Movatterモバイル変換


[0]ホーム

URL:


USRE35816E - Method and apparatus for three-dimensional non-contact shape sensing - Google Patents

Method and apparatus for three-dimensional non-contact shape sensing
Download PDF

Info

Publication number
USRE35816E
USRE35816EUS08/415,126US41512695AUSRE35816EUS RE35816 EUSRE35816 EUS RE35816EUS 41512695 AUS41512695 AUS 41512695AUS RE35816 EUSRE35816 EUS RE35816E
Authority
US
United States
Prior art keywords
iaddend
iadd
relation
scanner
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/415,126
Inventor
Waldean A. Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bank of Montreal
Image Guided Technologies Inc
Original Assignee
Image Guided Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filedlitigationCriticalhttps://patents.darts-ip.com/?family=24391805&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE35816(E)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Image Guided Technologies IncfiledCriticalImage Guided Technologies Inc
Priority to US08/415,126priorityCriticalpatent/USRE35816E/en
Application grantedgrantedCritical
Publication of USRE35816EpublicationCriticalpatent/USRE35816E/en
Assigned to SILICON VALLEY BANKreassignmentSILICON VALLEY BANKSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: IMAGE GUIDED TECHNOLOGIES, INC., A CORPORATION OF COLORADO, F/K/A PIXSYS, INC., SPRINGFIELD SURGICAL INSTRUMENTS, A CORPORATION OF MASSACHUSETTS, F/K/A BRIMFIELD PRECISION, INC.
Assigned to BANK OF MONTREALreassignmentBANK OF MONTREALASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: NORTHERN DIGITAL INC.
Assigned to BANK OF MONTREALreassignmentBANK OF MONTREALASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: NORTHERN DIGITAL INC.
Assigned to BMO CAPITAL CORPOORATIONreassignmentBMO CAPITAL CORPOORATIONSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: NORTHERN DIGITAL INC.
Assigned to BMO CAPTIAL CORPORATIONreassignmentBMO CAPTIAL CORPORATIONSECURITY AGREEMENTAssignors: NORTHERN DIGITAL INC.
Assigned to BANK OF MONTREALreassignmentBANK OF MONTREALSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: NORTHERN DIGITAL INC.
Assigned to BMO CAPITAL CORPORATIONreassignmentBMO CAPITAL CORPORATIONCORRECTION OF ASSINGEE INFORMATION FROM "BMO CAPTIAL CORPOORATION" TO "BMO CAPITAL CORPORATION"Assignors: NORTHERN DIGITAL INC.
Assigned to NORTHERN DIGITAL INC.reassignmentNORTHERN DIGITAL INC.RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: BANK OF MONTREAL
Assigned to NORTHERN DIGITAL INC.reassignmentNORTHERN DIGITAL INC.RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: BMO CAPITAL CORPORATION
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

This method and apparatus optically samples numerous points on the surface of an object to remotely sense its shape utilizing two stages. The first stage employs a moveable non-contact scanner, which in normal operation sweeps a narrow beam of light across the object, illuminating a single point of the object at any given instant in time. The location of that point relative to the scanner is sensed by multiple linear photodetector arrays behind lenses in the scanner. These sense the location by measuring the relative angular parallax of the point. The second stage employs multiple fixed but widely separated photoelectronic sensors, similar to those in the scanner, to detect the locations of several light sources affixed to the scanner, thereby defining the absolute spatial positions and orientations of the scanner. Individual light sources are distinguished by time-multiplexing their on-off states. A coordinate computer calculates the absolute spatial positions where the scanner light beam is incident on the object at a given instant and continuously on a real time basis to generate a computer model of the object.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to optical mensuration devices in general, and in particular to an improved method and apparatus for the optical mensuration of the surface shape of a three-dimensional object.
2. Brief Description of the Prior Art
Numerous mensuration systems exist in the prior art for sensing the locations of surface points on three-dimensional solid objects in relation to a predefined fixed reference frame or coordinate system for input into an application system, such as a computer or other device for measurement or analysis. For example, one type of mensuration system that can be used to determine the location of a single point on the surface of an object includes the use of a narrow projected beam of light to illuminate a tiny area or spot on the surface of the object. A lens in the system is positioned on an optical axis oblique to the axis of the projected beam and is used to focus the reflected light from the illuminated spot onto a photoelectric sensor or onto a linear array of sensors. Since the optical axis of the lens and sensor assembly in that type of system is not coincident with the axis of the projected beam, the position of the image of the illuminated spot on the sensor will depend on the location of the particular illuminated surface point with respect to the illuminating beam. Therefore, the location of the illuminated point with respect to the predetermined reference frame can be determined by computing the distance of the illuminated surface point from the origin of the light beam which, of course, is known. Examples of such point illumination optical mensuration systems are found in the following U.S. Pat. Nos. 4,660,970; 4,701,049; 4,705,395; 4,709,156; 4,733,969; 4,743,770; 4,753,528; 4,761,072; 4,764,016; 4,782,239; and 4,825,091.
Of course, to determine the overall shape of an object, numerous individual surface points, along with their respective locations, must be measured and recorded. Such optical measurement of multiple surface points of an object is typically accomplished by mounting the beam projector on a moveable scanning head capable of being moved from point-to-point with very high precision, such as the type commonly found on numerically controlled milling machines. By precisely moving the beam projector mounted on the scanning head in a raster-like scanning pattern, it is possible to measure the surface shape of the object being scanned by measuring the individual locations of surface points individually illuminated by the point-like scanning beam as it is scanned over the object's surface. Alternatively, the object itself can be moved while the scanning head remains stationary. One disadvantage of this type of system is that only one side of the object may be scanned at any one time, since other sides of the object are hidden by the side being scanned. Scanning of these hidden sides can only be accomplished by relocating either the scanning head or the object to expos the previously hidden surfaces to the scanning beam. Obviously, such a relocation requires time and precision equipment to keep track of the changed position of the scanning head, or the object in relation to the fixed reference frame so that the new surface data will correspond to the previously obtained surface data. Helical or three-dimensional scanning heads solve this problem by allowing the entire object to be scanned at once. However, such helical systems are relatively expensive, since they require complex mechanical apparatus to move the scanning head around the object in three-dimensions.
Regardless of the scanning method used, however, deep holes, overhangs, undercuts, and surfaces nearly parallel to the axis of the scanning beam reduce the accuracy of the system, since it is difficult to accurately measure these points, if they can even be illuminated by the scanning beam at all. For example, such systems cannot completely scan the inside, outside, and handle details of a coffee cup without requiring the scanning apparatus to be relocated or the object to be reoriented so that the inside surfaces or other surfaces previously hidden from the scanning beam can be illuminated by the beam, thus measured and recorded. As discussed earlier, such re-locations or re-orientations have the disadvantage of having to recalibrate the scanning apparatus, or otherwise recorrelate the new surface points with respect to the original coordinate system. Moreover, even if such relocations or reorientations are not required, such as in the case of a helical scanning apparatus, there is still a severe loss of accuracy when scanning near the top or bottom of a rounded object, unless the scanning head and detector are relocated to better illuminate and detect such points. Furthermore, these types of systems are not very portable or adaptable since they require high precision electro-mechanical or other apparatus to accurately move the scanning heads (or the object) and define their positions in relation to the predetermined reference frames. Therefore, all these prior art scanning systems will usually require some type of relocation of the scanning apparatus or reorientation of the object to completely measure and record all of the surface details.
A variant of the above-described systems projects a thin beam of light in a single plane which, of course, is incident as a line, as opposed to a point, on the surface of the object being scanned. The intersection of this plane of light with the object's surface thus forms a brightly illuminated contour line. A two-dimensional electronic video camera or similar device whose optical axis is not coincident with the axis of the illuminating beam, detects the image of this contour line. Again, since the optical axis of the camera is not coincident with the axis of the illuminating light beam, it views the contour line from an oblique angle, thus allowing location of the contour line to be precisely determined in relation to the known position of the beam projector. Examples of inventions using this type of system are found in the following U.S. Pat. Nos. 4,821,200; 4,701,047; 4,705,401; 4,737,032; 4,745,290; 4,794,262; 4,821,200, 4,743,771; and 4,822,163.
To measure more than one contour line of an object, either the measuring apparatus or the object is panned along (or rotated about) an axis through the object. While these line scanning devices share similar drawbacks with the point scanning devices previously described, they do operate much faster, gathering a larger number of sample points during a given scanning interval. Unfortunately, the accuracy of each surface sample point is limited by the relatively low resolution of the two-dimensional charge coupled device (CCD) sensors found in most video cameras, which is typically in the range of 1 part in 512. Even worse, these systems still suffer the disadvantages of the point scanning systems in that either the scanning head or the object must be relocated or re-oriented to completely and accurately record all of the surface details of an object.
Still other mensuration systems track the positions of specific points in three-dimensional space by using small radiating emitters which move relative to fixed receiving sensors, or vice versa. Such radiation emitters may take the form of sound, light, or nutating magnetic fields. Another mensuration system uses a pair of video cameras plus a computer to calculate the position of homologous points in the pair of stereographic video images. See, for example, U.S. Pat. Nos. 4,836,778 and 4,829,373. The points tracked by this system may be passive reflectors or active light sources. The latter simplifies finding and distinguishing the points.
Additional prior art relevant to this patent application are found in the following references:
Burton, R. P.; Sutherland, I. E.; "Twinkle Box--a three dimemsional computer input device", National Computer Conference, AFIPS Proceedings,v 43, 1974, p 513-520;
Fischer, P.; Mesqui, F.; Kaeser, F.; "stereometric measurement system for quantification of object forms", SPIE Biostereometrics 602, 1985, p 52-57;
Fuchs, H.; Duran, J.; Johnson, B.; "Acquisition and Modeling of Human Body Form Data", Proc. SPIE, v 166, 1978, p 94-102;
Macellari, V.; "A Computer Peripheral Remote Sensing Device for 3-Dimensional; Monitoring of Human Motion", Med. & Biol. Eng. & Comput., 21, 1983, p 311-318;
Mesqui, F.; Kaeser, F.; Fischer, P.; "real-time, noninvasive recording and 3-d display of the functional movements of an arbitrary mandible point", SPIE Biostereometrics 602, 1985, p 77-84;
Yamashita Y.; Suzuki, N.; Oshima, M.; "Three-Dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, and Line Sensors", Proc. SPIE, v. 361, 1983, p. 67-73.
In particular, the paper by Fuchs, et al, (1978) describes a basic method of tracking a light source in three-dimensional space. The method is based on using three or more one-dimensional sensors, each consisting of a cylindrical lens and a linear array of photodetectors, such as charge coupled devices (CCDs), to determine the location of the currently radiating source.
Numerous other methods have been devised and patented for determining the position of a point along a line, within a plane, or in three-dimensional space. Devices employing these methods include photographic camera rangefinders, tablet digitizers, coordinate measuring machines, and surveying tools. Some exploit sound, magnetic fields, or mechanical apparatus for mensuration, and there are other devices employing x-rays, nuclear magnetic resonance, radar, sonar, and holography to sense the shapes of objects.
Unfortunately, each of the above mensuration systems has its own set of drawbacks, which include high cost, poor accuracy, poor resolutions, awkward or difficult use, limitations on geometrical complexity, excessive numerical computation, or slow measurement speed. Experience has shown that no single prior art system best suits all three-dimensional measurement applications. For example, there is no existing mensuration device that can perform even straightforward anatomical measurements of a person without significant drawbacks.
Thus, there remains a need for a non-contact, three-dimensional optical mensuration system which is capable of accurate, speedy, convenient, and inexpensive sensing of three-dimensional geometric shapes or objects. Ideally, the scanning head of such an improved system should be hand-held to allow the operator to easily move the scanning beam over some of the more complex surface details of the object while dispensing with the need for the expensive, cumbersome, and high precision scanning head positioning apparatus currently required. Such a hand-held scanner must also provide the accuracy and precision associated with currently available optical mensuration systems, that is, it must be able to accurately measure and precisely locate the surface details of the object in relation to the predetermined reference frame.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an improved, non-contact, three-dimensional optical mensuration system capable of accurately sensing the surface shapes of three-dimensional objects without the numerous drawbacks associated with the prior art systems.
It is another object of this invention to provide an optical mensuration system that is inexpensive, portable, and easy to use.
It is a further object of this invention to provide a three-dimensional optical mensuration system which can quickly scan the surface of the object without the need for expensive, complicated, and high precision mechanical positioning apparatus to position either the scanning head or the object being scanned.
A still further object of this invention is to provide a portable, hand-held, and hand-maneuverable scanner for the three-dimensional, non-contact shape-scanning and/or mensuration of three-dimensional objects.
Additional objects, advantages, and novel features of this invention shall be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by the practice of the invention. The objects and the advantages of the invention may be realized and attained by means of the instrumentalities and in combinations particularly pointed out in the appended claims.
To achieve the foregoing and other objects and in accordance with the purposes of the present invention, as embodied and broadly described herein, the apparatus for three-dimensional, non-contact shape sensing of this invention may comprise a hand held scanning head with a light source for projecting a scanning light beam over the surface of the object being scanned. Two spot detectors mounted on the hand-held scanning head are operative to detect the position of the illuminated spot on the surface of the object in relation to the scanning head. Three pilot light detectors, the positions of which are known with respect to a predetermined coordinate system, detect the positions of the three pilot light emitters positioned in spaced-apart relation on the scanning head as pilot light emitters are strobed in sequence. A coordinate computer connected to the scanning head and to the pilot light detectors receives data from the spot detectors and calculates the position of the illuminated spot with respect to the scanning head. The coordinate computer then calculates the various positions and orientations of the scanning head in relation to the predetermined coordinate system on a real time basis from the data received from the pilot light detectors. Finally, the coordinate computer calculates the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
The method of this invention includes the steps of sweeping a scanning beam projected from the hand held scanning head over the surface of the object being scanned to illuminate a spot on the surface of the object, detecting the position of the illuminated spot with respect to the scanning head, detecting the position of the scanning head in relation to a predetermined coordinate system, and computing the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and form a part of the specification illustrate preferred embodiments of the present invention, and together with the description, serve to explain the principles of the invention. In the drawings:
FIG. 1 is a block diagram of the optical mensuration apparatus of the present invention showing the major components;
FIG. 2 is a perspective view of the hand held scanning head of the present invention, showing how it can be positioned to direct the scanning beam onto the surface of the object being scanned;
FIG. 3 is a plan view of the scanning head of the present invention with the top surface broken away to more clearly show the arrangement of the optical projecting apparatus and the spot detectors;
FIG. 4 is a schematic perspective representation of one of the one-dimensional photodetectors of the present invention;
FIG. 5 is a schematic block diagram of the optical mensuration apparatus of the present invention showing in detail the functions and operations of the control unit and coordinate computer; and
FIG. 6 is a graph of signal strength vs. location on the detector surface for a typical light detector used by the optical mensuration apparatus of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The optical mensuration apparatus 10 of the present invention is shown schematically in FIG. 1 and comprises a hand-held ormoveable scanning head 12 housing light beam projecting apparatus 14 (not shown in FIG. 1, but shown in FIG. 3), two one-dimensional spot sensors ordetectors 16, 18, and threepilot light emitters 20, 22, and 24. Three remotely located, one-dimensionalpilot light sensors 26, 28, and 30 are mounted in fixed, spaced-apart relation to each other and are located at known positions with respect to a predetermined reference coordinate system orframe 80. These threepilot sensors 26, 28, and 30 sense the light projected by the individualpilot light emitters 20, 22, and 24 and generate electrical output signals from which are derived the location of thescanning head 12 with respect to the fixed coordinatesystem 80. Acontrol unit 32 connected to themoveable scanning head 12 viadata line 46 and connected to the remotely locatedsensors 26, 28, and 30 viadata lines 48, 50, and 52, respectively, synchronizes the time multiplexing of the threepilot emitters 20, 22, and 24, controls the operation of thebeam projecting apparatus 14, and receives data from the twospot sensors 16, 18 on scanninghead 12, as will be completely described below. A coordinatecomputer 34, connected to controlunit 32 bydata line 54 calculates the three-dimensional spatial coordinates of the illuminatedspot 36 in relation to the predetermined coordinatereference frame 80, which position information can then be used by anapplication system 82.
In operation, the lightbeam projecting apparatus 14 housed in the hand heldscanner head 12 directs a narrow beam of light orscanning beam 42 onto thesurface 40 ofobject 38 to illuminate a small portion orspot 36 on thesurface 40. Reflected light 43 from illuminatedspot 36 is detected by the two one-dimensional spot sensors ordetectors 16, 18 mounted onscanner head 12. Thesesensors 16, 18 sense the location of the illuminatedspot 36 with respect to the position of themoveable scanner 12 by measuring the relative angular parallax of the reflected light 43 fromilluminates spot 36. Next, the spatial position and orientation of themoveable scanner head 12 at that same instant are determined by measuring the locations of the three time multiplexedpilot light emitters 20, 22, and 24 relative to the known positions of thepilot light sensors 26, 28, and 30. Finally, the parallax data from each of thesensors 16, 18, 26, 28, and 30 are ultimately fed to the coordinatecomputer 34, which determines the position of the illuminatedspot 36 with respect to the predetermined reference frame by correlating the position of the illuminatedspot 36 in relation to thescanner head 12 with the position of thescanner 12 in relation to the fixedpilot light sensors 26, 28, and 30, which are positioned in relation to thepredetermined reference frame 80 at precisely predetermined locations at conveniently spaced distances from each other and from theobject 38 and the hand-heldscanner 12. If the computer can make these location or position calculations very fast, the operation can be performed over and over again in sequence as thescanner head 12 moves in relation to the object, thus resulting in effectively real time mensuration of the object as thescanner head 12 moves.
By using this two-stage measurement system, i.e., first measuring the location of the illuminatedspot 36 in relation to thescanning head 12 at a particular instant in time, and then determining the position of thescanning head 12 in relation to the predetermined reference frame at that same instant in time, the optical mensuration apparatus 10 of the present invention dispenses with the need for high precision head positioning apparatus and the complex and expensive mechanical structure typically associated therewith. Further, the hand-held scanner, 12 is easily manipulated by the operator to direct thescanning beam 42 over complex, interior, or blind surface details, which would otherwise be difficult to scan, thus speeding the scanning operation.
The details of the optical mensuration apparatus 10 of the present invention are best understood by referring to FIGS. 2, 3, and 4 simultaneously. Essentially, the hand-heldscanner head 12 houses the light beam projecting apparatus 14 (FIG. 3), the two one-dimensional spot sensors ordetectors 16, 18, and the threepilot light emitters 20, 22, and 24. Ahandle 44 allows thescanner head 12 to be easily manipulated by the operator to guide thescanning beam 42 over the various shapes and hidden contours of thesurface 40 ofobject 38.
In the preferred embodiment, the light beam projecting apparatus comprises a helium-neon (He-Ne)laser 56 to generate collimatedscanning beam 42. Of course, other devices could be used to produce the spot-like scanning beam as would be readily apparent to persons having ordinary skill in the art. For example,laser 56 could be replaced by a light emitting diode (LED) and associated collimating lens. Other sources and lens combinations are possible so long as the apparatus is capable of projecting a small, well defined beam of light on the surface of the object. Aplanar mirror 58, which could be optionally pivotally mounted as shown in FIG. 3, directsbeam 42 to a rotating many-faceted mirror 60, which directs, orscans beam 42 over thesurface 40 in a single plane relative to the scanner 12 (i.e., the plane of the paper in FIG. 3). Of course, the number of sides of the rotating, many-faceted mirror 60 determines the angle through whichscanning beam 42 sweeps. For example, the pentagonal mirror shown in FIG. 3 will sweep the beam through a 144-degree angle. More sides will sweep the beam through smaller angles. Moreover, other scanning paths are possible by using irregularly shaped mirrors or multiple rotating mirrors, and the present invention should not be regarded as limited by the particular scanning apparatus shown and described herein.
While therotating mirror 60 can be rotated in either direction with equal effectiveness, the rotatingmirror 60 in the preferred embodiment 10 is rotated in the direction indicated byarrow 62 by a simple, unsynchronized motor (not shown). As mentioned above,planar mirror 58 may be optionally pivotally mounted such that it can be swung out of the beam path to position 58' (shown in broken lines in FIG. 3) to inhibit the scanning action of thebeam 42. With the mirror at position 58' thebeam 42 will exit straight outaperture 64 inscanner 12 which can then be used as a point-type scanner or as a noncontact pointer for identifying some single point of interest on thesurface 40 ofobject 38.
The details of the one-dimensional spot detectors 16, 18 are best understood by referring to FIG. 4. Actually, all of the one-dimensional sensors 16, 18, 26, 28, and 30 used in the preferred embodiment 10 of the present invention are identical to the one-dimensional spot detector 16 in every respect. Therefore, for the purpose of giving a detailed description of this embodiment, only thesensor 16 is shown and described in detail since the remainingsensors 18, 26, 28, and 30 have identical features.
Referring now to FIG. 4, the one-dimensional sensor 16 comprises acylindrical lens 66 that has alongitudinal axis 74 which is orthogonal to theoptical axis 76 of thesensor 16. Alinear photodetector 68, such as a charge coupled device (CCD) with several thousand elements, or a similar device capable of linear light detection with anelongated aperture 78 is positioned in such a manner thatoptical axis 76 passes throughaperture 78 and such that the long axis ofaperture 78 is orthogonal to the plane containing thelongitudinal axis 74 oflens 66. Theincident light beam 43 reflected from illuminatedspot 36 is then focused by thecylindrical lens 66 into areal image line 72 on thesurface 70 oflinear photodetector 68, which is a characteristic of this type of lens.
TheCCD detector 68 then generates a signal, such as the one shown in FIG. 6, that is related to the position ofreal image line 72 on thesurface 70 ofphotodetector 68, thus characterizing the location of the image itself. That is, those elements of thedetector 68 illuminated by thereal image line 72 will generate a strong signal, while those not illuminated will generate a weak signal. Thus, a graph of signal strength vs. location on the surface of the CCD will resemble thesignal peak curve 100 shown in FIG. 6. Note that the "zero"signal level 102 is never quite zero due to the effects of background light and other imperfections in the sensor. In any event, since the image of illuminatedspot 36 is focused intoline 72, only the horizontal displacement ofspot 36 fromoptical axis 76 is measured bydetector 68, hence the designation "one-dimensional detector."
Thus, a single one-dimensional detector 16 can only locate the plane on whichspot 36 particular beam lies, butdetector 16 cannot, by itself, determine the unique location or position in space on whichpoint 36 is located. To precisely locate the location in space ofpoint 36 would require three such detectors postitioned in spaced-apart relation to each other, since the intersection of three planes defines a point. However, if the plane containing theaperture 78 ofdetector 16 is in the same plane as thescanning beam 42, only two detectors are required to uniquely locate the position ofspot 36. Therefore, in the preferred embodiment 10 of the present invention, theapertures 78 of therespective photodetectors 16, 18, lie in the same plane as thescanning beam 42, thereby allowing the exact point in space of illuminatedspot 36 to be determined with only twodetectors 16, 18.
The threepilot light emitters 20, 22, and 24 (FIGS. 1-3) can be high intensity light emitting diodes (LEDs), which are preferably time multiplexed or strobed bycontrol unit 32 in a predetermined manner such that only one pilot light LED is "on" or emitting light at any one time. The light emitted from any one of theseemitters 20, 22, and 24 is detected by each of the threepilot light detectors 26, 28, and 30, which then determine the position of that particular emitter in relation to the known positions of thedetectors 26, 28, and 30 at the instant in time that it is strobed or illuminated. To locate the position of a particular illuminated one ofemitters 20, 22, 24, thepilot light detectors 26, 28, and 30 are mounted so that their optical axes are not collinear. In the preferred embodiment, two pilot light detectors, such asdetectors 26, 30 in FIG. 1, are situated such that their respective axes 74 (FIG. 4) are in parallel spaced-apart relation, with thethird detector 28 situated between the first two, but with itsaxis 74 perpendicular to the first two. As described above, each of thedetectors 26, 28, and 30 then determine a unique plane in which the given pilot emitter lies, the intersection of which defines the exact location of that illuminated emitter.
While this process of detecting the position of a givenilluminated pilot emitter 20, 22, 24 can locate the exact position of the illuminated emitter, it cannot determine the particular orientation of theentire scanner head 12 in three-dimensions. To do so requires the detection of the locations of at least three spaced-apart emitters whose orientations with respect to one another are known. Therefore, the optical mensuration system 10 of the present invention determines the orientation of thescanning head 12 in three-dimensional space by using the three (3)pilot emitters 20, 22, and 24, whose relative positions on thescanning head 12 are fixed and known. Consequently, when each of theemitters 20, 22, and 24 are rapidly turned on in sequence, thesensors 26, 28, and 30 can detect the exact position of each emitter in turn, thus determine the exact location and orientation of thescanning head 12. Since only one of thepilot light emitters 20, 22, 24 is on at any one time, thedetectors 26, 28, 30 locate the position of that particular illuminated pilot light only. If the strobe rate, that is, the frequency at which theemitters 20, 22, 24 are turned on and off in sequence, is fast enough, thedetectors 26, 28, and 30 can, for all practical purposes, determine the position and orientation of thescanning head 12 at any instant in time.
Note that thedetectors 26, 28, 30, need only distinguish which of thepilot light emitters 20, 22, 24 is "on" or illuminated at any one time. In the preferred embodiment 10 of the present invention, this function is accomplished by strobing or illuminating each of theemitters 20, 22, 24 in sequence. However, other methods could be used to allow thedetectors 26, 28, 30 to distinguish the respectivepilot light emitters 20, 22, 24 from one another. For example, different colors of light could be used in conjunction with detectors capable of distinguishing those particular colors or wavelengths of light. Alternatively, the respectivepilot light emitters 20, 22, 24 could be modulated with a unique "tone" for each emitter. Thecontrol unit 32 or coordinatecomputer 34 could then be programmed to demodulate the tone, thus determine to whichparticular emitter 20, 22, or 24 the position signal belongs. Numerous other methods of distinguishing thepilot light emitters 20, 22, and 24 are possible and would be readily apparent to persons having ordinary skill in the art. Therefore, the present invention should not be regarded as limited to the particular strobing method shown and described herein.
The details of the structure and operation of thecontrol unit 32 are best seen in FIG. 5. Specifically,control unit 32 supplies power to the light beam projecting apparatus orsource 14, thebeam spot sensors 16, 18, the pilot light emitters orsources 20, 22, and 24, and thepilot light sensors 26, 28, and 30. The control and synchronization unit 84 andlight source sequencer 86 time multiplexes or strobes thebeam projecting apparatus 14 and thepilot lights 20, 22, and 24 individually, as described above, so that the position and orientation of thescanning head 12 can be determined from the signals received frompilot light sensors 26, 28 and 30. The angular data signals received from thepilot light sensors 26, 28, and 30 and from thespot sensors 16, 18, are converted by analog todigital converter 88. Actually, five analog to digital converters are used, as shown in FIG. 5, but only one is labeled and described herein for brevity, since the other four analog to digital converters are identical and are used to convert the signals fromsensors 28 and 30 and 16 and 18, respectively.
The control and synchronization unit 84 also controls five switches, of which switch 90 is typical, which store all digital data received from thesensors 26, 28, and 30 and 16 and 18 when the pilot light emitters andscanning beam 42 are "off," and stores these data inbackground memory 92. Then, when the pilot light sources and scanning beam are illuminated in sequence bylight source sequencer 86, the control and synchronization unit 84 changes the state ofswitch 90, which then redirects the data from the five sensors to thesubtraction unit 94.Subtraction unit 94 substracts the "background" data from the illuminated data, thus resulting in a signal relatively free from background noise signal 102 (FIG. 6), since it has been subtracted from the signal.
Referring now to FIGS. 4 and 6 in conjunction with FIG. 5, the first-last over-threshold unit 96 computes the location of thereal image line 72 on the CCD sensor 68 (FIG. 4) by measuring the locations of theedges 104, 106 of the signal blip 100 (FIG. 6) generated by the CCD sensor based on a predetermined threshold signal level. The first-last over-threshold unit 96 then averages the distance between the two edges to find the center of the signal peak, which is often dipped, as shown in FIG. 6. This particular method of determining the center of the signal peak is well known in the art and will not be described in further detail. Moreover, numerous other methods of determining the location of the signal peak are known in the art, and would be obvious to those having ordinary skill in the art. The particular method used would depend on the signal characteristics of the particular light sensor used, as well as the characteristics of the lens system used to focus the light onto the surface of the detector, as well as other parameters. Those practicing this invention with the various alternates described herein would have no trouble selecting a signal detection algorithm best suited to the particular characteristics of the sensors.
Finally, control unit 32 (FIG. 5) transmits the position data to the coordinatecomputer 34. That is, when the coordinatecomputer 34 is ready to compute the current location of the illuminatedspot 36 on the object, the latest angular data from all sensors are provided for analyzation. If thespot sensors 16, 18, or thepilot light sensors 26, 28, and 30, generate data faster than thecontrol unit 32 can process them, the angular data are simply discarded.
The details of the coordinatecomputer 34 are also best seen in FIG. 5. Essentially, the coordinatecomputer 34 calculates one-dimensional positions for each light source based on the location of the signal peak from each respective sensor. These one-dimensional positions are then used to calculate the three-dimensional spatial coordinates for the illuminatedspot 36 and for thescanning head 12 in relation to the predetermined coordinatesystem 80, by coordinate transformation methods which are well-known in the art. The output from the coordinatecomputer 34 can be in any form desired by the operator or required by theapplication system 80, such as XYZ coordinate triples based upon some predetermined stationary rectangular coordinate system.
The operation of the optical mensuration apparatus of the present invention is as follows. Upon illumination of aspot 36 on thesurface 40 ofobject 38, the twospot sensors 16, 18 inside thescanner head 12 sense the angular position of the illuminatedspot 36 at a given instant in time. The signals from thesespot sensors 16, 18, are directed to thecontrol unit 32 viadata line 46. Next, thepilot light detectors 26, 28, and 30 are used to sense the individual positions of the threepilot light emitters 20, 22, 24 in sequence as described above. That is, eachpilot light detector 26, 28, 30, measures the angle of rays from each of threepilot light emitters 20, 22, 24, mounted on thescanner 12. The angular data from each of thesesensors 26, 28, and 30 are also directed to controlunit 32 viadata lines 48, 50, and 52.
As described above, thecontrol unit 32 converts the angular data from each of thesensors 16, 18, 26, 28, and 30, which is in analog form, to digital data and tags these data with information identifying their respective sources. These converted digital data are then processed by removing the background noise and by using known signal detection methods to determine the center of the signal peak, thus the location of theimage line 72 on thedetector 68. These position locations of the centers of the respective signal peaks from eachdetector 16, 18, 26, 28, and 30 are then directed to coordinatecomputer 34 viadata line 54, which then computes the current location of the illuminatedspot 36 with respect to the predetermined coordinatesystem 80. Sequential calculations and beam spot position determination can be made as fast as the computer can do so, thus many such points on the surface of the object can be determined as they are scanned almost on a real time basis. These position data can be stored in computer memory, recalled, and correlated together to produce an image of the object in precise reproduction detail, or various points or other features on the object can be mensurated or used in any manner desired.
This completes the detailed description of the method and apparatus of the optical mensuration apparatus 10 of the present invention. While some of the obvious and numerous modifications and equivalents have been described herein, still other modifications and changes will readily occur to those skilled in the art. For instance, the preferred embodiment uses visible light since human operators can readily observe if the light sources are operative or whether they are causing troublesome reflections. Clearly, other wavelengths of electromagnetic radiation could be used without departing from the spirit and scope of this invention. Further, it would be possible to include circuitry in the detectors which would subtract out the ambient light, thus improve the detection efficiency of the invention. Other modifications to the detector optics and lenses are possible which would alter the image characteristics on the detectors. For example, cylindrical lenses could be used which have been longitudinally curved along an arc with a radius equal to the focal length of the lens. Similarly, the surfaces of the photodetectors could also be curved, thus allowing the images of distant light sources to remain in sharp focus regardless of their positions. Various measurements of the detector outputs are also possible. For example, the angle of peak intensity, the intensity-weighted average, or the average of the minimum and maximum angles where the intensity is over some predetermined threshold value could be used. Finally, numerous enhancements of the digital data are possible by programming the coordinate computer to make the appropriate enhancements, as would be obvious to those persons having ordinary skill in the art.
The foregoing is considered illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention as defined by the claims which follow.

Claims (15)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Optical mensuration apparatus for mapping and recording the location.Iadd.s .Iaddend.of points on a surface of a three dimensional object comprising:
. .a mounting structure, and.!. .Iadd.an .Iaddend.object positioned in . .immovable relation to said mounting structure, and.!. a three dimensional coordinate system . .defined in fixed relation to said mounting structure.!.;
. .scanning means.!. .Iadd.a scanner .Iaddend.for projecting a scanning beam onto . .the.!. .Iadd.a .Iaddend.surface of . .the.!. .Iadd.an .Iaddend.object to illuminate a plurality of spots on the surface of the object;
said . .scanning means.!. .Iadd.scanner .Iaddend.being hand holdable and freely moveable by hand in relation to . .both said mounting structure and.!. said object and not connected mechanically or structurally to . .either said mounting structure and.!. said object;
.Iadd.a .Iaddend.spot detector . .means.!. mounted to said . .scanning means.!. .Iadd.scanner .Iaddend.for detecting the . .positions.!. .Iadd.locations .Iaddend.of the illuminated spots on the surface of the object in relation to said . .scanning means.!. .Iadd.scanner.Iaddend.;
.Iadd.a .Iaddend.position . .detecting means mounted on said mounting structure and.!. .Iadd.detector .Iaddend.remotely located from both said object and said . .scanning means for detecting the position of said scanning means.!. .Iadd.scanner .Iaddend.in .Iadd.known .Iaddend.relation to . .the.!. .Iadd.said .Iaddend.coordinate system.Iadd., which position detector is adapted to determine the position of said scanner in relation to said three dimensional coordinate system.Iaddend.; . .and
computing means.!. .Iadd.a computer .Iaddend.connected to said . .scanning means.!. .Iadd.scanner .Iaddend.and to said position . .detecting means.!. .Iadd.detector .Iaddend.for determining . .and recording.!. the . .positions.!. .Iadd.locations .Iaddend.of said illuminated spots on the surface of the object in relation to the coordinate system by correlating the . .positions.!. .Iadd.locations .Iaddend.of said illuminated spots in relation to said . .scanning means.!. .Iadd.scanner .Iaddend.with . .the respective.!. positions of said . .scanning means.!. .Iadd.scanner .Iaddend.in relation to said coordinate system when . .each.!. .Iadd.a .Iaddend.respective spot is illuminated.
2. The optical mensuration apparatus of claim 1, wherein said spot detector . .means.!. comprises a plurality of one dimensional spot . .sensing means.!. .Iadd.sensors .Iaddend.in spaced apart relation for sensing the . .position.!. .Iadd.locations .Iaddend.of the illuminated spot.Iadd.s .Iaddend.on the surface of the object.
3. The optical mensuration apparatus of claim 2, wherein each of said one dimensional spot . .sensing means.!. .Iadd.sensors .Iaddend.comprises:
a linear photodetector; and
a lens positioned between said linear photodetector and said illuminated spot on the object for focusing light from said illuminated spot onto said linear photodetector.
4. The optical mensuration apparatus of claim 3, wherein said position . .detecting means.!. .Iadd.detector .Iaddend.comprises:
a plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.mounted on said . .scanning means.!. .Iadd.scanner .Iaddend.for projecting a plurality of pilot light rays; and
a plurality of one-dimensional pilot light . .sensing means.!. .Iadd.sensors .Iaddend.in spaced apart relation remotely located from said . .scanning means.!. .Iadd.position detector .Iaddend.for sensing the . .positions.!. .Iadd.locations .Iaddend.of each of said plurality of pilot light . .source means.!. .Iadd.sources.Iaddend..
5. The optical mensuration apparatus of claim 4, wherein each said one-dimensional pilot light . .sensing means.!. .Iadd.sensors .Iaddend.comprises:
a linear photodetector; and
a lens positioned between said linear photodetector and said plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.for focusing light from said plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.onto said linear photodetector.
6. The optical mensuration apparatus of claim 5, wherein each of said plurality of light . .source means.!. .Iadd.sources .Iaddend.is strobed off and on in a predetermined manner.
7. The optical mensuration apparatus of claim 5, wherein said . .scanning means.!. .Iadd.scanner .Iaddend.comprises:
.Iadd.at least one .Iaddend.light source . .means.!. for producing said scanning beam; and
.Iadd.a corresponding number of .Iaddend.scanning beam . .direction means.!. .Iadd.directors .Iaddend.for directing said scanning beam over the surface of the object.
8. The optical mensuration apparatus of claim 7, wherein said light source . .means.!. for producing said scanning beam is a laser.
9. The optical mensuration apparatus of claim 7, wherein said scanning beam . .direction means.!. .Iadd.director .Iaddend.is a rotating mirror having at least three sides.
10. The optical mensuration apparatus of claim 9, wherein each said lens of each said one-dimensional spot . .sensing means.!. .Iadd.sensor .Iaddend.is a cylindrical lens.
11. The optical mensuration apparatus of claim 9, wherein each said lens of each said one-dimensional pilot light . .sensing means.!. .Iadd.sensor .Iaddend.is a cylindrical lens.
12. A method of determining and mapping the location.Iadd.s .Iaddend.of surface points on an object in relation to a . .mounting structure.!. .Iadd.three dimensional coordinate system.Iaddend., comprising the steps of:
defining a three dimensional coordinate system . .in fixed relation to said mounting structure.!.;
positioning said object in a fixed spatial relation to said . .mounting structure.!. .Iadd.coordinate system.Iaddend.;
projecting a . .scanning.!. .Iadd.scannable illuminating .Iaddend.beam from a beam projector.Iadd., .Iaddend.. .mounted on a hand holdable and freely moveable scanning device.!. that is not connected mechanically or structurally to . .either said mounting structure or.!. the object, . .and moving the scanning device by hand in relation to said object.!. in such manner as to illuminate a . .plurality of spots on the.!. .Iadd.a sufficient portion of a .Iaddend.surface of the object .Iadd.to map said surface.Iaddend.;
.Iadd.scanning said surface with a hand holdable and freely moveable scanner to detect a sufficient portion of said projected beam illuminations to map said illuminated surface portion.Iaddend.;
detecting the . .positions.!. .Iadd.locations .Iaddend.of the respectively illuminated . .spots on.!. .Iadd.portions of .Iaddend.the surface of the object in relation to the respective positions of the . .scanning device.!. .Iadd.scanner .Iaddend.when each respective . .spot.!. .Iadd.portion of the surface .Iaddend.is illuminated;
projecting a plurality of pilot light rays from a plurality of pilot light sources positioned in fixed spatial relation to each other on said . .scanning device.!. .Iadd.scanner substantially .Iaddend.simultaneously with the steps of projecting said . .scanning.!. .Iadd.illuminating .Iaddend.beam and detecting the . .positions.!. .Iadd.locations .Iaddend.of the illuminated . .spots.!. .Iadd.surface portions.Iaddend.;
detecting the plurality of pilot rays with a plurality of detectors mounted . .on said mounting structure in fixed.!. .Iadd.in known .Iaddend.relation to said coordinate system and in . .fixed.!. .Iadd.known.Iaddend., spaced apart relation to each other .Iadd.substantially .Iaddend.simultaneously with the step of detecting the . .positions.!. .Iadd.locations .Iaddend.of said illuminated . .spots.!. .Iadd.surface portions .Iaddend.on said object in relation to said . .scanning device.!. .Iadd.scanner .Iaddend.to determine the . .positions.!. .Iadd.locations .Iaddend.of the plurality of pilot light sources and said . .scanning device.!. .Iadd.scanner .Iaddend.in relation to the coordinate system; and
computing the . .positions.!. .Iadd.locations .Iaddend.of the illuminated . .spots on.!. .Iadd.portions of .Iaddend.the surface of the object in relation to the coordinate system by correlating the . .positions.!. .Iadd.locations .Iaddend.of said illuminated . .spots.!. .Iadd.surface portions .Iaddend.in relation to the . .scanning device.!. .Iadd.scanner .Iaddend.with the . .position.!. .Iadd.locations .Iaddend.of the . .scanning device.!. .Iadd.scanner .Iaddend.in relation to said coordinate system. .Iadd.13. Optical mensuration apparatus for mapping and recording the locations of points on a surface of a three dimensional object as claimed in claim 1 further comprising a mounting structure, fixedly positioned in said three dimensional coordinate system, to which said object is immovably related, and wherein said position detector is mounted on said mounting structure..Iaddend..Iadd.14. An optical system as claimed in claim 13 further comprising:
multiple energy emitters disposed on said spot detector;
emitted energy detectors disposed in known relationship to said three dimensional coordinate system sufficient to detect energy emitted by said energy emitters; and
a computer operatively associated with said energy detectors adapted to calculate the position and orientation of said light detector in said three dimensional coordinate system..Iaddend..Iadd.15. An optical system for determining locations of a plurality of points on a portion of a surface of a three dimensional object, in relation to a three dimensional coordinate system in which said object resides, wherein the number of points on said surface portion is sufficient to map said surface portion, said system comprising:
at least one three dimensional object having at least one surface positioned in a three dimensional coordinate system;
a beam projector unconnected mechanically or structurally to said object, and freely moveable in relation to said object;
at least one scannable beam adapted to be projected from said projector onto a surface of said object and to thereby illuminate said plurality of points on said surface portion;
a scanner comprising at least one light detector, unconnected mechanically or structurally to said object, and freely moveable in relation to said object, and adapted to detect locations of said illuminated points on said surface of said object in said three dimensional coordinate system in relation to said spot detector;
means to maintain said object in a substantially stationary condition during said illumination and detection of at least three of said plurality of spots sufficient in number to map said surface portion of said object;
at least one light detector locator disposed in known position in said three dimensional coordinate system, for optically detecting the position and orientation of said light detector in relation to said three dimensional coordinate system; and
a computer connected to said light detector and to said detector locator for correlating respectively the locations of said illuminated portions of said surface of said object in relation to said light detector and the location of said light detector in relation to said three dimensional coordinate system;
whereby indirectly determining the locations of each of said illuminated surface portions with respect to said three dimensional coordinate system, and therefore mapping said portion of said surface of said
object..Iaddend..Iadd.16. An optical system as claimed in claim 15 wherein said light detector is located together with said illuminating beam projector..Iaddend..Iadd.17. An optical system as claimed in claim 15 wherein said light detector locator is located together with said
object..Iaddend..Iadd.18. An optical system as claimed in claim 15 wherein said scanner is hand held and is moved by hand..Iaddend..Iadd.19. An optical system as claimed in claim 15 further comprising said locator being adapted to locate said light detector at substantially the same time as the locations of each of said illuminated surface portions are being detected by said light detector..Iaddend..Iadd.20. An optical system as claimed in claim 15 wherein said object is in a fixed position in said three dimensional coordinate system..Iaddend..Iadd.21. An optical system as claimed in claim 20 wherein said object is attached to a mounting structure which is in fixed spatial relationship to said three dimensional coordinate system, wherein said scanner has said light detector affixed thereto, and wherein said light detector locator in fixed relationship to
said mounting structure..Iaddend..Iadd.22. A method of mapping at least a portion of a surface on an object, which object is in a known position and orientation in a three dimensional coordinate system, comprising:
disposing an object, comprising at least one surface, in a known position and orientation in a three dimensional coordinate system;
disposing a hand holdable scanner in said coordinate system, unconnected mechanically or structurally to said object and freely moveable within said three dimensional coordinate system, so positioned that it can scan said surface;
projecting a plurality of spots onto said surface portion;
detecting the locations on said surface portion, in relation to a spot detector, of a sufficient number of spots to map at least said portion of the surface;
at substantially the same time as the locations of the respective spots are being determined, determining the location of said spot detector in said coordinate system;
correlating the locations of said respective spots with the position and orientation of said spot detector; thereby
indirectly determining the locations of said illuminated spots in said three dimensional coordinate system; and
mapping said surface..Iaddend.
US08/415,1261990-10-151995-03-30Method and apparatus for three-dimensional non-contact shape sensingExpired - LifetimeUSRE35816E (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US08/415,126USRE35816E (en)1990-10-151995-03-30Method and apparatus for three-dimensional non-contact shape sensing

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US07/597,505US5198877A (en)1990-10-151990-10-15Method and apparatus for three-dimensional non-contact shape sensing
US08/415,126USRE35816E (en)1990-10-151995-03-30Method and apparatus for three-dimensional non-contact shape sensing

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US07/597,505ReissueUS5198877A (en)1990-10-151990-10-15Method and apparatus for three-dimensional non-contact shape sensing

Publications (1)

Publication NumberPublication Date
USRE35816Etrue USRE35816E (en)1998-06-02

Family

ID=24391805

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US07/597,505CeasedUS5198877A (en)1990-10-151990-10-15Method and apparatus for three-dimensional non-contact shape sensing
US08/415,126Expired - LifetimeUSRE35816E (en)1990-10-151995-03-30Method and apparatus for three-dimensional non-contact shape sensing

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US07/597,505CeasedUS5198877A (en)1990-10-151990-10-15Method and apparatus for three-dimensional non-contact shape sensing

Country Status (7)

CountryLink
US (2)US5198877A (en)
EP (1)EP0553266B1 (en)
JP (1)JP2974775B2 (en)
AT (1)ATE152823T1 (en)
CA (1)CA2094039A1 (en)
DE (1)DE69126035T2 (en)
WO (1)WO1992007233A1 (en)

Cited By (161)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5969822A (en)1994-09-281999-10-19Applied Research Associates Nz Ltd.Arbitrary-geometry laser surface scanner
US6146390A (en)1992-04-212000-11-14Sofamor Danek Holdings, Inc.Apparatus and method for photogrammetric surgical localization
US6222582B1 (en)*1997-07-242001-04-24Sumitomo Metal (Smi) Electronics Devices Inc.Image capture system
US6226548B1 (en)1997-09-242001-05-01Surgical Navigation Technologies, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6235038B1 (en)1999-10-282001-05-22Medtronic Surgical Navigation TechnologiesSystem for translation of electromagnetic and optical localization systems
US6271918B2 (en)*1999-02-042001-08-07National Research Council Of CanadaVirtual multiple aperture 3-D range sensor
US20010018594A1 (en)*1998-05-142001-08-30Calypso Medical, Inc.System and Method for Bracketing and Removing Tissue
US6296613B1 (en)1997-08-222001-10-02Synthes (U.S.A.)3D ultrasound recording device
US20010038705A1 (en)*1999-03-082001-11-08Orametrix, Inc.Scanning system and calibration method for capturing precise three-dimensional information of objects
WO2001084479A1 (en)*2000-04-282001-11-08Orametirix, Inc.Method and system for scanning a surface and generating a three-dimensional object
US6324296B1 (en)*1997-12-042001-11-27Phasespace, Inc.Distributed-processing motion tracking system for tracking individually modulated light points
US20020006217A1 (en)*2000-04-282002-01-17Orametrix, Inc.Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects
US6370224B1 (en)1998-06-292002-04-09Sofamor Danek Group, Inc.System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers
US6374198B1 (en)*1996-07-112002-04-16Mirai S.R.L.Method for the creation of tridimensional numerical models
US6381485B1 (en)1999-10-282002-04-30Surgical Navigation Technologies, Inc.Registration of human anatomy integrated for electromagnetic localization
US6379302B1 (en)1999-10-282002-04-30Surgical Navigation Technologies Inc.Navigation information overlay onto ultrasound imagery
US6413084B1 (en)2000-04-282002-07-02Ora Metrix, Inc.Method and system of scanning
US20020109705A1 (en)*1999-05-032002-08-15Robert HofstetterSystem and method for preparing an image corrected for the presence of a gravity induced distortion
US6474341B1 (en)1999-10-282002-11-05Surgical Navigation Technologies, Inc.Surgical communication and power system
US6493095B1 (en)1999-04-132002-12-10Inspeck Inc.Optional 3D digitizer, system and method for digitizing an object
US6497134B1 (en)2000-03-152002-12-24Image Guided Technologies, Inc.Calibration of an instrument
US6499488B1 (en)1999-10-282002-12-31Winchester Development AssociatesSurgical sensor
US6532299B1 (en)2000-04-282003-03-11Orametrix, Inc.System and method for mapping a surface
US20030052785A1 (en)*2001-09-142003-03-20Margo GisselbergMiniature resonating marker assembly
US6564086B2 (en)*2000-05-032003-05-13Rocky Mountain Biosystems, Inc.Prosthesis and method of making
US6585651B2 (en)1999-04-202003-07-01Synthes Ag ChurMethod and device for percutaneous determination of points associated with the surface of an organ
US6611141B1 (en)1998-12-232003-08-26Howmedica Leibinger IncHybrid 3-D probe tracked by multiple sensors
US6694168B2 (en)1998-06-222004-02-17Synthes (U.S.A.)Fiducial matching using fiducial implants
US20040039544A1 (en)*1998-07-242004-02-26Merrill M. StanleyVehicle wheel alignment by rotating vision sensor
US6724947B1 (en)2000-07-142004-04-20International Business Machines CorporationMethod and system for measuring characteristics of curved features
US6725080B2 (en)2000-03-012004-04-20Surgical Navigation Technologies, Inc.Multiple cannula image guided tool for image guided procedures
US6725082B2 (en)1999-03-172004-04-20Synthes U.S.A.System and method for ligament graft placement
US6728423B1 (en)2000-04-282004-04-27Orametrix, Inc.System and method for mapping a surface
US6732030B2 (en)2001-08-182004-05-04Snap-On U.K. Holdings LimitedThree-dimensional mapping systems for automotive vehicles and other articles
US6744932B1 (en)2000-04-282004-06-01Orametrix, Inc.System and method for mapping a surface
US6744914B1 (en)2000-04-282004-06-01Orametrix, Inc.Method and system for generating a three-dimensional object
US20040127787A1 (en)*2002-12-302004-07-01Dimmer Steven C.Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US20040133101A1 (en)*2001-06-082004-07-08Mate Timothy P.Guided radiation therapy system
US20040147839A1 (en)*2002-10-252004-07-29Moctezuma De La Barrera Jose LuisFlexible tracking article and method of using the same
US6771809B1 (en)2000-04-282004-08-03Orametrix, Inc.Method and system for registering data
US20040184040A1 (en)*2001-07-172004-09-23Hideto FujitaShape measuring device
US6801637B2 (en)1999-08-102004-10-05Cybernet Systems CorporationOptical body tracker
US6812842B2 (en)2001-12-202004-11-02Calypso Medical Technologies, Inc.System for excitation of a leadless miniature marker
US6822570B2 (en)2001-12-202004-11-23Calypso Medical Technologies, Inc.System for spatially adjustable excitation of leadless miniature marker
US6838990B2 (en)2001-12-202005-01-04Calypso Medical Technologies, Inc.System for excitation leadless miniature marker
US20050020910A1 (en)*2003-04-302005-01-27Henley QuadlingIntra-oral imaging system
US20050024646A1 (en)*2003-05-052005-02-03Mark QuadlingOptical coherence tomography imaging
US6888640B2 (en)2000-02-042005-05-03Mario J. SpinaBody spatial dimension mapper
US6892090B2 (en)2002-08-192005-05-10Surgical Navigation Technologies, Inc.Method and apparatus for virtual endoscopy
US6889833B2 (en)2002-12-302005-05-10Calypso Medical Technologies, Inc.Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US20050099638A1 (en)*2003-09-172005-05-12Mark QuadlingHigh speed multiple line three-dimensional digitization
US20050105772A1 (en)*1998-08-102005-05-19Nestor VoronkaOptical body tracker
US20050125119A1 (en)*2003-12-042005-06-09Matrix Electronic Measuring, L.P. Limited Partnership, KansasSystem for measuring points on a vehicle during damage repair
US20050131586A1 (en)*2003-12-042005-06-16Srack Robert W.System for measuring points on a vehicle during damage repair
US6911972B2 (en)*2001-04-042005-06-28Matsushita Electric Industrial Co., Ltd.User interface device
US20050143645A1 (en)*2000-04-052005-06-30Stefan VilsmeierReferencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US20050154293A1 (en)*2003-12-242005-07-14Margo GisselbergImplantable marker with wireless signal transmitter
US6920347B2 (en)2000-04-072005-07-19Surgical Navigation Technologies, Inc.Trajectory storage apparatus and method for surgical navigation systems
US6947786B2 (en)2002-02-282005-09-20Surgical Navigation Technologies, Inc.Method and apparatus for perspective inversion
US20060001543A1 (en)*2004-07-012006-01-05Ramesh RaskarInteractive wireless tag location and identification system
US6990368B2 (en)2002-04-042006-01-24Surgical Navigation Technologies, Inc.Method and apparatus for virtual digital subtraction angiography
US20060058648A1 (en)*2004-07-232006-03-16Eric MeierIntegrated radiation therapy systems and methods for treating a target in a patient
US20060058644A1 (en)*2004-09-102006-03-16Harald HoppeSystem, device, and method for AD HOC tracking of an object
US20060062449A1 (en)*2004-09-182006-03-23The Ohio Willow Wood CompanyApparatus for determining a three dimensional shape of an object
US20060095047A1 (en)*2004-10-082006-05-04De La Barrera Jose Luis MSystem and method for performing arthroplasty of a joint and tracking a plumb line plane
US7068836B1 (en)2000-04-282006-06-27Orametrix, Inc.System and method for mapping a surface
US7085400B1 (en)2000-06-142006-08-01Surgical Navigation Technologies, Inc.System and method for image based sensor calibration
US20060184014A1 (en)*2004-12-022006-08-17Manfred PfeilerRegistration aid for medical images
US7130676B2 (en)1998-08-202006-10-31Sofamor Danek Holdings, Inc.Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US7142312B2 (en)2002-12-312006-11-28D4D Technologies, LlcLaser digitizer system for dental applications
US7174202B2 (en)1992-08-142007-02-06British TelecommunicationsMedical navigation apparatus
US7184150B2 (en)2003-03-242007-02-27D4D Technologies, LlcLaser digitizer system for dental applications
US7217276B2 (en)1999-04-202007-05-15Surgical Navigational Technologies, Inc.Instrument guidance method and system for image guided surgery
US7256899B1 (en)2006-10-042007-08-14Ivan FaulWireless methods and systems for three-dimensional non-contact shape sensing
US7313430B2 (en)2003-08-282007-12-25Medtronic Navigation, Inc.Method and apparatus for performing stereotactic surgery
US20080012981A1 (en)*2006-07-072008-01-17Goodwin Mark DMail processing system with dual camera assembly
US20080035866A1 (en)*2006-07-072008-02-14Lockheed Martin CorporationMail imaging system with UV illumination interrupt
US20080049972A1 (en)*2006-07-072008-02-28Lockheed Martin CorporationMail imaging system with secondary illumination/imaging window
US20080077158A1 (en)*2006-06-162008-03-27Hani HaiderMethod and Apparatus for Computer Aided Surgery
US7366562B2 (en)2003-10-172008-04-29Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US20090043556A1 (en)*2007-08-072009-02-12Axelson Stuart LMethod of and system for planning a surgery
US7542791B2 (en)2003-01-302009-06-02Medtronic Navigation, Inc.Method and apparatus for preplanning a surgical procedure
USRE40852E1 (en)1995-06-142009-07-14Medtronic Navigation, Inc.Method and system for navigating a catheter probe
US7567834B2 (en)2004-05-032009-07-28Medtronic Navigation, Inc.Method and apparatus for implantation between two vertebral bodies
US7570791B2 (en)2003-04-252009-08-04Medtronic Navigation, Inc.Method and apparatus for performing 2D to 3D registration
US7599730B2 (en)2002-11-192009-10-06Medtronic Navigation, Inc.Navigation system for cardiac therapies
US7606613B2 (en)1999-03-232009-10-20Medtronic Navigation, Inc.Navigational guidance via computer-assisted fluoroscopic imaging
US20090290759A1 (en)*2008-05-222009-11-26Matrix Electronic Measuring, L.P.Stereoscopic measurement system and method
US20090290787A1 (en)*2008-05-222009-11-26Matrix Electronic Measuring, L.P.Stereoscopic measurement system and method
US7636595B2 (en)2004-10-282009-12-22Medtronic Navigation, Inc.Method and apparatus for calibrating non-linear instruments
US7660623B2 (en)2003-01-302010-02-09Medtronic Navigation, Inc.Six degree of freedom alignment display for medical procedures
US7697972B2 (en)2002-11-192010-04-13Medtronic Navigation, Inc.Navigation system for cardiac therapies
US7725162B2 (en)2000-01-272010-05-25Howmedica Leibinger Inc.Surgery system
US20100141740A1 (en)*2007-05-042010-06-10Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung EvDevice and Method for Non-Contact Recording of Spatial Coordinates of a Surface
US7763035B2 (en)1997-12-122010-07-27Medtronic Navigation, Inc.Image guided spinal surgery guide, system and method for use thereof
US7797032B2 (en)1999-10-282010-09-14Medtronic Navigation, Inc.Method and system for navigating a catheter probe in the presence of field-influencing objects
US7835778B2 (en)2003-10-162010-11-16Medtronic Navigation, Inc.Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835784B2 (en)2005-09-212010-11-16Medtronic Navigation, Inc.Method and apparatus for positioning a reference frame
US7840253B2 (en)2003-10-172010-11-23Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US7998062B2 (en)2004-03-292011-08-16Superdimension, Ltd.Endoscope structures and techniques for navigating to a target in branched structure
US8112292B2 (en)2006-04-212012-02-07Medtronic Navigation, Inc.Method and apparatus for optimizing a therapy
US8165658B2 (en)2008-09-262012-04-24Medtronic, Inc.Method and apparatus for positioning a guide relative to a base
USRE43328E1 (en)1997-11-202012-04-24Medtronic Navigation, IncImage guided awl/tap/screwdriver
US8175681B2 (en)2008-12-162012-05-08Medtronic Navigation Inc.Combination of electromagnetic and electropotential localization
US8239001B2 (en)2003-10-172012-08-07Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US8345953B2 (en)2008-05-222013-01-01Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
USRE43952E1 (en)1989-10-052013-01-29Medtronic Navigation, Inc.Interactive system for local intervention inside a non-homogeneous structure
WO2013033811A1 (en)*2011-09-082013-03-14Front Street Investment Management Inc.Method and apparatus for illuminating a field of view of an optical system for generating three dimensional image information
US8452375B2 (en)1998-05-142013-05-28Varian Medical Systems, Inc.Systems and methods for locating and defining a target location within a human body
US8452068B2 (en)2008-06-062013-05-28Covidien LpHybrid registration method
US8473032B2 (en)2008-06-032013-06-25Superdimension, Ltd.Feature-based registration method
US8473026B2 (en)1994-09-152013-06-25Ge Medical Systems Global Technology CompanySystem for monitoring a position of a medical instrument with respect to a patient's body
US8494614B2 (en)2009-08-312013-07-23Regents Of The University Of MinnesotaCombination localization system
US8494613B2 (en)2009-08-312013-07-23Medtronic, Inc.Combination localization system
US8611984B2 (en)2009-04-082013-12-17Covidien LpLocatable catheter
US8644907B2 (en)1999-10-282014-02-04Medtronic Navigaton, Inc.Method and apparatus for surgical navigation
US8641210B2 (en)2011-11-302014-02-04Izi Medical ProductsRetro-reflective marker including colored mounting portion
US8660635B2 (en)2006-09-292014-02-25Medtronic, Inc.Method and apparatus for optimizing a computer assisted surgical procedure
US8661573B2 (en)2012-02-292014-03-04Izi Medical ProductsProtective cover for medical device having adhesive mechanism
US8663088B2 (en)2003-09-152014-03-04Covidien LpSystem of accessories for use with bronchoscopes
US8687172B2 (en)2011-04-132014-04-01Ivan FaulOptical digitizer with improved distance measurement capability
USD705678S1 (en)2012-02-212014-05-27Faro Technologies, Inc.Laser tracker
US8764725B2 (en)2004-02-092014-07-01Covidien LpDirectional anchoring mechanism, method and applications thereof
US8905920B2 (en)2007-09-272014-12-09Covidien LpBronchoscope adapter and method
US8932207B2 (en)2008-07-102015-01-13Covidien LpIntegrated multi-functional endoscopic tool
US9007601B2 (en)2010-04-212015-04-14Faro Technologies, Inc.Automatic measurement of dimensional data with a laser tracker
US9041914B2 (en)2013-03-152015-05-26Faro Technologies, Inc.Three-dimensional coordinate scanner and method of operation
US9055881B2 (en)2004-04-262015-06-16Super Dimension Ltd.System and method for image-based alignment of an endoscope
US9151830B2 (en)2011-04-152015-10-06Faro Technologies, Inc.Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9164173B2 (en)2011-04-152015-10-20Faro Technologies, Inc.Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9168102B2 (en)2006-01-182015-10-27Medtronic Navigation, Inc.Method and apparatus for providing a container to a sterile environment
US9237860B2 (en)2008-06-052016-01-19Varian Medical Systems, Inc.Motion compensation for medical imaging and associated systems and methods
US9298078B2 (en)2009-07-102016-03-29Steropes Technologies, LlcMethod and apparatus for generating three-dimensional image information using a single imaging path
US9377885B2 (en)2010-04-212016-06-28Faro Technologies, Inc.Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en)2014-06-272016-07-19Faro Technologies, Inc.Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en)2010-04-212016-07-26Faro Technologies, Inc.Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9449378B2 (en)2008-05-222016-09-20Matrix Electronic Measuring Properties, LlcSystem and method for processing stereoscopic vehicle information
US9453913B2 (en)2008-11-172016-09-27Faro Technologies, Inc.Target apparatus for three-dimensional measurement system
US9482755B2 (en)2008-11-172016-11-01Faro Technologies, Inc.Measurement system having air temperature compensation between a target and a laser tracker
US9498231B2 (en)2011-06-272016-11-22Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US9575140B2 (en)2008-04-032017-02-21Covidien LpMagnetic interference detection system and method
US9675424B2 (en)2001-06-042017-06-13Surgical Navigation Technologies, Inc.Method for calibrating a navigation system
US9772394B2 (en)2010-04-212017-09-26Faro Technologies, Inc.Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10105149B2 (en)2013-03-152018-10-23Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US10219811B2 (en)2011-06-272019-03-05Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US10418705B2 (en)2016-10-282019-09-17Covidien LpElectromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10426555B2 (en)2015-06-032019-10-01Covidien LpMedical instrument with sensor for use in a system and method for electromagnetic navigation
US10446931B2 (en)2016-10-282019-10-15Covidien LpElectromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10478254B2 (en)2016-05-162019-11-19Covidien LpSystem and method to access lung tissue
US10517505B2 (en)2016-10-282019-12-31Covidien LpSystems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10582834B2 (en)2010-06-152020-03-10Covidien LpLocatable expandable working channel and method
US10615500B2 (en)2016-10-282020-04-07Covidien LpSystem and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en)2016-10-282020-05-05Covidien LpMethods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10722311B2 (en)2016-10-282020-07-28Covidien LpSystem and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en)2016-10-282020-08-25Covidien LpSystem and method for generating a map for electromagnetic navigation
US10792106B2 (en)2016-10-282020-10-06Covidien LpSystem for calibrating an electromagnetic navigation system
US10952593B2 (en)2014-06-102021-03-23Covidien LpBronchoscope adapter
US11006914B2 (en)2015-10-282021-05-18Medtronic Navigation, Inc.Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11219489B2 (en)2017-10-312022-01-11Covidien LpDevices and systems for providing sensors in parallel with medical tools
US11331150B2 (en)1999-10-282022-05-17Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US11911117B2 (en)2011-06-272024-02-27Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE69132412T2 (en)1990-10-192001-03-01St. Louis University, St. Louis LOCALIZATION SYSTEM FOR A SURGICAL PROBE FOR USE ON THE HEAD
US5739912A (en)*1991-04-261998-04-14Nippon Telegraph And Telephone CorporationObject profile measuring method and apparatus
FR2692773B3 (en)*1992-06-261994-08-26Diret Francois Correlation device for three-dimensional seizures of human organs.
US6757557B1 (en)1992-08-142004-06-29British TelecommunicationsPosition location system
US5305091A (en)*1992-12-071994-04-19Oreo Products Inc.Optical coordinate measuring system for large objects
US5805275A (en)*1993-04-081998-09-08Kollmorgen CorporationScanning optical rangefinder
EP0700269B1 (en)1993-04-222002-12-11Image Guided Technologies, Inc.System for locating relative positions of objects
DE9422172U1 (en)1993-04-261998-08-06St. Louis University, St. Louis, Mo. Specify the location of a surgical probe
WO1995002163A1 (en)*1993-07-081995-01-19Science Accessories Corp.Position and angle determination using light
FR2721395B1 (en)*1994-06-171996-08-14Homer Eaton Method for locating a trihedron in space and device for implementing this method.
US5512998A (en)*1994-06-221996-04-30The Titan CorporationContactless method and system for determining static and dynamic characteristics of target objects
US5515301A (en)*1994-06-291996-05-07General Electric CompanyReal-time visualization system for multiple time-sampled signals
GB2292605B (en)*1994-08-241998-04-08Guy Richard John FowlerScanning arrangement and method
ATE228338T1 (en)1994-10-072002-12-15Univ St Louis SURGICAL NAVIGATION ARRANGEMENT INCLUDING REFERENCE AND LOCATION SYSTEMS
US5588430A (en)1995-02-141996-12-31University Of Florida Research Foundation, Inc.Repeat fixation for frameless stereotactic procedure
JP3614935B2 (en)*1995-06-202005-01-26オリンパス株式会社 3D image measuring device
US6445884B1 (en)1995-06-222002-09-033Dv Systems, Ltd.Camera with through-the-lens lighting
DE69635858T2 (en)*1995-06-222006-11-303Dv Systems Ltd. TELECENTRIC 3D CAMERA AND RELATED METHOD
IL114278A (en)*1995-06-222010-06-16Microsoft Internat Holdings BCamera and method
GB9515311D0 (en)*1995-07-261995-09-203D Scanners LtdStripe scanners and methods of scanning
US5920394A (en)*1995-09-011999-07-06Research Corporation Technologies, Inc.Optical coordinate measuring machine
US5806518A (en)1995-09-111998-09-15Integrated Surgical SystemsMethod and system for positioning surgical robot
US5856844A (en)*1995-09-211999-01-05Omniplanar, Inc.Method and apparatus for determining position and orientation
US5793483A (en)*1996-02-071998-08-11Visidyne, Inc.Optical measurement system
US6167145A (en)1996-03-292000-12-26Surgical Navigation Technologies, Inc.Bone navigation system
US6226418B1 (en)1997-11-072001-05-01Washington UniversityRapid convolution based large deformation image matching via landmark and volume imagery
US6408107B1 (en)1996-07-102002-06-18Michael I. MillerRapid convolution based large deformation image matching via landmark and volume imagery
US5832139A (en)*1996-07-311998-11-03Omniplanar, Inc.Method and apparatus for determining degrees of freedom of a camera
ATE197647T1 (en)*1996-08-222000-12-15Synthes Ag 3-D ULTRASONIC RECORDING DEVICE
US5776136A (en)*1996-09-301998-07-07Integrated Surgical Systems, Inc.Method and system for finish cutting bone cavities
US6217334B1 (en)1997-01-282001-04-17Iris Development CorporationDental scanning method and apparatus
EP1016030A1 (en)1997-02-132000-07-05Integrated Surgical Systems, Inc.Method and system for registering the position of a surgical system with a preoperative bone image
US6097374A (en)*1997-03-062000-08-01Howard; Robert BruceWrist-pendent wireless optical keyboard
USD422706S (en)*1997-04-302000-04-11Surgical Navigation TechnologiesBiopsy guide tube
EP0875771B1 (en)*1997-04-302004-07-14Sick AgOpto-electronic sensor with multiple photosensitive elements arranged in a row or array
US5907395A (en)*1997-06-061999-05-25Image Guided Technologies, Inc.Optical fiber probe for position measurement
US6069700A (en)*1997-07-312000-05-30The Boeing CompanyPortable laser digitizing system for large parts
US6434507B1 (en)1997-09-052002-08-13Surgical Navigation Technologies, Inc.Medical instrument and method for use with computer-assisted image guided surgery
USD420132S (en)*1997-11-032000-02-01Surgical Navigation TechnologiesDrill guide
US6094269A (en)*1997-12-312000-07-25Metroptic Technologies, Ltd.Apparatus and method for optically measuring an object surface contour
JP3897322B2 (en)*1998-02-092007-03-22株式会社トプコン Laser irradiation device
US6456749B1 (en)1998-02-272002-09-24Carnegie Mellon UniversityHandheld apparatus for recognition of writing, for remote communication, and for user defined input templates
US20100008551A9 (en)*1998-08-182010-01-14Ilya SchillerUsing handwritten information
US7268774B2 (en)*1998-08-182007-09-11Candledragon, Inc.Tracking motion of a writing instrument
US6482182B1 (en)1998-09-032002-11-19Surgical Navigation Technologies, Inc.Anchoring system for a brain lead
US6033415A (en)*1998-09-142000-03-07Integrated Surgical SystemsSystem and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
WO2000021442A1 (en)1998-10-092000-04-20Surgical Navigation Technologies, Inc.Image guided vertebral distractor
US6633686B1 (en)1998-11-052003-10-14Washington UniversityMethod and apparatus for image registration using large deformation diffeomorphisms on a sphere
US6430434B1 (en)1998-12-142002-08-06Integrated Surgical Systems, Inc.Method for determining the location and orientation of a bone for computer-assisted orthopedic procedures using intraoperatively attached markers
US6322567B1 (en)1998-12-142001-11-27Integrated Surgical Systems, Inc.Bone motion tracking system
DE19916623A1 (en)1999-04-132000-11-30Lorenz Smekal Device for recording sectional images through a human or animal body
WO2000063645A1 (en)*1999-04-192000-10-26Leica Geosystems AgIndirect position determination with the aid of a tracker
US6297488B1 (en)1999-04-292001-10-02National Research Council Of CanadaPosition sensitive light spot detector
US6614422B1 (en)*1999-11-042003-09-02Canesta, Inc.Method and apparatus for entering data using a virtual input device
EP1197729A4 (en)*1999-05-262006-10-18Sanyo Electric CoShape measuring device
NO313113B1 (en)*1999-07-132002-08-12Metronor Asa System for scanning large geometry of objects
CA2278108C (en)1999-07-202008-01-29The University Of Western OntarioThree-dimensional measurement method and apparatus
AU1240801A (en)1999-10-282001-05-08Enterprise Medical Technology, Inc.Coil structures and methods for generating magnetic fields
US6747539B1 (en)1999-10-282004-06-08Michael A. MartinelliPatient-shielding and coil system
DE10005203A1 (en)*2000-02-052001-08-16Bayerische Motoren Werke AgMeasurement arrangement for forming and recording image of 3-dimensional object derives measurement head unit position relative to object from distances between measurement points
GB0008303D0 (en)*2000-04-062000-05-24British AerospaceMeasurement system and method
US6771840B1 (en)*2000-05-182004-08-03Leica Geosystems Hds, Inc.Apparatus and method for identifying the points that lie on a surface of interest
DE10025897B4 (en)*2000-05-252004-07-15Sick Ag Method for operating an optoelectronic sensor arrangement and optoelectronic sensor arrangement
ES2254519T3 (en)*2000-08-312006-06-16Plus Orthopedics Ag DETERMINATION DEVICE OF A LOADING AXLE OF AN EXTREMITY.
KR100382905B1 (en)*2000-10-072003-05-09주식회사 케이씨아이3 Dimension Scanner System for Tooth modelling
US6579095B2 (en)2000-12-222003-06-17Geodigm CorporationMating parts scanning and registration methods
EP1412697A1 (en)2001-08-012004-04-28National Research Council Of CanadaSystem and method of light spot position and color detection
US7257255B2 (en)*2001-11-212007-08-14Candledragon, Inc.Capturing hand motion
DE10203992A1 (en)*2002-01-312003-08-14Deutsch Zentr Luft & Raumfahrt input device
US7881896B2 (en)2002-02-142011-02-01Faro Technologies, Inc.Portable coordinate measurement machine with integrated line laser scanner
US7716024B2 (en)2002-04-292010-05-11Geodigm CorporationMethod and apparatus for electronically generating a color dental occlusion map within electronic model images
US20030220778A1 (en)*2002-04-292003-11-27Hultgren Bruce WillardMethod and apparatus for electronically simulating jaw function within electronic model images
DE10306793A1 (en)*2002-05-212003-12-04Plus Endoprothetik Ag Rotkreuz Arrangement and method for the intraoperative determination of the position of a joint replacement implant
ATE409006T1 (en)*2002-05-212008-10-15Plus Orthopedics Ag ARRANGEMENT FOR DETERMINING FUNCTIONAL GEOMETRIC SIZE OF A JOINT OF A VERTEBRATE
JP2004071366A (en)2002-08-072004-03-04Omron CorpPhotoelectric sensor
DE10239468A1 (en)*2002-08-282004-03-11Sick Ag object detection
DE10241069B4 (en)*2002-09-052004-07-15Aesculap Ag & Co. Kg Device for detecting the contour of a surface
US7166114B2 (en)2002-09-182007-01-23Stryker Leibinger Gmbh & Co KgMethod and system for calibrating a surgical tool and adapter thereof
JP3624353B2 (en)*2002-11-142005-03-02有限会社テクノドリーム二十一 Three-dimensional shape measuring method and apparatus
EP1420264B1 (en)2002-11-152011-01-05Leica Geosystems AGMethod and device for calibrating a measurement system
DE10335829A1 (en)*2003-08-052005-03-10Siemens Ag Method for determining the axle geometry and sensor for carrying it out
US6950775B2 (en)*2003-12-012005-09-27Snap-On IncorporatedCoordinate measuring system and field-of-view indicators therefor
US7771436B2 (en)*2003-12-102010-08-10Stryker Leibinger Gmbh & Co. Kg.Surgical navigation tracker, system and method
US7873400B2 (en)*2003-12-102011-01-18Stryker Leibinger Gmbh & Co. Kg.Adapter for surgical navigation trackers
US7702492B2 (en)2004-03-112010-04-20Geodigm CorporationSystem and method for generating an electronic model for a dental impression having a common coordinate system
US7824346B2 (en)*2004-03-112010-11-02Geodigm CorporationDetermining condyle displacement utilizing electronic models of dental impressions having a common coordinate system
US7375826B1 (en)*2004-09-232008-05-20The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa)High speed three-dimensional laser scanner with real time processing
DE102004056400A1 (en)*2004-11-232006-05-24Daimlerchrysler AgAlignment method for recognizing maladjustment in a distance sensor fitted in a motor vehicle brings the vehicle along a driving line into a measuring position for a measuring device
US8244332B2 (en)2004-12-222012-08-14Siemens Medical Solutions Usa, Inc.Three-dimensional breast anatomy imaging system
US7623250B2 (en)*2005-02-042009-11-24Stryker Leibinger Gmbh & Co. Kg.Enhanced shape characterization device and method
DE102005043912B4 (en)*2005-05-182011-08-18Steinbichler Optotechnik GmbH, 83115 Method for determining the 3D coordinates of the surface of an object
WO2007030026A1 (en)2005-09-092007-03-15Industrial Research LimitedA 3d scene scanner and a position and orientation system
US7755026B2 (en)*2006-05-042010-07-13CandleDragon Inc.Generating signals representative of sensed light that is associated with writing being done by a user
DE102006031833A1 (en)*2006-05-242007-12-06Dr. Wirth Grafische Technik Gmbh & Co. Kg Method for generating image information
US7710555B2 (en)2006-06-272010-05-04Burke E. Porter Machinery CompanyApparatus and method for determining the orientation of an object such as vehicle wheel alignment
US20080166175A1 (en)*2007-01-052008-07-10Candledragon, Inc.Holding and Using an Electronic Pen and Paper
US7864309B2 (en)2007-05-042011-01-04Burke E. Porter Machinery CompanyNon contact wheel alignment sensor and method
TW200907764A (en)*2007-08-012009-02-16Unique Instr Co LtdThree-dimensional virtual input and simulation apparatus
EP2026034B1 (en)*2007-08-162020-04-29Carl Zeiss Optotechnik GmbHDevice for determining the 3D coordinates of an object, in particular a tooth
CN101926227B (en)2008-01-242013-09-18皇家飞利浦电子股份有限公司Sensor device with tilting or orientation-correcting photo sensor for atmosphere creation
JP5348128B2 (en)*2008-03-192013-11-20株式会社安川電機 Shape measuring device and robot device equipped with the same
DE102008023218A1 (en)*2008-05-102009-11-12Aesculap Ag Method and device for examining a body with an ultrasound head
US8265376B2 (en)2008-07-212012-09-11Cognitens Ltd.Method and system for providing a digital model of an object
DE102008039838B4 (en)*2008-08-272011-09-22Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for scanning the three-dimensional surface of an object by means of a light beam scanner
DE102008045387B4 (en)*2008-09-022017-02-09Carl Zeiss Ag Apparatus and method for measuring a surface
US7898353B2 (en)2009-05-152011-03-01Freescale Semiconductor, Inc.Clock conditioning circuit
DE102009032262A1 (en)2009-07-082011-01-13Steinbichler Optotechnik Gmbh Method for determining the 3D coordinates of an object
DE102009033886A1 (en)2009-07-202011-01-27Steinbichler Optotechnik Gmbh Method for displaying the surface of an object
US8497981B2 (en)*2009-09-152013-07-30Qualcomm IncorporatedSmall form-factor size sensor
US8396685B2 (en)*2009-09-152013-03-12Qualcomm IncorporatedSmall form-factor distance sensor
DE102010018979A1 (en)2010-05-032011-11-03Steinbichler Optotechnik Gmbh Method and device for determining the 3D coordinates of an object
DE102010064320B4 (en)*2010-12-292019-05-23Siemens Healthcare Gmbh Optical pointer for a surgical assistance system
DE102011011360A1 (en)*2011-02-162012-08-16Steinbichler Optotechnik Gmbh Apparatus and method for determining the 3-D coordinates of an object and for calibrating an industrial robot
US10586341B2 (en)2011-03-042020-03-10General Electric CompanyMethod and device for measuring features on or near an object
US9875574B2 (en)*2013-12-172018-01-23General Electric CompanyMethod and device for automatically identifying the deepest point on the surface of an anomaly
US10157495B2 (en)*2011-03-042018-12-18General Electric CompanyMethod and device for displaying a two-dimensional image of a viewed object simultaneously with an image depicting the three-dimensional geometry of the viewed object
EP2557391A1 (en)2011-08-122013-02-13Leica Geosystems AGMeasuring device for determining the spatial location of a measuring aid
DE102011114674C5 (en)2011-09-302020-05-28Steinbichler Optotechnik Gmbh Method and device for determining the 3D coordinates of an object
EP2589982A1 (en)2011-11-032013-05-08Leica Geosystems AGLaser diode as interferometer laserbeam source in a laser tracker
EP2602641B1 (en)2011-12-062014-02-26Leica Geosystems AGLaser tracker with position-sensitive detectors for searching a target
EP2618175A1 (en)2012-01-172013-07-24Leica Geosystems AGLaser tracker with graphical targeting functionality
TWI491194B (en)*2012-02-212015-07-01Mstar Semiconductor IncMethod and associated apparatus for determining signal timing of wireless network signal
CN103297369B (en)*2012-03-012016-05-11晨星软件研发(深圳)有限公司In wireless network signal, define method and the relevant apparatus of signal sequence
EP2634594A1 (en)2012-03-012013-09-04Leica Geosystems AGMethod for determining a change in distance by means of interferometry
EP2639615A1 (en)2012-03-132013-09-18Leica Geosystems AGCamera system with a zoom lens and a linear encoder
EP2662661A1 (en)2012-05-072013-11-13Leica Geosystems AGMeasuring device with an interferometer and an absorption medium defining a thick line spectrum
EP2662702A1 (en)2012-05-072013-11-13Leica Geosystems AGLaser tracker with interferometer and absolute distance measuring unit and calibration method for a laser tracker
GB2540075B (en)*2012-05-182017-04-19Acergy France SASImprovements relating to pipe measurement
EP2687866A1 (en)2012-07-192014-01-22Leica Geosystems AGLaser tracker with calibration unit for self-calibration
EP2706376A1 (en)2012-09-072014-03-12Leica Geosystems AGLaser tracker with hybrid imaging method for expanding measurement range
US9127942B1 (en)*2012-09-212015-09-08Amazon Technologies, Inc.Surface distance determination using time-of-flight of light
US9792836B2 (en)2012-10-302017-10-17Truinject Corp.Injection training apparatus using 3D position sensor
EP2915157B1 (en)2012-10-302019-05-08Truinject Corp.System for injection training
EP2728375A1 (en)2012-10-312014-05-07Leica Geosystems AGMethod and device for determining the orientation of an object
KR102364736B1 (en)2013-03-142022-02-17씽크 써지컬, 인크.Systems and methods for monitoring a surgical procedure with critical regions
US9545288B2 (en)2013-03-142017-01-17Think Surgical, Inc.Systems and devices for a counter balanced surgical robot
EP2801839B1 (en)2013-05-102020-03-04Leica Geosystems AGHandheld measuring aid for use with a 6-DoF laser tracker
EP2801841B1 (en)2013-05-102018-07-04Leica Geosystems AGLaser tracker with a target detecting unit for a target tracking system and orientation detection
EP2827099A1 (en)2013-07-162015-01-21Leica Geosystems AGLaser tracker with target searching functionality
CN105474482B (en)*2013-08-022019-04-23皇家飞利浦有限公司Laser equipment with adjustable polarization
US9381417B2 (en)2013-08-162016-07-05Shimano Inc.Bicycle fitting system
US9600928B2 (en)*2013-12-172017-03-21General Electric CompanyMethod and device for automatically identifying a point of interest on the surface of an anomaly
US9818039B2 (en)*2013-12-172017-11-14General Electric CompanyMethod and device for automatically identifying a point of interest in a depth measurement on a viewed object
JP6227395B2 (en)*2013-12-182017-11-08株式会社ミツトヨ Three-dimensional measurement system, three-dimensional measurement method, object to be measured, and position detection device
WO2015109251A1 (en)2014-01-172015-07-23Truinject Medical Corp.Injection site training system
EP2896931A1 (en)*2014-01-212015-07-22Aimess Services GmbHDevice and method for determining the change in position of a 3D measuring head
US10111714B2 (en)2014-01-272018-10-30Align Technology, Inc.Adhesive objects for improving image registration of intraoral images
US10290231B2 (en)2014-03-132019-05-14Truinject Corp.Automated detection of performance characteristics in an injection training system
DE102015004873A1 (en)2014-04-172015-10-22Steinbichler Optotechnik Gmbh Method and device for determining the 3D coordinates of an object
US20160178746A1 (en)*2014-06-302016-06-23Unique Solutions Design Ltd.Handheld multi-sensor system for sizing irregular objects
EP2980526B1 (en)2014-07-302019-01-16Leica Geosystems AGCoordinate measuring device and method
EP3006895B1 (en)2014-10-102020-02-19Leica Geosystems AGLaser tracker with hot air flow shielding for the measurement beam
KR102477470B1 (en)*2014-11-212022-12-13씽크 써지컬, 인크.Visible light communication system for transmitting data between visual tracking systems and tracking markers
KR20170102233A (en)2014-12-012017-09-08트루인젝트 코프Injection training tool emitting omnidirectional light
US10932866B1 (en)2014-12-082021-03-02Think Surgical, Inc.Implant based planning, digitizing, and registration for total joint arthroplasty
JP6735273B2 (en)*2014-12-082020-08-05シンク サージカル, インコーポレイテッド Planning, digitization, and enrollment for implant-based total joint replacement
EP3032277B1 (en)2014-12-122021-04-07Leica Geosystems AGLaser tracker
JP6634229B2 (en)*2015-06-262020-01-22Mogコンサルタント株式会社 Method for creating a bar arrangement model using a handheld three-dimensional laser scanner
WO2017070391A2 (en)2015-10-202017-04-27Truinject Medical Corp.Injection system
WO2017151441A2 (en)2016-02-292017-09-08Truinject Medical Corp.Cosmetic and therapeutic injection safety systems, methods, and devices
WO2017151963A1 (en)2016-03-022017-09-08Truinject Madical Corp.Sensory enhanced environments for injection aid and social training
EP3220163B1 (en)2016-03-152021-07-07Leica Geosystems AGLaser tracker with two measuring function alities
US10551180B2 (en)2016-09-302020-02-04Burke E. Porter Marchinery CompanyWheel alignment measurement method and system for vehicle wheels
US10269266B2 (en)2017-01-232019-04-23Truinject Corp.Syringe dose and position measuring apparatus
US10247542B2 (en)2017-08-092019-04-02Leica Geosystems AgHandheld measuring aid with a 3-axis joint connection and a spherical encoder
US11243074B2 (en)2018-04-302022-02-08BPG Sales and Technology Investments, LLCVehicle alignment and sensor calibration system
US11597091B2 (en)2018-04-302023-03-07BPG Sales and Technology Investments, LLCRobotic target alignment for vehicle sensor calibration
EP4325250A3 (en)2018-04-302024-04-24BPG Sales and Technology Investments, LLCVehicular alignment for sensor calibration
US11835646B2 (en)2018-04-302023-12-05BPG Sales and Technology Investments, LLCTarget alignment for vehicle sensor calibration
US12385766B2 (en)2018-04-302025-08-12BPG Sales and Technology Investments, LLCVehicular alignment for sensor calibration
US11781860B2 (en)2018-04-302023-10-10BPG Sales and Technology Investments, LLCMobile vehicular alignment for sensor calibration
US11291507B2 (en)2018-07-162022-04-05Mako Surgical Corp.System and method for image based registration and calibration
JP7170365B2 (en)2019-07-162022-11-14ボディデータ インコーポレイテッド Systems and methods for improving radar scanning coverage and efficiency
US12089902B2 (en)2019-07-302024-09-17Coviden LpCone beam and 3D fluoroscope lung navigation
WO2021220169A1 (en)2020-04-272021-11-04BPG Sales and Technology Investments, LLCNon-contact vehicle orientation and alignment sensor and method
CN111881719B (en)*2020-06-092024-04-16青岛奥美克生物信息科技有限公司Non-contact type biological recognition guiding device, method and biological feature recognition system
WO2022162618A1 (en)2021-01-282022-08-04BPG Sales and Technology Investments, LLCTarget alignment system and method for sensor calibration
US11635291B2 (en)2021-04-302023-04-25Mitutoyo CorporationWorkpiece holder for utilization in metrology system for measuring workpiece in different orientations
EP4198449A1 (en)2021-12-142023-06-21Hexagon Technology Center GmbHMetrology system
EP4332495A1 (en)2022-09-012024-03-06Leica Geosystems AGMeasuring instrument with a scanning absolute distance meter
EP4343272B1 (en)2022-09-202024-11-06Hexagon Technology Center GmbHSensor with curved reflector
AT526145B1 (en)*2023-02-232023-12-15Wilfried Lutz Dr Imaging optics

Citations (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3821469A (en)*1972-05-151974-06-28Amperex Electronic CorpGraphical data device
US3983474A (en)*1975-02-211976-09-28Polhemus Navigation Sciences, Inc.Tracking and determining orientation of object using coordinate transformation means, system and process
US4209254A (en)*1978-02-031980-06-24Thomson-CsfSystem for monitoring the movements of one or more point sources of luminous radiation
US4585350A (en)*1983-01-281986-04-29Pryor Timothy RPulsed robotic inspection
US4649504A (en)*1984-05-221987-03-10Cae Electronics, Ltd.Optical position and orientation measurement techniques
US4660970A (en)*1983-11-251987-04-28Carl-Zeiss-StiftungMethod and apparatus for the contact-less measuring of objects
US4701047A (en)*1984-06-221987-10-20Dornier GmbhLine selection for preparing range images
US4701049A (en)*1983-06-221987-10-20B.V. Optische Industrie "De Oude Delft"Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _
US4705395A (en)*1984-10-031987-11-10Diffracto Ltd.Triangulation data integrity
US4705401A (en)*1985-08-121987-11-10Cyberware Laboratory Inc.Rapid three-dimensional surface digitizer
US4709156A (en)*1985-11-271987-11-24Ex-Cell-O CorporationMethod and apparatus for inspecting a surface
US4721384A (en)*1985-01-261988-01-26Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V.Optical-electronic rangefinder
US4721388A (en)*1984-10-051988-01-26Hitachi, Ltd.Method of measuring shape of object in non-contacting manner
US4733969A (en)*1986-09-081988-03-29Cyberoptics CorporationLaser probe for determining distance
US4737032A (en)*1985-08-261988-04-12Cyberware Laboratory, Inc.Surface mensuration sensor
US4743771A (en)*1985-06-171988-05-10View Engineering, Inc.Z-axis height measurement system
US4745290A (en)*1987-03-191988-05-17David FrankelMethod and apparatus for use in making custom shoes
US4753528A (en)*1983-12-131988-06-28Quantime, Inc.Laser archery distance device
US4761072A (en)*1986-09-301988-08-02Diffracto Ltd.Electro-optical sensors for manual control
US4764016A (en)*1985-06-141988-08-16Anders BengtssonInstrument for measuring the topography of a surface
US4764015A (en)*1986-12-311988-08-16Owens-Illinois Television Products Inc.Method and apparatus for non-contact spatial measurement
US4767934A (en)*1986-07-021988-08-30Honeywell Inc.Active ranging system
US4775235A (en)*1984-06-081988-10-04Robotic Vision Systems, Inc.Optical spot scanning system for use in three-dimensional object inspection
US4782239A (en)*1985-04-051988-11-01Nippon Kogaku K. K.Optical position measuring apparatus
US4794262A (en)*1985-12-031988-12-27Yukio SatoMethod and apparatus for measuring profile of three-dimensional object
US4803645A (en)*1985-09-191989-02-07Tokyo Kogaku Kikai Kabushiki KaishaMethod and apparatus for measuring coordinates
US4821200A (en)*1986-04-141989-04-11Jonkopings Lans LandstingMethod and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4822163A (en)*1986-06-261989-04-18Robotic Vision Systems, Inc.Tracking vision sensor
US4825091A (en)*1987-02-051989-04-25Carl-Zeiss-StiftungOptoelectronic distance sensor with visible pilot beam
US4829373A (en)*1987-08-031989-05-09Vexcel CorporationStereo mensuration apparatus
US4836778A (en)*1987-05-261989-06-06Vexcel CorporationMandibular motion monitoring system
US4982188A (en)*1988-09-201991-01-01Grumman Aerospace CorporationSystem for measuring positional characteristics of an ejected object

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3679622D1 (en)*1985-08-011991-07-11Brown & Sharpe Mfg METHOD AND DEVICE FOR THREE-DIMENSIONAL MEASUREMENT OF AN OBJECT.
US4792696A (en)*1987-06-051988-12-20Trustees Of Columbia University In The City Of New YorkMethod and an apparatus for determining surface shape utilizing object self-shadowing
DE3807578A1 (en)*1988-03-081989-09-28Neumeyer StefanMethod for the three-dimensional detection and/or determination of a body, in particular a human skull (cranium)

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3821469A (en)*1972-05-151974-06-28Amperex Electronic CorpGraphical data device
US3983474A (en)*1975-02-211976-09-28Polhemus Navigation Sciences, Inc.Tracking and determining orientation of object using coordinate transformation means, system and process
US4209254A (en)*1978-02-031980-06-24Thomson-CsfSystem for monitoring the movements of one or more point sources of luminous radiation
US4585350A (en)*1983-01-281986-04-29Pryor Timothy RPulsed robotic inspection
US4701049A (en)*1983-06-221987-10-20B.V. Optische Industrie "De Oude Delft"Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _
US4660970A (en)*1983-11-251987-04-28Carl-Zeiss-StiftungMethod and apparatus for the contact-less measuring of objects
US4753528A (en)*1983-12-131988-06-28Quantime, Inc.Laser archery distance device
US4649504A (en)*1984-05-221987-03-10Cae Electronics, Ltd.Optical position and orientation measurement techniques
US4775235A (en)*1984-06-081988-10-04Robotic Vision Systems, Inc.Optical spot scanning system for use in three-dimensional object inspection
US4701047A (en)*1984-06-221987-10-20Dornier GmbhLine selection for preparing range images
US4705395A (en)*1984-10-031987-11-10Diffracto Ltd.Triangulation data integrity
US4721388A (en)*1984-10-051988-01-26Hitachi, Ltd.Method of measuring shape of object in non-contacting manner
US4721384A (en)*1985-01-261988-01-26Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V.Optical-electronic rangefinder
US4782239A (en)*1985-04-051988-11-01Nippon Kogaku K. K.Optical position measuring apparatus
US4764016A (en)*1985-06-141988-08-16Anders BengtssonInstrument for measuring the topography of a surface
US4743771A (en)*1985-06-171988-05-10View Engineering, Inc.Z-axis height measurement system
US4705401A (en)*1985-08-121987-11-10Cyberware Laboratory Inc.Rapid three-dimensional surface digitizer
US4737032A (en)*1985-08-261988-04-12Cyberware Laboratory, Inc.Surface mensuration sensor
US4803645A (en)*1985-09-191989-02-07Tokyo Kogaku Kikai Kabushiki KaishaMethod and apparatus for measuring coordinates
US4709156A (en)*1985-11-271987-11-24Ex-Cell-O CorporationMethod and apparatus for inspecting a surface
US4794262A (en)*1985-12-031988-12-27Yukio SatoMethod and apparatus for measuring profile of three-dimensional object
US4821200A (en)*1986-04-141989-04-11Jonkopings Lans LandstingMethod and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4822163A (en)*1986-06-261989-04-18Robotic Vision Systems, Inc.Tracking vision sensor
US4767934A (en)*1986-07-021988-08-30Honeywell Inc.Active ranging system
US4733969A (en)*1986-09-081988-03-29Cyberoptics CorporationLaser probe for determining distance
US4761072A (en)*1986-09-301988-08-02Diffracto Ltd.Electro-optical sensors for manual control
US4764015A (en)*1986-12-311988-08-16Owens-Illinois Television Products Inc.Method and apparatus for non-contact spatial measurement
US4825091A (en)*1987-02-051989-04-25Carl-Zeiss-StiftungOptoelectronic distance sensor with visible pilot beam
US4745290A (en)*1987-03-191988-05-17David FrankelMethod and apparatus for use in making custom shoes
US4836778A (en)*1987-05-261989-06-06Vexcel CorporationMandibular motion monitoring system
US4829373A (en)*1987-08-031989-05-09Vexcel CorporationStereo mensuration apparatus
US4982188A (en)*1988-09-201991-01-01Grumman Aerospace CorporationSystem for measuring positional characteristics of an ejected object

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A.M. Coblentz, Robin E. Herron, Biostereometrics 85, 3 6 Dec. 1985 Stereometric Measurement System for Quantification of Object Forms, P.Fischer, F.Mesqui, F.Kaeser.*
A.M. Coblentz, Robin E. Herron, Biostereometrics '85, 3-6 Dec. 1985 Stereometric Measurement System for Quantification of Object Forms, P.Fischer, F.Mesqui, F.Kaeser.
F. Mesqui, F.Kaeser, P.Fischer, Real Time, Noninvasive Recording & Three Dimensional Display of the Functional Movements of an Arbitrary Mandible Point, SPIE vol. 602 Biostereometrics, Dec. 1985.*
F. Mesqui, F.Kaeser, P.Fischer, Real-Time, Noninvasive Recording & Three-Dimensional Display of the Functional Movements of an Arbitrary Mandible Point, SPIE vol. 602 Biostereometrics, Dec. 1985.
Henry Fuchs, Joe W. Duran, Brian W. Johnson, Zvi. M. kedem, Acquisition & Modeling of Human Body Form Data, SPIE vol. 166, Jul. 1978.*
Robert P. Burton, Ivan E. Sutherland, Twinkle Box A Three Dimensional Computer Input Device, May 6 10, 1974, AFIPS Conference Proceedings vol. 43.*
Robert P. Burton, Ivan E. Sutherland, Twinkle Box-A Three Dimensional Computer Input Device, May 6-10, 1974, AFIPS Conference Proceedings vol. 43.
V. Macellari, CoSTEL:a Computer Peripheral Remote Sension Device for 3 Dimensional Monitoring of Human Motion, May, 1983.*
V. Macellari, CoSTEL:a Computer Peripheral Remote Sension Device for 3-Dimensional Monitoring of Human Motion, May, 1983.
Yasuo Yamashita, Three dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, & Line Sensors, SPIE 361, Aug. 1982.*
Yasuo Yamashita, Three-dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, & Line Sensors, SPIE 361, Aug. 1982.

Cited By (332)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USRE43952E1 (en)1989-10-052013-01-29Medtronic Navigation, Inc.Interactive system for local intervention inside a non-homogeneous structure
US6146390A (en)1992-04-212000-11-14Sofamor Danek Holdings, Inc.Apparatus and method for photogrammetric surgical localization
US6165181A (en)1992-04-212000-12-26Sofamor Danek Holdings, Inc.Apparatus and method for photogrammetric surgical localization
US6491702B2 (en)1992-04-212002-12-10Sofamor Danek Holdings, Inc.Apparatus and method for photogrammetric surgical localization
US7174202B2 (en)1992-08-142007-02-06British TelecommunicationsMedical navigation apparatus
US8200314B2 (en)1992-08-142012-06-12British Telecommunications Public Limited CompanySurgical navigation
US8473026B2 (en)1994-09-152013-06-25Ge Medical Systems Global Technology CompanySystem for monitoring a position of a medical instrument with respect to a patient's body
US5969822A (en)1994-09-281999-10-19Applied Research Associates Nz Ltd.Arbitrary-geometry laser surface scanner
USRE40852E1 (en)1995-06-142009-07-14Medtronic Navigation, Inc.Method and system for navigating a catheter probe
USRE43750E1 (en)1995-06-142012-10-16Medtronic Navigation, Inc.Method for navigating a catheter probe
USRE41066E1 (en)1995-06-142009-12-29Metronic Navigation, Inc.Method and system for navigating a catheter probe
US6374198B1 (en)*1996-07-112002-04-16Mirai S.R.L.Method for the creation of tridimensional numerical models
US6222582B1 (en)*1997-07-242001-04-24Sumitomo Metal (Smi) Electronics Devices Inc.Image capture system
US6296613B1 (en)1997-08-222001-10-02Synthes (U.S.A.)3D ultrasound recording device
USRE42226E1 (en)1997-09-242011-03-15Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE39133E1 (en)*1997-09-242006-06-13Surgical Navigation Technologies, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42194E1 (en)1997-09-242011-03-01Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE44305E1 (en)1997-09-242013-06-18Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6226548B1 (en)1997-09-242001-05-01Surgical Navigation Technologies, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE45509E1 (en)1997-09-242015-05-05Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE46422E1 (en)1997-11-202017-06-06Medtronic Navigation, Inc.Image guided awl/tap/screwdriver
USRE43328E1 (en)1997-11-202012-04-24Medtronic Navigation, IncImage guided awl/tap/screwdriver
USRE46409E1 (en)1997-11-202017-05-23Medtronic Navigation, Inc.Image guided awl/tap/screwdriver
US6324296B1 (en)*1997-12-042001-11-27Phasespace, Inc.Distributed-processing motion tracking system for tracking individually modulated light points
US7763035B2 (en)1997-12-122010-07-27Medtronic Navigation, Inc.Image guided spinal surgery guide, system and method for use thereof
US8105339B2 (en)1997-12-122012-01-31Sofamor Danek Holdings, Inc.Image guided spinal surgery guide system and method for use thereof
US6918919B2 (en)1998-05-142005-07-19Calypso Medical Technologies, Inc.System and method for bracketing and removing tissue
US8452375B2 (en)1998-05-142013-05-28Varian Medical Systems, Inc.Systems and methods for locating and defining a target location within a human body
US20050059884A1 (en)*1998-05-142005-03-17Calypso Medical Technologies, Inc.System and method for bracketing and removing tissue
US20010018594A1 (en)*1998-05-142001-08-30Calypso Medical, Inc.System and Method for Bracketing and Removing Tissue
US6363940B1 (en)1998-05-142002-04-02Calypso Medical Technologies, Inc.System and method for bracketing and removing tissue
US6694168B2 (en)1998-06-222004-02-17Synthes (U.S.A.)Fiducial matching using fiducial implants
US6370224B1 (en)1998-06-292002-04-09Sofamor Danek Group, Inc.System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers
US7065462B2 (en)1998-07-242006-06-20Merilab, Inc.Vehicle wheel alignment by rotating vision sensor
US20040039544A1 (en)*1998-07-242004-02-26Merrill M. StanleyVehicle wheel alignment by rotating vision sensor
US20050105772A1 (en)*1998-08-102005-05-19Nestor VoronkaOptical body tracker
US7130676B2 (en)1998-08-202006-10-31Sofamor Danek Holdings, Inc.Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US8768437B2 (en)1998-08-202014-07-01Sofamor Danek Holdings, Inc.Fluoroscopic image guided surgery system with intraoperative registration
US6611141B1 (en)1998-12-232003-08-26Howmedica Leibinger IncHybrid 3-D probe tracked by multiple sensors
US6271918B2 (en)*1999-02-042001-08-07National Research Council Of CanadaVirtual multiple aperture 3-D range sensor
US7068825B2 (en)1999-03-082006-06-27Orametrix, Inc.Scanning system and calibration method for capturing precise three-dimensional information of objects
US20010038705A1 (en)*1999-03-082001-11-08Orametrix, Inc.Scanning system and calibration method for capturing precise three-dimensional information of objects
US6725082B2 (en)1999-03-172004-04-20Synthes U.S.A.System and method for ligament graft placement
US7996064B2 (en)1999-03-232011-08-09Medtronic Navigation, Inc.System and method for placing and determining an appropriately sized surgical implant
US7606613B2 (en)1999-03-232009-10-20Medtronic Navigation, Inc.Navigational guidance via computer-assisted fluoroscopic imaging
US6493095B1 (en)1999-04-132002-12-10Inspeck Inc.Optional 3D digitizer, system and method for digitizing an object
US6585651B2 (en)1999-04-202003-07-01Synthes Ag ChurMethod and device for percutaneous determination of points associated with the surface of an organ
US8845655B2 (en)1999-04-202014-09-30Medtronic Navigation, Inc.Instrument guide system
US7217276B2 (en)1999-04-202007-05-15Surgical Navigational Technologies, Inc.Instrument guidance method and system for image guided surgery
US20020109705A1 (en)*1999-05-032002-08-15Robert HofstetterSystem and method for preparing an image corrected for the presence of a gravity induced distortion
US7277594B2 (en)1999-05-032007-10-02Ao Technology AgSystem and method for preparing an image corrected for the presence of a gravity induced distortion
US6801637B2 (en)1999-08-102004-10-05Cybernet Systems CorporationOptical body tracker
US8074662B2 (en)1999-10-282011-12-13Medtronic Navigation, Inc.Surgical communication and power system
US11331150B2 (en)1999-10-282022-05-17Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US8290572B2 (en)1999-10-282012-10-16Medtronic Navigation, Inc.Method and system for navigating a catheter probe in the presence of field-influencing objects
US6235038B1 (en)1999-10-282001-05-22Medtronic Surgical Navigation TechnologiesSystem for translation of electromagnetic and optical localization systems
US7657300B2 (en)1999-10-282010-02-02Medtronic Navigation, Inc.Registration of human anatomy integrated for electromagnetic localization
US8057407B2 (en)1999-10-282011-11-15Medtronic Navigation, Inc.Surgical sensor
US7797032B2 (en)1999-10-282010-09-14Medtronic Navigation, Inc.Method and system for navigating a catheter probe in the presence of field-influencing objects
US6381485B1 (en)1999-10-282002-04-30Surgical Navigation Technologies, Inc.Registration of human anatomy integrated for electromagnetic localization
US8644907B2 (en)1999-10-282014-02-04Medtronic Navigaton, Inc.Method and apparatus for surgical navigation
US6379302B1 (en)1999-10-282002-04-30Surgical Navigation Technologies Inc.Navigation information overlay onto ultrasound imagery
US9504530B2 (en)1999-10-282016-11-29Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US6402762B2 (en)1999-10-282002-06-11Surgical Navigation Technologies, Inc.System for translation of electromagnetic and optical localization systems
US6474341B1 (en)1999-10-282002-11-05Surgical Navigation Technologies, Inc.Surgical communication and power system
US8548565B2 (en)1999-10-282013-10-01Medtronic Navigation, Inc.Registration of human anatomy integrated for electromagnetic localization
US7152608B2 (en)1999-10-282006-12-26Surgical Navigation Technologies, Inc.Surgical communication and power system
US7007699B2 (en)1999-10-282006-03-07Surgical Navigation Technologies, Inc.Surgical sensor
US6499488B1 (en)1999-10-282002-12-31Winchester Development AssociatesSurgical sensor
US6669635B2 (en)1999-10-282003-12-30Surgical Navigation Technologies, Inc.Navigation information overlay onto ultrasound imagery
US6968224B2 (en)1999-10-282005-11-22Surgical Navigation Technologies, Inc.Method of detecting organ matter shift in a patient
US20030078003A1 (en)*1999-10-282003-04-24Hunter Mark W.Surgical communication and power system
US7725162B2 (en)2000-01-272010-05-25Howmedica Leibinger Inc.Surgery system
US6888640B2 (en)2000-02-042005-05-03Mario J. SpinaBody spatial dimension mapper
US6725080B2 (en)2000-03-012004-04-20Surgical Navigation Technologies, Inc.Multiple cannula image guided tool for image guided procedures
US7881770B2 (en)2000-03-012011-02-01Medtronic Navigation, Inc.Multiple cannula image guided tool for image guided procedures
US10898153B2 (en)2000-03-012021-01-26Medtronic Navigation, Inc.Multiple cannula image guided tool for image guided procedures
US6497134B1 (en)2000-03-152002-12-24Image Guided Technologies, Inc.Calibration of an instrument
US7577474B2 (en)*2000-04-052009-08-18Brainlab AgReferencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US20050143645A1 (en)*2000-04-052005-06-30Stefan VilsmeierReferencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US6920347B2 (en)2000-04-072005-07-19Surgical Navigation Technologies, Inc.Trajectory storage apparatus and method for surgical navigation systems
US8634897B2 (en)2000-04-072014-01-21Medtronic Navigation, Inc.Trajectory storage apparatus and method for surgical navigation systems
US7853305B2 (en)2000-04-072010-12-14Medtronic Navigation, Inc.Trajectory storage apparatus and method for surgical navigation systems
US7027642B2 (en)2000-04-282006-04-11Orametrix, Inc.Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects
US20020006217A1 (en)*2000-04-282002-01-17Orametrix, Inc.Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects
US6413084B1 (en)2000-04-282002-07-02Ora Metrix, Inc.Method and system of scanning
US6744914B1 (en)2000-04-282004-06-01Orametrix, Inc.Method and system for generating a three-dimensional object
US7068836B1 (en)2000-04-282006-06-27Orametrix, Inc.System and method for mapping a surface
US6744932B1 (en)2000-04-282004-06-01Orametrix, Inc.System and method for mapping a surface
US6771809B1 (en)2000-04-282004-08-03Orametrix, Inc.Method and system for registering data
US6728423B1 (en)2000-04-282004-04-27Orametrix, Inc.System and method for mapping a surface
US6532299B1 (en)2000-04-282003-03-11Orametrix, Inc.System and method for mapping a surface
WO2001084479A1 (en)*2000-04-282001-11-08Orametirix, Inc.Method and system for scanning a surface and generating a three-dimensional object
US6564086B2 (en)*2000-05-032003-05-13Rocky Mountain Biosystems, Inc.Prosthesis and method of making
US8320653B2 (en)2000-06-142012-11-27Medtronic Navigation, Inc.System and method for image based sensor calibration
US7085400B1 (en)2000-06-142006-08-01Surgical Navigation Technologies, Inc.System and method for image based sensor calibration
US7831082B2 (en)2000-06-142010-11-09Medtronic Navigation, Inc.System and method for image based sensor calibration
US6724947B1 (en)2000-07-142004-04-20International Business Machines CorporationMethod and system for measuring characteristics of curved features
US6911972B2 (en)*2001-04-042005-06-28Matsushita Electric Industrial Co., Ltd.User interface device
US9675424B2 (en)2001-06-042017-06-13Surgical Navigation Technologies, Inc.Method for calibrating a navigation system
US20050261570A1 (en)*2001-06-082005-11-24Mate Timothy PGuided radiation therapy system
US7657303B2 (en)2001-06-082010-02-02Calypso Medical Technologies, Inc.Guided radiation therapy system
US9072895B2 (en)2001-06-082015-07-07Varian Medical Systems, Inc.Guided radiation therapy system
US7657302B2 (en)2001-06-082010-02-02Calypso Medical Technologies, Inc.Guided radiation therapy system
US20040133101A1 (en)*2001-06-082004-07-08Mate Timothy P.Guided radiation therapy system
US7657301B2 (en)2001-06-082010-02-02Calypso Medical Technologies, Inc.Guided radiation therapy system
US20040184040A1 (en)*2001-07-172004-09-23Hideto FujitaShape measuring device
US6732030B2 (en)2001-08-182004-05-04Snap-On U.K. Holdings LimitedThree-dimensional mapping systems for automotive vehicles and other articles
US20030052785A1 (en)*2001-09-142003-03-20Margo GisselbergMiniature resonating marker assembly
US20070057794A1 (en)*2001-09-142007-03-15Calypso Medical Technologies, Inc.Miniature resonating marker assembly
US7535363B2 (en)2001-09-142009-05-19Calypso Medical Technologies, Inc.Miniature resonating marker assembly
US7135978B2 (en)2001-09-142006-11-14Calypso Medical Technologies, Inc.Miniature resonating marker assembly
US7176798B2 (en)2001-12-202007-02-13Calypso Medical Technologies, Inc.System for spatially adjustable excitation of leadless miniature marker
US7696876B2 (en)2001-12-202010-04-13Calypso Medical Technologies, Inc.System for spatially adjustable excitation of leadless miniature marker
US6838990B2 (en)2001-12-202005-01-04Calypso Medical Technologies, Inc.System for excitation leadless miniature marker
US20050195084A1 (en)*2001-12-202005-09-08Calypso Medical Technologies, Inc.System for spatially adjustable excitation of leadless miniature marker
US6812842B2 (en)2001-12-202004-11-02Calypso Medical Technologies, Inc.System for excitation of a leadless miniature marker
US6822570B2 (en)2001-12-202004-11-23Calypso Medical Technologies, Inc.System for spatially adjustable excitation of leadless miniature marker
US9757087B2 (en)2002-02-282017-09-12Medtronic Navigation, Inc.Method and apparatus for perspective inversion
US7630753B2 (en)2002-02-282009-12-08Medtronic Navigation, Inc.Method and apparatus for perspective inversion
US6947786B2 (en)2002-02-282005-09-20Surgical Navigation Technologies, Inc.Method and apparatus for perspective inversion
US6990368B2 (en)2002-04-042006-01-24Surgical Navigation Technologies, Inc.Method and apparatus for virtual digital subtraction angiography
US8838199B2 (en)2002-04-042014-09-16Medtronic Navigation, Inc.Method and apparatus for virtual digital subtraction angiography
US9642514B2 (en)2002-04-172017-05-09Covidien LpEndoscope structures and techniques for navigating to a target in a branched structure
US8696685B2 (en)2002-04-172014-04-15Covidien LpEndoscope structures and techniques for navigating to a target in branched structure
US8696548B2 (en)2002-04-172014-04-15Covidien LpEndoscope structures and techniques for navigating to a target in branched structure
US10743748B2 (en)2002-04-172020-08-18Covidien LpEndoscope structures and techniques for navigating to a target in branched structure
US9682253B2 (en)2002-06-052017-06-20Varian Medical Systems, Inc.Integrated radiation therapy systems and methods for treating a target in a patient
US20060074301A1 (en)*2002-06-052006-04-06Eric MeierIntegrated radiation therapy systems and methods for treating a target in a patient
US9616248B2 (en)2002-06-052017-04-11Varian Medical Systems, Inc.Integrated radiation therapy systems and methods for treating a target in a patient
US6892090B2 (en)2002-08-192005-05-10Surgical Navigation Technologies, Inc.Method and apparatus for virtual endoscopy
US8457719B2 (en)2002-10-252013-06-04Stryker CorporationFlexible tracking article and method of using the same
US20040147839A1 (en)*2002-10-252004-07-29Moctezuma De La Barrera Jose LuisFlexible tracking article and method of using the same
US7869861B2 (en)2002-10-252011-01-11Howmedica Leibinger Inc.Flexible tracking article and method of using the same
US20110077510A1 (en)*2002-10-252011-03-31Jose Luis Moctezuma De La BarreraFlexible Tracking Article And Method Of Using The Same
US7599730B2 (en)2002-11-192009-10-06Medtronic Navigation, Inc.Navigation system for cardiac therapies
US8467853B2 (en)2002-11-192013-06-18Medtronic Navigation, Inc.Navigation system for cardiac therapies
US8401616B2 (en)2002-11-192013-03-19Medtronic Navigation, Inc.Navigation system for cardiac therapies
US7697972B2 (en)2002-11-192010-04-13Medtronic Navigation, Inc.Navigation system for cardiac therapies
US8060185B2 (en)2002-11-192011-11-15Medtronic Navigation, Inc.Navigation system for cardiac therapies
US8046052B2 (en)2002-11-192011-10-25Medtronic Navigation, Inc.Navigation system for cardiac therapies
US20080021308A1 (en)*2002-12-302008-01-24Calypso Medical Technologies, Inc.Implantable Marker with a Leadless Signal Transmitter Compatible for Use in Magnetic Resonance Devices
US20050205445A1 (en)*2002-12-302005-09-22Calypso Medical Technologies, Inc.Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US7778687B2 (en)2002-12-302010-08-17Calypso Medical Technologies, Inc.Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US20040138554A1 (en)*2002-12-302004-07-15Dimmer Steven C.Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US8011508B2 (en)2002-12-302011-09-06Calypso Medical Technologies, Inc.Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US8857043B2 (en)2002-12-302014-10-14Varian Medical Systems, Inc.Method of manufacturing an implantable marker with a leadless signal transmitter
US20040127787A1 (en)*2002-12-302004-07-01Dimmer Steven C.Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US8297030B2 (en)2002-12-302012-10-30Varian Medical Systems, Inc.Methods for manufacturing packaged systems for implanting markers in a patient
US7289839B2 (en)2002-12-302007-10-30Calypso Medical Technologies, Inc.Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US7407054B2 (en)2002-12-302008-08-05Calypso Medical Technologies, Inc.Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US6889833B2 (en)2002-12-302005-05-10Calypso Medical Technologies, Inc.Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US7142312B2 (en)2002-12-312006-11-28D4D Technologies, LlcLaser digitizer system for dental applications
US11684491B2 (en)2003-01-302023-06-27Medtronic Navigation, Inc.Method and apparatus for post-operative tuning of a spinal implant
US7542791B2 (en)2003-01-302009-06-02Medtronic Navigation, Inc.Method and apparatus for preplanning a surgical procedure
US11707363B2 (en)2003-01-302023-07-25Medtronic Navigation, Inc.Method and apparatus for post-operative tuning of a spinal implant
US7974677B2 (en)2003-01-302011-07-05Medtronic Navigation, Inc.Method and apparatus for preplanning a surgical procedure
US9867721B2 (en)2003-01-302018-01-16Medtronic Navigation, Inc.Method and apparatus for post-operative tuning of a spinal implant
US7660623B2 (en)2003-01-302010-02-09Medtronic Navigation, Inc.Six degree of freedom alignment display for medical procedures
US7184150B2 (en)2003-03-242007-02-27D4D Technologies, LlcLaser digitizer system for dental applications
US7570791B2 (en)2003-04-252009-08-04Medtronic Navigation, Inc.Method and apparatus for performing 2D to 3D registration
US20050020910A1 (en)*2003-04-302005-01-27Henley QuadlingIntra-oral imaging system
US20050024646A1 (en)*2003-05-052005-02-03Mark QuadlingOptical coherence tomography imaging
US7355721B2 (en)2003-05-052008-04-08D4D Technologies, LlcOptical coherence tomography imaging
US7925328B2 (en)2003-08-282011-04-12Medtronic Navigation, Inc.Method and apparatus for performing stereotactic surgery
US7313430B2 (en)2003-08-282007-12-25Medtronic Navigation, Inc.Method and apparatus for performing stereotactic surgery
US10383509B2 (en)2003-09-152019-08-20Covidien LpSystem of accessories for use with bronchoscopes
US8663088B2 (en)2003-09-152014-03-04Covidien LpSystem of accessories for use with bronchoscopes
US9089261B2 (en)2003-09-152015-07-28Covidien LpSystem of accessories for use with bronchoscopes
US20050099638A1 (en)*2003-09-172005-05-12Mark QuadlingHigh speed multiple line three-dimensional digitization
US7342668B2 (en)2003-09-172008-03-11D4D Technologies, LlcHigh speed multiple line three-dimensional digitalization
US8706185B2 (en)2003-10-162014-04-22Medtronic Navigation, Inc.Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835778B2 (en)2003-10-162010-11-16Medtronic Navigation, Inc.Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7366562B2 (en)2003-10-172008-04-29Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US8359730B2 (en)2003-10-172013-01-29Medtronic Navigation, Inc.Method of forming an electromagnetic sensing coil in a medical instrument
US8271069B2 (en)2003-10-172012-09-18Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US8549732B2 (en)2003-10-172013-10-08Medtronic Navigation, Inc.Method of forming an electromagnetic sensing coil in a medical instrument
US7971341B2 (en)2003-10-172011-07-05Medtronic Navigation, Inc.Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system
US7818044B2 (en)2003-10-172010-10-19Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US7840253B2 (en)2003-10-172010-11-23Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US8239001B2 (en)2003-10-172012-08-07Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US7751865B2 (en)2003-10-172010-07-06Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US7120524B2 (en)2003-12-042006-10-10Matrix Electronic Measuring, L.P.System for measuring points on a vehicle during damage repair
US20050131586A1 (en)*2003-12-042005-06-16Srack Robert W.System for measuring points on a vehicle during damage repair
US7376492B2 (en)2003-12-042008-05-20Matrix Electronic Measuring, L.P.System for measuring points on a vehicle during damage repair
US20050125119A1 (en)*2003-12-042005-06-09Matrix Electronic Measuring, L.P. Limited Partnership, KansasSystem for measuring points on a vehicle during damage repair
US8196589B2 (en)2003-12-242012-06-12Calypso Medical Technologies, Inc.Implantable marker with wireless signal transmitter
US20050154293A1 (en)*2003-12-242005-07-14Margo GisselbergImplantable marker with wireless signal transmitter
US8764725B2 (en)2004-02-092014-07-01Covidien LpDirectional anchoring mechanism, method and applications thereof
US7998062B2 (en)2004-03-292011-08-16Superdimension, Ltd.Endoscope structures and techniques for navigating to a target in branched structure
US9055881B2 (en)2004-04-262015-06-16Super Dimension Ltd.System and method for image-based alignment of an endoscope
US10321803B2 (en)2004-04-262019-06-18Covidien LpSystem and method for image-based alignment of an endoscope
US7567834B2 (en)2004-05-032009-07-28Medtronic Navigation, Inc.Method and apparatus for implantation between two vertebral bodies
US7953471B2 (en)2004-05-032011-05-31Medtronic Navigation, Inc.Method and apparatus for implantation between two vertebral bodies
US7154395B2 (en)*2004-07-012006-12-26Mitsubishi Electric Research Laboratories, Inc.Interactive wireless tag location and identification system
US20060001543A1 (en)*2004-07-012006-01-05Ramesh RaskarInteractive wireless tag location and identification system
US8340742B2 (en)2004-07-232012-12-25Varian Medical Systems, Inc.Integrated radiation therapy systems and methods for treating a target in a patient
US20060058648A1 (en)*2004-07-232006-03-16Eric MeierIntegrated radiation therapy systems and methods for treating a target in a patient
US20060074302A1 (en)*2004-07-232006-04-06Eric MeierIntegrated radiation therapy systems and methods for treating a target in a patient
US8244330B2 (en)2004-07-232012-08-14Varian Medical Systems, Inc.Integrated radiation therapy systems and methods for treating a target in a patient
US20060058644A1 (en)*2004-09-102006-03-16Harald HoppeSystem, device, and method for AD HOC tracking of an object
US8290570B2 (en)2004-09-102012-10-16Stryker Leibinger Gmbh & Co., KgSystem for ad hoc tracking of an object
US20060062449A1 (en)*2004-09-182006-03-23The Ohio Willow Wood CompanyApparatus for determining a three dimensional shape of an object
US7447558B2 (en)2004-09-182008-11-04The Ohio Willow Wood CompanyApparatus for determining a three dimensional shape of an object
US20060095047A1 (en)*2004-10-082006-05-04De La Barrera Jose Luis MSystem and method for performing arthroplasty of a joint and tracking a plumb line plane
US8007448B2 (en)2004-10-082011-08-30Stryker Leibinger Gmbh & Co. Kg.System and method for performing arthroplasty of a joint and tracking a plumb line plane
US7636595B2 (en)2004-10-282009-12-22Medtronic Navigation, Inc.Method and apparatus for calibrating non-linear instruments
US20060184014A1 (en)*2004-12-022006-08-17Manfred PfeilerRegistration aid for medical images
US8280490B2 (en)*2004-12-022012-10-02Siemens AktiengesellschaftRegistration aid for medical images
US7835784B2 (en)2005-09-212010-11-16Medtronic Navigation, Inc.Method and apparatus for positioning a reference frame
US8467851B2 (en)2005-09-212013-06-18Medtronic Navigation, Inc.Method and apparatus for positioning a reference frame
US9168102B2 (en)2006-01-182015-10-27Medtronic Navigation, Inc.Method and apparatus for providing a container to a sterile environment
US10597178B2 (en)2006-01-182020-03-24Medtronic Navigation, Inc.Method and apparatus for providing a container to a sterile environment
US8112292B2 (en)2006-04-212012-02-07Medtronic Navigation, Inc.Method and apparatus for optimizing a therapy
US11857265B2 (en)2006-06-162024-01-02Board Of Regents Of The University Of NebraskaMethod and apparatus for computer aided surgery
US20080077158A1 (en)*2006-06-162008-03-27Hani HaiderMethod and Apparatus for Computer Aided Surgery
US11116574B2 (en)2006-06-162021-09-14Board Of Regents Of The University Of NebraskaMethod and apparatus for computer aided surgery
US20080012981A1 (en)*2006-07-072008-01-17Goodwin Mark DMail processing system with dual camera assembly
US20080035866A1 (en)*2006-07-072008-02-14Lockheed Martin CorporationMail imaging system with UV illumination interrupt
US20080049972A1 (en)*2006-07-072008-02-28Lockheed Martin CorporationMail imaging system with secondary illumination/imaging window
US8660635B2 (en)2006-09-292014-02-25Medtronic, Inc.Method and apparatus for optimizing a computer assisted surgical procedure
US9597154B2 (en)2006-09-292017-03-21Medtronic, Inc.Method and apparatus for optimizing a computer assisted surgical procedure
US7256899B1 (en)2006-10-042007-08-14Ivan FaulWireless methods and systems for three-dimensional non-contact shape sensing
US7336375B1 (en)2006-10-042008-02-26Ivan FaulWireless methods and systems for three-dimensional non-contact shape sensing
US20100141740A1 (en)*2007-05-042010-06-10Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung EvDevice and Method for Non-Contact Recording of Spatial Coordinates of a Surface
US8791997B2 (en)*2007-05-042014-07-29Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Device and method for non-contact recording of spatial coordinates of a surface
US20090043556A1 (en)*2007-08-072009-02-12Axelson Stuart LMethod of and system for planning a surgery
US8617174B2 (en)2007-08-072013-12-31Stryker Leibinger Gmbh & Co. KgMethod of virtually planning a size and position of a prosthetic implant
US8382765B2 (en)2007-08-072013-02-26Stryker Leibinger Gmbh & Co. Kg.Method of and system for planning a surgery
US8617173B2 (en)2007-08-072013-12-31Stryker Leibinger Gmbh & Co. KgSystem for assessing a fit of a femoral implant
US9668639B2 (en)2007-09-272017-06-06Covidien LpBronchoscope adapter and method
US10980400B2 (en)2007-09-272021-04-20Covidien LpBronchoscope adapter and method
US8905920B2 (en)2007-09-272014-12-09Covidien LpBronchoscope adapter and method
US9986895B2 (en)2007-09-272018-06-05Covidien LpBronchoscope adapter and method
US10390686B2 (en)2007-09-272019-08-27Covidien LpBronchoscope adapter and method
US9575140B2 (en)2008-04-032017-02-21Covidien LpMagnetic interference detection system and method
US20090290787A1 (en)*2008-05-222009-11-26Matrix Electronic Measuring, L.P.Stereoscopic measurement system and method
US8345953B2 (en)2008-05-222013-01-01Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
US9454822B2 (en)2008-05-222016-09-27Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
US8326022B2 (en)2008-05-222012-12-04Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
US9449378B2 (en)2008-05-222016-09-20Matrix Electronic Measuring Properties, LlcSystem and method for processing stereoscopic vehicle information
US20090290759A1 (en)*2008-05-222009-11-26Matrix Electronic Measuring, L.P.Stereoscopic measurement system and method
US9286506B2 (en)2008-05-222016-03-15Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
US9482515B2 (en)2008-05-222016-11-01Matrix Electronic Measuring Properties, LlcStereoscopic measurement system and method
US8249332B2 (en)2008-05-222012-08-21Matrix Electronic Measuring Properties LlcStereoscopic measurement system and method
US10096126B2 (en)2008-06-032018-10-09Covidien LpFeature-based registration method
US9117258B2 (en)2008-06-032015-08-25Covidien LpFeature-based registration method
US8473032B2 (en)2008-06-032013-06-25Superdimension, Ltd.Feature-based registration method
US9659374B2 (en)2008-06-032017-05-23Covidien LpFeature-based registration method
US11783498B2 (en)2008-06-032023-10-10Covidien LpFeature-based registration method
US11074702B2 (en)2008-06-032021-07-27Covidien LpFeature-based registration method
US9237860B2 (en)2008-06-052016-01-19Varian Medical Systems, Inc.Motion compensation for medical imaging and associated systems and methods
US11931141B2 (en)2008-06-062024-03-19Covidien LpHybrid registration method
US10478092B2 (en)2008-06-062019-11-19Covidien LpHybrid registration method
US10285623B2 (en)2008-06-062019-05-14Covidien LpHybrid registration method
US9271803B2 (en)2008-06-062016-03-01Covidien LpHybrid registration method
US10674936B2 (en)2008-06-062020-06-09Covidien LpHybrid registration method
US8467589B2 (en)2008-06-062013-06-18Covidien LpHybrid registration method
US8452068B2 (en)2008-06-062013-05-28Covidien LpHybrid registration method
US11241164B2 (en)2008-07-102022-02-08Covidien LpIntegrated multi-functional endoscopic tool
US10070801B2 (en)2008-07-102018-09-11Covidien LpIntegrated multi-functional endoscopic tool
US10912487B2 (en)2008-07-102021-02-09Covidien LpIntegrated multi-function endoscopic tool
US8932207B2 (en)2008-07-102015-01-13Covidien LpIntegrated multi-functional endoscopic tool
US11234611B2 (en)2008-07-102022-02-01Covidien LpIntegrated multi-functional endoscopic tool
US8165658B2 (en)2008-09-262012-04-24Medtronic, Inc.Method and apparatus for positioning a guide relative to a base
US9453913B2 (en)2008-11-172016-09-27Faro Technologies, Inc.Target apparatus for three-dimensional measurement system
US9482755B2 (en)2008-11-172016-11-01Faro Technologies, Inc.Measurement system having air temperature compensation between a target and a laser tracker
US8175681B2 (en)2008-12-162012-05-08Medtronic Navigation Inc.Combination of electromagnetic and electropotential localization
US8731641B2 (en)2008-12-162014-05-20Medtronic Navigation, Inc.Combination of electromagnetic and electropotential localization
US9113813B2 (en)2009-04-082015-08-25Covidien LpLocatable catheter
US8611984B2 (en)2009-04-082013-12-17Covidien LpLocatable catheter
US10154798B2 (en)2009-04-082018-12-18Covidien LpLocatable catheter
US9442362B2 (en)2009-07-102016-09-13Steropes Technologies, LlcMethod and apparatus for generating three-dimensional image information
US9298078B2 (en)2009-07-102016-03-29Steropes Technologies, LlcMethod and apparatus for generating three-dimensional image information using a single imaging path
US8494613B2 (en)2009-08-312013-07-23Medtronic, Inc.Combination localization system
US8494614B2 (en)2009-08-312013-07-23Regents Of The University Of MinnesotaCombination localization system
US9146094B2 (en)2010-04-212015-09-29Faro Technologies, Inc.Automatic measurement of dimensional data with a laser tracker
US9400170B2 (en)2010-04-212016-07-26Faro Technologies, Inc.Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9772394B2 (en)2010-04-212017-09-26Faro Technologies, Inc.Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9007601B2 (en)2010-04-212015-04-14Faro Technologies, Inc.Automatic measurement of dimensional data with a laser tracker
US10480929B2 (en)2010-04-212019-11-19Faro Technologies, Inc.Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en)2010-04-212016-06-28Faro Technologies, Inc.Method and apparatus for locking onto a retroreflector with a laser tracker
US10209059B2 (en)2010-04-212019-02-19Faro Technologies, Inc.Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10582834B2 (en)2010-06-152020-03-10Covidien LpLocatable expandable working channel and method
US8687172B2 (en)2011-04-132014-04-01Ivan FaulOptical digitizer with improved distance measurement capability
US9164173B2 (en)2011-04-152015-10-20Faro Technologies, Inc.Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9151830B2 (en)2011-04-152015-10-06Faro Technologies, Inc.Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9157987B2 (en)2011-04-152015-10-13Faro Technologies, Inc.Absolute distance meter based on an undersampling method
US10302413B2 (en)2011-04-152019-05-28Faro Technologies, Inc.Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9482746B2 (en)2011-04-152016-11-01Faro Technologies, Inc.Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9207309B2 (en)2011-04-152015-12-08Faro Technologies, Inc.Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US12232828B2 (en)2011-06-272025-02-25Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US10080617B2 (en)2011-06-272018-09-25Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US10219811B2 (en)2011-06-272019-03-05Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en)2011-06-272024-02-27Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en)2011-06-272016-11-22Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
WO2013033811A1 (en)*2011-09-082013-03-14Front Street Investment Management Inc.Method and apparatus for illuminating a field of view of an optical system for generating three dimensional image information
US8668344B2 (en)2011-11-302014-03-11Izi Medical ProductsMarker sphere including edged opening to aid in molding
US8668345B2 (en)2011-11-302014-03-11Izi Medical ProductsRetro-reflective marker with snap on threaded post
US8668342B2 (en)2011-11-302014-03-11Izi Medical ProductsMaterial thickness control over retro-reflective marker
US8672490B2 (en)2011-11-302014-03-18Izi Medical ProductsHigh reflectivity retro-reflective marker
US8646921B2 (en)2011-11-302014-02-11Izi Medical ProductsReflective marker being radio-opaque for MRI
US8668343B2 (en)2011-11-302014-03-11Izi Medical ProductsReflective marker with alignment feature
US8662684B2 (en)2011-11-302014-03-04Izi Medical ProductsRadiopaque core
US9964649B2 (en)2011-11-302018-05-08Izi Medical ProductsPackaging for retro-reflective markers
US9085401B2 (en)2011-11-302015-07-21Izi Medical ProductsPackaging for retro-reflective markers
US8641210B2 (en)2011-11-302014-02-04Izi Medical ProductsRetro-reflective marker including colored mounting portion
US8651274B2 (en)2011-11-302014-02-18Izi Medical ProductsPackaging for retro-reflective markers
USD705678S1 (en)2012-02-212014-05-27Faro Technologies, Inc.Laser tracker
US8661573B2 (en)2012-02-292014-03-04Izi Medical ProductsProtective cover for medical device having adhesive mechanism
US9041914B2 (en)2013-03-152015-05-26Faro Technologies, Inc.Three-dimensional coordinate scanner and method of operation
US10105149B2 (en)2013-03-152018-10-23Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US10952593B2 (en)2014-06-102021-03-23Covidien LpBronchoscope adapter
US9395174B2 (en)2014-06-272016-07-19Faro Technologies, Inc.Determining retroreflector orientation by optimizing spatial fit
US10426555B2 (en)2015-06-032019-10-01Covidien LpMedical instrument with sensor for use in a system and method for electromagnetic navigation
US11006914B2 (en)2015-10-282021-05-18Medtronic Navigation, Inc.Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11801024B2 (en)2015-10-282023-10-31Medtronic Navigation, Inc.Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11160617B2 (en)2016-05-162021-11-02Covidien LpSystem and method to access lung tissue
US11786317B2 (en)2016-05-162023-10-17Covidien LpSystem and method to access lung tissue
US10478254B2 (en)2016-05-162019-11-19Covidien LpSystem and method to access lung tissue
US10638952B2 (en)2016-10-282020-05-05Covidien LpMethods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10751126B2 (en)2016-10-282020-08-25Covidien LpSystem and method for generating a map for electromagnetic navigation
US10722311B2 (en)2016-10-282020-07-28Covidien LpSystem and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US11759264B2 (en)2016-10-282023-09-19Covidien LpSystem and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US11672604B2 (en)2016-10-282023-06-13Covidien LpSystem and method for generating a map for electromagnetic navigation
US11786314B2 (en)2016-10-282023-10-17Covidien LpSystem for calibrating an electromagnetic navigation system
US10615500B2 (en)2016-10-282020-04-07Covidien LpSystem and method for designing electromagnetic navigation antenna assemblies
US10517505B2 (en)2016-10-282019-12-31Covidien LpSystems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10792106B2 (en)2016-10-282020-10-06Covidien LpSystem for calibrating an electromagnetic navigation system
US10446931B2 (en)2016-10-282019-10-15Covidien LpElectromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10418705B2 (en)2016-10-282019-09-17Covidien LpElectromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US11219489B2 (en)2017-10-312022-01-11Covidien LpDevices and systems for providing sensors in parallel with medical tools

Also Published As

Publication numberPublication date
EP0553266B1 (en)1997-05-07
EP0553266A4 (en)1993-10-20
JP2974775B2 (en)1999-11-10
WO1992007233A1 (en)1992-04-30
ATE152823T1 (en)1997-05-15
EP0553266A1 (en)1993-08-04
CA2094039A1 (en)1992-04-16
US5198877A (en)1993-03-30
JPH06501774A (en)1994-02-24
DE69126035D1 (en)1997-06-12
DE69126035T2 (en)1997-08-14

Similar Documents

PublicationPublication DateTitle
USRE35816E (en)Method and apparatus for three-dimensional non-contact shape sensing
US9967545B2 (en)System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices
US12306301B2 (en)Determining positional information of an object in space
EP0899584B1 (en)Position determining system
US6031606A (en)Process and device for rapid detection of the position of a target marking
US8035823B2 (en)Hand-held surface profiler
US20020062077A1 (en)3-D ultrasound recording device
US7123351B1 (en)Method and apparatus for measuring distances using light
EP2105698A1 (en)Three-dimensional coordinate measuring device
US20010030754A1 (en)Body spatial dimension mapper
JP2004170412A (en)Method and system for calibrating measuring system
WO1999058930A1 (en)Structured-light, triangulation-based three-dimensional digitizer
GB2246044A (en)A zoom lens for a variable depth range camera
JP2016514271A (en) Three-dimensional coordinate scanner and operation method
US10697754B2 (en)Three-dimensional coordinates of two-dimensional edge lines obtained with a tracker camera
US5363185A (en)Method and apparatus for identifying three-dimensional coordinates and orientation to a robot
EP1680689B1 (en)Device for scanning three-dimensional objects
WO1994015173A1 (en)Scanning sensor
US6927864B2 (en)Method and system for determining dimensions of optically recognizable features
Araki et al.High speed rangefinder
CA2264179C (en)3d ultrasound recording device
JPH06207812A (en)Measurement point indicator for three-dimensional measurement
Marszalec et al.A LED-array-based range-imaging sensor for fast three-dimensional shape measurements
JohannessonActive Range Imaging 2
Yamashita et al.Three-dimensional stereometric measurement system using optical scanners, cylindrical lenses, and line sensors

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:SILICON VALLEY BANK, CALIFORNIA

Free format text:SECURITY INTEREST;ASSIGNORS:IMAGE GUIDED TECHNOLOGIES, INC., A CORPORATION OF COLORADO, F/K/A PIXSYS, INC.;SPRINGFIELD SURGICAL INSTRUMENTS, A CORPORATION OF MASSACHUSETTS, F/K/A BRIMFIELD PRECISION, INC.;REEL/FRAME:010188/0799

Effective date:19990817

FEPPFee payment procedure

Free format text:PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:8

SULPSurcharge for late payment

Year of fee payment:7

FPAYFee payment

Year of fee payment:12

ASAssignment

Owner name:BMO CAPITAL CORPOORATION, CANADA

Free format text:SECURITY INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0157

Effective date:20071221

Owner name:BMO CAPTIAL CORPORATION, CANADA

Free format text:SECURITY AGREEMENT;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0131

Effective date:20071221

Owner name:BANK OF MONTREAL, CANADA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0109

Effective date:20071221

Owner name:BANK OF MONTREAL, CANADA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0082

Effective date:20071221

ASAssignment

Owner name:BANK OF MONTREAL, CANADA

Free format text:SECURITY INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020794/0239

Effective date:20071221

ASAssignment

Owner name:BMO CAPITAL CORPORATION, CANADA

Free format text:CORRECTION OF ASSINGEE INFORMATION FROM "BMO CAPTIAL CORPOORATION" TO "BMO CAPITAL CORPORATION";ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020828/0379

Effective date:20071221

ASAssignment

Owner name:NORTHERN DIGITAL INC., CANADA

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF MONTREAL;REEL/FRAME:024946/0944

Effective date:20100804

ASAssignment

Owner name:NORTHERN DIGITAL INC., CANADA

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:BMO CAPITAL CORPORATION;REEL/FRAME:025000/0396

Effective date:20100804


[8]ページ先頭

©2009-2025 Movatter.jp