Movatterモバイル変換


[0]ホーム

URL:


USRE37546E1 - Reactor and method of processing a semiconductor substrate - Google Patents

Reactor and method of processing a semiconductor substrate
Download PDF

Info

Publication number
USRE37546E1
USRE37546E1US09/672,842US67284200AUSRE37546EUS RE37546 E1USRE37546 E1US RE37546E1US 67284200 AUS67284200 AUS 67284200AUS RE37546 EUSRE37546 EUS RE37546E
Authority
US
United States
Prior art keywords
substrate
gas
photon density
housing
density sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/672,842
Inventor
Imad Mahawili
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Semiconductor Equipment Corp
Original Assignee
Micro C Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro C Technologies IncfiledCriticalMicro C Technologies Inc
Priority to US09/672,842priorityCriticalpatent/USRE37546E1/en
Application grantedgrantedCritical
Publication of USRE37546E1publicationCriticalpatent/USRE37546E1/en
Assigned to KOKUSAI SEMICONDUCTOR EQUIPMENT CORPORATIONreassignmentKOKUSAI SEMICONDUCTOR EQUIPMENT CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: MICRO C TECHNOLOGIES, INC.
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A reactor for processing a substrate includes a first housing defining a processing chamber and supporting a light source and a second housing rotatably supported in the first housing and adapted to rotatably support the substrate in the processing chamber. A heater for heating the substrate is supported by the first housing and is enclosed in the second housing. The reactor further includes at least one gas injector for injecting at least one gas into the processing chamber onto a discrete area of the substrate and a photon density sensor extending into the first housing for measuring the temperature of the substrate. The photon density sensor is adapted to move between a first position wherein the photon density sensor is directed to the light source and a second position wherein the photon density sensor is positioned for directing toward the substrate. Preferably, the communication cables comprise optical communication cables, for example sapphire or quartz communication cables. A method of processing a semiconductor substrate includes supporting the substrate in a sealed processing chamber. The substrate is rotated and heated in the processing chamber in which at least one reactant gas is injected. A photon density sensor for measuring the temperature of the substrate is positioned in the processing chamber and is first directed to a light, which is provided in the chamber for measuring the incident photon density from the light and then repositioned to direct the photon density sensor to the substrate to measure the reflection of the light off the substrate. The incident photon density is compared to the reflected light to calculate the substrate temperature.

Description

BACKGROUND AND TECHNICAL FIELD OF THE INVENTION
The present invention relates to a processing reactor and, more particularly to a processing reactor for the thermal processing and chemical deposition of thin film applications on a substrate, such as semiconductor wafer, in which the temperature of the substrate can be accurately monitored and the injection of gas into the chamber can be controlled to provide better control of the substrate processing.
In semiconductor fabrication, semiconductor substrates are heated during various temperature activated processes for example, during film deposition, oxide growth, etching, and thermal annealing. The control of deposition and annealing processes depends on the control of the gas flow and pressure and the wafer temperature. When heating a substrate, it is desirable to heat the substrate in a uniform manner so that all the regions of the substrate are heated to the same temperature. Uniform temperatures in the substrate provide uniform process variables on the substrate; for instance in film deposition, if the temperature in one region of the substrate varies from another region, the thickness of the deposition in these regions may not be equal. Moreover, the adhesion of the deposition to the substrate may vary as well. Furthermore, if the temperature in one region of the substrate is higher or lower than the temperature in another region of the substrate, a temperature gradient within the substrate material is formed. This temperature gradient produces thermal moments in the substrates which in turn induce radial local thermal stresses in the substrate. These local thermal stresses can reduce the substrate's strength and, furthermore, damage the substrate. Therefore, knowing the temperature of the wafer is important in determining the thermal diffusion depths of surface implanted dopants, the deposited film thickness, and the material constitution quality and annealed or reflowed characteristics.
Various methods have been developed for measuring the temperature of a substrate during processing in order to improve the control of the various processes. Direct methods, which include the use of contact probes, such as thermocouples or resistance wire thermometers, are generally not suitable for substrate processing because direct contact between the probes and the substrate contaminates the device structure. More typically, indirect measuring methods are used, such as the use of preheated platforms that are calibrated prior to processing. However, this method is not typically accurate. In some applications, the temperature of the back side of the substrate is calibrated or monitored, but such methods also lead to significant errors due to the large variances between the back side and device side surface characteristics that lead to different substrate temperatures. The patterns of the specific devices being processed, the type of material being deposited or annealed, the degree of the roughness of the surface, and the operating temperature all affect the characteristics of the substrate surface and define what is known as the surface emissivity of the substrate.
In U.S. Pat. No. 5,310,260 to Schietinger et al. a non-contact temperature measuring device is disclosed. The device includes two sapphire optical fibre probes, with one of the probes directed to the lamp source providing the heat to the wafer and the other probe directed to the wafer itself. Each fiber probe sends its respective signal to a measuring instrument which converts the photon density measured by the probe to an electrical current. The ratio of the two signals provides a measure of the surface reflectivity, which approximates the total hemispherical reflectivity. However, this method can only be used with an AC source lamp and when the lamp shines directly on the wafer. Since two optical fiber probes must be used in order to implement this technique, the characteristics of each probe must be accurately detailed in order to obtain accurate emissivity measurements. In the event that one of the probes must be replaced, a total system re-calibration is required. Furthermore, this method cannot be used in chambers in which thin films are deposited, etched, or sputtered since the thin films will also deposit on the optical fiber photon density sensors and drastically alter the results and render the measurement method inoperative. Moreover, the optical fiber sensors are always directed at one fixed area of the wafer. Since different parts of the wafer may have different device patterns and, therefore, may have different local emissivities, the temperature measurement and control would be limited in value as it would represent the emissivity information only for that specific area rather than the average surface topology of the substrate.
In addition to temperature uniformity, the uniformity of film deposition is affected by uniformity of the delivery of the process gas. Good process uniformity usually requires adjustments and optimizations for both the wafer temperature uniformity and the gas flow pattern of the process gas. In most conventional chambers or reactors, the reactant gas is delivered through a single port, which injects gas into the chamber above the wafer. Due to the geometry of the wafer, the resulting deposition of the gas onto the wafer is not uniform.
More recently, shower-like gas injection systems have been developed in which separate gases are injected in a shower-like pattern over the entire substrate area. However, such gas delivery systems fill the entire chamber volume and, thus, deposit films on the substrate as well as the chamber walls. Consequently, these gas delivery systems preclude the use of any optical instruments for non-contact temperature measurement and in-situ film methodology.
Consequently, there is a need for a processing reactor which can deliver heat to a substrate in a uniform manner and can accurately monitor the temperature of the substrate during processing and adjust the profile of the applied heat as needed to achieve optimal processing of the substrate. Furthermore, there is a need for a processing reactor which can deliver and direct the flow of gas to the substrate during processing so that the substrate receives a uniform deposition of thin film of the process gas or gases in a discrete area on the substrate.
SUMMARY OF THE INVENTION
One form of the invention provides a reactor having a processing chamber with an emissivity measuring device and improved gas injection system. The emissivity measuring device measures the photon density from a light source, which is housed in the processing chamber, and the reflected photon density off a substrate, which is processed in the processing chamber. These measurements are then used to determine the emissivity and, ultimately, the temperature of the substrate with a high degree of accuracy. The emissivity measuring device includes a communications cable which includes a photon or emissivity sensor that is positioned in the processing chamber. The photon density sensor is adapted to move between a first position wherein the photon density sensor is directed to the light source for measuring the incident photon density of the light and a second position wherein the photon density sensor is directed toward the substrate for measuring the reflected photon density off the substrate. The gas injection system is adapted to inject and direct at least one gas onto a discrete area of the substrate. The reactor is, therefore, particularly suitable for use in a semiconductor fabrication environment where the control of heating and injection of gas must be maintained in order to produce uniform process variables during the fabrication of semiconductor devices.
In one aspect, the emissivity measuring device comprises first and second communication cables. The first communication cable includes the photon density sensor and is in communication with the second cable for sending signals from the photon density sensor to a processor. Preferably, the first and second communication cables comprise optical communication cables. For example, the first communication cable may comprise a sapphire optical communication cable, and the second communication cable may comprise a quartz optical communication cable. In further aspects, the first and second communications cables are interconnected by a slip connection so that the first communication cable can be rotated between the first and second positions by a driver, for example a motor.
In another form of the invention, a reactor for processing a substrate includes a first housing, which defines a processing chamber and supports a light source. A second housing is rotatably supported in the first housing and is adapted to rotatably support the substrate in the processing chamber. A heater for heating the substrate is supported by the first housing and is enclosed in the second housing. A photon density sensor extends into the first housing for measuring the emissivity of the substrate, which is adapted to move between a first position wherein the photon density sensor is directed to the light source and a second position wherein the photon density sensor is positioned for directing toward the substrate. The reactor further includes a plurality of gas injectors, the gas injectors being grouped into at least two groups of gas injectors, with each group of gas injectors being adapted to inject at least one gas into the processing chamber of the reactor onto a discrete area of the substrate.
In one aspect, each group of injectors is adapted to selectively deliver at least one reactant gas and an inert gas. In another aspect, each group of gas injectors is adapted to be independently controlled whereby flow of gas through each group of gas injectors can be independently adjusted. In yet another aspect, the gas injectors in each group of gas injectors may be arranged in a uniform pattern for directing a uniform flow of a gas toward the substrate. The reactor also preferably includes an exhaust manifold for removing unreacted gas from the processing chamber.
In yet further aspects, the gas injectors are arranged in pattern having a greater concentration of gas injectors in a peripheral region and a smaller concentration of gas injectors in a central region of the substrate whereby the gas injected by the gas injectors produces a uniform deposition on the substrate.
In yet another form of the invention, a method of processing a semiconductor substrate includes supporting the substrate in a sealed processing chamber. The substrate is rotated and heated in the processing chamber in which at least one reactant gas is injected. A photon density sensor for measuring the emissivity of the substrate is positioned in the processing chamber and is first directed to a light, which is provided in the chamber, for measuring the incident photon density from the light and then repositioned to direct the photon density sensor to the substrate to measure the reflected photon density off the substrate. The incident photon density is compared to the reflected photon density to calculate the substrate temperature.
As will be understood, the reactor of the present invention provides numerous advantages over prior known reactors. The reactor provides a single substrate photon density sensor which can be used to accurately determine the temperature of the substrate during processing. The single photon density sensor eliminates the need for recalibration and complex calculations detailing the characteristics of each sensor associated with temperature measuring devices having two sensors. Moreover, the reactor provides a gas injection system which directs one or more reactant gases to the substrate during processing in a controlled manner and directs the gas or gases to discrete regions of the substrate so that emissivity measurements and temperature calculations can be performed in the processing chamber during the injection of the gas or gases without impairment from undesirable film depositions on the emissivity measurement devices.
These and other objects, advantages, purposes and features of the invention will be apparent to one skilled in the art from a study of the following description taken in conjunction with the drawings.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a chemical vapor deposition chamber of the present invention;
FIG. 2 is a schematic sectional view taken along line II—II of FIG. 1;
FIG. 3 is an enlarged view taken along section lines III—III of FIG. 2 illustrating the gas injection system;
FIG. 4 is a top plan view of the chamber cover;
FIG. 5 is a bottom plan view of the chamber cover; and
FIG. 6 is a schematic representation of an emissivity measurement system cooperating with the chemical vapor deposition chamber of FIG.1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawings and particular to FIGS. 1 and 2, a reactor for processing semiconductor substrates is generally indicated by the numeral10. In the illustrated embodiment,reactor10 comprises a single wafer processing reactor that is suitable for performing various fabrication processes on asemiconductor substrate12, such as a semi-conductor wafer.Reactor10 is particularly suitable for thermal processing of a semiconductor wafer. Such thermal processes include thermal annealing of a semiconductor wafer and thermal reflow of boro-phosphorous gasses, and chemical vapor deposition of thin film applications, such as high temperature oxide, low temperature oxide, high temperature nitride, doped and undoped polysilicon, silicon epitaxial and tungsten metal and tungsten silicide films, in the fabrication of a semiconductor device. The control of these processes depends on the control of gas flow, gas pressure, and wafer temperature. As will be described in more detail,reactor10 includes aheater assembly14, which delivers heat to thesubstrate12 in a uniform manner, agas injection assembly34, which selectively delivers and directs gas to a discrete region of the substrate in a uniform and controlled manner, and anemissivity measurement assembly60, which permits continuous emissivity measurement of the average surface area of the device side of the substrate during processing so that the amount and/or the profile of the heat being delivered to the substrate during processing may be adjusted.
As best seen in FIG. 2,reactor10 includes aheater assembly14, which is enclosed in aheater housing16.Heater assembly14 is designed to deliver radiant heat tosubstrate12 in a manner such that the temperature in the substrate is substantially uniform. In a preferred form,heater assembly14 includes an array of heating elements such as linear tungsten-halogen lamps (not shown), which emit peak radiation at 0.95 microns and are layered to form a plurality of heating zones, which provide a concentrated heating profile with a greater amount of heat being applied to the outer perimeter of the substrate than the center of the substrate. For further details ofheater assembly14, reference is made to pending U.S. patent application entitled RAPID THERMAL PROCESSING HEATER TECHNOLOGY AND METHOD OF USE, filed on Dec. 4, 1996. Ser. No. 08/759,559, which is incorporated herein by reference in its entirety. It should be understood that other heaters may be used inreactor10, preferably heaters which deliver heat to substrate in a substantially uniform manner.
Heater assembly14 is enclosed inheater housing16, which is mounted on arotatable base18.Heater housing16 is made from a suitable material, such as a ceramic, graphite or, more preferably, silicon graphite coated graphite, or the like.Heater assembly14,heater housing16, androtatable base18 are enclosed and vacuum sealed in an outer,reactor housing20 and are supported on abase wall22 ofreactor housing20.Reactor housing20 may be formed from a variety of metal materials. For example, aluminum is suitable in some applications, whereas stainless steel is more suitable in others. The choice of material is driven by the type of chemicals used during the deposition process and their reactivity with respect to the metal of choice, as is understood by those persons skilled in the art. The chamber walls are typically water cooled to approximately 45-75 degrees Fahrenheit by a conventional recirculating chilled water flow system, which is commonly known in the art.
Referring to FIGS. 2 and 3,base18 andhousing16 are rotatably supported onbase wall22 of housing and are preferably rotated using a conventional magnetically coupleddrive mechanism23, or other suitable driving device which can impart rotation to base18 through a vacuum seal. The revolutions per minute (rpm) ofbase18 andhousing16 may be preset, for example preferably in a range of 5 to 60 rpm depending on the specific process, again as is understood by those persons skilled in the art.
As best seen in FIG. 1,reactor housing20 includes a cylindricalouter wall24 and acover26 which extends over cylindricalouter wall24.Substrate12 is supported inreactor housing20 on aplatform28, which is made from a suitable material, such as silicon carbide coated graphite, quartz, pure silicon carbide, alumina, zirconia, aluminum, steel, or the like, and is oriented with its device side12a directed towardcover26. For details of a preferred embodiment ofplatform28, reference is made to pending U.S. patent application entitled A SUBSTRATE PLATFORM FOR A SEMICONDUCTOR SUBSTRATE DURING RAPID HIGH TEMPERATURE PROCESSING AND METHOD OF SUPPORTING A SUBSTRATE filed on Aug. 15, 1997, Ser. No. 08/912,242, by Imad Mahawili, which is herein incorporated by reference in its entirety.Platform28 is seated and supported in a recess or central opening16a provided in a top wall27 ofhousing16 and spaced fromcover26 and substantially extends over and completely cover opening16a. Consequently,heater assembly14 is completely enclosed byheater housing16 andplatform28, which when placed on top of thehousing16, completes the enclosure ofheater assembly14.Platform28 can accommodate various substrate sizes and, in particular, can accommodate substrates with 150, 200 and 300 mm diameters. The space betweenplatform28 and the lower surface26a ofcover26 defines an evacuatedprocess chamber30, which is evacuated through the vacuum exhaust parts placed in agas injector assembly34. Preferably,substrate12 is introduced into evacuatedchamber30 through achamber valve32 and is placed onplatform28 by a conventional wafer transport device (not shown), such as an automated transport robot.
Referring to FIGS. 4 and 5,reactor10 further includesgas injection manifold34 which injects one or more gases onto a localized or discrete region of the substrate surface wherein thin film deposition takes place.Gas injection manifold34 is positioned incover26 and includes a plurality of reactivegas injection segments36,38, and40, an inertgas injection ring41, and an exhaust manifold44.Injection ring41 injects an inert gas, preferably nitrogen or the like, intoprocessing chamber30 and directs the inert gas to the perimeter of the substrate to form a gas barrier so that the reactive gases injected throughgas injection segments36,38, and40 are confined to the area of the substrate directly below therespective segments36,38, and40 due to the placement of vacuum exhaust manifold44 adjacentgas injection segments36,38, and40. As best seen in FIG. 5,gas injection segments36,38, and40 are aligned in a central region ofcover26 to inject one or more gases, reactive and inert gases, intochamber30. Exhaust manifold44 extends along and adjacentgas injection segments36,38, and40 so that gases directed ontosubstrate12 are confined to a discrete area across the substrate, which preferably extends from one side or edge of the substrate to an opposed side or edge ofsubstrate12. It should be understood that gases injected bygas injection segments36,38, and40 are directed in thegeneral direction substrate12 and any stray gas molecules which migrate near the region under exhaust manifold44 will be exhausted from processingchamber30. Therefore, the gases introduced bygas injection segments36,38, and40 are confined to a discrete volume of processingchamber30 and to a discrete area ofsubstrate12.
Eachgas injection segment36,38,40 includes a plurality of channels36a,36b,36c,36d,38a,38b,38c,38d,40a,40b,40c, and40d, respectively, which are arranged in a parallel adjacent relationship. Each channel36a,36b,36c,36d,38a,38b,38c,38d40a,40b,40c, and40d includes a plurality of injectors ororifices42.Orifices42 may be arranged in a uniform manner to provide the same flow rate of gas across width ofsubstrate12. Alternatively, one or more channels may includeorifices42 that are arranged in a non-uniform pattern to vary the profile of the gas flow across the substrate. Preferably, the profile of the flow of the gas is adjusted to direct less gas to the center of the substrate than to the regions toward the perimeter of the substrate. For example, channels38a-38d, which are generally aligned with the central portion of the substrate, may include one density or concentration of spaced orifices, and channels36a-36d and40a-40d, which are generally aligned along the peripheral portions of the substrate, may include a higher density or concentration oforifices42 than channels38a-38d. In this manner, the flow of gas from the various groups oforifices42 has a flow profile that varies across the substrate so that the regions over the central region and the peripheral region of the substrate are treated with the same density of gas to achieve a more uniform film deposition on the substrate. It should be understood that the number of orifices and the spacing betweenorifices42 may be individually adjusted to prove a more uniform flow or to direct more gas to one area of the substrate than another where different devices are being fabricated.
Furthermore, eachorifice42/ channel36a,36b,36c,36d,38a,38b,38c,38d40a,40b,40c, and40d and/orsegments36,38, and40 may be coupled to a valve or regulator (not shown) which may be adjusted using conventional controls to vary the flow of gas from each orifice, channel, or gas injection segment orzone36,38, and40 to adapt the gas flow profile. Furthermore, the controls may adjust the sequence of gas flowing from the orifices, channels, or segments. Moreover, each regulator may be adapted for connection with one or more sources of reactant gases. Depending on the application, the flow through each orifice/ channel/ segment/ may be individually controlled so that they can all turn on together, sequence one segment after another, or sequence the segments randomly with various time intervals between each on/off cycle. Furthermore, as reactive gases are turned off from one segment, an inert gas may be injected into that segment to control the reaction conditions at the surface of the wafer and to prevent any back flow contamination of reactants. The design of a particular duty cycle for each of the segments would, therefore, depend on the thin film process that is being optimized and it would vary from one film to another. Furthermore, each of the respective orifices, channels, orgas injection segments36,38,40 may be associated with an injection of a specific gas. For example,gas injection zones36 and40 may be used to inject gas A whilegas injection zone38 may be used to inject gas B. In this manner, two reactive gases (A and B) may be injected that mix and react on the device side of the substrate. It should be understood by those skilled in the art that a wide variety of gasses can be employed and selectively introduced through theorifices42, for example, hydrogen, argon, tungsten hexaflouride, or the like, to processsubstrate12.
As best seen in FIG. 5,gas injection manifold34 includes exhaust manifold44. As described above, exhaust manifold44 extends aroundsegments36,38, and40 to provide an additional boundary beyond which the reactive gases can not extend. In addition to removing unreacted gases from processingchamber30, exhaust manifold also assists in the prevention of back flow contamination of the reactant gases. In combination withinjection ring41, exhaust manifold44 controls the film deposition onsubstrate12 in a manner which results in localized area of film deposition and, therefore, permits the use of an emissivity measurement system, described below.
Reactor10 further includes a non-contactemissivity measurement system60 for measuring the emissivity and calculating the temperature ofsubstrate12 during the various fabrication processes.Emissivity measurement system60 includes acentral processing unit61 and a pair of fiberoptic communication cables62 and64 which are coupled together and coupled tocentral processing unit61.Fiber optic cable62 preferably comprises a sapphire fiber optic communication cable and extends intocover26 ofreactor housing20 through arigid member66, which provides a vacuum feedthrough toreactor10.Cable62 extends throughmember66 into acavity67 provided incover26, which is positioned aboveplatform28 andsubstrate12.Member66 is preferably a cylindrical drive shaft and, more preferably, a stainless steel cylindrical drive shaft, and is rotatably mounted incover26. Oneend68 offiber optic cable62 is bent or oriented for directing atsubstrate12 andlight source72, as will be more fully explained below, with the photon sensing end ofcable62 forming a fiber optic photon density sensor orprobe70. The second end portion ofcable62 extends throughshaft66 and into afiber optic housing76, which is mounted to an exterior surface ofcylindrical wall24 ofhousing20. Distal end62a ofcable62 is slip attached to a distal end64a of cable64, which preferably comprises a quartz fiber optic communication cable, infiber optic housing76. The other end of fiber optic communication cable64 is then connected toprocessor61. In this manner, whencable62 is rotated,cable62 remains in communication with cable64 andprocessing unit61 through the slip connection between the two communication cables.Processor61 preferably comprises a measuring instrument, for example a Luxtron Model 100, which converts the photon density measured byfiber optic sensor70 into an electrical current, which is displayed byprocessor61.
The position offiber optic sensor70 is changed by adriver80, preferably a motor, which is housed infiber optic housing76 and which is drivingly coupled toshaft66.Motor80 includes adrive shaft81 and adrive wheel82, which engages and rotatesshaft66 about its longitudinal axis66a.Motor80 rotatesshaft66, which imparts rotation tofiber optic cable62, so that the orientation offiber optic sensor70 is moved between a first position wherein thefiber optic sensor70 is directed generally upward towardlight source72 and a second position in which it is directed generally downward tosubstrate12. Therefore, end68 ofcommunication cable62 is preferably oriented at a right angle with respect to the horizontal axis62a ofcommunication cable62. In thismanner sensor70 can detect the photon density emitted fromlight source72 and of the reflected light off substrate.Light source72 preferably comprises a white light source, which emits light at a wavelength so that the wafer optical transmission is minimized, preferably, for example at a 0.95 micron wavelength.Emissivity measurement system60 determines the temperature ofsubstrate12 by comparing of the radiation emitted bysource72 with that of the radiation emitted bysubstrate12.Source72 preferably includes at least one lamp which is a similar construction to the lamps used inheater assembly14, which are described in pending U.S. patent application entitled RAPID THERMAL PROCESSING HEATER TECHNOLOGY AND METHOD OF USE.
Preferably,photon density sensor70 is spaced and, preferably, located radially outward fromgas injection system34 and exhaust manifold44 so that the gas, which is injected intochamber30 and ontosubstrate12, does not interfere with the temperature reading ofemissivity sensor70. Sinceheater assembly14 is completely enclosed by theheater housing16, there is no leakage of light fromheater assembly14 intodeposition chamber30, which could impact the readings taken byemissivity sensor70. This eliminates probe characteristics matching or corrections associated with the conventional temperature measuring devices with two probes. Aftersubstrate12 is placed onplatform28,housing16 andplatform28 are rotated during processing bydrive mechanism23. When the emissivity ofsubstrate12 is to be measured,sensor70 is rotated to viewlight source72 directly abovesubstrate12 andlight source72 is turned on.Sensor70 measures the incident photon density fromlight source72. Whilelight source72 is still on,sensor70 is rotated from its first position to its second position to viewsubstrate12 directly belowlight source72 while it is rotating. In this position,sensor70 measures the reflected photon density off the device side12a ofsubstrate12.Light source72 is then turned off. While still viewingsubstrate12 directly,sensor70 measures the emission of photons fromheated substrate12. This last value is subtracted from the reflected radiation value. According to Plank's law, the energy emitted off a given surface is related to the temperature of the surface to the fourth power. The proportionality constant consists of the product of the Stephen-Boltzmann constant and the surface emissivity. Therefore, the surface emissivity is preferably used when determining the temperature of the surface in non-contact methods. The following equations are used to calculate the total hemispherical reflectivity of device side12a ofsubstrate12 and, subsequently, the emissivity, as given by Kirchoffs law:
Wafer Reflectivity=Reflected Light Intensity/Incident Light Intensity  (1)
Emissivity=(1−Wafer Reflectivity)  (2)
Once the substrate emissivity is calculated, the substrate temperature is then obtained from Plank's equations. This technique is also used when the substrate is hot and, under such application, the base thermal emission from the substrate is subtracted prior to executing the above calculation. Preferably,sensor70 is left in the second position or wafer viewing position and, thus, constantly yields emissivity data everytime source lamp72 is turned on.
Sincesubstrate12 is rotating,sensor70 collects photon density off the device side12a of thesubstrate12 during such rotation and, therefore, measures the reflection from the averaged surface topology of varied device structures that might be lithographed onto the substrate. Furthermore, since the emissivity measurement is performed during the process cycle including thin film deposition process, the instantaneous changes of emissivity are monitored and temperature corrections are performed dynamically and continuously. Once the emissivity is calculated, it is sent into the temperature control segment of the processor21 where the emissivity value is used in the application of the Plank equation.
Reactor10 further includes a plurality of optical fiber temperature measurement probes84, which are fixed to cover26 and constantly collect photon density emitted from device side12a ofsubstrate device12 during all processing conditions. The temperatures measured byprobes84 are sent to the main control computer to compare them to a set temperature and any deviation is computed and transformed into a control current to drive a standard off-the-shelf SCR current relay to deliver the proportional power to each of the lamp zones withinheater assembly14. Preferably,reactor10 includes three probes (84) which are positioned to measure the temperature of different parts of the wafer, which assures temperature uniformity during the processing cycle.
Temperature readings ofsubstrate12 calculated by central processing unit21 are preferably used as input into a control system (not shown) which monitors and controls the output ofheater assembly14. The control system is coupled toheater assembly14 through anelectrical feedthrough86 which extends to thebase wall22 of reactor housing21. In order to maintain the vacuum inreactor10,feedthrough86 is sealed by an O-ring or sealed using other conventional sealing devices or methods.
Aftersemiconductor substrate12 has been processed,substrate12 is raised offplatform28 by a plurality of lifter pins88 which protrude through and liftsubstrate12 offplatform28 for automatic loading and unloading ofsubstrate12 withinreactor10. Lifter pins88 are raised and lowered by magnetically coupledwafer letters90, which are conventionally known in the art.Pins88 are centrally located inhousing16 and project through a central portion of theheater assembly14 and through a central portion ofplatform28. Similarly, to maintain the vacuum inchamber30. Lifter pins88 extend through O-ring seals provided in thebase wall22 ofhousing20.
In preferred form, at least threelifter pins88 are provided. In the most preferred form, fourlifter pins88 are provided, andplatform28 includes a corresponding number of openings to enablelifter pins88 to protrude through and liftsubstrate12 offplatform28 for automatic loading and unloading ofsubstrate12. It can be appreciated that lifter pins88 can only be operated when housing is positioned so that the openings inplatform28 are aligned with lifter pins88, for example in a “HOME” position.
For the purposes of the following description, the terms “up” or “down” and derivatives or equivalents thereof shall relate to the invention as oriented in FIGS. 1 to6. It is understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also understood that the specific devices and methods illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered Limiting unless the claims expressly state otherwise.
Accordingly, the present invention provides a reactor chamber which heats a substrate in a uniform manner and accurately measures the emissivity and calculates the temperature of the substrate during processing using a non-contact photon density measuring device and adjusts the profile of the applied heat as needed to achieve optimal processing of the substrate. Furthermore, the reactor chamber delivers and controls the flow of gas to the substrate during processing so that the substrate receives a uniform deposition of thin film of the process gas or gases in a discrete area on the substrate, which enables the use of a non-contact emissivity measurement system.
While several forms of the invention have been shown and described, other forms will now be apparent to those skilled in the art. Therefore, it will be understood that the embodiments shown in the drawings and described above are merely for illustrative purposes, and are not intended to limit the scope of the invention which is defined by the claims which follow.

Claims (61)

We claim:
1. A reactor for processing a substrate, said reactor comprising:
a housing defining a processing chamber;
a light source supported in said housing;
a heater positioned in said housing, said heater being adapted to heat the substrate;
at least one gas injector adapted to inject at least one gas into said processing chamber onto a discrete area of the substrate; and
a photon density sensor extending into said housing, said photon density sensor being adapted to measure the emissivity of the substrate and to move between a first position wherein said photon density sensor is directed to said light source and a second position wherein said photon density sensor is positioned for directing toward the substrate.
2. The reactor according toclaim 1, further comprising first and second communication cables, said first communication cable including said photon density sensor and being in communication with said second cable and being adapted to send signals from said photon density sensor to a processor.
3. The reactor according toclaim 2, wherein said first and second communications cable comprise optical communication cables.
4. The reactor according toclaim 3, wherein said first communication cable comprises a sapphire optical communication cable.
5. The reactor according toclaim 3, wherein said second communication cable comprises a quartz optical communication cable.
6. The reactor according toclaim 3, wherein said first and second communications cables are interconnected by a slip connection.
7. The reactor according toclaim 6, wherein said first communication cable is rotated between said first and second positions by a driver.
8. The reactor according toclaim 7, wherein said driver comprises a motor.
9. The reactor according toclaim 7, wherein at least a portion of said first communication cable is housed in a rigid member, said driver drivingly engaging said rigid member to rotate said communication cable between said first position and said second position.
10. The reactor according toclaim 9, wherein said rigid member comprises a cylindrical shaft.
11. The reactor according toclaim 2, wherein said first communications cable includes an angled portion, said photon density sensor being defined on a distal end of said angle portion.
12. The reactor according toclaim 1, wherein said housing includes a cover, said photon density sensor being supported by said cover.
13. The reactor according toclaim 12, wherein said photon density sensor comprises an optic communication fiber.
14. The reactor according toclaim 13, wherein said optic communication fiber comprises a sapphire optic communication fiber.
15. The reactor according toclaim 1, further comprising a second housing, said second housing being rotatably supported in said housing defining a processing chamber and being adapted to rotatably support the substrate in said processing chamber.
16. A reactor for processing a substrate, said reactor comprising:
a housing defining a processing chamber;
a light source supported in said housing;
a heater adapted to heat the substrate, said heater being supported in said housing;
a photon density sensor extending into said housing, said photon density sensor being adapted to measure the emissivity of the substrate and to move between a first position wherein said photon density sensor is directed to said light source and a second position wherein said photon density sensor is positioned for directing toward the substrate; and
a plurality of gas injectors supported by said housing, said plurality of gas injectors being adapted to inject at least one reactant gas into said processing chamber.
17. The reactor according toclaim 16, wherein said gas injectors are arranged into at least two groups of gas injectors, each of said groups of gas injectors being adapted to selectively deliver at least one reactant gas and an inert gas into said processing chamber.
18. The reactor according toclaim 16, further including a manifold supported by said housing said manifold being adapted to inject inert gas into said processing chamber.
19. The reactor according toclaim 18, wherein said manifold comprises an injection ring, said injection ring being positioned and adapted to align with the periphery of the substrate for at least directing inert gas onto the periphery of the substrate.
20. The reactor according toclaim 16, wherein each of said injectors is adapted to be independently controlled whereby flow of gas through each of said injectors can be independently adjusted.
21. The reactor according toclaim 16, wherein said gas injectors are arranged in a uniform pattern adapted to direct a uniform flow of a gas toward the substrate.
22. The reactor according toclaim 16, wherein said gas injectors are adapted to deliver the gas on a discrete area of the substrate.
23. The reactor according toclaim 22, further comprising an exhaust manifold, said exhaust manifold adapted to remove unreacted gas from the processing chamber and to substantially confine the gas over the discrete area of the substrate.
24. The reactor according toclaim 23, wherein said manifold extends around said plurality of gas injectors to substantially confine the gas in the processing chamber over the discrete area of the substrate, said exhaust manifold interposed between said injectors and said photon density sensor whereby said photon density sensor is free from film depositions from the gas.
25. The reactor according toclaim 16, wherein said gas injectors are arranged in with a greater concentration of said gas injectors positioned and adapted to align with a peripheral region of the substrate and with a smaller concentration of gas injectors positioned and adapted to align with a central region of the substrate whereby the gas injected by the gas injectors produces a uniform deposition on the substrate.
26. The reactor according toclaim 16, wherein said housing comprises a first housing, said reactor further comprising a second housing rotatably supported in said first housing, said second housing enclosing said heater and rotatably supporting the substrate thereon.
27. The reactor according toclaim 26, said second housing having a removable platform, said removable platform being adapted to support the substrate in said processing chamber.
28. A method of processing a semiconductor substrate comprising the steps of:
providing a processing chamber;
supporting the substrate in the processing chamber;
directing light into the processing chamber toward the substrate;
providing a photon density sensor;
directing the photon density sensor to the light;
measuring the incident photon density from the light with the photon density sensor;
repositioning the photon density sensor to direct the photon density sensor to the substrate;
measuring the reflection of the light off the substrate;
comparing the measured incident photon density to the reflected light to calculate the substrate temperature;
heating the substrate; and
injecting at least one reactant gas into the chamber through at least one injector.
29. A method of processing a semiconductor substrate according toclaim 28, wherein repositioning the photon density sensor includes rotating the photon density sensor.
30. A method of processing a semiconductor substrate according toclaim 28, wherein rotating the photon density sensor includes rotating the photon density sensor about one hundred eighty degrees.
31. A method of processing a semiconductor substrate according toclaim 28, wherein comparing the measured incident photon density to the reflected light includes:
providing a processor;
sending signals from the photon density sensor to the processor to calculate the substrate emissivity and temperature; and
calculating the temperature with the processor from the signals from the photon density sensor.
32. A method of processing a semiconductor substrate according to claim2831, wherein sending signals includes:
forming the photon density sensor on a first communications cable: and
coupling the first communications cable to the processor.
33. A method of processing a semiconductor substrate according toclaim 32, wherein coupling includes coupling the first communications cable to a second communications cable and coupling the second communications cable to the processor.
34. A method of processing a semiconductor substrate according toclaim 33, wherein coupling the first communications cable to the second communications cable includes providing a slip coupling between the first communications cable and the second communications cable.
35. A method of processing a semiconductor substrate according toclaim 28, further comprising adjusting the heating based on the temperature of the substrate.
36. A method of processing a semiconductor substrate according toclaim 28, further comprising rotating the substrate in the processing chamber, said injecting includes directing the reactant gas to a discrete portion of the substrate while the substrate is rotating.
37. A method of processing a semiconductor substrate according toclaim 36, wherein directing the reactant gas includes exhausting unreacted gas from the processing chamber to isolate the reactant gas over the discrete portion of the substrate whereby the photon density sensor remains free of undesirable film depositions from the reactant gas.
38. A method of processing a semiconductor substrate according toclaim 28, wherein injecting includes a first reactant gas through a first group of the gas injectors and injecting a second reactant gas through a second group of the gas injectors.
39. A method of processing a semiconductor substrate according toclaim 28, further comprising selectively varying the flow of the reactant gas through the gas injectors.
40. A method of processing a semiconductor substrate according toclaim 28, further comprising arranging the gas injectors in a uniform pattern to direct a uniform flow of gas into the processing chamber.
41. A method of processing a semiconductor substrate according toclaim 28, wherein injecting includes injecting the gas into the processing chamber with a non-uniform profile for uniformly depositing film on the substrate.
42. A method of processing a semiconductor substrate according toclaim 41, wherein injecting the gas into the chamber with a non-uniform profile includes arranging the gas injectors in a non-uniform pattern to direct more gas to a peripheral region of the substrate and less gas to the central region of the substrate.
43. A reactor for processing a substrate, said reactor comprising:
a housing defining a processing chamber;
a light source positioned in said housing;
a heater positioned in said housing, said heater being adapted to heat the substrate;
at least one gas injector adapted to inject at least one gas into said processing chamber onto a surface of the substrate; and
a photon density sensor positioned in said housing, said photon density sensor being adapted to measure the emissivity of the substrate and to move between a first position wherein said photon density sensor is directed to said light source and a second position wherein said photon density sensor is positioned for directing toward the substrate.
44. The reactor according toclaim 43, further comprising first and second communication cables, said first communication cable including said photon density sensor and being in communication with said second cable and being adapted to send signals from said photon density sensor to a processor.
45. The reactor according toclaim 43, wherein said first and second communications cable comprise optical communication cables.
46. The reactor according toclaim 45, wherein said first and second communications cables are interconnected by a slip connection.
47. The reactor according toclaim 46, wherein said first communication cable is rotated between said first and second positions by a driver.
48. The reactor according toclaim 44, wherein said first communications cable includes an angled portion said photon density sensor being defined on a distal end of said angle portion.
49. The reactor according toclaim 43, further comprising a second housing, said second housing being rotatably supported in said housing defining a processing chamber and being adapted to rotatably support the substrate in said processing chamber.
50. A reactor for processing a substrate said reactor comprising:
a housing defining a processing chamber;
a light source positioned in said housing;
a heater adapted to heat the substrate said heater being supported in said housing;
a photon density sensor positioned in said housing, said photon density sensor being adapted to measure the emissivity of the substrate and to move between a first position wherein said photon density sensor is directed to said light source and a second position wherein said photon density sensor is positioned for directing toward the substrate; and
at least one gas injector supported by said housing, said gas injector being adapted to inject at least one reactant gas into said processing chamber.
51. The reactor according toclaim 50, wherein said gas injector comprises a plurality of gas injectors said gas injectors are arranged into at least two groups of gas injectors, each of said groups of gas injectors being adapted to selectively deliver at least one reactant gas and an inert gas into said processing chamber.
52. The reactor according toclaim 50, further including a manifold supported by said housing, said manifold including said at least one gas injector, said manifold being adapted to inject inert gas into said processing chamber.
53. The reactor according toclaim 52, wherein said manifold comprises injection ring, said injection ring including a plurality of said gas injector said injection ring being positioned and adapted to align with the periphery of the substrate for at least directing inert gas onto the periphery of the substrate.
54. The reactor according toclaim 50, wherein said at least one gas injector comprises a plurality of gas injectors, each of said injectors is adapted to be independently controlled whereby flow of gas through each of said injectors can be independently adjusted.
55. The reactor according toclaim 50, wherein said at least one gas injector comprises a plurality of gas injectors, said gas injectors are arranged in a uniform pattern adapted to direct a uniform flow of a gas toward the substrate.
56. The reactor according toclaim 50 wherein said gas injector is adapted to deliver the gas on a discrete area of the substrate.
57. The reactor according toclaim 56, further comprising an exhaust manifold, said exhaust manifold adapted to remove unreacted gas from the processing chamber and to substantially confine the gas over the discrete area of the substrate.
58. The reactor according toclaim 57, wherein said at least one gas injector comprising a plurality of gas injectors, said manifold extending around said plurality of gas injectors to substantially confine the gas in the processing chamber over the discrete area of the substrate, said exhaust manifold interposed between said injectors and said photon density sensor whereby said photon density sensor is free from film depositions from the gas.
59. The reactor according toclaim 50, wherein said at least one gas injector comprises a plurality of gas injectors, said gas injectors are arranged in with a greater concentration of said gas injectors positioned and adapted to align with a peripheral region of the substrate and with a smaller concentration of gas injectors positioned and adapted to align with a central region of the substrate whereby the gas injected by the gas injectors produces a uniform deposition on the substrate.
60. The reactor according toclaim 50, wherein said housing comprises a first housing, said reactor further comprising a second housing rotatably supported in said first housing, said second housing enclosing said heater and rotatably supporting the substrate thereon.
61. The reactor according toclaim 60, said second housing having a removable platform, said removable platform being adapted to support the substrate in said processing chamber.
US09/672,8421997-08-152000-09-28Reactor and method of processing a semiconductor substrateExpired - Fee RelatedUSRE37546E1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US09/672,842USRE37546E1 (en)1997-08-152000-09-28Reactor and method of processing a semiconductor substrate

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US08/911,638US5814365A (en)1997-08-151997-08-15Reactor and method of processing a semiconductor substate
US09/672,842USRE37546E1 (en)1997-08-152000-09-28Reactor and method of processing a semiconductor substrate

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US08/911,638ReissueUS5814365A (en)1997-08-151997-08-15Reactor and method of processing a semiconductor substate

Publications (1)

Publication NumberPublication Date
USRE37546E1true USRE37546E1 (en)2002-02-12

Family

ID=25430608

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US08/911,638CeasedUS5814365A (en)1997-08-151997-08-15Reactor and method of processing a semiconductor substate
US09/672,842Expired - Fee RelatedUSRE37546E1 (en)1997-08-152000-09-28Reactor and method of processing a semiconductor substrate

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US08/911,638CeasedUS5814365A (en)1997-08-151997-08-15Reactor and method of processing a semiconductor substate

Country Status (7)

CountryLink
US (2)US5814365A (en)
EP (1)EP0898302B1 (en)
JP (1)JP3018246B2 (en)
KR (1)KR100367807B1 (en)
AT (1)ATE233430T1 (en)
DE (1)DE69811577T2 (en)
TW (1)TW538425B (en)

Cited By (139)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20020111043A1 (en)*2001-02-122002-08-15Imad MahawiliUltra fast rapid thermal processing chamber and method of use
US20030046034A1 (en)*2001-09-062003-03-06Dainippon Screen Mfg. Co., Ltd.Substrate processing system managing apparatus information of substrate processing apparatus
US20050181431A1 (en)*1996-04-172005-08-18Affymetrix, Inc.Substrate preparation process
US20060216417A1 (en)*2005-03-102006-09-28Todd Michael ASystem for control of gas injectors
US20090062148A1 (en)*1996-04-172009-03-05Affymetrix, Inc.Substrate preparation process
US20090110826A1 (en)*2007-10-252009-04-30Asm America, Inc.Reaction apparatus having multiple adjustable exhaust ports
US20100255658A1 (en)*2009-04-072010-10-07Asm America, Inc.Substrate reactor with adjustable injectors for mixing gases within reaction chamber
US20120231558A1 (en)*2005-07-052012-09-13Mattson Technology, IncMethod and system for determining optical properties of semiconductor wafers
US20130343425A1 (en)*2012-06-222013-12-26Guray TasRadiation thermometer using off-focus telecentric optics
US20140099794A1 (en)*2012-09-212014-04-10Applied Materials, Inc.Radical chemistry modulation and control using multiple flow pathways
US9269590B2 (en)2014-04-072016-02-23Applied Materials, Inc.Spacer formation
US9287095B2 (en)2013-12-172016-03-15Applied Materials, Inc.Semiconductor system assemblies and methods of operation
US9287134B2 (en)2014-01-172016-03-15Applied Materials, Inc.Titanium oxide etch
US9293568B2 (en)2014-01-272016-03-22Applied Materials, Inc.Method of fin patterning
US9299583B1 (en)2014-12-052016-03-29Applied Materials, Inc.Aluminum oxide selective etch
US9299575B2 (en)2014-03-172016-03-29Applied Materials, Inc.Gas-phase tungsten etch
US9299538B2 (en)2014-03-202016-03-29Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en)2014-03-202016-03-29Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9309598B2 (en)2014-05-282016-04-12Applied Materials, Inc.Oxide and metal removal
US9324576B2 (en)2010-05-272016-04-26Applied Materials, Inc.Selective etch for silicon films
US9343272B1 (en)2015-01-082016-05-17Applied Materials, Inc.Self-aligned process
US9349605B1 (en)2015-08-072016-05-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US9355862B2 (en)2014-09-242016-05-31Applied Materials, Inc.Fluorine-based hardmask removal
US9355856B2 (en)2014-09-122016-05-31Applied Materials, Inc.V trench dry etch
US9355863B2 (en)2012-12-182016-05-31Applied Materials, Inc.Non-local plasma oxide etch
US9368364B2 (en)2014-09-242016-06-14Applied Materials, Inc.Silicon etch process with tunable selectivity to SiO2 and other materials
US9373517B2 (en)2012-08-022016-06-21Applied Materials, Inc.Semiconductor processing with DC assisted RF power for improved control
US9373522B1 (en)2015-01-222016-06-21Applied Mateials, Inc.Titanium nitride removal
US9378978B2 (en)2014-07-312016-06-28Applied Materials, Inc.Integrated oxide recess and floating gate fin trimming
US9378969B2 (en)2014-06-192016-06-28Applied Materials, Inc.Low temperature gas-phase carbon removal
US9385028B2 (en)2014-02-032016-07-05Applied Materials, Inc.Air gap process
US9384997B2 (en)2012-11-202016-07-05Applied Materials, Inc.Dry-etch selectivity
US9390937B2 (en)2012-09-202016-07-12Applied Materials, Inc.Silicon-carbon-nitride selective etch
US9396989B2 (en)2014-01-272016-07-19Applied Materials, Inc.Air gaps between copper lines
US9406523B2 (en)2014-06-192016-08-02Applied Materials, Inc.Highly selective doped oxide removal method
US9412608B2 (en)2012-11-302016-08-09Applied Materials, Inc.Dry-etch for selective tungsten removal
US9418858B2 (en)2011-10-072016-08-16Applied Materials, Inc.Selective etch of silicon by way of metastable hydrogen termination
US9425058B2 (en)2014-07-242016-08-23Applied Materials, Inc.Simplified litho-etch-litho-etch process
US9437451B2 (en)2012-09-182016-09-06Applied Materials, Inc.Radical-component oxide etch
US9449850B2 (en)2013-03-152016-09-20Applied Materials, Inc.Processing systems and methods for halide scavenging
US9449845B2 (en)2012-12-212016-09-20Applied Materials, Inc.Selective titanium nitride etching
US9449846B2 (en)2015-01-282016-09-20Applied Materials, Inc.Vertical gate separation
US9472417B2 (en)2013-11-122016-10-18Applied Materials, Inc.Plasma-free metal etch
US9472412B2 (en)2013-12-022016-10-18Applied Materials, Inc.Procedure for etch rate consistency
US9478432B2 (en)2014-09-252016-10-25Applied Materials, Inc.Silicon oxide selective removal
US9496167B2 (en)2014-07-312016-11-15Applied Materials, Inc.Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en)2013-07-122016-11-15Applied Materials, Inc.Selective sputtering for pattern transfer
US9499898B2 (en)2014-03-032016-11-22Applied Materials, Inc.Layered thin film heater and method of fabrication
US9502258B2 (en)2014-12-232016-11-22Applied Materials, Inc.Anisotropic gap etch
US9553102B2 (en)2014-08-192017-01-24Applied Materials, Inc.Tungsten separation
US9576809B2 (en)2013-11-042017-02-21Applied Materials, Inc.Etch suppression with germanium
US9607856B2 (en)2013-03-052017-03-28Applied Materials, Inc.Selective titanium nitride removal
US9659753B2 (en)2014-08-072017-05-23Applied Materials, Inc.Grooved insulator to reduce leakage current
US9691645B2 (en)2015-08-062017-06-27Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9721789B1 (en)2016-10-042017-08-01Applied Materials, Inc.Saving ion-damaged spacers
US9728437B2 (en)2015-02-032017-08-08Applied Materials, Inc.High temperature chuck for plasma processing systems
US9741593B2 (en)2015-08-062017-08-22Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US9768034B1 (en)2016-11-112017-09-19Applied Materials, Inc.Removal methods for high aspect ratio structures
US9773648B2 (en)2013-08-302017-09-26Applied Materials, Inc.Dual discharge modes operation for remote plasma
US9842744B2 (en)2011-03-142017-12-12Applied Materials, Inc.Methods for etch of SiN films
US9865484B1 (en)2016-06-292018-01-09Applied Materials, Inc.Selective etch using material modification and RF pulsing
US9881805B2 (en)2015-03-022018-01-30Applied Materials, Inc.Silicon selective removal
US9885117B2 (en)2014-03-312018-02-06Applied Materials, Inc.Conditioned semiconductor system parts
US9887096B2 (en)2012-09-172018-02-06Applied Materials, Inc.Differential silicon oxide etch
US9934942B1 (en)2016-10-042018-04-03Applied Materials, Inc.Chamber with flow-through source
US9947549B1 (en)2016-10-102018-04-17Applied Materials, Inc.Cobalt-containing material removal
US9978564B2 (en)2012-09-212018-05-22Applied Materials, Inc.Chemical control features in wafer process equipment
US9976909B2 (en)2012-06-222018-05-22Veeco Instruments Inc.Control of stray radiation in a CVD chamber
US10026621B2 (en)2016-11-142018-07-17Applied Materials, Inc.SiN spacer profile patterning
US10043684B1 (en)2017-02-062018-08-07Applied Materials, Inc.Self-limiting atomic thermal etching systems and methods
US10043674B1 (en)2017-08-042018-08-07Applied Materials, Inc.Germanium etching systems and methods
US10049891B1 (en)2017-05-312018-08-14Applied Materials, Inc.Selective in situ cobalt residue removal
US10062585B2 (en)2016-10-042018-08-28Applied Materials, Inc.Oxygen compatible plasma source
US10062575B2 (en)2016-09-092018-08-28Applied Materials, Inc.Poly directional etch by oxidation
US10062587B2 (en)2012-07-182018-08-28Applied Materials, Inc.Pedestal with multi-zone temperature control and multiple purge capabilities
US10062579B2 (en)2016-10-072018-08-28Applied Materials, Inc.Selective SiN lateral recess
US10062578B2 (en)2011-03-142018-08-28Applied Materials, Inc.Methods for etch of metal and metal-oxide films
US10128086B1 (en)2017-10-242018-11-13Applied Materials, Inc.Silicon pretreatment for nitride removal
US10163696B2 (en)2016-11-112018-12-25Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US10170336B1 (en)2017-08-042019-01-01Applied Materials, Inc.Methods for anisotropic control of selective silicon removal
US10224210B2 (en)2014-12-092019-03-05Applied Materials, Inc.Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en)2016-11-142019-03-26Applied Materials, Inc.Airgap formation with damage-free copper
US10256079B2 (en)2013-02-082019-04-09Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en)2017-12-082019-04-09Applied Materials, Inc.Selective tungsten removal
US10283321B2 (en)2011-01-182019-05-07Applied Materials, Inc.Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en)2017-10-242019-05-07Applied Materials, Inc.Oxygen treatment for nitride etching
US10297458B2 (en)2017-08-072019-05-21Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US10319600B1 (en)2018-03-122019-06-11Applied Materials, Inc.Thermal silicon etch
US10319739B2 (en)2017-02-082019-06-11Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10319649B2 (en)2017-04-112019-06-11Applied Materials, Inc.Optical emission spectroscopy (OES) for remote plasma monitoring
US10354889B2 (en)2017-07-172019-07-16Applied Materials, Inc.Non-halogen etching of silicon-containing materials
US10403507B2 (en)2017-02-032019-09-03Applied Materials, Inc.Shaped etch profile with oxidation
US10424485B2 (en)2013-03-012019-09-24Applied Materials, Inc.Enhanced etching processes using remote plasma sources
US10431429B2 (en)2017-02-032019-10-01Applied Materials, Inc.Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en)2017-05-312019-11-05Applied Materials, Inc.Water-free etching methods
US10490406B2 (en)2018-04-102019-11-26Appled Materials, Inc.Systems and methods for material breakthrough
US10490418B2 (en)2014-10-142019-11-26Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10497573B2 (en)2018-03-132019-12-03Applied Materials, Inc.Selective atomic layer etching of semiconductor materials
US10504754B2 (en)2016-05-192019-12-10Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en)2015-08-272019-12-10Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en)2016-05-192019-12-31Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US10541246B2 (en)2017-06-262020-01-21Applied Materials, Inc.3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en)2017-07-112020-01-21Applied Materials, Inc.Optical emission spectroscopic techniques for monitoring etching
US10546729B2 (en)2016-10-042020-01-28Applied Materials, Inc.Dual-channel showerhead with improved profile
US10566206B2 (en)2016-12-272020-02-18Applied Materials, Inc.Systems and methods for anisotropic material breakthrough
US10573496B2 (en)2014-12-092020-02-25Applied Materials, Inc.Direct outlet toroidal plasma source
US10573527B2 (en)2018-04-062020-02-25Applied Materials, Inc.Gas-phase selective etching systems and methods
US10593523B2 (en)2014-10-142020-03-17Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en)2018-03-012020-03-17Applied Materials, Inc.Magnetic induction plasma source for semiconductor processes and equipment
US10615047B2 (en)2018-02-282020-04-07Applied Materials, Inc.Systems and methods to form airgaps
US10629473B2 (en)2016-09-092020-04-21Applied Materials, Inc.Footing removal for nitride spacer
US10672642B2 (en)2018-07-242020-06-02Applied Materials, Inc.Systems and methods for pedestal configuration
US10679870B2 (en)2018-02-152020-06-09Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en)2018-04-172020-06-30Applied Materials, Inc.Two piece electrode assembly with gap for plasma control
US10727080B2 (en)2017-07-072020-07-28Applied Materials, Inc.Tantalum-containing material removal
US10755941B2 (en)2018-07-062020-08-25Applied Materials, Inc.Self-limiting selective etching systems and methods
US10854426B2 (en)2018-01-082020-12-01Applied Materials, Inc.Metal recess for semiconductor structures
US10872778B2 (en)2018-07-062020-12-22Applied Materials, Inc.Systems and methods utilizing solid-phase etchants
US10886137B2 (en)2018-04-302021-01-05Applied Materials, Inc.Selective nitride removal
US10892198B2 (en)2018-09-142021-01-12Applied Materials, Inc.Systems and methods for improved performance in semiconductor processing
US10903054B2 (en)2017-12-192021-01-26Applied Materials, Inc.Multi-zone gas distribution systems and methods
US10920320B2 (en)2017-06-162021-02-16Applied Materials, Inc.Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en)2019-01-112021-02-16Applied Materials, Inc.Ceramic showerheads with conductive electrodes
US10943834B2 (en)2017-03-132021-03-09Applied Materials, Inc.Replacement contact process
US10964512B2 (en)2018-02-152021-03-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en)2018-09-142021-06-29Applied Materials, Inc.Semiconductor substrate supports with embedded RF shield
US11062887B2 (en)2018-09-172021-07-13Applied Materials, Inc.High temperature RF heater pedestals
US11121002B2 (en)2018-10-242021-09-14Applied Materials, Inc.Systems and methods for etching metals and metal derivatives
US11239061B2 (en)2014-11-262022-02-01Applied Materials, Inc.Methods and systems to enhance process uniformity
US11257693B2 (en)2015-01-092022-02-22Applied Materials, Inc.Methods and systems to improve pedestal temperature control
US11276559B2 (en)2017-05-172022-03-15Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en)2017-05-172022-03-15Applied Materials, Inc.Multi-zone semiconductor substrate supports
US11328909B2 (en)2017-12-222022-05-10Applied Materials, Inc.Chamber conditioning and removal processes
US11417534B2 (en)2018-09-212022-08-16Applied Materials, Inc.Selective material removal
US11437242B2 (en)2018-11-272022-09-06Applied Materials, Inc.Selective removal of silicon-containing materials
US11594428B2 (en)2015-02-032023-02-28Applied Materials, Inc.Low temperature chuck for plasma processing systems
US11682560B2 (en)2018-10-112023-06-20Applied Materials, Inc.Systems and methods for hafnium-containing film removal
US11721527B2 (en)2019-01-072023-08-08Applied Materials, Inc.Processing chamber mixing systems
US12340979B2 (en)2017-05-172025-06-24Applied Materials, Inc.Semiconductor processing chamber for improved precursor flow

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6685817B1 (en)1995-05-262004-02-03Formfactor, Inc.Method and apparatus for controlling plating over a face of a substrate
US6042712A (en)*1995-05-262000-03-28Formfactor, Inc.Apparatus for controlling plating over a face of a substrate
US6226452B1 (en)*1997-05-192001-05-01Texas Instruments IncorporatedRadiant chamber for simultaneous rapid die attach and lead frame embed for ceramic packaging
US5965047A (en)*1997-10-241999-10-12Steag AstRapid thermal processing (RTP) system with rotating substrate
WO2000031777A1 (en)1998-11-202000-06-02Steag Rtp Systems, Inc.Fast heating and cooling apparatus for semiconductor wafers
US6314214B1 (en)*1999-09-282001-11-06Corning IncorporatedSystem and method for measuring stress during processing of an optical fiber
US6783627B1 (en)*2000-01-202004-08-31Kokusai Semiconductor Equipment CorporationReactor with remote plasma system and method of processing a semiconductor substrate
US7037797B1 (en)*2000-03-172006-05-02Mattson Technology, Inc.Localized heating and cooling of substrates
US6544339B1 (en)2000-03-222003-04-08Micro C Technologies, Inc.Rectilinear wedge geometry for optimal process control in chemical vapor deposition and rapid thermal processing
US6970644B2 (en)*2000-12-212005-11-29Mattson Technology, Inc.Heating configuration for use in thermal processing chambers
US7015422B2 (en)*2000-12-212006-03-21Mattson Technology, Inc.System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
JP2003045818A (en)*2001-08-022003-02-14Hitachi Kokusai Electric Inc Substrate processing apparatus and method of manufacturing semiconductor device
US7037733B2 (en)*2001-10-302006-05-02Matsushita Electric Industrial Co., Ltd.Method for measuring temperature, annealing method and method for fabricating semiconductor device
DE10297622B4 (en)2001-12-262018-06-14Mattson Technology Inc. Temperature measurement and methods and systems for heat treatment
DE10229037A1 (en)*2002-06-282004-01-29Robert Bosch Gmbh Device and method for producing chlorine trifluoride and plant for etching semiconductor substrates with this device
WO2004057650A1 (en)2002-12-202004-07-08Mattson Technology Canada, Inc.Methods and systems for supporting a workpiece and for heat-treating the workpiece
JP5630935B2 (en)2003-12-192014-11-26マトソン テクノロジー、インコーポレイテッド Apparatus and apparatus for suppressing thermally induced motion of workpiece
SE0400582D0 (en)*2004-03-052004-03-05Forskarpatent I Uppsala Ab Method for in-line process control of the CIGS process
US20060281310A1 (en)*2005-06-082006-12-14Applied Materials, Inc.Rotating substrate support and methods of use
WO2008058397A1 (en)2006-11-152008-05-22Mattson Technology Canada, Inc.Systems and methods for supporting a workpiece during heat-treating
JP5718809B2 (en)2008-05-162015-05-13マトソン テクノロジー、インコーポレイテッド Method and apparatus for preventing destruction of workpieces
US9957617B2 (en)*2015-03-302018-05-01Samsung Electronics Co., Ltd.Deposition system for forming thin layer
KR102413349B1 (en)*2015-03-302022-06-29삼성전자주식회사equipment for deposition thin film
US11022877B2 (en)2017-03-132021-06-01Applied Materials, Inc.Etch processing system having reflective endpoint detection
CN112485272B (en)*2020-12-142021-11-09紫创(南京)科技有限公司Semiconductor detection device and detection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4550684A (en)1983-08-111985-11-05Genus, Inc.Cooled optical window for semiconductor wafer heating
US4680447A (en)1983-08-111987-07-14Genus, Inc.Cooled optical window for semiconductor wafer heating
US4993358A (en)1989-07-281991-02-19Watkins-Johnson CompanyChemical vapor deposition reactor and method of operation
US5155336A (en)1990-01-191992-10-13Applied Materials, Inc.Rapid thermal heating apparatus and method
US5156461A (en)1991-05-171992-10-20Texas Instruments IncorporatedMulti-point pyrometry with real-time surface emissivity compensation
US5310260A (en)1990-04-101994-05-10Luxtron CorporationNon-contact optical techniques for measuring surface conditions
US5366002A (en)1993-05-051994-11-22Applied Materials, Inc.Apparatus and method to ensure heat transfer to and from an entire substrate during semiconductor processing
US5453124A (en)1992-12-301995-09-26Texas Instruments IncorporatedProgrammable multizone gas injector for single-wafer semiconductor processing equipment
US5531835A (en)1994-05-181996-07-02Applied Materials, Inc.Patterned susceptor to reduce electrostatic force in a CVD chamber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE4039007A1 (en)*1989-12-061991-06-13Hitachi Ltd INFRARED TEMPERATURE MEASURING DEVICE, CALIBRATION METHOD FOR THE DEVICE, INFRARED TEMPERATURE IMAGE MEASUREMENT METHOD, DEVICE FOR MEASURING THE SAME, HEATING DEVICE WITH MEASURING DEVICE, METHOD FOR CONTROLLING THE HEATING TEMPERATURE, AND VACUUM TEMPERATURE
JP2763222B2 (en)*1991-12-131998-06-11三菱電機株式会社 Chemical vapor deposition method, chemical vapor deposition processing system and chemical vapor deposition apparatus therefor
EP0612862A1 (en)*1993-02-241994-08-31Applied Materials, Inc.Measuring wafer temperatures

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4550684A (en)1983-08-111985-11-05Genus, Inc.Cooled optical window for semiconductor wafer heating
US4680447A (en)1983-08-111987-07-14Genus, Inc.Cooled optical window for semiconductor wafer heating
US4993358A (en)1989-07-281991-02-19Watkins-Johnson CompanyChemical vapor deposition reactor and method of operation
US5317492A (en)1990-01-191994-05-31Applied Materials, Inc.Rapid thermal heating apparatus and method
US5155336A (en)1990-01-191992-10-13Applied Materials, Inc.Rapid thermal heating apparatus and method
US5487127A (en)1990-01-191996-01-23Applied Materials, Inc.Rapid thermal heating apparatus and method utilizing plurality of light pipes
US5310260A (en)1990-04-101994-05-10Luxtron CorporationNon-contact optical techniques for measuring surface conditions
US5490728A (en)1990-04-101996-02-13Luxtron CorporationNon-contact optical techniques for measuring surface conditions
US5156461A (en)1991-05-171992-10-20Texas Instruments IncorporatedMulti-point pyrometry with real-time surface emissivity compensation
US5453124A (en)1992-12-301995-09-26Texas Instruments IncorporatedProgrammable multizone gas injector for single-wafer semiconductor processing equipment
US5366002A (en)1993-05-051994-11-22Applied Materials, Inc.Apparatus and method to ensure heat transfer to and from an entire substrate during semiconductor processing
US5566744A (en)1993-05-051996-10-22Applied Materials, Inc.Apparatus and method to ensure heat transfer to and from an entire substrate during semiconductor processing
US5531835A (en)1994-05-181996-07-02Applied Materials, Inc.Patterned susceptor to reduce electrostatic force in a CVD chamber

Cited By (201)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8067578B2 (en)1996-04-172011-11-29Affymetrix, Inc.Substrate preparation process
US20050181431A1 (en)*1996-04-172005-08-18Affymetrix, Inc.Substrate preparation process
US20060160099A1 (en)*1996-04-172006-07-20Affymetrix, Inc.Substrate preparation process
US8637434B2 (en)1996-04-172014-01-28Affymetrix, Inc.System for photolithographic synthesis of polymer arrays
US20090062148A1 (en)*1996-04-172009-03-05Affymetrix, Inc.Substrate preparation process
US8309496B2 (en)1996-04-172012-11-13Affymetrix, Inc.Methods for photolithographic synthesis of polymer arrays utilizing anti-reflective coatings
US6965092B2 (en)2001-02-122005-11-15Hitachi Kokusai Electric, Inc.Ultra fast rapid thermal processing chamber and method of use
US20020111043A1 (en)*2001-02-122002-08-15Imad MahawiliUltra fast rapid thermal processing chamber and method of use
US20030046034A1 (en)*2001-09-062003-03-06Dainippon Screen Mfg. Co., Ltd.Substrate processing system managing apparatus information of substrate processing apparatus
US7280883B2 (en)*2001-09-062007-10-09Dainippon Screen Mfg. Co., Ltd.Substrate processing system managing apparatus information of substrate processing apparatus
US20060216417A1 (en)*2005-03-102006-09-28Todd Michael ASystem for control of gas injectors
US8088223B2 (en)2005-03-102012-01-03Asm America, Inc.System for control of gas injectors
US20120231558A1 (en)*2005-07-052012-09-13Mattson Technology, IncMethod and system for determining optical properties of semiconductor wafers
US8696197B2 (en)*2005-07-052014-04-15Mattson Technology, Inc.Method and system for determining optical properties of semiconductor wafers
US8067061B2 (en)2007-10-252011-11-29Asm America, Inc.Reaction apparatus having multiple adjustable exhaust ports
US20090110826A1 (en)*2007-10-252009-04-30Asm America, Inc.Reaction apparatus having multiple adjustable exhaust ports
US9551069B2 (en)2007-10-252017-01-24Asm America, Inc.Reaction apparatus having multiple adjustable exhaust ports
US20100255658A1 (en)*2009-04-072010-10-07Asm America, Inc.Substrate reactor with adjustable injectors for mixing gases within reaction chamber
US8486191B2 (en)2009-04-072013-07-16Asm America, Inc.Substrate reactor with adjustable injectors for mixing gases within reaction chamber
US9754800B2 (en)2010-05-272017-09-05Applied Materials, Inc.Selective etch for silicon films
US9324576B2 (en)2010-05-272016-04-26Applied Materials, Inc.Selective etch for silicon films
US10283321B2 (en)2011-01-182019-05-07Applied Materials, Inc.Semiconductor processing system and methods using capacitively coupled plasma
US9842744B2 (en)2011-03-142017-12-12Applied Materials, Inc.Methods for etch of SiN films
US10062578B2 (en)2011-03-142018-08-28Applied Materials, Inc.Methods for etch of metal and metal-oxide films
US9418858B2 (en)2011-10-072016-08-16Applied Materials, Inc.Selective etch of silicon by way of metastable hydrogen termination
US9448119B2 (en)*2012-06-222016-09-20Veeco Instruments Inc.Radiation thermometer using off-focus telecentric optics
US9976909B2 (en)2012-06-222018-05-22Veeco Instruments Inc.Control of stray radiation in a CVD chamber
US20130343425A1 (en)*2012-06-222013-12-26Guray TasRadiation thermometer using off-focus telecentric optics
US10062587B2 (en)2012-07-182018-08-28Applied Materials, Inc.Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en)2012-08-022018-07-24Applied Materials, Inc.Semiconductor processing with DC assisted RF power for improved control
US9373517B2 (en)2012-08-022016-06-21Applied Materials, Inc.Semiconductor processing with DC assisted RF power for improved control
US9887096B2 (en)2012-09-172018-02-06Applied Materials, Inc.Differential silicon oxide etch
US9437451B2 (en)2012-09-182016-09-06Applied Materials, Inc.Radical-component oxide etch
US9390937B2 (en)2012-09-202016-07-12Applied Materials, Inc.Silicon-carbon-nitride selective etch
US9978564B2 (en)2012-09-212018-05-22Applied Materials, Inc.Chemical control features in wafer process equipment
US20140099794A1 (en)*2012-09-212014-04-10Applied Materials, Inc.Radical chemistry modulation and control using multiple flow pathways
US11264213B2 (en)2012-09-212022-03-01Applied Materials, Inc.Chemical control features in wafer process equipment
US10354843B2 (en)2012-09-212019-07-16Applied Materials, Inc.Chemical control features in wafer process equipment
US9384997B2 (en)2012-11-202016-07-05Applied Materials, Inc.Dry-etch selectivity
US9412608B2 (en)2012-11-302016-08-09Applied Materials, Inc.Dry-etch for selective tungsten removal
US9355863B2 (en)2012-12-182016-05-31Applied Materials, Inc.Non-local plasma oxide etch
US9449845B2 (en)2012-12-212016-09-20Applied Materials, Inc.Selective titanium nitride etching
US10256079B2 (en)2013-02-082019-04-09Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en)2013-02-082021-06-01Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en)2013-03-012019-09-24Applied Materials, Inc.Enhanced etching processes using remote plasma sources
US9607856B2 (en)2013-03-052017-03-28Applied Materials, Inc.Selective titanium nitride removal
US9704723B2 (en)2013-03-152017-07-11Applied Materials, Inc.Processing systems and methods for halide scavenging
US9659792B2 (en)2013-03-152017-05-23Applied Materials, Inc.Processing systems and methods for halide scavenging
US9449850B2 (en)2013-03-152016-09-20Applied Materials, Inc.Processing systems and methods for halide scavenging
US9493879B2 (en)2013-07-122016-11-15Applied Materials, Inc.Selective sputtering for pattern transfer
US9773648B2 (en)2013-08-302017-09-26Applied Materials, Inc.Dual discharge modes operation for remote plasma
US9576809B2 (en)2013-11-042017-02-21Applied Materials, Inc.Etch suppression with germanium
US9711366B2 (en)2013-11-122017-07-18Applied Materials, Inc.Selective etch for metal-containing materials
US9472417B2 (en)2013-11-122016-10-18Applied Materials, Inc.Plasma-free metal etch
US9520303B2 (en)2013-11-122016-12-13Applied Materials, Inc.Aluminum selective etch
US9472412B2 (en)2013-12-022016-10-18Applied Materials, Inc.Procedure for etch rate consistency
US9287095B2 (en)2013-12-172016-03-15Applied Materials, Inc.Semiconductor system assemblies and methods of operation
US9287134B2 (en)2014-01-172016-03-15Applied Materials, Inc.Titanium oxide etch
US9396989B2 (en)2014-01-272016-07-19Applied Materials, Inc.Air gaps between copper lines
US9293568B2 (en)2014-01-272016-03-22Applied Materials, Inc.Method of fin patterning
US9385028B2 (en)2014-02-032016-07-05Applied Materials, Inc.Air gap process
US9499898B2 (en)2014-03-032016-11-22Applied Materials, Inc.Layered thin film heater and method of fabrication
US9299575B2 (en)2014-03-172016-03-29Applied Materials, Inc.Gas-phase tungsten etch
US9837249B2 (en)2014-03-202017-12-05Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9564296B2 (en)2014-03-202017-02-07Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en)2014-03-202016-03-29Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en)2014-03-202016-03-29Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en)2014-03-312018-02-27Applied Materials, Inc.Generation of compact alumina passivation layers on aluminum plasma equipment components
US9885117B2 (en)2014-03-312018-02-06Applied Materials, Inc.Conditioned semiconductor system parts
US9269590B2 (en)2014-04-072016-02-23Applied Materials, Inc.Spacer formation
US10465294B2 (en)2014-05-282019-11-05Applied Materials, Inc.Oxide and metal removal
US9309598B2 (en)2014-05-282016-04-12Applied Materials, Inc.Oxide and metal removal
US9378969B2 (en)2014-06-192016-06-28Applied Materials, Inc.Low temperature gas-phase carbon removal
US9406523B2 (en)2014-06-192016-08-02Applied Materials, Inc.Highly selective doped oxide removal method
US9425058B2 (en)2014-07-242016-08-23Applied Materials, Inc.Simplified litho-etch-litho-etch process
US9378978B2 (en)2014-07-312016-06-28Applied Materials, Inc.Integrated oxide recess and floating gate fin trimming
US9496167B2 (en)2014-07-312016-11-15Applied Materials, Inc.Integrated bit-line airgap formation and gate stack post clean
US9773695B2 (en)2014-07-312017-09-26Applied Materials, Inc.Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en)2014-08-072017-05-23Applied Materials, Inc.Grooved insulator to reduce leakage current
US9553102B2 (en)2014-08-192017-01-24Applied Materials, Inc.Tungsten separation
US9355856B2 (en)2014-09-122016-05-31Applied Materials, Inc.V trench dry etch
US9368364B2 (en)2014-09-242016-06-14Applied Materials, Inc.Silicon etch process with tunable selectivity to SiO2 and other materials
US9355862B2 (en)2014-09-242016-05-31Applied Materials, Inc.Fluorine-based hardmask removal
US9478434B2 (en)2014-09-242016-10-25Applied Materials, Inc.Chlorine-based hardmask removal
US9837284B2 (en)2014-09-252017-12-05Applied Materials, Inc.Oxide etch selectivity enhancement
US9478432B2 (en)2014-09-252016-10-25Applied Materials, Inc.Silicon oxide selective removal
US9613822B2 (en)2014-09-252017-04-04Applied Materials, Inc.Oxide etch selectivity enhancement
US10593523B2 (en)2014-10-142020-03-17Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US10490418B2 (en)2014-10-142019-11-26Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en)2014-10-142020-07-07Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en)2014-10-142020-10-06Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11239061B2 (en)2014-11-262022-02-01Applied Materials, Inc.Methods and systems to enhance process uniformity
US11637002B2 (en)2014-11-262023-04-25Applied Materials, Inc.Methods and systems to enhance process uniformity
US9299583B1 (en)2014-12-052016-03-29Applied Materials, Inc.Aluminum oxide selective etch
US10224210B2 (en)2014-12-092019-03-05Applied Materials, Inc.Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en)2014-12-092020-02-25Applied Materials, Inc.Direct outlet toroidal plasma source
US9502258B2 (en)2014-12-232016-11-22Applied Materials, Inc.Anisotropic gap etch
US9343272B1 (en)2015-01-082016-05-17Applied Materials, Inc.Self-aligned process
US11257693B2 (en)2015-01-092022-02-22Applied Materials, Inc.Methods and systems to improve pedestal temperature control
US9373522B1 (en)2015-01-222016-06-21Applied Mateials, Inc.Titanium nitride removal
US9449846B2 (en)2015-01-282016-09-20Applied Materials, Inc.Vertical gate separation
US9728437B2 (en)2015-02-032017-08-08Applied Materials, Inc.High temperature chuck for plasma processing systems
US12009228B2 (en)2015-02-032024-06-11Applied Materials, Inc.Low temperature chuck for plasma processing systems
US11594428B2 (en)2015-02-032023-02-28Applied Materials, Inc.Low temperature chuck for plasma processing systems
US10468285B2 (en)2015-02-032019-11-05Applied Materials, Inc.High temperature chuck for plasma processing systems
US9881805B2 (en)2015-03-022018-01-30Applied Materials, Inc.Silicon selective removal
US10468276B2 (en)2015-08-062019-11-05Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US9741593B2 (en)2015-08-062017-08-22Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US10607867B2 (en)2015-08-062020-03-31Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10147620B2 (en)2015-08-062018-12-04Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US11158527B2 (en)2015-08-062021-10-26Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US9691645B2 (en)2015-08-062017-06-27Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en)2015-08-072016-05-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US10424463B2 (en)2015-08-072019-09-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US10424464B2 (en)2015-08-072019-09-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US11476093B2 (en)2015-08-272022-10-18Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en)2015-08-272019-12-10Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en)2016-05-192019-12-31Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en)2016-05-192019-12-10Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en)2016-05-192023-08-22Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US12057329B2 (en)2016-06-292024-08-06Applied Materials, Inc.Selective etch using material modification and RF pulsing
US9865484B1 (en)2016-06-292018-01-09Applied Materials, Inc.Selective etch using material modification and RF pulsing
US10062575B2 (en)2016-09-092018-08-28Applied Materials, Inc.Poly directional etch by oxidation
US10629473B2 (en)2016-09-092020-04-21Applied Materials, Inc.Footing removal for nitride spacer
US10062585B2 (en)2016-10-042018-08-28Applied Materials, Inc.Oxygen compatible plasma source
US10224180B2 (en)2016-10-042019-03-05Applied Materials, Inc.Chamber with flow-through source
US10546729B2 (en)2016-10-042020-01-28Applied Materials, Inc.Dual-channel showerhead with improved profile
US10541113B2 (en)2016-10-042020-01-21Applied Materials, Inc.Chamber with flow-through source
US9934942B1 (en)2016-10-042018-04-03Applied Materials, Inc.Chamber with flow-through source
US9721789B1 (en)2016-10-042017-08-01Applied Materials, Inc.Saving ion-damaged spacers
US11049698B2 (en)2016-10-042021-06-29Applied Materials, Inc.Dual-channel showerhead with improved profile
US10319603B2 (en)2016-10-072019-06-11Applied Materials, Inc.Selective SiN lateral recess
US10062579B2 (en)2016-10-072018-08-28Applied Materials, Inc.Selective SiN lateral recess
US9947549B1 (en)2016-10-102018-04-17Applied Materials, Inc.Cobalt-containing material removal
US10163696B2 (en)2016-11-112018-12-25Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US10770346B2 (en)2016-11-112020-09-08Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US10186428B2 (en)2016-11-112019-01-22Applied Materials, Inc.Removal methods for high aspect ratio structures
US9768034B1 (en)2016-11-112017-09-19Applied Materials, Inc.Removal methods for high aspect ratio structures
US10026621B2 (en)2016-11-142018-07-17Applied Materials, Inc.SiN spacer profile patterning
US10242908B2 (en)2016-11-142019-03-26Applied Materials, Inc.Airgap formation with damage-free copper
US10600639B2 (en)2016-11-142020-03-24Applied Materials, Inc.SiN spacer profile patterning
US10566206B2 (en)2016-12-272020-02-18Applied Materials, Inc.Systems and methods for anisotropic material breakthrough
US10903052B2 (en)2017-02-032021-01-26Applied Materials, Inc.Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en)2017-02-032019-09-03Applied Materials, Inc.Shaped etch profile with oxidation
US10431429B2 (en)2017-02-032019-10-01Applied Materials, Inc.Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en)2017-02-062018-08-07Applied Materials, Inc.Self-limiting atomic thermal etching systems and methods
US10325923B2 (en)2017-02-082019-06-18Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10529737B2 (en)2017-02-082020-01-07Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10319739B2 (en)2017-02-082019-06-11Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10943834B2 (en)2017-03-132021-03-09Applied Materials, Inc.Replacement contact process
US10319649B2 (en)2017-04-112019-06-11Applied Materials, Inc.Optical emission spectroscopy (OES) for remote plasma monitoring
US12340979B2 (en)2017-05-172025-06-24Applied Materials, Inc.Semiconductor processing chamber for improved precursor flow
US11276559B2 (en)2017-05-172022-03-15Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en)2017-05-172022-03-15Applied Materials, Inc.Multi-zone semiconductor substrate supports
US11361939B2 (en)2017-05-172022-06-14Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en)2017-05-172024-02-27Applied Materials, Inc.Multi-zone semiconductor substrate supports
US10049891B1 (en)2017-05-312018-08-14Applied Materials, Inc.Selective in situ cobalt residue removal
US10468267B2 (en)2017-05-312019-11-05Applied Materials, Inc.Water-free etching methods
US10497579B2 (en)2017-05-312019-12-03Applied Materials, Inc.Water-free etching methods
US10920320B2 (en)2017-06-162021-02-16Applied Materials, Inc.Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en)2017-06-262020-01-21Applied Materials, Inc.3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en)2017-07-072020-07-28Applied Materials, Inc.Tantalum-containing material removal
US10541184B2 (en)2017-07-112020-01-21Applied Materials, Inc.Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en)2017-07-172019-07-16Applied Materials, Inc.Non-halogen etching of silicon-containing materials
US10593553B2 (en)2017-08-042020-03-17Applied Materials, Inc.Germanium etching systems and methods
US10043674B1 (en)2017-08-042018-08-07Applied Materials, Inc.Germanium etching systems and methods
US10170336B1 (en)2017-08-042019-01-01Applied Materials, Inc.Methods for anisotropic control of selective silicon removal
US11101136B2 (en)2017-08-072021-08-24Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US10297458B2 (en)2017-08-072019-05-21Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US10283324B1 (en)2017-10-242019-05-07Applied Materials, Inc.Oxygen treatment for nitride etching
US10128086B1 (en)2017-10-242018-11-13Applied Materials, Inc.Silicon pretreatment for nitride removal
US10256112B1 (en)2017-12-082019-04-09Applied Materials, Inc.Selective tungsten removal
US10903054B2 (en)2017-12-192021-01-26Applied Materials, Inc.Multi-zone gas distribution systems and methods
US12148597B2 (en)2017-12-192024-11-19Applied Materials, Inc.Multi-zone gas distribution systems and methods
US11328909B2 (en)2017-12-222022-05-10Applied Materials, Inc.Chamber conditioning and removal processes
US10861676B2 (en)2018-01-082020-12-08Applied Materials, Inc.Metal recess for semiconductor structures
US10854426B2 (en)2018-01-082020-12-01Applied Materials, Inc.Metal recess for semiconductor structures
US10964512B2 (en)2018-02-152021-03-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en)2018-02-152020-06-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en)2018-02-152020-06-09Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en)2018-02-282020-04-07Applied Materials, Inc.Systems and methods to form airgaps
US10593560B2 (en)2018-03-012020-03-17Applied Materials, Inc.Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en)2018-03-122021-05-11Applied Materials, Inc.Thermal silicon etch
US10319600B1 (en)2018-03-122019-06-11Applied Materials, Inc.Thermal silicon etch
US10497573B2 (en)2018-03-132019-12-03Applied Materials, Inc.Selective atomic layer etching of semiconductor materials
US10573527B2 (en)2018-04-062020-02-25Applied Materials, Inc.Gas-phase selective etching systems and methods
US10490406B2 (en)2018-04-102019-11-26Appled Materials, Inc.Systems and methods for material breakthrough
US10699879B2 (en)2018-04-172020-06-30Applied Materials, Inc.Two piece electrode assembly with gap for plasma control
US10886137B2 (en)2018-04-302021-01-05Applied Materials, Inc.Selective nitride removal
US10872778B2 (en)2018-07-062020-12-22Applied Materials, Inc.Systems and methods utilizing solid-phase etchants
US10755941B2 (en)2018-07-062020-08-25Applied Materials, Inc.Self-limiting selective etching systems and methods
US10672642B2 (en)2018-07-242020-06-02Applied Materials, Inc.Systems and methods for pedestal configuration
US10892198B2 (en)2018-09-142021-01-12Applied Materials, Inc.Systems and methods for improved performance in semiconductor processing
US11049755B2 (en)2018-09-142021-06-29Applied Materials, Inc.Semiconductor substrate supports with embedded RF shield
US11062887B2 (en)2018-09-172021-07-13Applied Materials, Inc.High temperature RF heater pedestals
US11417534B2 (en)2018-09-212022-08-16Applied Materials, Inc.Selective material removal
US11682560B2 (en)2018-10-112023-06-20Applied Materials, Inc.Systems and methods for hafnium-containing film removal
US11121002B2 (en)2018-10-242021-09-14Applied Materials, Inc.Systems and methods for etching metals and metal derivatives
US11437242B2 (en)2018-11-272022-09-06Applied Materials, Inc.Selective removal of silicon-containing materials
US11721527B2 (en)2019-01-072023-08-08Applied Materials, Inc.Processing chamber mixing systems
US10920319B2 (en)2019-01-112021-02-16Applied Materials, Inc.Ceramic showerheads with conductive electrodes

Also Published As

Publication numberPublication date
JP3018246B2 (en)2000-03-13
KR19990023542A (en)1999-03-25
US5814365A (en)1998-09-29
KR100367807B1 (en)2003-02-19
DE69811577D1 (en)2003-04-03
ATE233430T1 (en)2003-03-15
JPH11162992A (en)1999-06-18
DE69811577T2 (en)2004-02-19
EP0898302B1 (en)2003-02-26
EP0898302A1 (en)1999-02-24
TW538425B (en)2003-06-21

Similar Documents

PublicationPublication DateTitle
USRE37546E1 (en)Reactor and method of processing a semiconductor substrate
KR100564788B1 (en) Substrate Temperature Measurement System and Temperature Measurement Method
US6200634B1 (en)Thermal processing system with supplemental resistive heater and shielded optical pyrometry
EP1163499B1 (en)Determination of the substrate temperature by measuring the thickness of a copper oxide layer
US7691204B2 (en)Film formation apparatus and methods including temperature and emissivity/pattern compensation
KR101047088B1 (en) Device temperature control and pattern compensation device method
JP5004401B2 (en) Method and apparatus for controlling temperature uniformity of a substrate
US6122439A (en)Rapid thermal heating apparatus and method
US5937142A (en)Multi-zone illuminator for rapid thermal processing
US7977258B2 (en)Method and system for thermally processing a plurality of wafer-shaped objects
US7575370B2 (en)Heat treatment apparatus and method of calibrating the apparatus
EP0801292B1 (en)Self-calibrating temperature probe
US6204484B1 (en)System for measuring the temperature of a semiconductor wafer during thermal processing
US6262397B1 (en)Heat treatment apparatus and heat treatment method
WO1998051843A1 (en)A method and apparatus for achieving temperature uniformity of a substrate
JP3551609B2 (en) Heat treatment equipment
US6864463B2 (en)Substrate processing apparatus and semiconductor device producing method
US8172950B2 (en)Substrate processing apparatus and semiconductor device producing method
CN117737692A (en)Temperature control system, chemical vapor deposition equipment and method
US6261372B1 (en)Vacuum process system
EP3931369A1 (en)Device and method to provide planarity of a wafer during growth
JPH1025577A (en)Formed film treating device
JP2006237516A (en) Substrate processing equipment
JP2006310535A (en) Substrate processing equipment
KR20070002273A (en) Semiconductor substrate processing equipment

Legal Events

DateCodeTitleDescription
FPAYFee payment

Year of fee payment:4

SULPSurcharge for late payment
ASAssignment

Owner name:KOKUSAI SEMICONDUCTOR EQUIPMENT CORPORATION, CALIF

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRO C TECHNOLOGIES, INC.;REEL/FRAME:014709/0282

Effective date:20031110

FPAYFee payment

Year of fee payment:8

CCCertificate of correction
REMIMaintenance fee reminder mailed
LAPSLapse for failure to pay maintenance fees

[8]ページ先頭

©2009-2025 Movatter.jp