Movatterモバイル変換


[0]ホーム

URL:


USRE32818E - Cast detergent-containing article and method of using - Google Patents

Cast detergent-containing article and method of using
Download PDF

Info

Publication number
USRE32818E
USRE32818EUS06/901,250US90125086AUSRE32818EUS RE32818 EUSRE32818 EUS RE32818EUS 90125086 AUS90125086 AUS 90125086AUS RE32818 EUSRE32818 EUS RE32818E
Authority
US
United States
Prior art keywords
detergent
cast
solid
alkaline
iaddend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/901,250
Inventor
Peter J. Fernholz
James L. Copeland
Richard C. Penttila
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab USA Inc
Original Assignee
Ecolab Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filedlitigationCriticalhttps://patents.darts-ip.com/?family=27128383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE32818(E)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ecolab IncfiledCriticalEcolab Inc
Priority to US06/901,250priorityCriticalpatent/USRE32818E/en
Assigned to ECOLAB INC.reassignmentECOLAB INC.CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: NOVEMBER 24, 1986Assignors: ECONOMICS LABORATORY, INC.,
Application grantedgrantedCritical
Publication of USRE32818EpublicationCriticalpatent/USRE32818E/en
Anticipated expirationlegal-statusCritical
Assigned to ECOLAB USA INC.reassignmentECOLAB USA INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ECOLAB, INC.
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Solid cast detergent-containing articles are produced for use in automatic washing machines. A liquid detergent composition is cast into a mold where it is allowed to solidify. The solid cast detergent, surrounded on all but its upper surface by the mold, is used in automatic washing machines having a dispensing device designed to dispense a liquid aqueous detergent formed from the solid cast detergent using an impinging liquid spray. The liquid aqueous detergent flows out of the dispensing device generally simultaneously with its formation in the dispenser. The cast detergent composition includes an alkaline hydratable chemical and optionally further includes one or more preformed cores or plugs comprising an available chlorine source, a defoamer, or the like.

Description

.Iadd.This application is a reissue of U.S. Pat. No. 4,569,781 which issued from Ser. No. 234,940, filed Feb. 17, 1981, which is a continuation-in-part of Ser. No. 123,956, filed Feb. 25, 1980, now abandoned, which is a continuation-in-part of Ser. No. 875,784, filed Feb. 7, 1978, now abandoned. .Iaddend.
FIELD OF THE INVENTION
This invention relates .Iadd.to .Iaddend.a novel solid cast detergent-containing article which is particularly useful in institutional dishwashing machines and industrial washing machines. Another aspect of this invention relates to a method for producing the detergent-containing article. Another aspect of this invention relates to a method for using the detergent containing article. Still another aspect of this invention relates to a method of isolating reactive and incompatible components within a solid cast detergent to minimize interaction between them during manufacture, storage, or dispensing.
DESCRIPTION OF THE PRIOR ART
Conventional institutional and industrial spray washing machines employ liquid or powdered detergents which are generally added to the wash tank by means of an automatic dispenser system. All forms of such detergents, whether liquid or solid, have stability problems and other problems associated with their manufacture, dispensing, or use. These problems have been discussed extensively in prior art publications and patent literature, and it is not practical to do anything more than summarize these discussions. In the early days of the development of the solid detergents, when these detergent products were relatively low in performance compared to the products of today, the problems were less severe. However, the advent of high performance products, stimulated in part by increased aesthetic and sanitary standards and a demand for shorter wash times has generally been characterized by the development of more complex detergent compositions which are more hazardous to the user, less stable, and more difficult to dissolve in a satisfactorily uniform manner.
For example, higher performance solid detergents generally means higher alkalinity (e.g. greater concentrations of sodium hydroxide)--higher even to the point of posing safety hazards to the user. Historically, detergents used for warewashing have been relatively low in alkalinity. The extensive use of aluminum trays and utensils, the presence of soft metals in wash pump impellers and other factors generally prevented the use of high alkalinity detergents. Recently, however, there has been a trend toward the use of high alkalinity, higher performance products. This trend has been partially the result of the increased usage of stainless steel and corrosion resistant plastics in the production of utensils. In addition, the aforementioned increased standards and shorter wash times required by the increased volume of business in eating establishments have created a demand for these higher performance products. The safety hazard of highly alkaline warewashing detergents can be high enough to justify extraordinary means for minimizing contact between the user and the detergent composition.
In addition to alkali metal hydroxides (e.g. sodium hydroxide), chemicals used in high performance products, particularly for hard surface cleaning (e.g. warewashing) include phosphates, silicates, chlorine containing-compounds, defoamers and organic polyelectrolyte polymers. See U.S. Pat. No. 3,166,513, issued Jan. 19, 1965 (Mizuno et al), U.S. Pat. No. 3,535,285, issued Oct. 20, 1970 (Sabatelli et al), U.S. Pat. No. 3,579,455, issued May 18, 1971 (Sabatelli et al), U.S. Pat. No. 3,700,599, issued Oct. 24, 1972 (Mizuno et al), and U.S. Pat. No. 3,899,436, issued Aug. 12, 1975 (Copeland et al). The alkali metal hydroxides in these compositions are very effective in removing most stubborn food soils, but a source of available chlorine is usually included to control food stains, such as tea and coffee stains. The defoamer is usually included to control foam created by a proteinaceous soil and saponified fats. The use of chlorinated cyanurates as a source of available chlorine in detergents used to clean hard surfaces is disclosed in U.S. Pat. No. 3,166,513, issued Jan. 19, 1965 (Mizuno et al), U.S. Pat. No. 3,933,670, issued Jan. 20, 1976 (Brill et al), U.S. Pat. No. 3,936,386, issued Feb. 3, 1976 (Corliss et al). These patents also describe various means for obtaining storage stable chlorine bearing detergents. The use of defoamers in detergent compositions is disclosed by U.S. Pat. No. 3,048,548, issued Aug. 7, 1962 (Martin et al), U.S. Pat. No. 3,334,147, issued Aug. 1, 1967 (Brunelle et al), and U.S. Pat. No. 3,442,242, issued May 13, 1969 (Rue et al).
One problem associated with detergents containing both an active chlorine source and an organic defoamer has been a substantial loss of available chlorine in a relatively short period of time. This problem is described in a number of the above references and in the article by R. Fuchs, J. Polkowski, and Carfagno, "Agglomerated Automatic Dishwasher Detergents", Chemical Times and Trends, pages 37-42 (October, 1977). One solution to this problem has been to absorb the organic defoamer onto an inorganic carrier particle, thus "encapsulating" the defoamer, see U.S. Pat. No. 3,306,858, issued Feb. 28, 1967 (Oberle). While a chlorine stability problem is present in low alkalinity detergents containing defoamers, the problem is more acute with high alkalinity detergents because many defoamers and chlorine-containing compounds are not stable in the presence of highly alkaline chemicals such as sodium hydroxide.
In addition to the chlorine stability problem, several additional problems have existed with high performance powdered detergent compositions which have been used in institutional and industrial washing machines. One of these problems has been caused by differential solubility of the detergent components. Not all of the components of standard detergents dissolve at the same rate or have the same equilibrium solubilities. For example, a fine, soluble particle such as sodium dichloroisocyanurate dihydrate, a common source of available chlorine, may dissolve more rapidly than some hardness sequestrants or surfactants, i.e. common detergent component. Thus, when a dispenser is charged with a powdered detergent containing both of these components, the first effluent from the dispenser will usually be overrich in available chlorine while the last effluent before the dispenser is recharged will usually be poor in available chlorine.
Another type of differential solubility problem exists with many common defoamers. Many defoamers have an oily consistency and are sparingly water soluble. When detergents containing these defoamers are dispensed from a conventional water-in-reservoir dispenser, the oily defoamer floats to the top and feeds the wash tank in an erratic fashion.
Another problem may exist with a powdered detergent if its components are of different particle sizes and densities. Variations in particle size and density between components may lead to segregation during manufacturing, shipping, and handling. Even when uniform distribution can be achieved during manufacturing, handling and shipping may cause segregation. Segregation leads to non-uniformity in the composition of the detergent when it is withdrawn from the container. Agglomeration of the components has been used to minimize the segregation problem. However, the use of agglomeration usually requires recycling of any particles which are too large or too small, which can be a significant percentage of the product.
As noted previously, it is desirable for safety and convenience to minimize contact between the user and the high-performance or highly alkaline detergent composition, and such lessened contact can be one of the many benefits of automatic dispensing. In the case of liquid detergents, it is relatively easy to provide an automatic dispensing system and method. For example, liquid detergents can simply be pumped into the wash tank or reservoir directly from their shipping containers.
Solid detergents (which can be in briquette, or, most typically, in powdered form) present much more complicated automatic dispensing problems. Several approaches have been devised for .[.attaching.]. .Iadd.attacking .Iaddend.these problems--that is, for utilizing solid phase detergents without losing the benefits of automatic dispensing. In one approach, detergents used in large conveyor type machines are dispensed directly from their shipping containers by means of a dispensing system similar to that described in U.S. Pat. No. 3,595,438, issued July 27, 1971 (Daley et al). The shipping container is inverted and placed over a detergent dispenser reservoir and a water spray is used to dissolve the detergent from the drum as needed. A system for dissolving powdered detergent from a five to ten gallon capacity shipping pail is also known, see U.S. Pat. No. 4,020,865, issued May 3, 1977 (Moffat et al). In short, the solid powdered detergent in the shipping container is not in a form which normally would be introduced directly into the wash tank of the washing machine, and it is generally preferred in the art to convert the powder into a liquid, e.g. by dissolving the powder with water in a special apparatus designed to carry out the dissolving step.
The dissolving apparatus need not be physically remote from the washing machine. Indeed, it is a common practice to mount dissolving/dispensing devices directly above--or on the side wall of--the wash tank of the machine. One typically used type of machine-mounted dispenser is the so-called water-in-reservoir type. (The water-in-reservoir approach is not limited to machine-mounted dispensers, however; in machine-mounted applications, the water-in-reservoir dispenser is generally used in single tank warewashing machines.) Typically, the water-in-reservoir type of dispenser makes up a concentrated solution of detergent from the powder in the reservoir by means of swirling action or agitation provided by incoming water. The concentrated solution is delivered directly to the wash tank by gravity or through a delivery tube. The concentration of the detergent in the wash tank can be maintained at a .[.present.]. .Iadd.preset .Iaddend.level by means of a conductivity sensing controller similar to that described in U.S. Pat. No. 3,680,070, issued July 25 1972 (Nystuen).
Various other types of devices will dissolve and dispense powdered detergents and can be mounted directly on the washing machine. For example, U.S. Pat. No. 4,063,663, issued Dec. 20, 1977 (Larson et al) described a type of dispenser in which the powdered detergent is placed over a conical or hemispherical screen and an aqueous spray from beneath the screen is used to dissolve the detergent. The concentrated solution produced by the spray is collected and directed to the wash tank. The dispenser differs from the water-in-reservoir type in that there is no water standing in the powder dispenser and the bulk of the powder remains dry. Otherwise, this type of dispenser operates in a manner similar to the water-in-reservoir type.
Among the other types of powdered detergent dispensers are small dispensers which hold from four to six pounds of detergent. The hopper of such dispensers can be filled from detergent-containing drums by means of a scoop or by the use of small individual (i.e. two pound) pouches of detergent. Dispensing systems for washing systems consisting of multiple hoppers which are filled with different chemicals or mixtures of chemicals are also known.
Dispensing systems for dispensing briquettes of detergent are also known in the art. See U.S. Pat. Nos. 2,382,163, 2,382,164, 2,382,165 all issued Aug. 14, 1945 to MacMahon and U.S. Pat. No. 2,412,819, issued Dec. 17, 1946 .[.(MachMahon).]. .Iadd.(MacMahon).Iaddend.. The detergent briquettes are dispensed from a modified water-in-reservoir round, pot-shaped dispenser. The briquettes (usually three) are held in a mesh basket which forms a slot about 11/4 inches wide across the diameter of the pot. The dissolving action is provided by a stream of water directed against the lower-most briquette and from the swirling action of water around the submerged portion of the lowermost briquette. Like the water-in-dispenser type devices, water is left standing in the reservoir. This type of system has the advantage of making it visually possible to determine when the detergent dispenser reservoir needs replenishing.
The MacMahon patents also disclose detergent briquette compositions and methods of manufacturing the briquettes. The briquette compositions and the methods of manufcture which are disclosed appear to require the presence of a silicate and trisodium polyphosphate or sodium carbonate. Detergent bars or cakes comprising a significant level of an organic detergent and tripolyphosphates are also known. See U.S. Pat. No. 3,639,286 issued Feb. 1, 1972 (Ballestra et al). Compressed tablets containing detergents are also known, see U.S. Pat. No. 2,738,323, issued Mar. 14, 1956 (Tepas, Jr.) and U.S. Pat. No. 3,417,024, issued Dec. 7, 1968 (Goldwasser).
In the field of dispensing solid detergent .[.to.]. .Iadd.into .Iaddend.conventional institutional and industrial washing machines for spray cleaning of hard surfaces (e.g. warewashing), the briquette detergent approach does not appear to have attained the same degree of commercial success as powdered detergents.
When one leaves behind the field of high performance or highly alkaline detergents, one finds that a variety of dispensers and containers for ordinary soap, compressed detergent, powder, or the like have been disclosed. See, for example, U.S. Pat. Nos. 2,686,080 (Wood), issued Aug. 10, 1954 and 2,920,417 (Wertheimer) issued January, 1960.
SUMMARY OF THE INVENTION
It has now been found that the chlorine stability, differential solubility, segregation, and safety problems described above can be minimized by forming a solid cast detergent in a disposable mold and dispensing or using the detergent directly from the mold/cast detergent combination. That is, the combination of the cast detergent and the disposable mold in which it was formed provides an article of commerce capable of dispensing dissolved solids from substantially only one surface--the surface which was the free or unsupported surface in the mold. This detergent article can be designed or structured to further minimize chlorine stability and differential solubility problems, e.g. by including the chlorine source and/or the defoamer as preformed plugs or cores encased in the cast detergent composition.
Thus, the present invention involves a process for forming and a method for using a three-dimensional, solid cast detergent composition containing an alkaline hydratable solid component, at least one other solid component, and a receptacle-shaped mold surrounding and containing the detergent composition on all but one surface. The detergent composition is normally formed by mixing and heating the components in an aqueous solution, thickening the solution and preferably also cooling it, pouring the solution into a mold, and allowing the mixture to solidify, it being understood that the solidification can involve one or more physico-chemical mechanisms, including "freezing", precipitation from solution. etc. The aforementioned preformed plugs or cores of additional components can be inserted in the mixture after it has been added to a mold and before it has solidified.
The cast detergent composition is preferably left in the disposable mold in which it was cast. Alternatively, the cast detergent can be demolded and inserted in an inexpensive container or receptacle which has substantially the same configuration as the mold, since in either case the cast detergent is surrounded on all but one surface, as described previously. The thus-surrounded cast detergent is used by placing its exposed surface in a drainable position (preferably fixed) within a detergent dispensing apparatus. A fixed drainable position is one in which the aforementioned unsurrounded, exposed surface is fixed with respect to the horizontal and a potential impinging spray of liquid such that the unsurrounded, exposed surface permits gravity flow therefrom, either because of an inclination from the horizontal by a few degrees (e.g. by 10°-90°) or by inclination beyond 90°, i.e. partial or total inversion up to and including a totally inverted or downward-facing position. A spray of liquid impinging on the drainable (inclined or inverted) surface, suitably controlled in duration, provides a draining action or gravity flow of liquid detergent which drains downward off of the drainable surface to the washing machine into which the detergent is to be dispensed. Control over the duration of impingement (hence the duration of downward flow) has the effect of controlling the concentration of detergent in the washing machine. The dispensing apparatus is not a water-in-reservoir type, since it dispenses the flow of liquid detergent about as fast as this flow is formed by the spraying action.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partial cut-away side view of a disposable mold containing the cast detergent of this invention.
FIG. 2 is a cross sectional view of a disposable mold containing the cast detergent of this invention. The cast detergent includes a preformed plug or core comprised of an additional ingredient or ingredients.
FIG. 3 is a plan view of the article illustrated in FIG. 2.
FIG. 4 illustrates the article of FIGS. 2 and 3 placed in an apparatus for dispensing the detergent composition.
FIG. 5 is a graph comparing the chlorine recovery for a cast detergent prepared according to this invention versus a conventional powdered detergent.
FIG. 6 is a view in perspective of a solid detergent dispenser constructed according to the principles of this invention.
FIG. 7 is an exploded view in perspective of one embodiment of the cartridge-type receptacle member for holding a charge of solid block detergent as disclosed in FIG. 6.
FIG. 8 is a view in front elevation with portions thereof broken away, of the solid detergent dispenser disclosed in FIG. 1.
FIG. 9 is a sectional view of the solid detergent dispenser disclosed in FIG. 9, taken generally along theline 9--9 of FIG. 8.
DETAILED DESCRIPTIONRaw Materials
One necessary component for producing cast detergent compositions of the preset invention is a hydratable chemical. The term "hydratable chemical" as used herein includes chemicals forming both discrete and continuous states of hydration and thus means a chemical which is capable of absorbing or combining with water (e.g. 0.2-20 moles of water per mole of chemical) to form either type or stage of hydration. The hydratable chemical will normally be alkaline, that is, a one weight-percent aqueous solution of the chemical will have a pH of greater than 7.0 at 23° C. Since the detergent compositions used in this invention are highly alkaline, it is preferred that the hydratable component of the composition be alkaline in nature. Hydratable chemicals useful in the practice of this invention include alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide; silicates, such as sodium metasilicate; phosphates, particularly phosphates of the formula M--PO3 M--OM or the corresponding cyclic compounds ##STR1## wherein M is an alkali metal and n is a number ranging from 1 to about 60, typically less than 10 for cyclic phosphates, typical examples of such phosphates being sodium or potassium orthophosphate and alkaline condensed phosphates (i.e. polyphosphates) such as sodium or potassium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, etc.; carbonates such as sodium or potassium carbonate; borates, such as sodium borate; etc. Combinations of two hydratable chemicals, for example, sodium hydroxide and sodium tripolyphosphate, and combinations of alkaline condensed phosphates with organic sequestering agents and/or alkali metal hydroxides have been found to work particularly well in the practice of this invention.
A second necessary component of the detergent compositions of this invention is water. Water is used to form a uniform medium (solution or dispersion) containing the detergent components; the uniform medium being cast into a mold and solidifying by a solidification mechanism described previously. Water may be added as a separate ingredient or in combination with one of the other components, for example as an aqueous solution of 50% sodium hydroxide.
To obtain the advantages of this invention, at least two solid components are needed. If only one solid component were used, differential solubility and segregation problems would not exist and there would be few advantages to forming a cast composition. The advantages of a cast detergent composition over a conventional powdered detergent composition are described more fully hereinafter.
In addition to those components previously described, other conventional detergent components and fillers can be included. For example, it is common to include a source of available chlorine and a defoamer. Many chlorine sources can be used including chlorinated isocyanurates, such as sodium dichloroisocyanurate dihydrate, and hypochlorites, such as calcium and lithium hypochlorite. As more fully hereinafter described, when an available chlorine containing component is included in the composition of this invention it is preferably incorporated in the composition as a preformed plug or core. Defoamers are also normally included in a detergent compositions. Typically, a "defoamer" is a chemical compound with a hydrophobe/hydrophile balance suitable to reducing the stability of protein foam. The hydrophobicity can be provided by an oleophilic portion of the molecule (e.g. an aromatic alkyl or aralkyl group; an oxypropylene unit or oxypropylene chain, or other oxyalkylene functional groups other than oxyethylene, e.g. tetramethylene oxide). The hydrophilicity can be provided with oxyethylene units or chains or blocks and/or ester groups (e.g. organophosphate esters), salt-type groups, or salt-forming groups. Typically, defoamers are nonionic organic surface-active polymers having hydrophobic groups or blocks or chains and hydrophilic ester-groups, blocks, units, or chains, but anionic, cationic, and amphoteric defoamers are known. For a disclosure of nonionic defoaming surfactants, see U.S. Pat. No. 3,048,548, issued Aug. 7, 1962 (Martin et al), U.S. Pat. No. 3,334,147, issued Aug. 1, 1967 (Brunelle et al), and U.S. Pat. No. 3,442,242, issued May 13, 1969 (Rue et al). Phosphate esters are also suitable, e.g. esters of the formula RO--PO3 M--n R, wherein n is as defined previously and R is an organic group or M (as defined previously), at least one R being an organic group such as oxyalkylene chain. If a defoamer is included it may be included as a preformed plug or core, as more fully described hereinafter. If it is included as a preformed core or plug it must be a solid, or be capable of being combined with other components to form a solid, at room temperature. Wax-like materials can be used to further isolate the chlorine source or defoamer in the core from the surrounding cast article.
The Detergent Composition
The hydratable chemical or combination of hydratable chemicals will normally comprise at least 30%, and preferably 60%, by weight of the cast detergent composition. The water of hydration will normally comprise more than 5 weight-% (e.g. 10-35 weight-%) of the cast detergent composition. Stated another way, the water of hydration can comprise more than about 15 parts by weight per 100 parts by weight (15 phr), e.g. 25-90 phr. of the hydratable chemical or combination of chemicals. Performance-improving additives such as available chlorine producing components and defoamers will normally comprise minor amounts of the composition, that is, less than 5%. As will be explained subsequently, the cast detergent composition can also contain a polyelectrolyte.
Typical three-component compositions of this invention can be formulated from (1) a phosphate or other hardness-precipitating or hardness sequestering agent, (2) an alkali metal hydroxide, and (3) water. Typical four or five component compositions would further include a defoamer and/or a neutral inorganic salt (alkali metal halides, sulfates, etc.) and/or a chlorine source and/or a thickening agent, thixotrope, suspending agent or organic chelating or sequestering agent, or the like.
Typical detergent compositions of this invention employ a condensed alkali metal phosphate for the sequestering of hardness (Mg++ and Ca++ ions). However, organic chelating or sequestering agents (citric acid, polyelectrolytes such as the polyacrylates of molecular weight 1000-3000, etc.) have been used as alternatives to or in combination with the condensed phosphates; see, for example, U.S. Pat. No. 3,535,285, issued Oct. 20, 1970 (Sabatelli et al), U.S. Pat. No. 3,579,455, issued May 18, 1971 (Sabatelli et al), U.S. Pat. No. 3,700,599, issued Oct. 24, 1972 (Mizuno et al). As is known in the art, polyacrylates (particularly alkali metal salts of polyacrylic acid and its copolymers) can function as thickeners in aqueous systems. Cast detergent compositions of this invention can contain up to 15% by weight of polyelectrolytes, as the sole sequestering agent or in combination with alkali metal condensed phosphates.
One embodiment of the solid, cast detergent-containing article of this invention is generally shown by 1 in FIGS. 1 through 3. The article includes .Iadd.a .Iaddend.disposable container ormold 3 into whichbase detergent 2 was cast or allowed to solidify. During shipping, article 1 will normally include lid or cover 5. Lid or cover 5 can be made of the same or similar material as used to makemold 3. As will be explained subsequently, this material is ordinarily alkaline-resistant, non-breakable, and inexpensive. Expensive corrosion-resistant metals or plastics can be used, if provision can be made for their recycling, but "disposable" materials would normally be preferred for most institutional uses. As illustrated in FIG. 2, the cast detergent composition is surrounded by and in contact withmold 3 on all but the upper surface of the solid cast detergent. A cross-section of thesolid cast detergent 2 can be more than a centimeter thick (e.g. 2-20 cm thick). The area of the upper surface can easily exceed 100 cm2, e.g. 125 cm2 to 1000 cm2 or more. Unlike compressed detergent tablets, it has been found that cast detergent blocks can be made very large--almost any desired size.
In one embodiment of this invention, castdetergent base 2 will include one or more preformed plugs or cores 6, as illustrated in FIGS. 2 and 3. At least one preformed plug will normally comprise a chlorine source. When a plurality of preformed plugs are used they will normally comprise different, incompatible ingredients. For example, one plug could comprise a chlorine source while a separate plug could comprise a defoamer. By incorporating a chlorine source in one preformed plug and a defoamer in a separate preformed plug, degradation of the chlorine source, and the resultant loss of available chlorine, which often occurs when chlorine sources and defoamers come in contact, can be minimized. Thus, by incorporating preformed plugs of incompatible ingredients in the solid, cast detergent composition of this invention, the stability problems associated with many conventional powdered detergents can be minimized. To minimize reactivity between the base detergent and any material added as preformed cores, the core material may be optionally encased in a film or material which would not react with the core material or the detergent base. This coating could be comprised of a natural wax, a synthetic wax, a phosphate ester, or the like.
Some active chlorine sources such as calcium hypochlorite have been found to react very slowly at the .[.plug-basc.]. .Iadd.plug-base .Iaddend.detergent interface and would not normally need to be encased in a film or the like. However, other chlorine sources such as sodium dichloroisocyanurate dihydrate have been found to be more reactive, in which case a protective film would be beneficial.
Mold orcontainer 3 can be made of any alkali-resistant material which can withstand moderately elevated temperatures, e.g. 150° F., and which can be formed into and hold the desired shape. Since the mold is generally intended to be "disposable" (i.e. not intended for re-use as a mold), inexpensive materials are preferred such as thermoplastics, resin-impregnated heavy paper or cardboard, and the like. Inexpensive but fragile material such as glass or ceramics are less preferred due to handling or shipping problems, relatively flexible materials being preferred. Molds made of plastic (e.g. inexpensive thermoplastics) have been found to be particularly useful.
The solid, cast detergent-containing article of FIGS. 1-3 can be used as illustrated in FIG. 4. FIG. 4 illustratesdetergent dispensing apparatus 10 which can be part of a conventional institutional or industrial washing machine (not shown). Article 1, includingbase detergent 2, preformed core 6, andcontainer 3 is placed in a totally downward-facing or totally inverted position over spray means 12 which is connected to a water source 14, whereby the exposed surface ofdetergent 2 becomes a drainable surface. When water source 14 is turned on, spray means 12 causes water to impinge on the exposed surface ofdetergent 2 and core 6. The detergent and the core dissolve, creating a gravity flow of liquid aqueous detergent which flows downwardly throughpipe 13 to the wash tank or washing zone of the washing machine (not shown).Detergent base 2 and preformed core 6 can be formulated to dissolve at substantially the same rate and thus supply the tank with a consistent ratio of ingredients.
By controlling the spray time the amount of detergents, and thereby the concentration of detergent, in the wash can be controlled. In other words, the liquid aqueous detergent formed as a result of the impingement of the spray on the exposed surface ofdetergent 2 flows by gravity intopipe 13 generally simultaneously with its formation within dispensingapparatus 10. Standing water or aqueous liquid is not permitted to accumulate within dispensingapparatus 10.
Referring to FIGS. 6 through 9 there is generally disclosed at 20 a detergent dispenser for solid detergent compositions of the block type, generally constructed according to the principles of this invention. That embodiment of thedispenser 20 illustrated in these Figures is one of the type suitable for servicing relatively smaller wash applications, wherein the detergent dispenser is generally mounted directly to the washing machine or immediately adjacent thereto, such that the concentrated detergent solution formed by the dispenser apparatus will flow by gravity into the wash tank of the washing machine proper (not illustrated).
Thedispenser 20 has ahousing portion 21, constructed of any suitable material capable of withstanding exposure to highly caustic detergent solutions, and is preferably configured of stainless steel or molded plastic material. Thehousing 21 has a generallyplanar back wall 21a suitable for direct engagement with and mounting to a vertical mounting surface or wall (not shown). Theback wall 21a includes a plurality of mountingslots 22 formed therethrough, to enable fixed mounting of thehousing 21 to a solid vertical surface such as a vertical wall of a washing machine or a vertical wall disposed adjacent a washing machine.
Thehousing 21 defines a substantially enclosedinner cavity 30. For ease of reference and distinguishing the various portions of theinner housing cavity 30, referring to FIG.9, the upper portion of the inner cavity will be referred to as the spray region 30a of the cavity, and the lower portion of theinner cavity 30 will be referred to as the collector or discharge region 30b thereof, it being understood that gravity flow prevents detergent liquid from standing or accumulating in the collector or discharge region 30b.
The upper portion of thehousing 21 defines a mouth or access port 32 opening into theinner cavity 30. Discharge region 30b includes a hose clamp extension 35 (FIGS. 8 and 9) which defines a passageway or discharge port 34 (FIG. 8) through thehousing 21 for concentrated detergent solution collected or accumulated within the discharge region 30b of theinner cavity 30 of thehousing 21. Thehose clamp extension 35 has a plurality of annular ribs configured for engaging the inner walls of a connecting conduit or hose (not illustrated), for directing fluid flow from the discharge port 34 (FIG. 8).
An upperfront wall 21b of thehousing 21 projects downwardly from the access port 32 at an inclined angle to the horizontal. In the embodiment of the invention illustrated in FIGS. 6-9, the upperfront wall 21b forms an angle of approximately 60 degrees with the horizontal. The upperfront wall 21b terminates at and is continuous with a first lower wall 21c of thehousing 21, which is also slightly inclined with respect to the horizontal and lies in a plane generally parallel to that of the upperfront wall 21b. The lowerfront wall 21d terminates at and is continuous with abottom wall 21e (FIG. 9) of the housing. In FIG. 9, thebottom wall 21e is generally planar, however thebottom wall 21e could assume many different configurations (such as ramp-shaped or funnel-shaped), and is generally configured so as to direct downward any detergent solution formed withincavity 30 by the impingement action of the liquid spray from nozzle 61 (FIG. 9) onsurface 100a of cast solid block detergent 100 (FIG. 9) into discharge port 34.
Theback wall 21a extends between thebottom wall 21e and an upper wall, generally designated at 21f, which extends to and defines one edge of the access port 32. When viewed in cross-section as in FIG. 9, that region of theinner cavity 30 generally located between the upperfront wall 21b, the first lower wall 21c and theback wall 21a and the upper wall 21f comprises the upper spray region 30a; whereas the region of theinner cavity 30 generally located between the lowerfront wall 21d and theback wall 21a, and extending down to thebottom wall 21e generally comprises the discharge region 30b.
Thehousing 21 further has a pair of oppositely disposed side walls 21g, each configured to define a flange orland region 24 extending into theinner cavity 30 in generally parallel spaced relationship to one another. Theland regions 24 are disposed to extend from the access port 32 downwardly to thebottom wall 21e, and cooperatively form with thefront wall 21b oppositely disposed channels or races within theinner cavity 30 for slidably retainably engaging acartridge member 40.
One embodiment of acartridge member 40 suitable for removable insertion within the access port 32 of thedispenser 21 is illustrated in more detail in FIG 7. Referring to FIG. 7, thecartridge 40 is basically a receptacle or container-shaped member suitable for retainably holding in fixed position relative thereto a cast solid block of solid detergent composition. Thecartridge member 40 generally comprises abottom surface 41, a lower peripheralside wall portion 42, anintermediate ledge region 43 and an upper peripheralside wall portion 44. The lower peripheralside wall portions 42 extend between thebottom surface 41 and theintermediate ledge region 43, with all except one surface of the lower peripheral side walls (that surface designated as 42a) being disposed generally perpendicular to thebottom surface 41. The non-perpendicular lower peripheralside wall portion 42a is configured to define an angle with thebottom surface 41 corresponding to the included angle defined between the upperfront wall 21b and the first lower wall 21c of the dispenser housing 21 (see FIG. 9). The fourth side of the upper peripheral side wall 44a forms an included angle with the general plane of theintermediate ledge region 43 .[.substantialy.]. .Iadd.substantially .Iaddend.equal to that of the included angle formed between the lowerfront wall 21d and thebottom wall 21e of the dispenser housing 21 (see FIG. 10).
The 43a portion of the intermediate ledge region is somewhat wider (as measured between corresponding upper and lower peripheral side wall portions) than the width of theintermediate ledge region 43 of the other portions of thecartridge member 40. A plurality of raised land areas or mountingsurfaces 45 project upwardly from theintermediate ledge region 43a, the upper surfaces respectively thereof lying generally in a common plane.
The lowerperipheral side walls 42 and 42a cooperatively define with the bottom surface 41 a first receptacle-shapedcontainer 46 for retainably holding a geometrically shaped volume or mass of cast solid detergent composition 100 (see FIG. 9). The elongatedintermediate ledge region 43a defines the bottom surface of a second receptacle-shaped container, generally designated .[.at.]. .Iadd.as .Iaddend.47 (see FIGS. 7 and 9). A screen ormesh member 50 is configured for mounting to the intermediate ledge region 43 (other than at the extendedintermediate ledge region 43a) and to the raised mountingsurfaces 45, in spaced relationship to the underlying extendedintermediate ledge region 43a, so as to overlie respectively the first and second receptable-shapedcontainer regions 46 and 47. In the preferred embodiment of the invention, the first receptacle-shapedcontainer 46 retainably holds a solid block of detergent composition which was cast directly into the receptacle-shapedcontainer portion 46 of thecartridge member 40, thecontainer portion 46 physically forms the mold in which the solid cast detergent 100 (FIG. 100) is manufactured. The retainably held charge ofsolid detergent 100 within thecontainer portion 46 of thecartridge member 40 defines a broad, generally planarupper surface 100a (FIG. 9) lying generally in the same plane as theintermediate ledge region 43 or slightly therebelow. Theupper detergent surface 100a is inclined from the horizontal (hence "drainable") and is disposed for exposure to spray from a nozzle means, hereinafter described in more detail.
Thescreen member 50 has a first generallyplanar portion 50a. (FIG. 7), a second generally planar portion 50b and an interconnectingwall portion 50c. Thefirst screen portion 50a is sized to fit between the opposing upperperipheral side walls 44 and is configured for mounting to the three contiguous portions of theintermediate ledge regions 43 exclusive ofledge region 43a, for substantially overlying the first receptacle-shapedcontainer portion 46 of thecartridge member 40. The second portion 50b of thescreen member 50 lies in a plane generally parallel to and spaced above that of thefirst screen portion 50a, and is configured for mounting to the plurality of raised mountingsurfaces 45 so as to substantially overlie the extendedintermediate ledge region 43a and the second receptacle-shapedcontainer region 47 of thecartridge member 40. The interconnectingwall portion 50c of thescreen member 50a and 50b portions of thescreen member 50 substantially the same as those included angles which the lower peripheralside wall portion 42a forms with thebottom surface 41 and with theintermediate ledge region 43a of thecartridge member 40. When mounted to thecartridge member 40, the interconnectingwall portion 50c of thescreen member 50 forms included angles with the first and second 50a and 50b portions of thescreen member 50, substantially the same as those included angles which the lower peripheralside wall portion 42a forms with thebottom surface 41 and with theintermediate ledge region 43a of thecartridge member 40. When mounted to thecartridge member 40, the interconnectingwall portion 50c of thescreen member 50 lies generally co-planar with the lower peripheralside wall portion 42a, and operatively forms an extension thereof, to define with the extendedintermediate ledge region 43a and the upper peripheral side wall portion 44a and those oppositely disposed portions of the upperperipheral side wall 44 lying contiguous with the extendedintermediate legion region 43a, the second receptacle-shapedcontainer 47.
Thecartridge member 40 may be constructed of any suitable material that is capable of withstanding exposure to highly caustic detergent solutions, and is preferably configured of molded plastic material such as polyethylene or polypropylene. The cartridge member can be supplied with solid block detergent and sold as an article of commerce, wherein theentire cartridge member 40 or portions thereof can be discarded after the detergent charge retainably held thereby has been exhausted. When the cartridge member is a disposable item, thescreen member 50 would be permanently welded or bonded to theintermediate ledge region 43 and the plurality of raisedland areas 45.
Alternatively, thecartridge member 40 could be a re-usable item, possibly constructed of stainless steel, wherein thescreen member 50 could be detachably secured to theunderlying cartridge member 40 so as to enable re-charging of the solid block detergent retainably held by the various receptacles of the cartridge member. Thescreen member 50 may be of any suitable material capable of withstanding exposure to highly caustic detergent solutions, and is in the preferred embodiment, preferably constructed of a plastic material. The mesh size of thescreen member 50 is configured so as to be small enough to prevent solid particles of the solid block detergent held by the receptacle-shaped containers of thecartridge member 40 from passing therethrough, yet must be large enough so as to permit relatively unobstructed passage therethrough of a pressurized spray pattern directed at the underlying exposed surfaces of the solid block detergent. In general, the mesh size of thescreen member 50 should be no larger than the largest dimension of the discharge port 34, so as to prevent any solid chunks or pieces of the solid block detergent which would pass therethrough from clogging the free flow of concentrated detergent solution through the discharge port 34.
The first receptacle-shapedcontainer 46 of thecartridge member 40 can be configured to hold the solid cast detergent composition of this invention. The second receptacle-shapedcontainer 47 can, if desired, be configured for retainably holding a long narrow block of a second solid block detergent composition (not shown). Preferably, however,container 47 is configured to hold a plurality of pillow-shaped pieces, briquettes, tablets or pellets of detergent ingredients such as a chlorine source or a defoamer of the type described herein, particularly in those cases wherein a defoamer and/or chlorine-releasing agent plug has not been inserted into thecast detergent 100. The briquette or tablet form of the detergent ingredients retainably held by the second receptacle-shapedcontainer 47, is illustrated at 103 in FIG. 9. It is to be understood that, in the event that a chlorine-releasing and/or defoamer plug or plugs were inserted incast detergent 100,container 47 could be left empty.
In the embodiment of the detergent dispenser disclosed in FIGS. 6-9, the height and width of thecartridge member 40 are sized for cooperative insertion within the access port 32 of thehousing 21, as illustrated in FIG. 6, wherebycartridge member 40 can be placed in a fixed pre-determined position with respect to the housing, (as indicated in FIG. 9). When disposed in such fixed, pre-determined resting position,upper detergent surface 100a (the only surface of castsolid detergent 100 which is not surrounded by the walls of cartridge member 40) is exposed to any spray which may emerge from spray-forming nozzle 61. Referring to FIGS. 9 and 6, aconduit member 60 is secured to the upper wall 21f of thehousing 21 and projects therethrough into the upper spray region 30a of theinner cavity 30. The spray-forming nozzle 61 is threaded or otherwise properly secured to that end of theconduit 60 extending into theinner cavity 30 and is disposed therein, so as to project a spray pattern of pre-determined shape at substantially the entire respective exposed solid detergent block surfaces of the detergent within the various receptacle chambers of thecartridge member 40. The nozzle 61 is oriented, relative to the "fixed" position of thecartridge member 40 within theinner cavity 30, such that thelongitudinal spray axis 62 from the nozzle is disposed generally perpendicular to the broad "drainable" exposedupper surface 100a of the solidblock detergent volume 100. The spray nozzle may be of any suitable configuration and construction for projecting a pressurized spray of aqueous liquid (preferably water) received through theconduit 60, in a pre-determined pattern, configured to directly impinge upon substantially the entire exposed surfaces of the solid block detergent retainably held by thecartridge member 40. In the embodiment of the invention disclosed in the Figures, the particularly spray nozzle produces a "square" spray pattern (as viewed in a plane generally perpendicular to the longitudinal spray axis 62) for directing the spray pattern ejected therefrom at substantially the entire drainable exposedsurface 100a as well as at the exposed surface or surfaces of the solid block detergent retainably held by the second receptacle-shapedcontainer 47. Thewater supply conduit 60 passes through a siphon breaker 63 (FIG. 6) and is connected, in operation, to a suitable pressurized source of water (not shown), generally ranging between 5 and 70 psi.
A safety .[.switzh.]. .Iadd.switch .Iaddend.configuration is mounted within thehousing 21 for sensing the operative position of thecartridge member 40 within theinner cavity 30, including a reed switch member 70, mounted in a fixed position by means of a mounting bracket 71 (see FIG. 9). Side wall portion 44a of thecartridge 40 contains an encapsulated magnet 72 (FIGS. 7 and 9). The positions ofmagnet 72 and the reed switch 70 are such that the reed switch 70 is activated by the magnetic flux of themagnet 72 only when thecartridge member 40 has been fully accepted into theinner cavity 30 of thedispenser 21 in its pre-determined fixed position (as illustrated in FIG. 9), whereby the access port 32 of thehousing 21 is substantially closed by the positionedcartridge member 40. As themagnet 72 is withdrawn out of activating proximity with the reed switch 70, the reed switch changes its energization state, providing an appropriate energizing (or de-energizing) signal to a valve (not shown) to block pressurized fluid flow through theconduit 60 to the nozzle 61.
Once thecartridge member 40 is properly inserted at its fixed pre-determined position within theinner cavity 30, the masses or volumes of cast detergent or detergent ingredients retainably held by one or more of the various receptacles within thecartridge 40 are dissolved at a pre-determined rate, by the pressurized impinging flow of aqueous liquid from the nozzle 61. A pressurized source of water is provided to the nozzle 61 as commanded by appropriate control means within the washing machine proper which the detergent dispenser services. For example, for a "demand" system, an electronic control network such as described in the previously cited U.S. Pat. No. 3,680,070 to Nystuen could be used to selectively provide pressurized water to the nozzle 61. Control over the duration of the impinging flow controls the amount of detergent dispensed fromsurface 100a and ultimately the concentration of detergent in the wash tank of the washing machine (not shown).
Once pressurized fluid flow is applied to the nozzle 61, the nozzle generates a pressurized spray pattern of pre-determined configuration, which is uniformly directed across substantially the entire upper exposedsurface 100a of thesolid detergent block 100, as well as against any exposed surfaces of thesolid detergent ingredients 102 or 103 contained within the second receptacle-shapedcontainer 47. The spray pattern passes through the mesh of thescreen member 50 and impinges directly upon the exposed surfaces of the retainably held solid detergent blocks, dissolving by means of the hydraulic action of the spray itself a portion of the solid detergent blocks, at their respective exposed surfaces. After striking the exposedsurface 100a of thedetergent block 100, the spray (now converted into an aqueous liquid detergent), drains or flows by gravity down the exposedsurface 100a, dissolving by errosive action, further detergent at the exposedupper surface 100a. (The inclination from the horizontal ofsurface 100a facilitates gravity flow.) Upon reaching the interconnectingwall portion 50c of thescreen member 50, the concentrated aqueous liquid detergent cascades over and through the solid chlorine source or defoamer pellets ortablets 103 held within the second receptacle-shapedcontainer 47, to release a predetermined proportionate amount of chlorine or defoamer components therefrom--all of which passes (or drains) in solution as concentrated detergent solution to the lower collector or discharge region 30b of thedispenser 21. The concentrated aqueous liquid detergent solution does not accumulate in region 30b but passes by gravity through the discharge port 34 (FIG 8) within hose clamp extension 35 (FIGS. 8 and 9) into appropriate conduit means or directly into an underlying wash tank or ware-washing zone. Besides the errosive action of solution passing from the upper exposedsurface 100a of thedetergent mass 100, the volume of solid ingredients within the second .[.receptacle.]. .Iadd.receptacle.Iaddend.-shapedcontainer 47 is further directly dissolved by hydraulic action from the spray projected from the nozzle 61.
This invention applies to dispenser configurations wherein the nozzle 61 is mounted below the exposed detergent surface, and the detergent surface is placed at an angle beyond 90° (i.e. rotated through 90° up to 180°, which would be an inverted position in whichsurface 100a faced downward). In the embodiment of FIGS. 6-9, it is generally preferable to position the nozzle 61 in a position overlying the solid detergent block to be dissolved, and to place the exposed surface or surfaces of the solid block detergent at an angle with respect to the horizontal (preferably between 10° and 90°), to supplement the hydraulic dissolution with the errosive dissolution caused by the solution flowing down the exposed surface(s). In a preferred embodiment of the invention disclosed in the Figures, it has been found that an inclination of the exposeddetergent surface 100a of approximately 60° with the horizontal provides adequate dwell time for the downwardly flowing water, while maintaining a sufficiently small response time for the dispenser (i.e. that elapsed time after which the pressurized spray is projected from the nozzle 61 to the time in which the majority of the concentrated detergent solution produced thereby has drained downwardly from the discharge port 34).
The first lower wall 21c of thedispenser 21, as well as the upper and lower peripheralside wall portions 44a and 42a of thecartridge member 40 are inclined slightly with respect to the horizontal (when the dispenser andenclosed cartridge member 40 are mounted in operative position), to insure drainage of any liquid solutions (either the projected spray or resultant concentrated detergent solution) therefrom. Any liquid coming in contact with these surfaces is directed toward the collector region 30b of thecavity 30.
Thus, the formation of an aqueous liquid detergent due to the flow of liquid oversurface 100a and/orpellets 103 is generally simultaneous with the resulting downward or gravity flow, which quickly reachesextension 35 and prevents standing water build-up. Whenever the charge of solid detergent contained within the various receptacles of thecartridge member 40 are depleted, the cartridge is rapidly replaced by slidably removing the spent cartridge from theinner cavity 30, through the access port 32, and simply replacing the spent cartridge with a fully chargedcartridge member 40. As previously discussed, the disposable cartridge could be physically re-charged before replacement thereto into thehousing 21. In such a re-usable cartridge application, it would be desirable to wrap the highly caustic detergent block being placed within the cartridge with a water soluble covering such as polyvinylalcohol to protect the hands of the person handling the solid detergent block used to charge the cartridge. Alternatively, thecartridge member 40 could be replaced by an appropriate retaining means forming an integral part of thehousing 21 and having appropriate receptacle retaining means for retainably holding charges of solid block detergent in the required pre-determined position with respect to the nozzle spray pattern.
Method of Manufacturing Cast Detergent
While the following process is described with reference to specific components, it should be understood that other components and similar processes can be used to form a detergent solution which can be cast into a mold and will solidify upon hydration of its hydratable component. A particularly useful detergent composition of this invention is formed by heating about 20-75 parts by weight of a 40-75 weight percent aqueous solution of an alkali metal hydroxide, e.g. sodium hydroxide, to a temperature above about 55° C., preferably 65°-85° C. Temperatures approaching 95° C. can also be used; see Examples 9 and 9A which follow. While other alkali metal hydroxides may be used, sodium hydroxide has been found to be particularly useful and the following method of manufacturing will be described with respect to it. Aqueous solutions of 50 weight percent sodium hydroxide are readily commercially available. Solutions containing higher weight percents of sodium hydroxide are also available (e.g. 73%) or can be produced by adding a desired amount of anhydrous sodium hydroxide to a 50 weight percent solution of sodium hydroxide. An aqueous solution of sodium hydroxide can also be prepared by mixing water and anhydrous sodium hydroxide in the desired ratio.
After the aqueous solution of sodium hydroxide reaches a temperature above 55° C., preferably above 65° C., anhydrous sodium hydroxide can be added, as illustrated in several of the Examples which follow, the preferred amount being about 8 to about 40 parts by weight, i.e. about 8 to about 40% of the weight of the total cast detergent composition. A lower temperature range (e.g. 55°-70° C.) may also be used in this process, e.g. during alkali metal condensed polyphosphate addition. Typically, about 15 to about 40 parts by weight of anhydrous alkali metal condensed polyphosphate are added to the solution. It is not necessary to completely dissolve the alkali metal condensed polyphosphate, since it can be suspended in the composition. After the polyphosphate and/or optional fillers or components (the polyphosphate is a preferred ingredient), are added, the mixture can be cooled. Continuous mixing can be used during any dissolving, cooling, and thickening steps. The cooled and thickened mixture is poured into a receptacle-shaped mold to a level at least part way up the side molding surfaces. As the mixture continues to cool it will solidify to form a cast composition. Solidification is believed to be substantially due to cooling. (This invention is not bound by any theory, however.) After it has solidified, the cast detergent is surrounded by and in contact with the mold on all sides except for its upper surface which remains exposed.
After the base detergent has been poured into the mold, but before it has solidified, preformed cores or plugs such as plug 6 in FIGS. 2 and 3 may be added. When a plug is added, the base detergent is allowed to solidify around it and retain it in place. While any shape or size plug could be used, it is normally preferred that the plug extend to the entire depth of the base detergent as illustrated in FIG. 2. The plug should extend the depth of the solidified detergent so that a constant ratio of components can be maintained while the base detergent and the plug are dissolved during use.
An alternative method of including a separately formed plug or plugs could consist of using a mold comprising one or more smaller molds positioned within the larger mold. The large mold would be filled with the cast detergent base while the smaller mold or molds would contain separate compositions such as a source of available chlorine or a defoamer. The compositions could be cast into the smaller mold or preformed as a plug and "pressed" into the mold.
The present invention will be further understood by reference to the following specific Examples which are illustrative of the composition, form and method of producing the solid, cast detergent-containing article of this invention. It is to be understood that many variations of composition, form and method of producing the cast detergent would be apparent to those skilled in the art. The following Examples, wherein parts and percentages are by weight unless otherwise indicated, are only illustrative.
EXAMPLE 1
An 8.8 pound batch (approximately 4000 grams) of a solid cast detergent of this invention was prepared using the following procedure.
Fifty-five parts by weight of a 50 weight percent aqueous solution of sodium hydroxide were added to a laboratory mixer provided with a stirring means and a heating means. The 50% sodium hydroxide solution was heated to approximately 55°-60° C. Nine parts by weight of anhydrous sodium hydroxide were added to the solution. The solution was stirred until the anhydrous sodium hydroxide was completely dissolved. The addition of the anhydrous sodium hydroxide had the effect of forming an approximate 57 weight percent aqueous solution of sodium hydroxide.
Thirty six parts of anhydrous sodium tripolyphosphate were added to the solution and the solution was mixed. The tripolyphosphate did not completely dissolve but was held in suspension by mixing. Mixing was continued without heating until the solution began to thicken, which was approximately 10-15 minutes after the addition of the tripolyphosphate.
After the mixture had thickened but while it was still pourable, six pounds (about 2700 grams) were poured into a receptacle-shaped mold such asmold 3 in FIGS. 1-3, consisting of a slightly tapered cylindrical plastic container measuring about 61/2 inches (about 16.5 cm) at the major diameter (the open end) and about 51/2 inches (about 14 cm) at the minor diameter and about 41/2 inches (about 11.5 cm) in depth. The mixture was allowed to harden in the mold which took approximately 5 minutes.
The composition of the final cast product (in weight %) was approximately:
______________________________________                                    36.5%        sodium hydroxide                                             27.5%        water                                                        36.0%        sodium tripolyphosphate                                      100.0%                                                                    ______________________________________
While this product can be used as a detergent without additional additives, additional components can be included as illustrated in the following Examples.
EXAMPLE 2
A product with the same composition as that described in Example 1, with the exception that 1 part by weight of the 50% sodium hydroxide was replaced with 1 part by weight of a defoamer, was produced. The defoamer was added following the addition of the sodium tripolyphosphate and was kept uniformly dispersed by continuous mixing until the mixture was poured in the mold. At the time it was poured the mixture was sufficiently viscous so that a uniform dispersion was maintained.
The composition of the final cast product (in weight %) was approximately:
______________________________________                                    36%          sodium hydroxide                                             27%          water                                                        36%          sodium tripolyphosphate                                      1%           defoamer                                                     100%                                                                      ______________________________________
EXAMPLE 3
A mixture was prepared according to the procedure described in Example 1. 53.57 parts of 50% sodium hydroxide, 8.77 parts of anhydrous sodium hydroxide. and 35.06 parts of anhydrous sodium tripolyphosphate were used. The mixture was then poured into the mold described in Example 1. Before the mixture completely solidified 2-6 parts of a preformed circular "plug" measuring about 1 inch in diameter (about 2.5 cm) and about 31/2 inches (about 9 cm) in length, comprising a source of available chlorine, was placed approximately in the center of the mold. The length of the plug was such that it extended from the bottom of the mold to the surface of the mixture. The mixture was then allowed to harden around the plug.
The composition of the solidified cast detergent (in weight %) was:
______________________________________                                    35.5%        sodium hydroxide                                             26.8%        water                                                        36.1%        sodium tripolyphosphate                                      2.6%         chlorine plug                                                100.0%                                                                    ______________________________________
The available chlorine containing plug was prepared by forming a composition consisting of:
______________________________________                                    59.7    parts calcium hypochlorite-65%                                            available chlorine (HTH ™ from                                         Olin-Matieson)                                                    14.4    parts Veegum ® WG (from R. T. Vanderbitt                              Company, Inc.)                                                    25.9    parts dendritic sodium chloride                                   100.0                                                                     ______________________________________
"Veegum" is a trademark for inorganic suspending agents.
After the three ingredients were mixed, plugs measuring about 1 inch (about 2.5 cm) in diameter and about 31/2 inches (about 9 cm) in length, were made by filling an appropriate size cylindrical die with the composition and subjecting the die to about 2,000 psi in a hydraulic press.
Plugs containing available chlorine were produced following the same procedure from the two following compositions:
______________________________________                                    A.    100parts Lithium Hypochlorite 35% available                                  chlorine                                                   B.    51.4     parts sodium dichloroisocyanurate                                         dihydrate                                                        14.4     parts Veegum  ® WG                                           34.2     parts dendritic sodium chloride                                  100.0    parts total                                                ______________________________________
Plugs produced from these formulas were also found to perform satisfactorily in the article of this invention.
EXAMPLE 4
This Example was designed to illustrate how plug 6 of FIGS. 2 and 3 could be further isolated from the base detergent. One plug was made from each of the following formulas by compression molding at about 2000 psi mold pressure.
______________________________________                                    41.0 g (59.9%)  calcium hypochlorite-65%                                                  availabe chlorine                                         10.0 g (14.3%)  Veegum ® WG                                           18.0 g (25.8%)  dendritic salt                                            69.9 g (100%)                                                             41.5 g (59.7%)  sodium dichloroisocyanurate                                               dihydrate                                                 10.0 g (14.4%)  Veegum ® WG                                           18.0 g (25.9%)  dendritic salt                                            69.5 g (100%)                                                             ______________________________________
Both plugs were dipped in melted paraffin wax which was held at just above its melting point of 56.5° C. so that a very thin coating of paraffin wax was formed on the sides and one end of the plug. The wax was allowed to cool and harden. The plugs were then inserted into the cast detergent base of Example 2 following the procedure of Example 3. No visual indication of any reaction at the plug-detergent base interface was noted with either of these plugs.
EXAMPLE 5
A mixture was prepared following the procedure described in Example 2. 52.57 parts of 50% sodium hydroxide, 8.77 parts of anhydrous sodium hydroxide, 35.06 parts of anhydrous sodium tripolyphosphate and 1 part defoamer were used. The mixture was then poured into the mold described in Example 1. Before the mixture completely solidified, 2.6 parts of a chlorine containing plug similar to those described in Example 3 was added as described in Example 3.
The composition of the solidified cast detergent was:
______________________________________                                    35.0%        sodium hydroxide                                             26.3%        water                                                        35.1%        sodium tripolyphosphate                                      1.0%         defoamer                                                     2.6%         chlorine plug                                                100.0%                                                                    ______________________________________
EXAMPLE 6
A solid cast detergent of the same formula as that described in Example 5 was produced. However, instead of mixing the defoamer with the base detergent it was added in the form of a plug. Thus, two plugs were used, one comprising a defoamer and the other comprising a source of available chlorine. The two plugs were placed near the center of the mold after the detergent was added, but before it solidified.
The composition of the solidified cast detergent was:
______________________________________                                    35.0%        sodium hydroxide                                             26.3%        water                                                        35.1%        sodium tripolyphosphate                                      1.0%         defoamer plug                                                2.6%         chlorine plug                                                100.0%                                                                    ______________________________________
The defoamer plug was prepared by heating together 60 parts of a viscous (at room temperature) polyoxyalkylene glycol and 40 parts of a solid mixture of mono- and di-alkyl phosphate esters until the phosphate esters melted and then mixing until the mixture .[.as.]. .Iadd.was .Iaddend.uniform. The solution was then poured into a cylindrical mold and allowed to cool and form a solid plug at room temperature.
Similar plugs were produced following essentially the same procedure using: 50 parts of a polyethylene glycol, 25 parts of a polyoxyalkylene glycol, and 25 parts of a mixture of mono- and di-alkyl phosphate esters.
EXAMPLE 7
A solid cast detergent was produced using the same formula and procedure as described in Example 2 except that the 1 part of defoamer was added as a plug similar to those described in Example 6.
EXAMPLE 8
Approximately 6 pounds of a solid cast detergent of this invention were prepared using the following procedure, 40 parts of anhydrous sodium metasilicate and 39 parts of a 10 weight percent aqueous solution of sodium hydrochlorite were added to a laboratory mixer provided with a stirring means and a heating means. The solution was heated to approximately 55°-60° C. Twenty parts of anhydrous sodium tripolyphosphate were added to the solution and the solution mixed without heating until it began to thicken. After the mixture had thickened but while it was still pourable it was poured into a mold consisting of the dimensions described in Example 1. Before the mixture completely solidified, 1 part of a defoamer plug similar to those described in Example 6 was added following the previously described procedure.
The composition of the solidified cast detergent was
______________________________________                                    40%          sodium metasilicate                                          35%          water                                                        20%          sodium tripolyphosphate                                      4%           sodium hypochlorite                                          1%           defoamer plug                                                100%                                                                      ______________________________________
EXAMPLE 9
This example was designed to illustrate that the sodium tripolyphosphate component of the previous Examples can be formed in-situ by reacting sodium trimetaphosphate with sodium hydroxide via the following reaction: ##STR2##
Approximately 2200 ml of 50% aqueous sodium hydroxide was added to a stainless steel, jacketed beaker equipped with a "Lightning" stirrer. Following the addition the temperature was 70° F. (21° C.). Next 1440 g of powdered trimetaphosphate was added slowly. As the temperature of the mixture approached 100° F. (38° C.), cooling was applied. The remainder of the trimetaphosphate was added incrementally until the entire 1440 grams had been added. During the addition a maximum temperature of 200° F. (93° C.) was reached.
Upon sitting for several minutes the mixture formed a solid which could have been cast into a mold and used as the solid, cast detergent of this invention.
EXAMPLE 9A
This Example illustrates that chlorinated trisodium phosphate may be used as the chlorine source. A solid cast detergent having the following composition was prepared:
______________________________________                                    36.0%        caustic soda                                                 27.0%        water                                                        36.0%        sodium tripolyphosphate                                      1.0%         defoamer                                                     100.0%                                                                    ______________________________________
The above mixture was prepared using the procedure as described for Example 2. The mixture was poured (about 2360 g) into the mold which had a removable 2 inch diameter cylinder placed in the center. After the mixture had solidified, the 2 inch diameter cylinder was removed leaving a hollow cylindrical cavity. This hollow cavity was filled with about 340 grams of molten chlorinated trisodium phosphate. The chlorinated trisodium phosphate solidified upon cooling below its melting point. Some reaction occurred at the interface of the plug. It is believed that this reaction may be reduced significantly allowing the cast detergent to cool thoroughly before the chlorinated trisodium phosphate was poured and/or coating the cavity surface with an inert barrier such as, for example, paraffin wax or mixed mono and dialkyl esters of polyphosphoric acid or like materials.
EXAMPLE 10
This Example was designed to illustrate the production of a non-phosphate solid, cast detergent. Forty parts of 50% aqueous sodium hydroxide was heated to 150° F. (65.5° C.) in a jacketed stainless steel beaker equipped with a stirrer. .[.Twnety.]. .Iadd.Twenty .Iaddend.parts of anhydrous sodium hydroxide were added and the mixture was stirred until a molten solution was formed. Twenty-five parts of liquid silicate (RU silicate from Philadelphia Quartz) having an SiO2 /Na2 O ratio of 2.54 was added and resulted in the temperature of the mixture increasing to about 200° F. (93° C.). The mixture was cooled to about 150° F. (65° C.) and 15 parts of sodium polyacrylate were added slowly while stirring continued.
The mixture was poured into a plastic container where it solidified upon cooling.
EXAMPLE 11
The purpose of this Example is to compare the consistency of available chlorine recovery from a cast detergent-containing article produced according to the instant invention and a conventional, prior art, powdered detergent. The prior art formula used consisted of a mixture of sodium tripolyphosphate, sodium dichloroisocyanurate (a chlorine source), sodium metasilicate, and sodium hydroxide. Sodium dichloroisocyanurate comprised approximately 2.8% of the formula. The cast detergent-containing article used was produced by the process and using the formula described in Example 5. The chlorine source was present in the form of a plug situated approximately in the center of the cast base detergent. The cast detergent containing article was dispensed from an apparatus similar to the one illustrated in FIG. 4. The prior art formula was dispensed from a water-in-reservoir dispenser of the type illustrated in FIG. 1 of U.S. Pat. No. 3,680,070, issued July 25, 1972 (Nystuen).
Samples of the effluent from the dispensers were collected periodically and titrated for alkalinity to the phenolphthalein end point with hydrochloric acid and titrated for available chlorine with sodium thiosulfate using the conventional iodometric titration. The influent water temperature to both dispensers was about 71° C. (160° F.).
The amount of detergent present in the effluent was determined by the alkalinity of the effluent. The "chlorine recovered-percent of theoretical" (CRPT) was then calculated from the formula: ##EQU1## The results are illustrated in FIG. 5. FIG. 5 shows that the solid cast detergent of this invention provides very uniform chlorine recovery when compared to a prior art formulation. It is theorized that the differential solubility of the components of the prior art powdered detergent is responsible for the more erratic chlorine recovery shown by the prior art detergent.
EXAMPLE 12
This Example was designed to determine the effect of segregation during the manufacture of a conventional, prior art, powdered detergent. Since there should be no segregation with the solid cast detergent of this invention, (since all the components are physically locked in place) any significant segregation with a powdered detergent would represent a disadvantage of the powdered detergent.
The conventional powdered detergent used was the same as that described in Example 11. This powdered detergent is commonly packaged in two-pound packages. Seven two-pound packages from the same production batch were selected at random for analysis. Ideally each of the packages should contain the same percentage of each of the four ingredients.
The contents of each of the packages were weighed and the entire contents dissolved in an appropriate quantity of water in a 30 gallon drum to give a 1% weight/volume solution. This eliminated any variation due to the possibility of different amounts of detergent being present in different packages. A 100 ml sample was withdrawn from each drum and titrated for available chlorine with sodium thiosulfate using the standard iodometric titration. The results were as follows:
______________________________________                                    Sample No.  Percent Available Chlorine                                    ______________________________________                                    1           1.63                                                          2           2.00                                                          3           1.53                                                          4           1.56                                                          5           1.54                                                          6           1.96                                                          7           1.65                                                          ______________________________________
As indicated, the percentage of available chlorine varied from 1.53 to 2.00. This variation is in part due to segregation during mixing and packaging of the powdered detergent. This segregation is probably one factor leading to the variation in chlorine delivery illustrated in FIG. 5.
EXAMPLE 13
This Example was designed to compare the chlorine stability of cast detergents of this invention containing a chlorine source directly in the base detergent with cast detergents of this invention which incorporate a chlorine source as a core or plug, such as those described in Example 3. Three different chlorine sources were used: sodium dichloroisocyanurate dihydrate (NaDCC-2H2), lithium hypochlorite (LiOCl), and calcium hypochlorite (Ca[OCl]2). All of the compositions were produced following the procedure of Example 1 with the chlorine source being added directly to the mixture following the addition of the sodium tripolyphosphate in one case and the chlorine being added as a plug in the other. In the third case the chlorine source plug was dipped in a paraffin wax (m.p. 52.5° F.) and in a fourth case the chlorine source plug was dipped in mono and dialkyl ester of polyphosphoric acid, a wax like solid (m.p. 150°-160° F.). The formula used and the available chlorine remaining after various storage times at room temperature are shown in Table I.
As indicated by Table I, when the chlorine source is added directly as a component of the cast detergent most of the chlorine is lost within 24 hours. However, when the chlorine source is added directly as a component of the cast detergent most of the chlorine is lost within 24 hours. However, when the chlorine source is incorporated into the cast detergent as a preformed core or plug, excellent chlorine stability results with Ca(OCl)2 and lithium hypochlorite but not with NaDCC-2H2 O. When the chlorine source plug was coated with a film of paraffin wax or a waxy mono and dialkyl ester of polyphosphoric acid the best stabilities were obtained.
                                  TABLE I                                 __________________________________________________________________________            CHLORINE SOURCE ADDED DIRECTLY                                            TO DETERGENT            CHLORINE SOURCE ADDED AS PLUG         Components* Ca(OCl).sub.2                                                                    LiOCl  NaDCC--2H.sub.2 O                                                                   Ca(OCl).sub.2                                                                     LiOCl   NaDCC--2H.sub.2       __________________________________________________________________________                                                    O                     NaOH - 50%  52.4   51.0   52.2      52.57   52.57   52.57                 NaOH Anhyd  9.0    9.0    9.0       8.77    8.77    8.77                  STP         36.0   36.0   36.0      35.06   35.06   35.06                 Defoamer    1.0    1.0    1.0       1.00    1.00    1.00                  Ca(OCl).sub.2                                                                         1.6    --     --        2.60    --      --                    NaDCC--2H.sub.2 O                                                                     --     --     1.8       --      --      2.60                  Li(OCl) - 35%                                                                         --     3.0    --        --      3.33    --                    .[.Percent Avaiable.].                                                    .Iadd.Percent Available.Iaddend.                                                      3.5    17.4   3.5       --      --      --                    Chlorine remaining                                                        after 24 hours                                                            Percent Available                                                                     --     --     --        --      --      --                    Chlorine remaining                                                        after 2 days                                                              Percent Available                                                                     --     --     --        --      60      1.5                   Chlorine remaining                                                        after 15 days                                                             Percent Available                                                                     --     --     --         98     --      --                    Chlorine remaining                                                        after 29 days                                                             __________________________________________________________________________CHLORINE STABILITY                                                                    CHLORINE SOURCE ADDED AS PLUG                                                                     CHLORINE SOURCE .[.ADDD.]. .Iadd.ADDED                                    .Iaddend. AS PLUG                                 BUT COATED WITH PARAFFIN                                                                          BUT COATED WITH PE-053                Components* CaOCl  LiOCl  NaDCC--2H.sub.2 O                                                                   CaOCl   LiOCl   NaDCC--2H.sub.2       __________________________________________________________________________                                                    O                     NaOH - 50%  52.57  52.57  52.57     52.57   52.57   52.57                 NaOH Anhyd  8.77   8.77   8.77      8.77    8.77    8.77                  STP         35.06  35.06  35.06     35.06   35.06   35.06                 Defoamer    1.00   1.00   1.00      1.00    1.00    1.00                  Ca(OCl).sub.2                                                                         2.60   --     --        2.60    --      --                    NaDCC--2H.sub.2 O                                                                     --     --     2.60      --      --      2.60                  Li(OCl) - 35%                                                                         --     3.33   --        --      3.33    --                    Percent Available                                                                     --     --     --        --      --      --                    Chlorine remaining                                                        after 24 hours                                                            Percent Available                                                                     --     --     --        --      --      --                    Chlorine remaining                                                        after 29 days                                                             Percent Available                                                                     100    99     100       --      --      --                    Chlorine remaining                                                        after 15 days                                                             Percent Available                                                                     --     --     --        100     99      100                   Chlorine remaining                                                        after 2 days                                                              __________________________________________________________________________ *Components shown in parts by weight. These products essentially same as  Product of Example 5.
EXAMPLE 14
The purpose of this Example was to compare the uniformity of delivery of defoamer from: (A) a conventional powdered detergent (Score TM, a commercial product of Economics Laboratory, Inc.); a cast detergent (product of Example 5); and (C) a cast detergent incorporating the defoamer as a core or plug (product of Example 6). All three of the formulations contained 1% by weight of defoamer. The (A) conventional detergent and (B) the product of Example 5 contained the same defoamer; (C) the product of Example 6 contained the blend of two defoamers described in Example 6 (the blend was used to obtain a solid product which could be molded into a plug).
All tests were conducted in a Hobart C-44 (trademark) single tank dishwashing machine. A C-11 Dispenser (trademark of Economics Laboratory, Inc.), a water-in-reservoir type dispenser, was used to dispense product (A) (the conventional powdered detergent). The Hobart C 44 (trademark) machine was equipped with a dispenser similar to that illustrated in FIG. 4 for dispensing the solid .[.oast.]. .Iadd.cast .Iaddend.detergent products (B) product of Example 5) and (C) (product of Example 6), Both dispensers were contolled by a conductivity base controller of the type described in U.S. Pat. No. 3,680,070, issued July 25, 1972 (Nystuen). The controller was set to maintain a 0.2% concentration of detergent in the wash tank. The water temperature was about 140° F. (65° C.) for all of the tests.
Defoamers are included in detergents for spray-wash machines to control foam created by food soils. Foam in a wash tank leads to entrapment of air in the wash solution being recirculated through the machine and results in a reduction in mass and kinetic energy which leads to poor soil removal. Excess foam in a wash tank causes a loss in water pressure which can be measured by a manometer connected to the wash manifold upstream from the water pump. Egg is a common foam-causing food soil and was selected for use in this test.
The C-11 Dispenser originally holds about four pounds of powdered detergent and thus four pounds of conventional detergent (A) were used in the test. Products (B) and (C) were approximately six pounds each and were of the configuration described in Example 1 and illustrated in FIGS. 1-4.
The pressure (in inches of water) was recorded when the dispenser was freshly charged, when about one-half of the detergent had been dispensed, and when about four fifths of the detergent had been depensed. Manometer readings were taken on the freshly charged detergent: (1) with water alone, (2) after the detergent was added. (3) five minutes after 115 grams of egg were added, and (4) five minutes after an additional 100 grams of egg were added.
Between the "Freshly Charged" test and the "Detergent 1/2 Spent" test, the fill valve was opened to deliver 2 gallons of water per minute for dilution to simulate normal dilution of the wash tank by rinse water which is diverted to the wash tank to freshen the wash water. The conductivity controller dispensed detergent as required to maintain a 0.2% concentration of detergent in the wash tank. When about one-half of the detergent originally in the dispensers was left, manometer readings were taken and the two egg additions described above repeated with readings being taken five minutes after each addition. The same procedure was repeated after about one-fifth of the detergent originally present was left in the dispensers (four-fifths spent).
The "Detergent 1/2 Spent" test was somewhat more severe than the "Freshly Charged" test and, likewise, the "Detergent 4/5 Spent" test was somewhat more severe than the "Detergent 1/2 Spent " test, due to the cumulative concentration of egg soil resulting because the wash tank was not drained between tests.
The results of these tests are summarized in Table II.
                                  TABLE II                                __________________________________________________________________________                 FRESHLY CHARGED                                                                       DETERGENT 1/2 SPENT                                                                    DETERGENT 4/5 SPENT                              Wash Pressure                                                                      %  Wash Pressure                                                                      %   Wash Pressure                                                                       %                                      (inches of water)                                                                  Loss                                                                         (inches of water)                                                                  Loss                                                                          (inches of water)                                                                   Loss                  __________________________________________________________________________(A)                                                                          Conventional Powdered                                                     Detergent                                                                 Water alone:  43       -- --       --  --        --                       Detergent added:                                                                        43       -- 42.5     --  41.0      5.0                      5 minutes after 115 g.                                                                  38       12 26.0     40  25.0      42                       egg added:                                                                5 minutes after additional                                                              28       35 22.0     48  *         --                       100 g. egg added:                                                      (B)                                                                          Defoamer in Cast Detergent                                                (Product of Example 5)                                                    Water alone:  42       -- --       --  --        --                       Detergent added:                                                                        42       -- 43       --  42.5      --                       5 minutes after 115 g.                                                                  42       0  43        0  41.0      3.0                      egg added:                                                                5 minutes after additional                                                              42       0  30       30  29.0      32                       100 g. egg added:                                                      (C)                                                                          Defoamer as Plug in Cast                                                  Detergent (Product of                                                     Example 6)                                                                Water added:  42.5     -- --       --  --        --                       Detergent added:                                                                        42.5     -- 42       --  42.5      --                       5 minutes after 115 g.                                                                  42.5     0  42        0  41.0      0                        egg added:                                                                5 minutes after additional                                                              42.5     0  42        0  41.0      3.5                      100 g. egg added:                                                      __________________________________________________________________________ *Test was stopped due to excessive foam to avoid damage to pump and motor
The data in Table II indicates that Product (C) the product of Example 6 with the defoamer included as a plug) had the highest and most consistent wash pressures and that Product (B) (the product of Example 5 with the defoamer included in the cast detergent) had higher and more consistent wash pressures than Product (A) (the conventional powdered detergent). The higher and more consistent wash pressures indicate more uniform defoamer delivery.
It was noted that the defoamer incorporated in the powdered detergent (A) floated to the top and formed an oily film in the water-in-reservoir dispenser. It is believed that this resulted in slug-feeding of the defoamer instead of uniform delivery. In contrast, with the solid cast detergent of this invention, both the detergent and defoamer are dispensed simultaneously which helps assure uniform dispensing of the defoamer.

Claims (17)

What is claimed is:
1. A detergent-containing article of commerce comprising:
(a) a three-dimensional, solid.Iadd., .Iaddend.cast, hydrated, substantially uniform alkaline detergent .Iadd.for ware and hard surface washing .Iaddend.comprising:
(1) at least .Iadd.about .Iaddend.30% by weight of an alkaline hydratable chemical consisting essentially of alkali metal hydroxide:
(2) .Iadd.an effective amount of .Iaddend.a hardness-sequestering agent;
(3) .[.more than 15 parts by weight, per 100 parts by weight of said alkaline hydratable chemical, of.]. water of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide.Iadd., wherein the alkali metal hydroxide and the hardness sequestering agent are present in an amount sufficient to render the cast detergent a solid at room temperature by virtue of the water of hydration.Iaddend.; and
(b) a receptacle-shaped disposble container surrounding and in contact with said solid, cast, hydrated alkaline detergent composition on all but one surface thereof.
2. An article according to claim 1 wherein said container is the mold in which said composition .[.was.]. .Iadd.is .Iaddend.cast and solidified.
3. An article according to claim 2 wherein said article further comprises a cover attached to the said receptacle-shaped container.
4. An article according to claim 1 wherein said article comprises at least one preformed core.[., said core being surrounded by and in contact with said detergent on at least one side of said core.]..
5. An article according to claim 4 wherein said preformed core comprises a material selected from the group consisting of a defoamer and a solid, available chlorine-containing component.
6. An article according to claim 5 comprising a plurality of preformed cores, at least one of which comprises a solid, available chlorine-containing component.
7. An article according to claim 5 wherein .[.a.]. said preformed core has been coated with .[.an inert barrier.]. .Iadd.a .Iaddend.film.
8. An article according to claim 1 wherein said solid, cast, hydrated, alkaline detergent composition comprises:
(a) at least about 30% by weight of a first alkaline hydratable chemical consisting essentially of an alkali metal hydroxide;
(b) a second alkaline hydratable chemical comprising a hardness-sequestering amount of an alkali metal condensed phosphate;
(c) .[.more than 5% by weight of.]. water of hydration in both discrete and continuous states of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide;
(d) .[.up to about 15% by weight of a.]. .Iadd.an effective hardness sequestering amount of an organic .Iaddend.polyelectrolyte; and
(e) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing compound.
9. An article according to claim 8 wherein said solid, cast, hydrated alkaline detergent composition further comprises a sodium silicate. .[.10. The detergent containing article of claim 1 wherein there is about 10 to 35 wt %, based on the hydrated alkaline detergent composition, of water of
hydration..]. 11. A method for dispensing warewashing detergent into a warewashing zone for washing alkaline detergent-resistant ware, using the cast, hydrated.Iadd., .Iaddend.alkaline detergent composition of the detergent-containing article of claim 1, comprising the following steps:
(a) placing said cast, hydrated, alkaline detergent composition in a detergent dispensing device having a spray means, in a position with respect to the horizontal and with respect to said spray means, for dispensing detergent downwardly from said detergent composition to the warewashing zone of a warewashing machine, whereby the side of the cast, hydrated alkaline detergent composition not surrounded by said receptacle-shaped container is contained within the interior of said detergent dispensing device and is oriented to provide the interior of said detergent dispensing device with essentially one unsurrounded, exposed, drainable surface of cast, hydrated, alkaline detergent composition;
(b) impinging a spray of aqueous liquid from said spray means upon said unsurrounded, exposed, drainable surface to dissolve detergent composition at a generally consistent rate and thereby form an aqueous liquid detergent containing said detergent composition in the aqueous liquid, which aqueous liquid detergent .[.rains.]. .Iadd.drains .Iaddend.downwardly from said unsurrounded, exposed, drainable surface generally simultaneously with said impinging;
(c) generally simultaneously permitting the downwardly-draining aqueous liquid detergent to flow out of said detergent dispensing device and into said warewashing zone for the purpose of washing alkaline detergent-resistant ware .[.wherein.]. .Iadd.therein.Iaddend.; and
(d) controlling the duration of said step (b), thereby controlling the amount of said aqueous liquid detergent composition flowing into said warewashing zone, thereby controlling the concentration of said detergent
composition in said warewashing zone. 12. A method according to claim 11 wherein said unsurrounded, exposed, drainable surface generally faces
toward said spray means. 13. A method according to claim 12 wherein said cast, hydrated alkaline detergent composition is placed in accordance with said step (a) in an inverted position above said spray means, such that said unsurrounded, exposed, drainable surface faces downwardly toward said
spray means. 14. A method according to claim 11 wherein, in said step (a), said cast, hydrated, alkaline detergent composition is placed in an inverted position over said spray means, and said impinging is provided by a spray oriented generally perpendicularly to said unsurrounded, exposed,
drainable surface. .Iadd.15. A detergent-containing article of commerce comprising:
(a) a three-dimensional, uniform solid cast, hydrated, alkaline warewashing detergent comprsing:
(1) at least 30% by weight of an alkaline hydratable chemical consisting essentially of alkali metal hydroxide;
(2) an effective amount of a condensed phosphate hardness-sequestering agent; and
(3) water of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide wherein the alkali metal hydroxide and the condensed phosphate hardness sequestering agent are present in amounts sufficient to render the cast detergent solid at room temperature by virtue of said water of hydration; and
(b) a receptacle-shaped disposable container surrounding and in contact with said solid, cast, hydrated alkaline warewashing detergent composition on all but one surface thereof. .Iaddend. .Iadd.16. An article according to claim 15 wherein the container is made of a thermoplastic material and wherein the container is a mold in which said alkaline detergent was cast and solidified. .Iaddend. .Iadd.17. An article according to claim 15 wherein said article further comprises a cover attached to the said
receptacle-shaped container mold. .Iaddend. .Iadd.18. The article of claim 15 wherein the weight of the alkali detergent is at least 6 lbs. .Iaddend. .Iadd.19. The article of claim 15 wherein the hardness sequestering agent is a sodium tripolyphosphate compound. .Iaddend. .Iadd.20. An article according to claim 15 wherein said solid, cast, hydrated, alkaline detergent composition comprises:
(a) at least about 30% by weight of the alkaline hydratable chemical consisting essentially of sodium hydroxide;
(b) an effective hardness-sequestering amount of a sodium tripolyphosphate compound;
(c) an effective hardness sequestering amount of a polyelectrolyte; and
(d) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing component; wherein the alkaline detergent is cast within the disposable container. .Iaddend.
.Iadd.21. The article of claim 20 wherein the polyelectrolyte is an organic polyelectrolyte composition. .Iaddend. .Iadd.22. A detergent-containing article of comprising a three-dimensional, uniform, solid cast, hydrated alkaline warewashing detergent comprising:
(a) at least about 30% by weight of sodium hydroxide;
(b) a second alkaline hydratable chemical comprising an effective hardness-sequestering amount of sodium tripolyphosphate;
(c) water of hydration in both discrete and continuous states of hydration;
(d) an effective hardness sequestering amount of a polyacrylate; and
(e) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing component;
wherein the alkali metal hydroxide and the hardness sequestering agent are present in amounts sufficient to render the cast detergent a solid at room temperature by virtue of the water of hydration and the alkaline warewashing detergent is surrounded by and held in contact with a receptacle-shaped disposable thermoplastic container, on all but one
surface thereof. .Iaddend. .Iadd.23. An article according to claim 22 wherein said article further comprises a cover attached to said receptacle-shaped container. .Iaddend.
US06/901,2501978-02-071986-08-27Cast detergent-containing article and method of usingExpired - LifetimeUSRE32818E (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US06/901,250USRE32818E (en)1978-02-071986-08-27Cast detergent-containing article and method of using

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US87578478A1978-02-071978-02-07
US06/901,250USRE32818E (en)1978-02-071986-08-27Cast detergent-containing article and method of using

Related Parent Applications (2)

Application NumberTitlePriority DateFiling Date
US06123956Continuation-In-Part1980-02-25
US06/234,940ReissueUS4569781A (en)1978-02-071981-02-17Cast detergent-containing article and method of using

Publications (1)

Publication NumberPublication Date
USRE32818Etrue USRE32818E (en)1989-01-03

Family

ID=27128383

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US06/901,250Expired - LifetimeUSRE32818E (en)1978-02-071986-08-27Cast detergent-containing article and method of using

Country Status (1)

CountryLink
US (1)USRE32818E (en)

Cited By (143)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4861518A (en)1988-08-011989-08-29Ecolab Inc.Non-filming high performance solid floor cleaner
EP0314890A3 (en)*1987-10-021990-09-26Ecolab Inc.Article comprising a water soluble bag containing a pelletized functional material, and methods for its use
US4964185A (en)*1986-01-091990-10-23Ecolab Inc.Chemical solution dispenser apparatus and method of using
US5016790A (en)*1985-08-231991-05-21Ecolab Inc.Apparatus and method for dispensing a detergent solution
US5061392A (en)*1990-02-071991-10-29Dubois Chemicals, Inc.Method of making paste detergent and product produced
US5078301A (en)*1987-10-021992-01-07Ecolab Inc.Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5133892A (en)*1990-10-171992-07-28Lever Brothers Company, Division Of Conopco, Inc.Machine dishwashing detergent tablets
US5194230A (en)*1991-12-021993-03-16Ecolab Inc.Solid product static brake for solid block chemical dispensers
US5234615A (en)*1987-10-021993-08-10Ecolab Inc.Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5318713A (en)*1992-06-081994-06-07Binter Randolph KSolid detergent composition with multi-chambered container
US5366706A (en)*1991-07-031994-11-22Winbro Group, Ltd.Cake-like detergent and method of manufacture
US5393502A (en)*1993-09-071995-02-28International Purification Systems, Inc.Solubilizing apparatus
WO1995018213A1 (en)*1993-12-301995-07-06Ecolab Inc.Method of making highly alkaline solid cleaning compositions
WO1995018215A1 (en)*1993-12-301995-07-06Ecolab Inc.Stable hygroscopic detergent article
WO1995018211A1 (en)*1993-12-301995-07-06Ecolab Inc.Method of making a solid alkaline cleaning composition
US5447648A (en)*1990-07-131995-09-05Ecolab Inc.Solid food grade rinse aid
US5482641A (en)*1993-09-021996-01-09Fleisher; HowardStratified solid cast detergent compositions and methods of making same
US5534178A (en)*1994-12-121996-07-09Ecolab Inc.Perforated, stable, water soluble film container for detersive compositions
US5573698A (en)*1992-02-141996-11-12Ecopack Gmbh & Co.Returnable container containing detergent, cleaning agent, disinfectant and/or preservative
US5655563A (en)*1994-12-191997-08-12Ecolab Inc.Dispensing apparatus with line pressure diverter
US5670473A (en)*1995-06-061997-09-23Sunburst Chemicals, Inc.Solid cleaning compositions based on hydrated salts
US5674831A (en)*1993-12-301997-10-07Ecolab Inc.Method of making urea-based solid cleaning compositions
US5738135A (en)*1994-12-191998-04-14Ecolab Inc.Dispensing apparatus with line pressure diverter
US5797986A (en)*1995-02-011998-08-25Ecolab Inc.Floor cleaning method
US5830839A (en)*1995-05-171998-11-03Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US5846499A (en)*1996-02-271998-12-08Sunburst Chemicals, Inc.Air induction bowl for use with a detergent dispenser
US5929011A (en)1996-10-301999-07-27Sunburst Chemicals, Inc.Solid cast chlorinated cleaning composition
US5932531A (en)1997-09-261999-08-03Noramtech CorporationMethod for forming solid detergent activator for use with oxygen bleaches
US5981463A (en)1998-06-081999-11-09Noramtech CorporationAnhydrous detergent/bleach composition and method of preparing same
USD419262S (en)*1999-03-122000-01-18Ecolab Inc.Solid block detergent
US6057280A (en)1998-11-192000-05-02Huish Detergents, Inc.Compositions containing α-sulfofatty acid esters and methods of making and using the same
US6060444A (en)1993-12-302000-05-09Ecolab Inc.Method of making non-caustic solid cleaning compositions
US6150324A (en)1997-01-132000-11-21Ecolab, Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US6164296A (en)1993-12-302000-12-26Ecolab Inc.Method of removing waxy/fatty soils from ware with a combination of a nonionic silicone surfactant and a nonionic surfactant
US6180592B1 (en)1999-03-242001-01-30Ecolab Inc.Hydrophobic and particulate soil removal composition and method for removal of hydrophobic and particulate soil
US6240953B1 (en)1998-04-132001-06-05Sunburst Chemicals, Inc.Multiple cleaning chemical dispenser
US6362150B1 (en)*1998-11-122002-03-26Corporation CressidaDetergent composition in the form of a solid detergent containing surfactant and bleaching peroxide
US6365568B1 (en)*1991-01-292002-04-02Ecolab Inc.Process for manufacturing solid cast silicate-based detergent compositions and resultant product
US6369021B1 (en)1999-05-072002-04-09Ecolab Inc.Detergent composition and method for removing soil
US6387870B1 (en)1999-03-292002-05-14Ecolab Inc.Solid pot and pan detergent
US6410495B1 (en)1997-01-132002-06-25Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US6423280B1 (en)1998-10-292002-07-23Ecolab Inc.Hydraulic control of detergent concentration in an automatic warewashing machine
US6432906B1 (en)1995-02-012002-08-13Ecolab Inc.Solid acid cleaning block and method of manufacturing
US6475969B2 (en)2000-03-162002-11-05Sunburst Chemicals, Inc.Solid cast chlorinated composition
US6583094B1 (en)1997-01-132003-06-24Ecolab Inc.Stable solid block detergent composition
US20030168085A1 (en)*2002-03-072003-09-11Sowle Eddie D.Detergent dispenser
US6632291B2 (en)2001-03-232003-10-14Ecolab Inc.Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment
US6638902B2 (en)2001-02-012003-10-28Ecolab Inc.Stable solid enzyme compositions and methods employing them
US6645924B2 (en)2001-04-092003-11-11Ecolab Inc.Device and method for generating a liquid detergent concentrate from a solid detergent and a method for washing a vehicle
US6653266B2 (en)1997-01-132003-11-25Ecolab Inc.Binding agent for solid block functional material
US6673765B1 (en)1995-05-152004-01-06Ecolab Inc.Method of making non-caustic solid cleaning compositions
US6689305B1 (en)1993-05-052004-02-10Ecolab Inc.Process for consolidating particulate solids and cleaning products therefrom II
US6730653B1 (en)2000-06-012004-05-04Ecolab Inc.Method for manufacturing a molded detergent composition
US6737028B1 (en)1999-06-022004-05-18Sunburst Chemicals, Inc.Solid cast container
US6773668B1 (en)2000-04-172004-08-10Ecolab, Inc.Detergent dispenser
US6777383B1 (en)1995-05-172004-08-17Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US20040231710A1 (en)*2003-05-202004-11-25Dingler Geoffrey L.Household dishwasher with bulk wash aid dispenser
US20040259757A1 (en)*1991-05-142004-12-23Ecolab Inc.Two part chemical concentrate
US20050003979A1 (en)*2003-07-022005-01-06Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, comprising a mixture of aluminum and zinc ions
US20050020464A1 (en)*2003-07-022005-01-27Smith Kim R.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US20050113278A1 (en)*2003-11-202005-05-26Ecolab, Inc.Binding agent for solidification matrix
US20050233920A1 (en)*2004-04-152005-10-20Ecolab, Inc.Binding agent for solidification matrix
US20060025325A1 (en)*2004-08-022006-02-02Ryther Robert JSolid detergent composition and methods for manufacturing and using
US7037886B2 (en)2000-06-012006-05-02Ecolab Inc.Method for manufacturing a molded detergent composition
US7153820B2 (en)2001-08-132006-12-26Ecolab Inc.Solid detergent composition and method for solidifying a detergent composition
US20070021153A1 (en)*2005-07-202007-01-25Astrazeneca AbDevice for communicating with a voice-disabled person
US7250086B2 (en)2003-12-082007-07-31Ecolab Inc.Method of using a solid rinse additive dispenser for dispensing a use solution in a dishwashing machine
US7279455B2 (en)2003-11-062007-10-09Ecolab, Inc.Rinse aid composition and method of rising a substrate
US20080020960A1 (en)*2006-07-242008-01-24Smith Kim RWarewashing composition for use in automatic dishwashing machines, and method for using
US20080274940A1 (en)*2007-05-042008-11-06Ecolab, Inc.Solidification matrix
US20080274942A1 (en)*2007-05-042008-11-06Ecolab Inc.Solidification matrix
WO2008137790A2 (en)2007-05-042008-11-13Ecolab Inc.Cleaning compositions containing water soluble magnesium compound and methods of using them
US20080280806A1 (en)*2007-02-152008-11-13Ecolab Inc.Fast Dissolving Solid Detergent
US20080293615A1 (en)*2007-05-252008-11-27Ecolab Inc.Dimensionally Stable Solid Rinse Aid
WO2009050684A2 (en)2007-10-182009-04-23Ecolab Inc.Pressed, waxy, solid cleaning compositions and methods of making them
US20090165214A1 (en)*2007-12-272009-07-02Sunburst Chemicals, Inc. bleaching methods with peroxy compounds
US20090176688A1 (en)*2008-01-042009-07-09Ecolab Inc.Solidification matrix using an aminocarboxylate
US20090176687A1 (en)*2008-01-042009-07-09Ecolab Inc.Solidification matrix using a polycarboxylic acid polymer
WO2010131217A2 (en)2009-05-122010-11-18Ecolab Usa Inc.Fast drying and fast draining rinse aid
US20100298193A1 (en)*2008-01-042010-11-25Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US20100300044A1 (en)*2009-05-282010-12-02Ecolab Usa Inc.Wetting agents for aseptic filling
US20100300493A1 (en)*2009-05-262010-12-02Ecolab Usa Inc.Pot and pan soaking composition
US20100311634A1 (en)*2007-07-022010-12-09Besse Michael ESolidification matrix including a salt of a straight chain saturated mono-, di-, and tri- carboxylic acid
US20100311633A1 (en)*2007-02-152010-12-09Ecolab Usa Inc.Detergent composition for removing fish soil
US20110108068A1 (en)*2007-05-252011-05-12Ecolab Usa Inc.Enhanced melting point rinse aid solids
US20110118166A1 (en)*2007-05-072011-05-19Ecolab Usa Inc.Solidification matrix
US20110124547A1 (en)*2009-11-232011-05-26Ecolab Inc.Solidification matrix using a sulfonated/carboxylated polymer binding agent
US20110124546A1 (en)*2009-11-202011-05-26Ecolab Inc.Solidification matrix using a maleic-containing terpolymer binding agent
US8383570B2 (en)2007-05-252013-02-26Ecolab Usa Inc.Enhanced melting point rinse aid solid compositions with synergistic preservative
US8399393B2 (en)2010-05-032013-03-19Ecolab Usa Inc.Combination of soluble lithium salt and soluble aluminum or silicate salt as a glass etching inhibitor
US20130294978A1 (en)*2012-05-032013-11-07Reynato MarianoChemical dissolving dispenser
WO2013181150A1 (en)2012-05-292013-12-05Ecolab Usa Inc.Acidic compositions including reducing agents for elimination of hard water scale and decolorization of metal stains
US8603408B2 (en)*2011-06-162013-12-10Ecolab Usa Inc.Apparatus for control of on site mixing of solid peroxide source and catalyst
WO2013192315A1 (en)2012-06-222013-12-27Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
US8772221B2 (en)2008-01-042014-07-08Ecolab Usa Inc.Solidification matrices using phosphonocarboxylic acid copolymers and phosphonopolyacrylic acid homopolymers
US20140227790A1 (en)*2013-02-082014-08-14Ecolab Usa Inc.Protective coatings for detersive agents and methods of forming and detecting the same
WO2015017385A2 (en)2013-08-022015-02-05Ecolab Usa Inc.Organic disulfide based corrosion inhibitors
WO2015030836A1 (en)2013-08-272015-03-05Ecolab Usa Inc.Solid rinse aid composition and method of making same
EP2875865A1 (en)2011-12-132015-05-27Ecolab USA Inc.Integrated acid regeneration of ion exchange resins for industrial applications
WO2015084830A1 (en)2013-12-022015-06-11Ecolab Usa Inc.Tetrazole based corrosion inhibitors
WO2016033563A1 (en)2014-08-292016-03-03Ecolab Usa Inc.Solid rinse aid composition comprising polyacrylic acid
US9399198B2 (en)2012-10-122016-07-26Sunburst Chemicals, Inc.Venturi ejector for a chemical dispenser
WO2016187293A1 (en)2015-05-192016-11-24Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US9567551B2 (en)2012-06-222017-02-14Ecolab Usa Inc.Solid rinse aid composition and method of making same
WO2017100267A1 (en)2015-12-082017-06-15Ecolab Usa Inc.Pressed manual dish detergent
WO2018013881A1 (en)2016-07-152018-01-18Ecolab Usa Inc.Aluminum safe degreasing and pre-soak technology for bakery and deli wares and use thereof
WO2018102724A1 (en)2016-12-022018-06-07Ecolab Usa Inc.Thiol-formyl hemiacetal corrosion inhibitors
WO2018111911A1 (en)2016-12-142018-06-21Ecolab USA, Inc.Quaternary cationic polymers
US10006128B2 (en)2012-09-282018-06-26Ecolab Usa Inc.Quaternary and cationic ammonium surfactants as corrosion inhibitors
EP3381285A1 (en)2015-09-172018-10-03Ecolab USA Inc.Methods of making triamine solids
EP3381284A1 (en)2015-09-172018-10-03Ecolab USA Inc.Triamine solidification using diacids
US10118137B2 (en)2015-07-232018-11-06Ecolab Usa Inc.Solid product dispenser for small volume applications
WO2019028400A1 (en)2017-08-032019-02-07Ecolab Usa Inc.Thiol adducts for corrosion inhibition
WO2019067560A1 (en)2017-09-262019-04-04Ecolab Usa Inc.Acidic/anionic antimicrobial and virucidal compositions and uses thereof
US10351803B2 (en)2016-02-012019-07-16Ecolab Usa Inc.Solid laundry detergent for restaurant soils
WO2019148082A1 (en)2018-01-262019-08-01Ecolab Usa IncSolid cleaning composition
WO2019148076A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a binder and optional carrier
WO2019148071A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid anionic surfactants
WO2019148090A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier
US10370626B2 (en)2016-05-232019-08-06Ecolab Usa Inc.Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US10392587B2 (en)2016-05-232019-08-27Ecolab Usa Inc.Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US10549245B2 (en)2014-08-052020-02-04Ecolab Usa Inc.Apparatus and method for dispensing solutions from solid products
US10870091B2 (en)2018-02-132020-12-22Ecolab Usa Inc.System for dissolving solid chemicals and generating liquid solutions
WO2020257749A1 (en)2019-06-212020-12-24Ecolab Usa Inc.Solid nonionic surfactant compositions
WO2021003477A1 (en)2019-07-032021-01-07Ecolab Usa Inc.Hard surface cleaning compositions with reduced surface tension
WO2021026292A1 (en)2019-08-062021-02-11Ecolab Usa Inc.Detergent composition containing a maleic acid tetrapolymer
WO2021046285A1 (en)2019-09-062021-03-11Ecolab Usa Inc.Concentrated surfactant systems for rinse aid and other applications
WO2021126956A1 (en)2019-12-162021-06-24Ecolab Usa Inc.Anionic surfactant impact on virucidal efficacy
WO2021155135A1 (en)2020-01-312021-08-05Ecolab Usa Inc.Amylase synergy with oxygen bleach in warewash application
WO2021195015A1 (en)2020-03-232021-09-30Ecolab Usa Inc.Novel 2-in-1 sanitizing and rinse aid compositions employing amine based surfactants in machine warewashing
US11155769B2 (en)2018-07-252021-10-26Ecolab Usa Inc.Rinse aid formulation for cleaning automotive parts
WO2021222510A1 (en)2020-04-302021-11-04Ecolab Usa Inc.Low foam cleaning compositions
US11278922B2 (en)2018-02-132022-03-22Ecolab Usa Inc.Portable solid product dispenser
US11383922B2 (en)2018-02-052022-07-12Ecolab Usa Inc.Packaging and docking system for non-contact chemical dispensing
US11401084B2 (en)2019-02-052022-08-02Ecolab Usa Inc.Packaging and docking system for non-contact chemical dispensing
EP4043541A1 (en)2017-03-012022-08-17Ecolab USA Inc.Mechanism of urea/solid acid interaction under storage conditions and storage stable solid compositions comprising urea and acid
WO2022221670A2 (en)2021-04-152022-10-20Ecolab Usa Inc.Enzymatic floor cleaning composition
US11540512B2 (en)2017-03-012023-01-03Ecolab Usa Inc.Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers
EP4227391A1 (en)2014-03-072023-08-16Ecolab USA Inc.Detergent composition that performs both a cleaning and rinsing function
US11834633B2 (en)2019-07-122023-12-05Ecolab Usa Inc.Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers
WO2024196726A1 (en)2023-03-172024-09-26Ecolab Usa Inc.Capped block copolymers, their synthesis, manufacture, and methods of use
WO2024211707A1 (en)2023-04-052024-10-10Ecolab Usa Inc.Solid 2-in-1 detergent rinse formula for under-counter machine ware wash
WO2025179023A1 (en)2024-02-222025-08-28Ecolab Usa Inc.An enzyme driven mechanism for fast dissolution of unit dose solids

Citations (95)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US404354A (en)*1889-05-28Katie htjber
US871612A (en)*1904-01-021907-11-19Vincent Blumhardt NesfieldSterilizing-tablet.
US1325361A (en)*1919-12-16ce tippecanoe city
US1380388A (en)*1919-05-221921-06-07American Safety RazorStick of shaving-soap
US1580576A (en)*1924-03-081926-04-13Weidner EdmundPerfumed soap cake
US1949264A (en)*1929-03-201934-02-27R M Hollingshead CoMethod of making soap solution
US2031853A (en)*1933-04-241936-02-25Armour & CoPackaging molten soap
US2083076A (en)*1934-02-261937-06-08Coal Treating & Equipment CompMethod for dissolving deliquescent material
US2120807A (en)*1937-06-291938-06-14Joseph ParisiDevice for soaping flowing water
US2138943A (en)*1937-06-231938-12-06Raymond E MarquisAlkali solution dispenser for dish washing machines
US2164092A (en)*1936-06-121939-06-27Hall Lab IncProcess of preparing solid alkaline compounds
US2238969A (en)*1938-05-101941-04-22John R WareDishwashing apparatus
US2308612A (en)*1941-07-231943-01-19Milk Plant Specialties CorpDissolving apparatus
US2333433A (en)*1940-02-281943-11-02Gelatin Products CompanyApparatus and process for making capsules
US2339396A (en)*1940-08-141944-01-18Leo M HarveyMaterial dispensing means
US2370609A (en)*1941-04-281945-02-27Economics LabConcentration cell and temperature compensator
US2371720A (en)*1943-08-091945-03-20Turco Products IncAdmixing and dispensing method and device
US2382164A (en)*1945-08-14Detergent briquette
US2382163A (en)*1945-08-14Detergent briquette
US2382165A (en)*1945-08-14Detergent briquette
US2387945A (en)*1944-07-291945-10-30Antiseptol Company IncDispensing apparatus
US2412819A (en)*1945-07-211946-12-17Mathieson Alkali Works IncDetergent briquette
US2477998A (en)*1945-03-091949-08-02Thomas B MccowanBar soap dispenser
US2604386A (en)*1950-12-191952-07-22Clayton Manufacturing CoDetergent dissolving apparatus
US2613922A (en)*1950-01-131952-10-14Francis L GatchetSolution mixing and distributing apparatus
GB687075A (en)*1949-04-281953-02-04George Franklyn HicksImprovements in detergent briquettes and in method of and apparatus for making same
US2641506A (en)*1950-03-301953-06-09Frank J LowthersSoap container and dispenser
US2646189A (en)*1949-04-111953-07-21Alfred W WickesbergMelting and dispensing apparatus
US2686080A (en)*1945-12-261954-08-10Soapsudzer IncProcess of impregnating a liquid with a substance miscible therewith
US2698022A (en)*1948-12-301954-12-28Gen Aniline & Film CorpDispenser for liquid detergents
US2738323A (en)*1952-07-101956-03-13Olin MathiesonChemical feeder
US2788328A (en)*1957-04-09Cleansing composition
US2802724A (en)*1956-04-051957-08-13Tom R JohnsonCombined dry chemical dissolver and feeder
US2804432A (en)*1950-01-121957-08-27Paul W BonewitzProcess of making particles of caustic soda and caustic potash impregnated with gluconic acid
US2820701A (en)*1954-06-281958-01-21Donald J LeslieApparatus for chlorination
US2920417A (en)*1958-01-221960-01-12Sylvia T WertheimerDetergent-solution dispensing container
US2987483A (en)*1956-07-021961-06-06Pennsalt Chemicals CorpCleaning composition
US3048548A (en)*1959-05-261962-08-07Economics LabDefoaming detergent composition
US3070316A (en)*1961-06-161962-12-25Miville EdouardSoap and water mixing valve
US3092515A (en)*1959-09-141963-06-04Research CorpMoving-bed liquid-solid contactor and operation thereof
US3156536A (en)*1960-05-241964-11-10Pechiney Prod Chimiques SaWasher mixer apparatus
US3166513A (en)*1963-04-041965-01-19Economics LabStable detergent composition
US3166512A (en)*1961-04-061965-01-19Economics LabStable, solid chlorinated caustic product containing available chlorine and method of preparation thereof
US3174934A (en)*1961-04-241965-03-23Monsanto CoHydration of sodium tripolyphosphate
US3178067A (en)*1963-03-191965-04-13Anderson Clayton & CoApparatus for the conversion of a solid material to a liquid state and metering thereof
CA715310A (en)*1965-08-10Rylands Brothers LimitedMachines for securing a wire or like tie or strap around a coil or bundle
US3253741A (en)*1965-01-211966-05-31Wesley Mfg CoCar wash device
US3271317A (en)*1963-12-241966-09-06Wyandotte Chemicals CorpSilicated sodium hydroxide
US3272899A (en)*1960-12-061966-09-13Hagan Chemicals & Controls IncProcess for producing a solid rinse block
US3273586A (en)*1966-09-20Detergent feed systems
US3279995A (en)*1963-05-311966-10-18Allen F ReidShaped pellets
US3291576A (en)*1963-12-241966-12-13Wyandotte Chemicals CorpProduction of hydrated sodium hydroxide
US3306858A (en)*1965-06-171967-02-28Economics LabProcess for the preparation of storage stable detergent composition
US3307744A (en)*1965-10-181967-03-07Pennsalt Chemicals CorpMethod and apparatus for automatic control of cleaning solution concentrations in vehicle washing system
US3319637A (en)*1966-07-111967-05-16Intercontinental Chem CorpMeans for monitoring and maintaining concentration of depletable work solutions
US3322674A (en)*1961-02-231967-05-30Friedman JackLaundry package
US3322507A (en)*1963-06-111967-05-30Union Carbide CorpApparatus for dissolving solid polymeric substances in a solvent
US3334147A (en)*1962-02-281967-08-01Economics LabDefoaming and surface active compositions
US3382178A (en)*1965-02-011968-05-07Petrolite CorpStable alkaline detergents
US3390093A (en)*1962-06-061968-06-25Monsanto CoDetergent compositions containing hydrated alkali metal tripolyphosphates
US3399676A (en)*1965-02-121968-09-03Jack E. MclaughlinLiquid dispensing apparatus for use in body treatment
US3417024A (en)*1963-12-311968-12-17Lever Brothers LtdTreated phosphates
US3441511A (en)*1965-12-201969-04-29Wyandotte Chemicals CorpAlkali metal hydroxide-containing agglomerates
US3442242A (en)*1967-06-051969-05-06Algonquin Shipping & TradingStopping and manoeuvering means for large vessels
US3491028A (en)*1969-06-031970-01-20Grace W R & CoChlorine stable machine dishwashing composition
US3535258A (en)*1967-12-041970-10-20Grace W R & CoMachine dishwashing composition and process
US3556982A (en)*1968-06-261971-01-19Cities Service Athabasca IncCombination additive for tar sand processing
US3574561A (en)*1969-07-241971-04-13Us NavyOxygen generator system utilizing alkali metal peroxides and superoxides
US3579455A (en)*1968-08-021971-05-18Grace W R & CoMachine dishwashing compositions containing sodium polyacrylate
US3595438A (en)*1969-01-061971-07-27Economics LabAutomatic detergent dispenser system
US3639286A (en)*1968-05-281972-02-01Mario BallestraSynthetic detergent in bar or cake form and the method to manufacture same
US3649545A (en)*1969-01-161972-03-14Lion Fat Oil Co LtdSynthetic detergent in masses and their manufacturing methods
US3680070A (en)*1970-05-251972-07-25Economics LabElectronic control means for dispensing apparatus
US3687613A (en)*1970-10-271972-08-29Combustion EngMethod and apparatus for preparing an additive for introduction to a gas scrubber
US3700599A (en)*1970-09-251972-10-24Economics LabComposition for mechanically cleaning hard surfaces
US3727889A (en)*1970-05-211973-04-17Chapman Chem CoMixing method and apparatus
US3789011A (en)*1970-09-051974-01-29Ideal Soap CoContinuous process for producing transparent soap having pearlescent qualities
US3816427A (en)*1972-03-221974-06-11W LoeligerApparatus for continuously dissolving pulverulent material in a liquid
US3850344A (en)*1972-07-281974-11-26Calgon CorpInverted drum feeder for powdered detergent
US3856932A (en)*1969-12-161974-12-24M MayTablet of a chlorine releasing solid compound
US3899436A (en)*1970-09-081975-08-12Economics LabMachine dishwashing detergent having a reduced condensed phosphate content
US3933670A (en)*1973-11-121976-01-20Economic Laboratories, Inc.Process for making agglomerated detergents
US3936386A (en)*1972-11-241976-02-03Fmc CorporationDishwashing compositions containing chlorinated isocyanurate
US3937399A (en)*1975-04-101976-02-10Tesco Chemicals, Inc.Jet action chemical feeding method
US4014808A (en)*1973-06-041977-03-29Tennant CompanyDetergent composition
US4020865A (en)*1975-10-031977-05-03Economics Laboratory, Inc.Remote powder detergent dispenser
US4063663A (en)*1975-12-151977-12-20Economics Laboratory, Inc.Powdered detergent dispenser
US4147650A (en)*1976-02-231979-04-03Chemed CorporationSlurried detergent and method
EP0003769A1 (en)*1978-02-071979-09-05Economics Laboratory, Inc.Cast detergent-containing article and method of making and using
US4209864A (en)*1978-11-071980-07-01International Flavors & Fragrances Inc.Cleanser and/or sanitizer and aroma emitting attachment for toilets and process for using same
US4294280A (en)*1979-07-101981-10-13Tom Milton DApparatus for producing and dispensing detergent solutions
US4318891A (en)*1981-02-021982-03-09Kim Seung GAutomatic toilet bowl cleaner
US4426362A (en)*1978-12-051984-01-17Economics Laboratory, Inc.Solid block detergent dispenser
US4438010A (en)*1982-03-261984-03-20International Flavors & Fragrances Inc.Soap tablet including perfume-containing plastic core and process for preparing same
US4469613A (en)*1983-02-231984-09-04International Flavors & Fragrances Inc.Detergent bar containing poly(epsilon caprolactone) and aromatizing agent

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2788328A (en)*1957-04-09Cleansing composition
US1325361A (en)*1919-12-16ce tippecanoe city
US2382165A (en)*1945-08-14Detergent briquette
US2382163A (en)*1945-08-14Detergent briquette
US2382164A (en)*1945-08-14Detergent briquette
US3273586A (en)*1966-09-20Detergent feed systems
US404354A (en)*1889-05-28Katie htjber
CA715310A (en)*1965-08-10Rylands Brothers LimitedMachines for securing a wire or like tie or strap around a coil or bundle
US871612A (en)*1904-01-021907-11-19Vincent Blumhardt NesfieldSterilizing-tablet.
US1380388A (en)*1919-05-221921-06-07American Safety RazorStick of shaving-soap
US1580576A (en)*1924-03-081926-04-13Weidner EdmundPerfumed soap cake
US1949264A (en)*1929-03-201934-02-27R M Hollingshead CoMethod of making soap solution
US2031853A (en)*1933-04-241936-02-25Armour & CoPackaging molten soap
US2083076A (en)*1934-02-261937-06-08Coal Treating & Equipment CompMethod for dissolving deliquescent material
US2164092A (en)*1936-06-121939-06-27Hall Lab IncProcess of preparing solid alkaline compounds
US2138943A (en)*1937-06-231938-12-06Raymond E MarquisAlkali solution dispenser for dish washing machines
US2120807A (en)*1937-06-291938-06-14Joseph ParisiDevice for soaping flowing water
US2238969A (en)*1938-05-101941-04-22John R WareDishwashing apparatus
US2333433A (en)*1940-02-281943-11-02Gelatin Products CompanyApparatus and process for making capsules
US2339396A (en)*1940-08-141944-01-18Leo M HarveyMaterial dispensing means
US2370609A (en)*1941-04-281945-02-27Economics LabConcentration cell and temperature compensator
US2308612A (en)*1941-07-231943-01-19Milk Plant Specialties CorpDissolving apparatus
US2371720A (en)*1943-08-091945-03-20Turco Products IncAdmixing and dispensing method and device
US2387945A (en)*1944-07-291945-10-30Antiseptol Company IncDispensing apparatus
US2477998A (en)*1945-03-091949-08-02Thomas B MccowanBar soap dispenser
US2412819A (en)*1945-07-211946-12-17Mathieson Alkali Works IncDetergent briquette
US2686080A (en)*1945-12-261954-08-10Soapsudzer IncProcess of impregnating a liquid with a substance miscible therewith
US2698022A (en)*1948-12-301954-12-28Gen Aniline & Film CorpDispenser for liquid detergents
US2646189A (en)*1949-04-111953-07-21Alfred W WickesbergMelting and dispensing apparatus
GB687075A (en)*1949-04-281953-02-04George Franklyn HicksImprovements in detergent briquettes and in method of and apparatus for making same
US2804432A (en)*1950-01-121957-08-27Paul W BonewitzProcess of making particles of caustic soda and caustic potash impregnated with gluconic acid
US2613922A (en)*1950-01-131952-10-14Francis L GatchetSolution mixing and distributing apparatus
US2641506A (en)*1950-03-301953-06-09Frank J LowthersSoap container and dispenser
US2604386A (en)*1950-12-191952-07-22Clayton Manufacturing CoDetergent dissolving apparatus
US2738323A (en)*1952-07-101956-03-13Olin MathiesonChemical feeder
US2820701A (en)*1954-06-281958-01-21Donald J LeslieApparatus for chlorination
US2802724A (en)*1956-04-051957-08-13Tom R JohnsonCombined dry chemical dissolver and feeder
US2987483A (en)*1956-07-021961-06-06Pennsalt Chemicals CorpCleaning composition
US2920417A (en)*1958-01-221960-01-12Sylvia T WertheimerDetergent-solution dispensing container
US3048548A (en)*1959-05-261962-08-07Economics LabDefoaming detergent composition
US3092515A (en)*1959-09-141963-06-04Research CorpMoving-bed liquid-solid contactor and operation thereof
US3156536A (en)*1960-05-241964-11-10Pechiney Prod Chimiques SaWasher mixer apparatus
US3272899A (en)*1960-12-061966-09-13Hagan Chemicals & Controls IncProcess for producing a solid rinse block
US3322674A (en)*1961-02-231967-05-30Friedman JackLaundry package
US3166512A (en)*1961-04-061965-01-19Economics LabStable, solid chlorinated caustic product containing available chlorine and method of preparation thereof
US3174934A (en)*1961-04-241965-03-23Monsanto CoHydration of sodium tripolyphosphate
US3070316A (en)*1961-06-161962-12-25Miville EdouardSoap and water mixing valve
US3334147A (en)*1962-02-281967-08-01Economics LabDefoaming and surface active compositions
US3390093A (en)*1962-06-061968-06-25Monsanto CoDetergent compositions containing hydrated alkali metal tripolyphosphates
US3178067A (en)*1963-03-191965-04-13Anderson Clayton & CoApparatus for the conversion of a solid material to a liquid state and metering thereof
US3166513A (en)*1963-04-041965-01-19Economics LabStable detergent composition
US3279995A (en)*1963-05-311966-10-18Allen F ReidShaped pellets
US3322507A (en)*1963-06-111967-05-30Union Carbide CorpApparatus for dissolving solid polymeric substances in a solvent
US3271317A (en)*1963-12-241966-09-06Wyandotte Chemicals CorpSilicated sodium hydroxide
US3291576A (en)*1963-12-241966-12-13Wyandotte Chemicals CorpProduction of hydrated sodium hydroxide
US3417024A (en)*1963-12-311968-12-17Lever Brothers LtdTreated phosphates
US3253741A (en)*1965-01-211966-05-31Wesley Mfg CoCar wash device
US3382178A (en)*1965-02-011968-05-07Petrolite CorpStable alkaline detergents
US3399676A (en)*1965-02-121968-09-03Jack E. MclaughlinLiquid dispensing apparatus for use in body treatment
US3306858A (en)*1965-06-171967-02-28Economics LabProcess for the preparation of storage stable detergent composition
US3307744A (en)*1965-10-181967-03-07Pennsalt Chemicals CorpMethod and apparatus for automatic control of cleaning solution concentrations in vehicle washing system
US3441511A (en)*1965-12-201969-04-29Wyandotte Chemicals CorpAlkali metal hydroxide-containing agglomerates
US3319637A (en)*1966-07-111967-05-16Intercontinental Chem CorpMeans for monitoring and maintaining concentration of depletable work solutions
US3442242A (en)*1967-06-051969-05-06Algonquin Shipping & TradingStopping and manoeuvering means for large vessels
US3535258A (en)*1967-12-041970-10-20Grace W R & CoMachine dishwashing composition and process
US3639286A (en)*1968-05-281972-02-01Mario BallestraSynthetic detergent in bar or cake form and the method to manufacture same
US3556982A (en)*1968-06-261971-01-19Cities Service Athabasca IncCombination additive for tar sand processing
US3579455A (en)*1968-08-021971-05-18Grace W R & CoMachine dishwashing compositions containing sodium polyacrylate
US3595438A (en)*1969-01-061971-07-27Economics LabAutomatic detergent dispenser system
US3649545A (en)*1969-01-161972-03-14Lion Fat Oil Co LtdSynthetic detergent in masses and their manufacturing methods
US3491028A (en)*1969-06-031970-01-20Grace W R & CoChlorine stable machine dishwashing composition
US3574561A (en)*1969-07-241971-04-13Us NavyOxygen generator system utilizing alkali metal peroxides and superoxides
US3856932A (en)*1969-12-161974-12-24M MayTablet of a chlorine releasing solid compound
US3727889A (en)*1970-05-211973-04-17Chapman Chem CoMixing method and apparatus
US3680070A (en)*1970-05-251972-07-25Economics LabElectronic control means for dispensing apparatus
US3789011A (en)*1970-09-051974-01-29Ideal Soap CoContinuous process for producing transparent soap having pearlescent qualities
US3899436A (en)*1970-09-081975-08-12Economics LabMachine dishwashing detergent having a reduced condensed phosphate content
US3700599A (en)*1970-09-251972-10-24Economics LabComposition for mechanically cleaning hard surfaces
US3687613A (en)*1970-10-271972-08-29Combustion EngMethod and apparatus for preparing an additive for introduction to a gas scrubber
US3816427A (en)*1972-03-221974-06-11W LoeligerApparatus for continuously dissolving pulverulent material in a liquid
US3850344A (en)*1972-07-281974-11-26Calgon CorpInverted drum feeder for powdered detergent
US3936386A (en)*1972-11-241976-02-03Fmc CorporationDishwashing compositions containing chlorinated isocyanurate
US4014808A (en)*1973-06-041977-03-29Tennant CompanyDetergent composition
US3933670A (en)*1973-11-121976-01-20Economic Laboratories, Inc.Process for making agglomerated detergents
US3937399A (en)*1975-04-101976-02-10Tesco Chemicals, Inc.Jet action chemical feeding method
US4020865A (en)*1975-10-031977-05-03Economics Laboratory, Inc.Remote powder detergent dispenser
US4063663A (en)*1975-12-151977-12-20Economics Laboratory, Inc.Powdered detergent dispenser
US4147650A (en)*1976-02-231979-04-03Chemed CorporationSlurried detergent and method
EP0003769A1 (en)*1978-02-071979-09-05Economics Laboratory, Inc.Cast detergent-containing article and method of making and using
US4209864A (en)*1978-11-071980-07-01International Flavors & Fragrances Inc.Cleanser and/or sanitizer and aroma emitting attachment for toilets and process for using same
US4426362A (en)*1978-12-051984-01-17Economics Laboratory, Inc.Solid block detergent dispenser
US4294280A (en)*1979-07-101981-10-13Tom Milton DApparatus for producing and dispensing detergent solutions
US4318891A (en)*1981-02-021982-03-09Kim Seung GAutomatic toilet bowl cleaner
US4438010A (en)*1982-03-261984-03-20International Flavors & Fragrances Inc.Soap tablet including perfume-containing plastic core and process for preparing same
US4469613A (en)*1983-02-231984-09-04International Flavors & Fragrances Inc.Detergent bar containing poly(epsilon caprolactone) and aromatizing agent

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Ecolab Detergent Control and Application Equipment", Models C-11 and C-15, C-11, C-4.
"Ecolab-Detergent Concentrated Tank for Use with the Solu-Matic Z4 and Powdered Detergents", Models C-8, C-33.
"Klenzade Detergent Bricks", Formulas KDB-3 and KDB-4 (1958).
"Warhead-Chlorinated Brick Detergents", Model C-14, Warhead Brick Dispenser.
Ecolab Detergent Concentrated Tank for Use with the Solu Matic Z4 and Powdered Detergents , Models C 8, C 33.*
Ecolab Detergent Control and Application Equipment , Models C 11 and C 15, C 11, C 4.*
Fuchs, Polkowski, Cargano, "Agglomerated Automatic Dishwasher Detergents", Chemical Times and Trends, pp. 37-42 (Oct., 1977).
Fuchs, Polkowski, Cargano, Agglomerated Automatic Dishwasher Detergents , Chemical Times and Trends, pp. 37 42 (Oct., 1977).*
Klenzade Detergent Bricks , Formulas KDB 3 and KDB 4 (1958).*
Warhead Chlorinated Brick Detergents , Model C 14, Warhead Brick Dispenser.*

Cited By (281)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5016790A (en)*1985-08-231991-05-21Ecolab Inc.Apparatus and method for dispensing a detergent solution
US4964185A (en)*1986-01-091990-10-23Ecolab Inc.Chemical solution dispenser apparatus and method of using
EP0314890A3 (en)*1987-10-021990-09-26Ecolab Inc.Article comprising a water soluble bag containing a pelletized functional material, and methods for its use
US5078301A (en)*1987-10-021992-01-07Ecolab Inc.Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5234615A (en)*1987-10-021993-08-10Ecolab Inc.Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
EP0353408A3 (en)*1988-08-011991-04-03Ecolab Inc.Non-filming high performance solid floor cleaner
US4861518A (en)1988-08-011989-08-29Ecolab Inc.Non-filming high performance solid floor cleaner
US5061392A (en)*1990-02-071991-10-29Dubois Chemicals, Inc.Method of making paste detergent and product produced
US5447648A (en)*1990-07-131995-09-05Ecolab Inc.Solid food grade rinse aid
US5133892A (en)*1990-10-171992-07-28Lever Brothers Company, Division Of Conopco, Inc.Machine dishwashing detergent tablets
US6365568B1 (en)*1991-01-292002-04-02Ecolab Inc.Process for manufacturing solid cast silicate-based detergent compositions and resultant product
US20040259757A1 (en)*1991-05-142004-12-23Ecolab Inc.Two part chemical concentrate
US20060040845A1 (en)*1991-05-142006-02-23Ecolab Inc.Two part chemical concentrate
US7517846B2 (en)1991-05-142009-04-14Ecolab Inc.Solid, two part chemical concentrate
US5366706A (en)*1991-07-031994-11-22Winbro Group, Ltd.Cake-like detergent and method of manufacture
US5194230A (en)*1991-12-021993-03-16Ecolab Inc.Solid product static brake for solid block chemical dispensers
US5573698A (en)*1992-02-141996-11-12Ecopack Gmbh & Co.Returnable container containing detergent, cleaning agent, disinfectant and/or preservative
US5318713A (en)*1992-06-081994-06-07Binter Randolph KSolid detergent composition with multi-chambered container
US6689305B1 (en)1993-05-052004-02-10Ecolab Inc.Process for consolidating particulate solids and cleaning products therefrom II
US5482641A (en)*1993-09-021996-01-09Fleisher; HowardStratified solid cast detergent compositions and methods of making same
US5670467A (en)*1993-09-021997-09-23Fleisher; HowardStratified solid cast detergent compositions
US5536479A (en)*1993-09-071996-07-16International Purification Systems, Inc.Solubilizing apparatus
US5393502A (en)*1993-09-071995-02-28International Purification Systems, Inc.Solubilizing apparatus
US6767884B2 (en)1993-12-302004-07-27Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
WO1995018215A1 (en)*1993-12-301995-07-06Ecolab Inc.Stable hygroscopic detergent article
US5674831A (en)*1993-12-301997-10-07Ecolab Inc.Method of making urea-based solid cleaning compositions
US5698513A (en)*1993-12-301997-12-16Ecolab Inc.Urea-based solid cleaning compositions free from or containing minor amounts of water
US6164296A (en)1993-12-302000-12-26Ecolab Inc.Method of removing waxy/fatty soils from ware with a combination of a nonionic silicone surfactant and a nonionic surfactant
US5759988A (en)*1993-12-301998-06-02Ecolab Inc.Stable hygroscopic detergent article
US5474698A (en)*1993-12-301995-12-12Ecolab Inc.Urea-based solid alkaline cleaning composition
US7199095B2 (en)1993-12-302007-04-03Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
US6124250A (en)1993-12-302000-09-26Ecolab Inc.Method of making highly alkaline solid cleaning compositions
WO1995018211A1 (en)*1993-12-301995-07-06Ecolab Inc.Method of making a solid alkaline cleaning composition
US6489278B1 (en)1993-12-302002-12-03Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
US6956019B2 (en)1993-12-302005-10-18Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
WO1995018213A1 (en)*1993-12-301995-07-06Ecolab Inc.Method of making highly alkaline solid cleaning compositions
US6664219B1 (en)1993-12-302003-12-16Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
US6060444A (en)1993-12-302000-05-09Ecolab Inc.Method of making non-caustic solid cleaning compositions
US5534178A (en)*1994-12-121996-07-09Ecolab Inc.Perforated, stable, water soluble film container for detersive compositions
US5655563A (en)*1994-12-191997-08-12Ecolab Inc.Dispensing apparatus with line pressure diverter
US5738135A (en)*1994-12-191998-04-14Ecolab Inc.Dispensing apparatus with line pressure diverter
US6432906B1 (en)1995-02-012002-08-13Ecolab Inc.Solid acid cleaning block and method of manufacturing
US5797986A (en)*1995-02-011998-08-25Ecolab Inc.Floor cleaning method
US6673765B1 (en)1995-05-152004-01-06Ecolab Inc.Method of making non-caustic solid cleaning compositions
US5830839A (en)*1995-05-171998-11-03Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US6777383B1 (en)1995-05-172004-08-17Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US6395703B2 (en)1995-05-172002-05-28Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US6395702B2 (en)1995-05-172002-05-28Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US5670473A (en)*1995-06-061997-09-23Sunburst Chemicals, Inc.Solid cleaning compositions based on hydrated salts
US5846499A (en)*1996-02-271998-12-08Sunburst Chemicals, Inc.Air induction bowl for use with a detergent dispenser
US5929011A (en)1996-10-301999-07-27Sunburst Chemicals, Inc.Solid cast chlorinated cleaning composition
US20050119149A1 (en)*1997-01-132005-06-02Ecolab Inc.Stable solid block detergent composition
US6831054B2 (en)1997-01-132004-12-14Ecolab Inc.Stable solid block detergent composition
US6436893B1 (en)*1997-01-132002-08-20Ecolab Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US7341987B2 (en)1997-01-132008-03-11Ecolab Inc.Binding agent for solid block functional material
US6835706B2 (en)1997-01-132004-12-28Ecolab Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US20100323940A1 (en)*1997-01-132010-12-23Ecolab Inc.Alkaline detergent containing mixing organic and inorganic sequestrants resulting in improved soil removal
US6503879B2 (en)1997-01-132003-01-07Ecolab Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US6410495B1 (en)1997-01-132002-06-25Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US6583094B1 (en)1997-01-132003-06-24Ecolab Inc.Stable solid block detergent composition
US6660707B2 (en)1997-01-132003-12-09Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US20080287338A1 (en)*1997-01-132008-11-20Ecolab Inc.Binding agent for solid block functional material
US7087569B2 (en)1997-01-132006-08-08Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US8906839B2 (en)1997-01-132014-12-09Ecolab Usa Inc.Alkaline detergent containing mixing organic and inorganic sequestrants resulting in improved soil removal
US7094746B2 (en)1997-01-132006-08-22Ecolab Inc.Stable solid block detergent composition
US6150324A (en)1997-01-132000-11-21Ecolab, Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US20030216279A1 (en)*1997-01-132003-11-20Ecolab Inc.Stable solid block detergent composition
US6653266B2 (en)1997-01-132003-11-25Ecolab Inc.Binding agent for solid block functional material
US5932531A (en)1997-09-261999-08-03Noramtech CorporationMethod for forming solid detergent activator for use with oxygen bleaches
US6240953B1 (en)1998-04-132001-06-05Sunburst Chemicals, Inc.Multiple cleaning chemical dispenser
US5981463A (en)1998-06-081999-11-09Noramtech CorporationAnhydrous detergent/bleach composition and method of preparing same
US6423280B1 (en)1998-10-292002-07-23Ecolab Inc.Hydraulic control of detergent concentration in an automatic warewashing machine
US6362150B1 (en)*1998-11-122002-03-26Corporation CressidaDetergent composition in the form of a solid detergent containing surfactant and bleaching peroxide
US6057280A (en)1998-11-192000-05-02Huish Detergents, Inc.Compositions containing α-sulfofatty acid esters and methods of making and using the same
US6288020B1 (en)1998-11-192001-09-11Huish Detergents, Inc.Compositions containing α-sulfofatty acid esters and methods of making and using the same
USD419262S (en)*1999-03-122000-01-18Ecolab Inc.Solid block detergent
US6180592B1 (en)1999-03-242001-01-30Ecolab Inc.Hydrophobic and particulate soil removal composition and method for removal of hydrophobic and particulate soil
US6440910B1 (en)1999-03-242002-08-27Ecolab Inc.Hydrophobic and particulate soil removal composition and method for removal of hydrophobic and particulate soil
US6387870B1 (en)1999-03-292002-05-14Ecolab Inc.Solid pot and pan detergent
US6608023B2 (en)1999-03-292003-08-19Ecolab Inc.Solid pot and pan detergent
US20040077516A1 (en)*1999-05-072004-04-22Ecolab Inc.Detergent composition and method for removing soil
US6812202B2 (en)1999-05-072004-11-02Ecolab Inc.Detergent composition and method for removing soil
US6525015B2 (en)1999-05-072003-02-25Ecolab Inc.Detergent composition and method for removing soil
US6649586B2 (en)1999-05-072003-11-18Ecolab Inc.Detergent composition and method for removing soil
US6369021B1 (en)1999-05-072002-04-09Ecolab Inc.Detergent composition and method for removing soil
US6737028B1 (en)1999-06-022004-05-18Sunburst Chemicals, Inc.Solid cast container
US6475969B2 (en)2000-03-162002-11-05Sunburst Chemicals, Inc.Solid cast chlorinated composition
US6773668B1 (en)2000-04-172004-08-10Ecolab, Inc.Detergent dispenser
US7674763B2 (en)2000-06-012010-03-09Ecolab Inc.Method for manufacturing a molded detergent composition
US20090069211A1 (en)*2000-06-012009-03-12Ecolab Inc.Molded detergent composition
US20100144578A1 (en)*2000-06-012010-06-10Ecolab Inc.Method for washing an article using a molded detergent composition
US7037886B2 (en)2000-06-012006-05-02Ecolab Inc.Method for manufacturing a molded detergent composition
US20060128593A1 (en)*2000-06-012006-06-15Ecolab Inc.Molded detergent composition and methods for manufacturing and using a molded detergent composition
US6730653B1 (en)2000-06-012004-05-04Ecolab Inc.Method for manufacturing a molded detergent composition
US6638902B2 (en)2001-02-012003-10-28Ecolab Inc.Stable solid enzyme compositions and methods employing them
US6632291B2 (en)2001-03-232003-10-14Ecolab Inc.Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment
US20040048760A1 (en)*2001-03-232004-03-11Ecolab Inc.Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment
US6645924B2 (en)2001-04-092003-11-11Ecolab Inc.Device and method for generating a liquid detergent concentrate from a solid detergent and a method for washing a vehicle
US6924257B2 (en)2001-04-092005-08-02Ecolab Inc.Device and method for generating a liquid detergent concentrate from a solid detergent and a method for washing a vehicle
US7153820B2 (en)2001-08-132006-12-26Ecolab Inc.Solid detergent composition and method for solidifying a detergent composition
US20030168085A1 (en)*2002-03-072003-09-11Sowle Eddie D.Detergent dispenser
US20040231710A1 (en)*2003-05-202004-11-25Dingler Geoffrey L.Household dishwasher with bulk wash aid dispenser
US7231928B2 (en)*2003-05-202007-06-19Whirlpool CorporationHousehold dishwasher with bulk wash aid dispenser
US20050003979A1 (en)*2003-07-022005-01-06Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, comprising a mixture of aluminum and zinc ions
US7829516B2 (en)2003-07-022010-11-09Ecolab Usa Inc.Warewashing composition comprising a Zn/Al corrosion inhibitor for use in automatic dishwashing machines
US20070149431A1 (en)*2003-07-022007-06-28Lentsch Steven EWarewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US7638473B2 (en)2003-07-022009-12-29Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US20050020464A1 (en)*2003-07-022005-01-27Smith Kim R.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US7524803B2 (en)2003-07-022009-04-28Ecolab Inc.Warewashing composition for use in automatic dishwashing machines comprising an aluminum/zinc ion mixture
US7196044B2 (en)2003-07-022007-03-27Ecolab, Inc.Warewashing composition for use in automatic dishwashing machines, comprising a zinc ion and aluminum ion corrosion inhibitor
US7196045B2 (en)2003-07-022007-03-27Ecolab Inc.Warewashing composition comprising a corrosion inhibitor with Al and Zn ions
US20090038649A1 (en)*2003-07-022009-02-12Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US7135448B2 (en)2003-07-022006-11-14Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, comprising a mixture of aluminum and zinc ions
US7452853B2 (en)2003-07-022008-11-18Ecolab Inc.Warewashing composition comprising zinc and aluminum ions for use in automatic dishwashing machines
US20060270580A1 (en)*2003-07-022006-11-30Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US7279455B2 (en)2003-11-062007-10-09Ecolab, Inc.Rinse aid composition and method of rising a substrate
US7423005B2 (en)2003-11-202008-09-09Ecolab Inc.Binding agent for solidification matrix
US20050113278A1 (en)*2003-11-202005-05-26Ecolab, Inc.Binding agent for solidification matrix
US7250086B2 (en)2003-12-082007-07-31Ecolab Inc.Method of using a solid rinse additive dispenser for dispensing a use solution in a dishwashing machine
US20050233920A1 (en)*2004-04-152005-10-20Ecolab, Inc.Binding agent for solidification matrix
US20090018049A1 (en)*2004-04-152009-01-15Ecolab Inc.Binding agent for solidification matrix
US7442679B2 (en)2004-04-152008-10-28Ecolab Inc.Binding agent for solidification matrix comprising MGDA
US7598218B2 (en)2004-04-152009-10-06Ecolab Inc.Method of forming a binding agent for solidification matrix
EP3929271A1 (en)2004-04-152021-12-29Ecolab USA Inc.Binding agent for solidification matrix
US20060025325A1 (en)*2004-08-022006-02-02Ryther Robert JSolid detergent composition and methods for manufacturing and using
US8063010B2 (en)2004-08-022011-11-22Ecolab Usa Inc.Solid detergent composition and methods for manufacturing and using
US20070021153A1 (en)*2005-07-202007-01-25Astrazeneca AbDevice for communicating with a voice-disabled person
US20080198033A1 (en)*2005-07-202008-08-21Astrazeneca AbDevice for Communicating with a Voice-Disabled Person
US20100242997A1 (en)*2006-07-242010-09-30Ecolab Usa Inc.Method for using warewashing composition in automatic dishwashing machines
US20080020960A1 (en)*2006-07-242008-01-24Smith Kim RWarewashing composition for use in automatic dishwashing machines, and method for using
US7759299B2 (en)2006-07-242010-07-20Ecolab Inc.Warewashing composition for use in automatic dishwashing machines
US7858574B2 (en)2006-07-242010-12-28Ecolab Usa Inc.Method for using warewashing composition comprising AI and Ca or Mg IONS in automatic dishwashing machines
EP3339412A1 (en)2007-02-152018-06-27Ecolab Usa Inc.Fast dissolving solid detergent
US10577565B2 (en)2007-02-152020-03-03Ecolab Usa Inc.Fast dissolving solid detergent
US11261406B2 (en)2007-02-152022-03-01Ecolab Usa Inc.Fast dissolving solid detergent
EP2617804A1 (en)2007-02-152013-07-24Ecolab Inc.Fast dissolving solid detergent
US8697625B2 (en)2007-02-152014-04-15Ecolab Usa Inc.Fast dissolving solid detergent
US8309509B2 (en)2007-02-152012-11-13Ecolab Usa Inc.Fast dissolving solid detergent
US9267097B2 (en)2007-02-152016-02-23Ecolab Usa Inc.Fast dissolving solid detergent
US8093200B2 (en)2007-02-152012-01-10Ecolab Usa Inc.Fast dissolving solid detergent
US10005986B2 (en)2007-02-152018-06-26Ecolab Usa Inc.Fast dissolving solid detergent
US20080280806A1 (en)*2007-02-152008-11-13Ecolab Inc.Fast Dissolving Solid Detergent
US20100311633A1 (en)*2007-02-152010-12-09Ecolab Usa Inc.Detergent composition for removing fish soil
EP3623457A1 (en)2007-05-042020-03-18Ecolab USA Inc.Pressed, self-solidifying, solid cleaning compositions and methods of making them
EP3153570A1 (en)2007-05-042017-04-12Ecolab Inc.Compositions including hardness ions and gluconate and methods employing them to reduce corrosion and etch
US20080274942A1 (en)*2007-05-042008-11-06Ecolab Inc.Solidification matrix
WO2008137797A2 (en)2007-05-042008-11-13Ecolab Inc.Water soluble magnesium compounds as cleaning agents and methods of using them
EP3050949A1 (en)2007-05-042016-08-03Ecolab Inc.Pressed, self-solidifying, solid cleaning compositions and methods of making them
US7888303B2 (en)2007-05-042011-02-15Ecolab Inc.Solidification matrix
US7893012B2 (en)2007-05-042011-02-22Ecolab Inc.Solidification matrix
WO2008137790A2 (en)2007-05-042008-11-13Ecolab Inc.Cleaning compositions containing water soluble magnesium compound and methods of using them
US20080274940A1 (en)*2007-05-042008-11-06Ecolab, Inc.Solidification matrix
US8338352B2 (en)2007-05-072012-12-25Ecolab Usa Inc.Solidification matrix
US20110118166A1 (en)*2007-05-072011-05-19Ecolab Usa Inc.Solidification matrix
US7883584B2 (en)2007-05-252011-02-08Ecolab Usa Inc.Dimensionally stable solid rinse aid
US8383570B2 (en)2007-05-252013-02-26Ecolab Usa Inc.Enhanced melting point rinse aid solid compositions with synergistic preservative
US7521412B2 (en)2007-05-252009-04-21Ecolab Inc.Dimensionally stable solid rinse aid
US20110108068A1 (en)*2007-05-252011-05-12Ecolab Usa Inc.Enhanced melting point rinse aid solids
US8367600B2 (en)2007-05-252013-02-05Ecolab Usa Inc.Dimensionally stable solid rinse aid
US20080293615A1 (en)*2007-05-252008-11-27Ecolab Inc.Dimensionally Stable Solid Rinse Aid
US8759269B2 (en)2007-07-022014-06-24Ecolab Usa Inc.Solidification matrix including a salt of a straight chain saturated mono-, di-, and tri- carboxylic acid
US20100311634A1 (en)*2007-07-022010-12-09Besse Michael ESolidification matrix including a salt of a straight chain saturated mono-, di-, and tri- carboxylic acid
EP2677023A2 (en)2007-10-182013-12-25Ecolab Inc.Pressed, waxy, solid cleaning compositions and methods of making them
WO2009050684A2 (en)2007-10-182009-04-23Ecolab Inc.Pressed, waxy, solid cleaning compositions and methods of making them
EP3438235A1 (en)2007-10-182019-02-06Ecolab USA Inc.Pressed, waxy, solid cleaning compositions and methods of making them
US8858650B2 (en)2007-12-272014-10-14Sunburst Chemicals, Inc.Bleaching methods with peroxy compounds
US20090165214A1 (en)*2007-12-272009-07-02Sunburst Chemicals, Inc. bleaching methods with peroxy compounds
US8198228B2 (en)2008-01-042012-06-12Ecolab Usa Inc.Solidification matrix using an aminocarboxylate
US20090176688A1 (en)*2008-01-042009-07-09Ecolab Inc.Solidification matrix using an aminocarboxylate
WO2009087541A1 (en)2008-01-042009-07-16Ecolab Inc.Solidification matrix using an aminocarboxylate
US8389464B2 (en)2008-01-042013-03-05Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US9090857B2 (en)2008-01-042015-07-28Ecolab Usa Inc.Solidification matrices using phosphonocarboxylic acid copolymers and phosphonopolyacrylic acid homopolymers
US20090176687A1 (en)*2008-01-042009-07-09Ecolab Inc.Solidification matrix using a polycarboxylic acid polymer
US8772221B2 (en)2008-01-042014-07-08Ecolab Usa Inc.Solidification matrices using phosphonocarboxylic acid copolymers and phosphonopolyacrylic acid homopolymers
US7763576B2 (en)2008-01-042010-07-27Ecolab Inc.Solidification matrix using a polycarboxylic acid polymer
US8138138B2 (en)2008-01-042012-03-20Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US20100298193A1 (en)*2008-01-042010-11-25Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US8450264B1 (en)2009-05-122013-05-28Ecolab Usa Inc.Fast drying and fast draining rinse aid
US8324147B2 (en)2009-05-122012-12-04Ecolab Usa Inc.Fast drying and fast draining solid rinse aid consisting essentially of a quaternary non-ionic surfactant mixture
US8642530B2 (en)2009-05-122014-02-04Ecolab Usa Inc.Fast drying and fast draining rinse aid
EP3184617A1 (en)2009-05-122017-06-28Ecolab USA Inc.Fast drying and fast draining rinse aid
WO2010131217A2 (en)2009-05-122010-11-18Ecolab Usa Inc.Fast drying and fast draining rinse aid
EP3425035A1 (en)2009-05-122019-01-09Ecolab USA Inc.Fast drying and fast draining rinse aid
US9453184B2 (en)2009-05-122016-09-27Ecolab USA, Inc.Fast drying and fast draining rinse aid comprising a mixture of alkoxylated alcohol surfactants
US11479742B2 (en)2009-05-122022-10-25Ecolab Usa Inc.Fast drying and fast draining rinse aid with a ternary mixture of nonionic surfactants
US8957011B2 (en)2009-05-122015-02-17Ecolab Usa Inc.Fast drying and fast draining rinse aid
US10689597B2 (en)2009-05-122020-06-23Ecolab Usa Inc.Fast drying and fast draining rinse aid comprising an ethoxylated alcohol/EO-PO block copolymer mixture
US12331266B2 (en)2009-05-122025-06-17Ecolab Usa Inc.Fast drying and fast draining rinse aid comprising an EO/PO and alkoxylated alcohol surfactant mixture
US20100300493A1 (en)*2009-05-262010-12-02Ecolab Usa Inc.Pot and pan soaking composition
US8192553B2 (en)2009-05-262012-06-05Ecolab Usa Inc.Pot and pan soaking composition
US8935118B2 (en)2009-05-282015-01-13Ecolab USA, Inc.Wetting agents for aseptic filling
US20100300044A1 (en)*2009-05-282010-12-02Ecolab Usa Inc.Wetting agents for aseptic filling
US9867369B2 (en)2009-05-282018-01-16Ecolab Usa Inc.Wetting agents for aseptic filling
US10091988B2 (en)2009-05-282018-10-09Ecolab Usa Inc.Wetting agents for aseptic filling
US8567161B2 (en)2009-05-282013-10-29Ecolab Usa Inc.Wetting agents for aseptic filling
US20110124546A1 (en)*2009-11-202011-05-26Ecolab Inc.Solidification matrix using a maleic-containing terpolymer binding agent
US8530403B2 (en)2009-11-202013-09-10Ecolab Usa Inc.Solidification matrix using a maleic-containing terpolymer binding agent
US20110124547A1 (en)*2009-11-232011-05-26Ecolab Inc.Solidification matrix using a sulfonated/carboxylated polymer binding agent
US8399393B2 (en)2010-05-032013-03-19Ecolab Usa Inc.Combination of soluble lithium salt and soluble aluminum or silicate salt as a glass etching inhibitor
US8758699B2 (en)2011-06-162014-06-24Ecolab USA, Inc.Apparatus for control of on site mixing of solid peroxide source and catalyst
US8603408B2 (en)*2011-06-162013-12-10Ecolab Usa Inc.Apparatus for control of on site mixing of solid peroxide source and catalyst
EP2875865A1 (en)2011-12-132015-05-27Ecolab USA Inc.Integrated acid regeneration of ion exchange resins for industrial applications
US20130294978A1 (en)*2012-05-032013-11-07Reynato MarianoChemical dissolving dispenser
WO2013181150A1 (en)2012-05-292013-12-05Ecolab Usa Inc.Acidic compositions including reducing agents for elimination of hard water scale and decolorization of metal stains
US9011610B2 (en)2012-06-222015-04-21Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
EP3546553A1 (en)2012-06-222019-10-02Ecolab USA Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
WO2013192315A1 (en)2012-06-222013-12-27Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
US10000725B2 (en)2012-06-222018-06-19Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
US11827865B2 (en)2012-06-222023-11-28Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
US10421933B2 (en)2012-06-222019-09-24Ecolab Usa Inc.Solid rinse aid composition and method of making same
US11421185B2 (en)2012-06-222022-08-23Ecolab Usa Inc.Solid fast draining/drying rinse aid for high total dissolved solid water conditions
US9567551B2 (en)2012-06-222017-02-14Ecolab Usa Inc.Solid rinse aid composition and method of making same
US10006128B2 (en)2012-09-282018-06-26Ecolab Usa Inc.Quaternary and cationic ammonium surfactants as corrosion inhibitors
US9399198B2 (en)2012-10-122016-07-26Sunburst Chemicals, Inc.Venturi ejector for a chemical dispenser
US11959046B2 (en)2013-02-082024-04-16Ecolab Usa Inc.Methods of forming protective coatings for detersive agents
US20140227790A1 (en)*2013-02-082014-08-14Ecolab Usa Inc.Protective coatings for detersive agents and methods of forming and detecting the same
US10184097B2 (en)*2013-02-082019-01-22Ecolab Usa Inc.Protective coatings for detersive agents and methods of forming and detecting the same
WO2015017385A2 (en)2013-08-022015-02-05Ecolab Usa Inc.Organic disulfide based corrosion inhibitors
WO2015030836A1 (en)2013-08-272015-03-05Ecolab Usa Inc.Solid rinse aid composition and method of making same
WO2015084830A1 (en)2013-12-022015-06-11Ecolab Usa Inc.Tetrazole based corrosion inhibitors
EP4227391A1 (en)2014-03-072023-08-16Ecolab USA Inc.Detergent composition that performs both a cleaning and rinsing function
US10549245B2 (en)2014-08-052020-02-04Ecolab Usa Inc.Apparatus and method for dispensing solutions from solid products
WO2016033563A1 (en)2014-08-292016-03-03Ecolab Usa Inc.Solid rinse aid composition comprising polyacrylic acid
EP4600336A2 (en)2014-08-292025-08-13Ecolab USA Inc.Solid rinse aid composition comprising polyacrylic acid homopolymer
US10017714B2 (en)2015-05-192018-07-10Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US11912960B2 (en)2015-05-192024-02-27Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US11773346B2 (en)2015-05-192023-10-03Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
WO2016187293A1 (en)2015-05-192016-11-24Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US10683466B2 (en)2015-05-192020-06-16Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
WO2016187307A1 (en)2015-05-192016-11-24Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US9982220B2 (en)2015-05-192018-05-29Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US10550354B2 (en)2015-05-192020-02-04Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US11274265B2 (en)2015-05-192022-03-15Ecolab Usa. Inc.Efficient surfactant system on plastic and all types of ware
US11198836B2 (en)2015-05-192021-12-14Ecolab Usa Inc.Efficient surfactant system on plastic and all types of ware
US10118137B2 (en)2015-07-232018-11-06Ecolab Usa Inc.Solid product dispenser for small volume applications
EP3381284A1 (en)2015-09-172018-10-03Ecolab USA Inc.Triamine solidification using diacids
EP3381285A1 (en)2015-09-172018-10-03Ecolab USA Inc.Methods of making triamine solids
EP3444327A1 (en)2015-12-082019-02-20Ecolab USA Inc.Pressed manual dish detergent
WO2017100267A1 (en)2015-12-082017-06-15Ecolab Usa Inc.Pressed manual dish detergent
US10351803B2 (en)2016-02-012019-07-16Ecolab Usa Inc.Solid laundry detergent for restaurant soils
US10392587B2 (en)2016-05-232019-08-27Ecolab Usa Inc.Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US10370626B2 (en)2016-05-232019-08-06Ecolab Usa Inc.Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US11008538B2 (en)2016-05-232021-05-18Ecolab Usa Inc.Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
WO2018013881A1 (en)2016-07-152018-01-18Ecolab Usa Inc.Aluminum safe degreasing and pre-soak technology for bakery and deli wares and use thereof
WO2018102724A1 (en)2016-12-022018-06-07Ecolab Usa Inc.Thiol-formyl hemiacetal corrosion inhibitors
WO2018111911A1 (en)2016-12-142018-06-21Ecolab USA, Inc.Quaternary cationic polymers
EP4043541A1 (en)2017-03-012022-08-17Ecolab USA Inc.Mechanism of urea/solid acid interaction under storage conditions and storage stable solid compositions comprising urea and acid
US11540512B2 (en)2017-03-012023-01-03Ecolab Usa Inc.Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers
WO2019028400A1 (en)2017-08-032019-02-07Ecolab Usa Inc.Thiol adducts for corrosion inhibition
WO2019067560A1 (en)2017-09-262019-04-04Ecolab Usa Inc.Acidic/anionic antimicrobial and virucidal compositions and uses thereof
EP4600335A2 (en)2018-01-262025-08-13Ecolab USA Inc.Solidifying liquid betaine and/or sultaine surfactants with a sodium chloride carrier
WO2019148076A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a binder and optional carrier
WO2019148082A1 (en)2018-01-262019-08-01Ecolab Usa IncSolid cleaning composition
WO2019148071A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid anionic surfactants
EP4603568A2 (en)2018-01-262025-08-20Ecolab USA Inc.Solidifying liquid amine oxide surfactant with urea binder and optional carrier
WO2019148090A1 (en)2018-01-262019-08-01Ecolab Usa Inc.Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier
EP4421156A1 (en)2018-01-262024-08-28Ecolab USA Inc.Solidifying liquid anionic surfactants
US11383922B2 (en)2018-02-052022-07-12Ecolab Usa Inc.Packaging and docking system for non-contact chemical dispensing
US11278922B2 (en)2018-02-132022-03-22Ecolab Usa Inc.Portable solid product dispenser
US11931759B2 (en)2018-02-132024-03-19Ecolab Usa Inc.Portable solid product dispenser
US10870091B2 (en)2018-02-132020-12-22Ecolab Usa Inc.System for dissolving solid chemicals and generating liquid solutions
US11746306B2 (en)2018-07-252023-09-05Ecolab Usa Inc.Rinse aid formulation for cleaning automotive parts
US12252666B2 (en)2018-07-252025-03-18Ecolab Usa Inc.Rinse aid formulation for cleaning automotive parts
US11155769B2 (en)2018-07-252021-10-26Ecolab Usa Inc.Rinse aid formulation for cleaning automotive parts
US11401084B2 (en)2019-02-052022-08-02Ecolab Usa Inc.Packaging and docking system for non-contact chemical dispensing
WO2020257749A1 (en)2019-06-212020-12-24Ecolab Usa Inc.Solid nonionic surfactant compositions
WO2021003477A1 (en)2019-07-032021-01-07Ecolab Usa Inc.Hard surface cleaning compositions with reduced surface tension
US12281286B2 (en)2019-07-122025-04-22Ecolab Usa Inc.Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers
US11834633B2 (en)2019-07-122023-12-05Ecolab Usa Inc.Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers
US11306276B2 (en)2019-08-062022-04-19Ecolab Usa Inc.Detergent composition containing a tetrapolymer
US11788033B2 (en)2019-08-062023-10-17Ecolab Usa Inc.Detergent composition containing a tetrapolymer
WO2021026292A1 (en)2019-08-062021-02-11Ecolab Usa Inc.Detergent composition containing a maleic acid tetrapolymer
WO2021046285A1 (en)2019-09-062021-03-11Ecolab Usa Inc.Concentrated surfactant systems for rinse aid and other applications
WO2021126956A1 (en)2019-12-162021-06-24Ecolab Usa Inc.Anionic surfactant impact on virucidal efficacy
WO2021155135A1 (en)2020-01-312021-08-05Ecolab Usa Inc.Amylase synergy with oxygen bleach in warewash application
WO2021195015A1 (en)2020-03-232021-09-30Ecolab Usa Inc.Novel 2-in-1 sanitizing and rinse aid compositions employing amine based surfactants in machine warewashing
WO2021222510A1 (en)2020-04-302021-11-04Ecolab Usa Inc.Low foam cleaning compositions
WO2022221670A2 (en)2021-04-152022-10-20Ecolab Usa Inc.Enzymatic floor cleaning composition
WO2024196726A1 (en)2023-03-172024-09-26Ecolab Usa Inc.Capped block copolymers, their synthesis, manufacture, and methods of use
WO2024211707A1 (en)2023-04-052024-10-10Ecolab Usa Inc.Solid 2-in-1 detergent rinse formula for under-counter machine ware wash
WO2025179023A1 (en)2024-02-222025-08-28Ecolab Usa Inc.An enzyme driven mechanism for fast dissolution of unit dose solids

Similar Documents

PublicationPublication DateTitle
USRE32818E (en)Cast detergent-containing article and method of using
US4569781A (en)Cast detergent-containing article and method of using
US4569780A (en)Cast detergent-containing article and method of making and using
USRE32763E (en)Cast detergent-containing article and method of making and using
EP0003769B1 (en)Cast detergent-containing article and method of making and using
US5858299A (en)Process for consolidating particulate solids
US5078301A (en)Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5234615A (en)Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5198198A (en)Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5573698A (en)Returnable container containing detergent, cleaning agent, disinfectant and/or preservative
JP3547053B2 (en) Molded solids of oxidant bleach including a source of encapsulated bleach
US4725376A (en)Method of making solid cast alkaline detergent composition
EP0462624B1 (en)Solid block wash chemical container
JP2688074B2 (en) Product including water-soluble bag containing multiple times used pellet-shaped functional material and method of using the same
JPH0356080B2 (en)
JPH09503799A (en) Tablet-like detergent, its manufacturing and use
JP2008044972A (en) Method of supplying cleaning agent to automatic cleaning machine, tablet cleaning composition for automatic cleaning machine used therein, and cleaning method using the same
EP1591515B1 (en)Unit dose granulated detergent for cleaning a coffee machine
EP0698081B1 (en)Process for consolidating particulate solids and cleaning products therefrom
US6689305B1 (en)Process for consolidating particulate solids and cleaning products therefrom II
CA1318565C (en)Low temperature cast detergent-containing article and method of making and using
AU657239B2 (en)Cast detersive systems
JPH0631436B2 (en) Cartridge cleaning agent for cleaning machines
JP3519532B2 (en) Solid detergent and its production method
JPH10259400A (en) Cartridge detergent for automatic washer

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:ECOLAB INC.

Free format text:CHANGE OF NAME;ASSIGNOR:ECONOMICS LABORATORY, INC.,;REEL/FRAME:004706/0547

Effective date:19861121

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:8

FEPPFee payment procedure

Free format text:PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:12

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

ASAssignment

Owner name:ECOLAB USA INC., MINNESOTA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ECOLAB, INC.;REEL/FRAME:057434/0601

Effective date:20090101


[8]ページ先頭

©2009-2025 Movatter.jp