BACKGROUND OF THE INVENTIONThe present invention relates to snack products and more particularly to chip-type snack products.
The food products which are sold in the general category of snack items are many and varied, typically including such things as chips (e.g., potato chips and corn chips), puffs (e.g., corn puffs), etc. Snack items account for a large volume in the food industry. Generally, snack items are eaten apart from a regular meal and often different snack items are served at the same time. When snacks are served, normally at least one chip-type snack is included. One of the most popular chip-type snacks is the potato chip or fabricated potato chip.
The present invention relates to new method and apparatus for preparing fabricated chip-type snacks. The present invention will be described primarily with regard to preparation of potato chips; however, it should be recognized that various other types of fabricated chips (such as corn chips or wheat chips) may be prepared using the present invention.
It has been known in the past to prepare chip-type snacks by preparing a dough sheet and cutting sections from the dough sheet. The sections are then fried to form chips. A major difficulty has been confronted in controlling the movement of the sections through the deep fat fryer. A partial solution has been provided by operating a continuous belt in the upper portion of the fryer which assists in moving the sections through the fryer. Some sections, however, may clump together resulting in unfried or only partially fried chips. Other sections may remain in the fryer too long and become overly fried or burned. The present invention overcomes such problems by frying a continuous ribbon of chips which is moved positively through the system.
SUMMARY OF THE PRESENT INVENTIONThe present invention includes method and apparatus for preparation of a dough material, sheeting and cutting the dough material into a ribbon of chips, frying the ribbon of chips and then severing the fried ribbon into individual chips.
THE METHOD OF THE PRESENT INVENTIONThe dough may be prepared from any of various particulate starchy food materials such as potato granules, potato flakes, wheat flour, rice flour, corn grits and the like. The dough, when preparing fabricated potato chips, may be prepared from a 1:1 mixture of potato flakes and potato granules. The dough may be prepared solely from either potato flakes or potato granules or any mixture thereof. Alternatively, the dough may be prepared from any other potato material or other farinaceous material. The dough may have various other added ingredients. The total moisture content is such that the dough has satisfactory handling characteristics. In other words, the dough has sufficient cohesiveness to stick together as a sheet but not so much adhesiveness that it sticks excessively to equipment. Water is added to the starchy food material in an amount sufficient to form a dough. The total moisture content of the dough may vary somewhat depending on the particular starchy food material being used but will preferably be in the range of 25 to 45 percent. The term "percent" and the like, as used herein, will mean by weight unless otherwise indicated. The most preferred moisture level is about 40 percent.
The dough is sheeted to any suitable thickness. The thickness typically will be about about 0.025 inch; however, the preferred thickness may be in the range of 0.010 inch. A more preferred dough sheet thickness is about 0.015 to 0.06 inch. The dough sheet may be cut into any desired shape of connected dough pieces (i.e., unfried chips) such as round or oval. The pieces remain connected by a narrow portion which is large enough to permit processing of the ribbon of connected dough pieces through the fryer without separation or breakage of the ribbon. The connecting portion may be small enough to permit easy separation of the chips after removal from the fryer. The connecting portion for chips having a 1 to 2 inch diameter may typically be 1/8 to 3/8 inch.
The ribbon is transported through a bath of hot oil to fry the ribbon using any desired type of fryer. The moisture content during frying is reduced, for example, to less than 5 percent. Any type of frying oil may be used such as cottonseed oil, coconut oil, peanut oil and the like. The temperature of the frying oil is sufficient to fry the dough sheet to form fried chips but not so high as to burn the oil (i.e., below the smoke point of the oil). During frying, the dough is puffed or expanded and flavor is developed. The dough typically will expand about 100% in thickness during frying. In other words, the final thickness of the puffed chip may be about twice that of the unpuffed dough. The amount of expansion may be increased or decreased, if desired, such as by confining the dough. The frying oil may be at a temperature of about 250° to 410° F., preferably about 320° to 380° F., typically 350° F. The frying time will generally be about 5 to 30 seconds, preferably 8 to 20 seconds.
The ribbon is removed from the frying oil and separated into individual chips. The fried chips may be separated by any desired method, for example, by cutting them apart with a knife. The preferred method for separating the chips is described in copending application, Ser. No. 355,231 filed on even date herewith, which description is incorporated herein by reference. In the disclosed method the ribbon is permitted to become brittle or friable after removal from the fryer. In other words, the fried ribbon is pliable immediately upon leaving the fryer and becomes brittle or friable after about 5 to 10 seconds. Although the exact mechanism is not fully known, it is believed that the change from the pliable state to the friable state is a result of two factors, namely, cooling and dehydration. The change appears to be irreversible in the absence of the addition of major amounts of water. The friable chips are then separated such as by applying a moment force perpendicular to the ribbon (i.e., bending the ribbon) causing a fracture across the connecting portion.
APPARATUS OF THE PRESENT INVENTIONApparatus suitable for carrying out the present invention is shown in the drawings.
IN THE DRAWINGS:
FIG. I shows a schematic view of apparatus for the present invention;
FIG. II shows a dough preparation section for the present invention;
FIGS. III and IV show a dough sheeting section;
FIGS. V-VII show a dough cutting section for the present invention;
FIGS. VIII-X show various views of a fryer for use in the present invention;
FIG. XI shows a chip severing section for the invention;
FIG. XII shows a ribbon of connected dough pieces prior to frying.
The apparatus 10 (FIG. I) of the present invention includes a mixing section 11,sheeting section 12, cuttingsection 13, fryingsection 14 and finishingsection 15.
The mixing section 11 may include any type of apparatus suitable for the preparation of a dough such as from dehydrated potato material, typically potato granules, and water. The mixing section 11 may be a continuous auger mixer 21 (FIG. II) or alternatively a paddle mixer. Theauger mixer 21 may include ahopper 22, abarrel 23, a cutflight screw auger 24 and amotor 25. Thescrew auger 24 may be suitably supported at each end bybearings 26 and 27. The screw auger is rotatably driven byelectric motor 25. The potato material may be added to thehopper 22 and is gradually pulled down into thebarrel 23 by thescrew auger 24. Awater line 28 supplies the desired amount of water to themixer 21. Theauger 24 intimately mixes the potato material and the water to form the dough. The water is present in an amount sufficient to form a dough that will stick together or, in other words, remain cohesively fused. Preferably, the water is not present in an amount so great as to make the dough adhesive and create sticking problems during processing. The water typically may be present in an amount of from about 25 to 45 percent, preferably about 40 percent by weight, based on the total weight of the dough. The added moisture is permitted to equilibrate throughout the dough, for example, by providing a residence time for the dough in the mixer of about 5 to 10 minutes.
The dough may be sheeted using any desired sheeting apparatus such as the sheeting section 12 (FIGS. I, III and IV) which may include asupport frame 31, a pair ofsmooth rolls 32, 33 and ahopper 34. Thesupport frame 31 may be prepared from sheet or plate metal and includes a pair ofside walls 35 and 36, as well as afront wall 37 and arear wall 38. Therolls 32 and 33 are rotatably supported inframe 31 such as bybearings 39 and 40. Therolls 32 and 33 may be metal rolls which are rotatably driven bymotor 41. Therolls 32 and 33 are spaced to provide the desired thickness of dough sheet. In the preparation of fabricated potato chips, the thickness of the dough sheet may be about 0.02 to 0.03 inch.
Thedough sheet 42 may be cut into a ribbon of dough pieces with each piece remaining connected to the adjacent pieces, see FIG. XII. One type of cutting apparatus is a reciprocating punch. Another type ofapparatus 13 for cutting the ribbon is shown in FIGS. V--VII and further is shown and described in patent application, Ser. No. 355,233 filed on even data herewith, which is incorporated herein by reference. The cuttingapparatus 13 includes asupport frame 43, acutter roll 44, asmooth roll 45 and atransfer roll 46. Thesupport frame 43 may be constructed of sheet metal and may include arear wall 47, afront wall 48 and a pair ofside walls 49 and 50. Thecutter roll 44 may be a metal drum mounted on ashaft 51 which is rotatably supported in suitable bearings inwalls 49 and 50 (not shown). Thecutter roll 44 may be prepared from a metal drum by machining away the surface thereof to leave a pair of cuttingridges 52 and 53 (FIG. VII). Theridges 52 and 53 have sufficient depth to cut through thedough sheet 42. Thesmooth roll 45 may be a metal drum mounted on ashaft 54 which is rotatably supported inside walls 49 and 50 such as by bearings (not shown). Thesmooth roll 45 abuts against theridges 52 and 53 ofroll 44 thereby providing a cutting surface. Thetransfer roll 46 may be a metal drum mounted on ashaft 55 which is rotatably supported inside walls 49 and 50 such as by bearings (not shown). Therolls 44, 45 and 46 may be driven by an electric motor (not shown). If desired, therolls 44, 45 and 46 may be provided with vacuum ports for positively gripping of thedough sheet 42. Thesmooth roll 45, for example, may have vacuum ports 56 for gripping thewaste portion 42a ofdough sheet 42. Avacuum manifold 57 supplies a vacuum to ports 56 in a conventional manner. The vacuum, of course, is applied only over the zone where gripping ofportion 42a is desired. Thewaste portion 42a may be recycled at any point prior to the sheeting section. Cuttingroll 44 may havevacuum ports 58 and avacuum manifold 59 for gripping the ribbon of chips 42b. Thetransfer roll 46 may have vacuum ports 61 and avacuum manifold 62. The vacuum manifolds 57, 59 and 62 may be of conventional design. The ribbon and/or waste portion may be forcefully removed from therolls 44, 45, and 46, such as by a blast of air.
The fryer section may be a fryer substantially like that described and claimed in patent application, Ser. No. 355,259, entitled SNACK FRYER filed on even date herewith, which description is incorporated herein by reference. Alternatively, the fryer may be of any type through which the ribbon may be passed during frying. The fryer section 14 (FIGS. VIII-X) may include asupport frame 66, afrying tank 67, a conveyingwheel 68 and a continuous conveyingbelt system 69. Thesupport frame 66 may be constructed from any structural material such as tubing, angle iron stock and the like for example by welding. Thefrying tank 67 may be constructed from sheet metal and is secured inframe 66 such as by bolts (not shown).
Thetank 67 has anoil inlet pipe 64 for receiving heated oil from any suitable external heater (not shown). Thetank 67 has anoil outlet pipe 65 for returning such oil to the heater. Any conventional frying oil heater may be used. Such heaters are typically of two types, direct external heaters and indirect external heaters. The direct external heater applies heat, such as by a gas flame, directly to a conduit through which the oil is passing. The indirect external heater applies heat to a conduit through which a heat transfer fluid such as steam is passing. The heat transfer fluid and the cooking oil are both passed through a heat exchanger in separate conduits and the cooking oil picks up heat energy from the heat transfer fluid. The indirect external heater is preferred in the present invention since more uniform heat is applied to the cooking oil resulting in less degradation of the oil. The heaters in either case may be of a gas fired type or of an electrical resistance type.
The conveyingwheel 68 may include a metal drum 71 which is supported on ashaft 72. Theshaft 72 may be rotatably mounted in a pair ofbearings 73 and 74 which are secured to supportframe 66. Thewheel 68 may have a row ofgear teeth 76 and 77 at each side (see FIG. IX) for purposes hereinafter described. Thewheel 68 further includes aperforated frying surface 78 which may be provided by wire screen or perforated metal sheet.
The continuous conveyingbelt system 69 may include acontinuous link chain 80 supported ongear wheels 81, 82, 83 and 84.Gear wheel 81 has a pair of rows of gear teeth spaced substantially the same asgear teeth rows 76 and 77 ofwheel 68.Gear wheel 81 is mounted on a shaft 85 which is rotatably supported inbearings 86 and 87. Thegear wheels 82 and 83 may be identical togear wheel 81. Thegear wheel 84 may be similar, however, it is mounted in such a manner that it may be pivoted to tightenlink chain 80. In other words,gear wheel 84 has ashaft 81 which is rotatably mounted in bearings (not shown) inlevers 92 and 93. Thelevers 92 and 93 are secured to theflanges 94 and 96 offrame 66 bypivot pin 97. A pair ofpneumatic cylinders 98 and 99 are provided for driving the gear wheel upwardly to tighten thechain 80. Thecylinders 98 and 99 are secured to thesupport frame 66 at the lower ends thereof and secured tolevers 92 and 93 at the upper ends thereof. Thelink chain 80 is designed for engagement with the various gear teeth onwheels 68, 81, 82, 83 and 84.Chain 80 further includes aperforated frying surface 101 which mates withsurface 78 ofwheel 68. Theperforated surface 101 may be provided by wire screen or perforated metal sheet which is attached to each of the links ofchain 80. Thesurfaces 78 and 101 may be shaped the same and for example may be flat or semi-circular. If thesurfaces 78 and 101 are semi-circular,surface 78 may be convex andsurface 101 may be concave, thereby mating with each other.
Thesurfaces 78 and 101 may be spaced apart typically 0.03 to 0.07 inch when frying a dough piece having a thickness of 0.02 inch. Thesurfaces 78 and 101 may be spaced apart typically 0.08 to 0.10 inch when frying a dough piece having a thickness of 0.05 inch. The perforations typically may be 1/16 inch in diameter and there are sufficient perforations per inch to provide adequate contact of the ribbon with oil during frying. A drip pan 100 may be provided to catch any oil that may drip from thebelt system 69.
The finishing section 15 (FIGS. I and XI) may include afirst conveyor 106, asalter 107, asecond conveyor 108 and achip separator 109. Theconveyors 106 and 108 may be conventional continuous belt conveyors; however, they may be provided with a plate such as 111 (FIG. XI) for supporting the upper reach of the respective belt. In the case of a shaped chip, the belt conveyors may conform to the shape of the chips. Thesalter 107 may be of any design suitable for metering out the desired amount of salt or other flavoring onto the row of chips. Thechip separator 109 may be a wheel that impinges against the individual chips thereby resulting in a fracture across the narrow portion 112 (FIG. XII) between the chips. Such a chip separator is shown and claimed in patent application, Ser. No. 355,231. The chips then fall into acontainer 113.
EXAMPLE IThe present invention was carried out by mixing dehydrated potato granules and dehydrated potato flakes in a 1:1 ratio in a continuous auger mixer substantially as shown in FIG. II. The feed rate was about 236 grams per minute each of granules and flakes. The potato flakes had previously been ground so that not more than 10% were retained on a No. 20 U.S. Standard Sieve and not more than 15% passed through a No. 80 U.S. Standard Sieve. The bulk density of the flakes was about 37 pounds per cubic foot. Water was added to the mixer at the rate of 248 milliliters per minute. The retention time of the dough in the mixer was 5 to 10 minutes. After mixing, the dough was passed through a Fitzmill equipped with a size 3B screen to homogenize the dough. The dough was sheeted to 0.025 inches and cut on a rotary cutter substantially as shown in FIGS. V-VII to provide a ribbon as shown in FIG. XII. The ribbon was passed through a fryer substantially as shown in FIGS. VIII-X. The fried product was puffed to about twice its original thickness and had a tender texture and potato-like flavor. The fried ribbon was salted and broken apart into individual chips.
EXAMPLE IIDough suitable for use in the present invention was prepared by mixing about 560 grams of a pregelatinized whole ground corn, 250 grams of water, and 10 grams of sodium chloride. The materials were mixed for about 2 minutes in a planetary mixer (Hobart) and then sheeted to a thickness of about 0.025 inches. The dough sheet was suitable for cutting into a ribbon of dough pieces and frying to produce corn chips.
EXAMPLE IIIDough suitable for use in the present invention was prepared by mixing 90 pounds of corn grits, 4.5 pounds defatted corn germ, 3.6 pounds vegetable oil, 0.9 pounds sodium chloride, 0.025 pounds of calcium hydroxide, coloring and seasoning. The mixture was fed to a James Cooker at the rate of 195 grams per minute and water was added at the rate of about 87 grams per minute. The cooked dough was suitable for sheeting and cutting into a ribbon for frying according to the present invention.