relay lens
US5052763A (en)1990-08-281991-10-01International Business Machines CorporationOptical system with two subsystems separately correcting odd aberrations and together correcting even aberrations
JPH04234722A (en)1990-08-281992-08-24Internatl Business Mach Corp <Ibm>Compensation type optical system
US5260832A (en)1990-10-221993-11-09Olympus Optical Co., Ltd.Projection lens system
JPH04157412A (en)1990-10-221992-05-29Olympus Optical Co LtdProjector lens system
US5448408A (en)1990-10-221995-09-05Olympus Optical Co., Ltd.Projection lens system
US5170207A (en)*1990-12-121992-12-08Olympus Optical Co., Ltd.Projection lens system
US5172275A (en)*1990-12-141992-12-15Eastman Kodak CompanyApochromatic relay lens systems suitable for use in a high definition telecine apparatus
JPH0572478A (en)1991-02-081993-03-26Carl Zeiss:FaCatadioptric reduction objective lens
US5402267A (en)1991-02-081995-03-28Carl-Zeiss-StiftungCatadioptric reduction objective
US5194893A (en)1991-03-061993-03-16Nikon CorporationExposure method and projection exposure apparatus
US5506684A (en)1991-04-041996-04-09Nikon CorporationProjection scanning exposure apparatus with synchronous mask/wafer alignment system
US5097291A (en)*1991-04-221992-03-17Nikon CorporationEnergy amount control device
US5245384A (en)*1991-06-171993-09-14Nikon CorporationIlluminating optical apparatus and exposure apparatus having the same
US5668673A (en)1991-08-051997-09-16Nikon CorporationCatadioptric reduction projection optical system
WO1993004391A1 (en)1991-08-231993-03-04Eastman Kodak CompanyHigh aperture lens system and printer using the lens system
JPH05173065A (en)1991-10-241993-07-13Olympus Optical Co LtdReduction projection lens
US5212593A (en)1992-02-061993-05-18Svg Lithography Systems, Inc.Broad band optical reduction system using matched multiple refractive element materials
US5333035A (en)1992-05-151994-07-26Nikon CorporationExposing method
US5414551A (en)1992-05-271995-05-09Dainippon Screen Mfg. Co.Afocal optical system and multibeam recording apparatus comprising the same
US5365051A (en)1992-07-201994-11-15Nikon CorporationProjection exposure apparatus
US5406415A (en)1992-09-221995-04-11Kelly; Shawn L.Imaging system for a head-mounted display
US5706137A (en)1992-09-221998-01-06Kelly; Shawn L.Wide field of view imaging system
US5583696A (en)1992-12-141996-12-10Canon Kabushiki KaishaReflection and refraction optical system and projection exposure apparatus using the same
US5537260A (en)1993-01-261996-07-16Svg Lithography Systems, Inc.Catadioptric optical reduction system with high numerical aperture
US5323263A (en)1993-02-011994-06-21Nikon Precision Inc.Off-axis catadioptric projection system
US5592329A (en)1993-02-031997-01-07Nikon CorporationCatadioptric optical system
US5636066A (en)1993-03-121997-06-03Nikon CorporationOptical apparatus
JPH06313845A (en)1993-04-281994-11-08Olympus Optical Co LtdProjection lens system
US5534970A (en)1993-06-111996-07-09Nikon CorporationScanning exposure apparatus
US5591958A (en)1993-06-141997-01-07Nikon CorporationScanning exposure method and apparatus
US5515207A (en)1993-11-031996-05-07Nikon Precision Inc.Multiple mirror catadioptric optical system
JPH07140385A (en)1993-11-151995-06-02Nikon Corp Projection optical system and projection exposure apparatus
JPH07140384A (en)1993-11-151995-06-02Nikon Corp Projection optical system and projection exposure apparatus
US5808805A (en)1994-04-281998-09-15Nikon CorporationExposure apparatus having catadioptric projection optical system
US5742436A (en)1994-05-191998-04-21Carl-Zeiss-StiftungMaximum aperture catadioptric reduction objective for microlithography
US5691802A (en)1994-11-071997-11-25Nikon CorporationCatadioptric optical system and exposure apparatus having the same
EP0712019A2 (en)1994-11-101996-05-15Nikon CorporationProjection optical system and projection exposure apparatus
EP0717299A1 (en)1994-12-141996-06-19Nikon CorporationExposure apparatus
US5694241A (en)1995-01-301997-12-02Nikon CorporationCatadioptric reduction projection optical system and exposure apparatus employing the same
US5689377A (en)1995-04-071997-11-18Nikon CorporationCatadioptric optical system and exposure apparatus having the same
EP0736789A2 (en)1995-04-071996-10-09Nikon CorporationCatadioptric optical system and exposure apparatus having the same
EP0770895A2 (en)1995-10-121997-05-02Nikon CorporationProjection optical system and exposure apparatus provided therewith
DE19726058A1 (en)1996-06-201998-01-02Nikon CorpCatadioptric system for object image projection ion photolithography
JP3282527B2 (en)1996-12-272002-05-13富士ゼロックス株式会社 Image coding device
US5856884A (en)*1997-09-051999-01-05Nikon CorporationProjection lens systems

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
J. Braat, "Quality of Microlithographic Projection Lenses", pp. 22-30, Proceedings of SPIE vol. 811, Optical Microlithographic Technology for Integrated Circuit Fabrication and Inspection (1987).**
Japanese Publication No. 55-012902 (Jan. 29, 1980)(Abstract Only).
Japanese Publication No. 64-019317 (Jan. 1989) (Abstract only).
Patent Abstracts of Japan, vol. 12, No. 366 (P-765) and JP-631 118 115, May 23, 1988.**
Patent Abstracts of Japan, vol. 17, No. 586 (P-1633) and JP-517 3065, Jul. 13, 1993.**
Patent Abstracts of Japan, vol. 7, No. 73 (P-186) and JP-580 041 112, Jan. 11, 1983.**
U.S. patent application Ser. No. 09/659,375, filed Sep. 8, 2000, Takahashi.
U.S. patent application Ser. No. 09/659,376, filed Sep. 8, 2000, Sasaya et al.
U.S. patent application Ser. No. 09/665,184, filed Sep. 5, 2000, Takahashi.
U.S. patent application Ser. No. 09/764,157, filed Jan. 19, 2001, Takahashi.
U.S. patent application Ser. No. 09/766,157, filed Jan. 19, 2001, Takahashi.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USRE38465E1 (en)*1994-12-142004-03-16Nikon CorporationExposure apparatus
US20040228001A1 (en)*2000-12-222004-11-18Carl Zeiss Semiconductor Manufacturing Technologies Ag.Lithographic objective having a first lens group including only lenses having a positive refractive power
US7023627B2 (en)*2000-12-222006-04-04Carl Zeiss Semiconductor Manufacturing Technologies AgLithographic objective having a first lens group including only lenses having a positive refractive power
US20060176573A1 (en)*2000-12-222006-08-10Carl Zeiss Semiconductor Manufacturing Technologies AgLithographic objective having a first lens group including only lenses having a positive refractive power
US7289279B2 (en)2000-12-222007-10-30Carl Zeiss Semiconductor Manufacturing Technologies AgLithographic objective having a first lens group including only lenses having a positive refractive power
EP2256533A1 (en)*2009-05-262010-12-01Fujinon CorporationImaging lens and image pickup apparatus
US20100302431A1 (en)*2009-05-262010-12-02Yu KitaharaImaging lens and image pickup apparatus
US8223245B2 (en)2009-05-262012-07-17Fujifilm CorporationImaging lens and image pickup apparatus
US12172313B2 (en)2022-02-242024-12-24Samsung Electronics Co., Ltd.Substrate processing apparatus and substrate alignment method using the same

Also Published As

Publication numberPublication date
DE69526568T2 (en)2002-10-31
EP0721150A2 (en)1996-07-10
EP1162508A2 (en)2001-12-12
EP0721150B1 (en)2002-05-02
DE69526568D1 (en)2002-06-06
US5835285A (en)1998-11-10
EP1162508A3 (en)2002-09-04
JPH08190047A (en)1996-07-23
KR960029823A (en)1996-08-17
EP0721150A3 (en)1997-04-09
JP3454390B2 (en)2003-10-06
KR100387149B1 (en)2003-08-09

Similar Documents

PublicationPublication DateTitle
USRE37846E1 (en)Projection optical system and exposure apparatus using the same
EP0770895B1 (en)Projection optical system and exposure apparatus provided therewith
US6084723A (en)Exposure apparatus
EP0717299B1 (en)Exposure apparatus
US5781278A (en)Projection optical system and exposure apparatus with the same
USRE38421E1 (en)Exposure apparatus having catadioptric projection optical system
KR100387003B1 (en)Projection optical system and projection exposure apparatus
US6867931B2 (en)Dual-imaging optical system
US5808814A (en)Short wavelength projection optical system
KR100573913B1 (en)Iprojection optical system and exposure apparatus having the same
KR100507558B1 (en)Projection optical system and projection exposure apparatus using the same
US5903400A (en)Projection-optical system for use in a projection-exposure apparatus
US6333781B1 (en)Projection optical system and exposure apparatus and method
KR100511360B1 (en)Projection optical system and projection exposure apparatus with the same, and device manufacturing method
KR100522503B1 (en)Projection optical system and projection exposure apparatus with the same, and device manufacturing method
KR100386870B1 (en) Projection Optics and Exposure Equipment
JP2000056219A (en) Projection optical system
USRE38465E1 (en)Exposure apparatus
JP3376318B2 (en) Projection optical system and projection exposure apparatus using the same
JPH11297612A (en) Projection optical system and projection exposure apparatus

Legal Events

DateCodeTitleDescription
FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp