Movatterモバイル変換


[0]ホーム

URL:


US9815254B2 - Lightweight, high flow hose assembly and method of manufacture - Google Patents

Lightweight, high flow hose assembly and method of manufacture
Download PDF

Info

Publication number
US9815254B2
US9815254B2US14/695,912US201514695912AUS9815254B2US 9815254 B2US9815254 B2US 9815254B2US 201514695912 AUS201514695912 AUS 201514695912AUS 9815254 B2US9815254 B2US 9815254B2
Authority
US
United States
Prior art keywords
inner tube
fabric
outer tube
hose assembly
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/695,912
Other versions
US20160312926A1 (en
Inventor
Gil Blanchette
Michael Melo
Steve Correa
Timothy L. Chapman
Marlon Van Beek
John W. Parker, JR.
Paul Burke
Ron Eilertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teknor Apex Co
Original Assignee
Teknor Apex Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
US case filed in Rhode Island District CourtlitigationCriticalhttps://portal.unifiedpatents.com/litigation/Rhode%20Island%20District%20Court/case/1%3A23-cv-00115Source: District CourtJurisdiction: Rhode Island District Court"Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
First worldwide family litigation filedlitigationhttps://patents.darts-ip.com/?family=57147551&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US9815254(B2)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teknor Apex CofiledCriticalTeknor Apex Co
Priority to US14/695,912priorityCriticalpatent/US9815254B2/en
Assigned to TEKNOR APEX COMPANYreassignmentTEKNOR APEX COMPANYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: BLANCHETTE, Gil, BURKE, PAUL, CHAPMAN, TIMOTHY L., CORREA, STEVE, EILERTSON, RON, MELO, MICHAEL, PARKER, JOHN W., JR., VAN BEEK, Marlon
Priority to US14/730,852prioritypatent/US9810357B2/en
Priority to US14/850,225prioritypatent/US10000035B2/en
Priority to US15/084,961prioritypatent/US10132435B2/en
Priority to US15/085,031prioritypatent/US10458574B2/en
Priority to DK16783638.6Tprioritypatent/DK3286472T3/en
Priority to AU2016252113Aprioritypatent/AU2016252113B2/en
Priority to PCT/US2016/028037prioritypatent/WO2016172019A1/en
Priority to MX2017012045Aprioritypatent/MX2017012045A/en
Priority to CA2980363Aprioritypatent/CA2980363C/en
Priority to EP16783638.6Aprioritypatent/EP3286472B1/en
Priority to CN201680028008.6Aprioritypatent/CN107614953B/en
Priority to PL16783638Tprioritypatent/PL3286472T3/en
Priority to NZ735708Aprioritypatent/NZ735708B2/en
Publication of US20160312926A1publicationCriticalpatent/US20160312926A1/en
Priority to US15/782,101prioritypatent/US10344899B2/en
Publication of US9815254B2publicationCriticalpatent/US9815254B2/en
Application grantedgrantedCritical
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A hose assembly, preferably a garden hose assembly, including a fabric jacketed tube that is lightweight, durable and versatile. The tube is radially expandable when pressurized by a fluid, such as water, but does not increase in length. The two layer construction of the hose assembly allows for storage in relatively compact spaces, similar flow rates, approximately one-half the weight, and improved maneuverability when compared to conventional hose constructions. In one embodiment the jacket is formed around the tube in a continuous process that welds a fabric, preferably using hot air, into the jacket. The welded joint forms a region of jacket that is preferably about twice the thickness of the rest of the jacket. This thicker region results in a stiffer section of jacket that makes the hose more controllable and consistent in use.

Description

FIELD OF THE INVENTION
The present invention relates to a hose assembly, preferably a garden hose assembly, including a fabric jacketed tube, that is lightweight, durable and versatile. The tube is circumferentially or radially expandable within the jacket when pressurized by a fluid, such as water, but does not increase in length in a preferred embodiment. The two layer construction of the hose assembly allows for storage in relatively compact spaces, similar flow rates, approximately one-half the weight, and improved maneuverability when compared to conventional hose constructions. In one embodiment, the jacket is formed around the tube in a continuous process that welds a fabric, preferably using hot air, into the jacket. The welded joint forms a region of jacket that is preferably about twice the thickness of the rest of the jacket. This thicker region results in a stiffer section of jacket that makes the hose more controllable and consistent in use.
BACKGROUND OF THE INVENTION
Numerous different types or styles of garden hoses are known in the art and commercially available.
For example, traditionally conventional hoses are polymeric and can be reinforced, have a substantially fixed longitudinal length, and have relatively low radial expansion upon internal application of fluid pressure. Due to their construction, some conventional hoses can be relatively heavy and cumbersome to use and store.
More recently, garden hoses longitudinally expandable along their length multiple times as compared to the length of the hose in an unpressurized or contracted state have been introduced. In some embodiments such hoses have a construction that includes a jacket that surrounds an expandable fluid conveying tube. Longitudinally and radially expandable hoses are popular for a variety of reasons including, but not limited to, lightweight construction and ease of storage when not in use.
Longitudinally expandable hoses are commercially available from a number of sources. The hoses are also described in various patents and publications, see for example: U.S. Pat. Nos. 6,948,527; 7,549,448; 8,371,143; 8,776,836; 8,291,942; 8,479,776; 8,757,213; as well as U.S. Patent Application Publication Nos. 2014/0150889; and 2014/0130930.
A problem with some of the length expandable hoses is that they can kink, bulge, fail and/or exhibit leakage, at one or more points along their length, for example at a connection point to a coupler or fitting at the end of the hose, after a number of expansion and contraction cycles.
SUMMARY OF THE INVENTION
The problems described above and others are solved by the hose assemblies of the present invention which are relatively lightweight, as compared to the traditionally conventional hoses, durable, and versatile. In some embodiments, the hose assemblies provide a flow rate similar to a conventional garden hose at approximately one-half the weight. The hose assemblies also provide improved maneuverability due to their light weight, kink resistance in view of the non-bonded, two-layer jacket construction and ease of storage over a conventional hose.
According to one embodiment or objective of the present invention, a hose assembly is disclosed comprising a lightweight elastomeric inner tube surrounded by a fabric-like outer tube that serves as a jacket for the inner tube. This jacket also prevents the length of the product from changing at different pressure conditions. The length of the product is fixed by the outer jacket. The inner tube can expand along a radial axis of the tube when pressure at or above a minimum fluid pressure is applied to the inner tube. When the pressure falls below the minimum fluid pressure, the inner tube of the hose assembly will contract radially. The outer tube limits the radial expansion of the inner tube and does not allow any substantial longitudinal expansion of the hose assembly in one embodiment.
Still another embodiment or objective of the present invention is to provide a hose assembly including a fabric outer tube that is welded around the inner tube and includes a weld seam extending along a longitudinal axis of the hose assembly. The weld seam has a greater thickness, i.e. wall thickness, as compared to a wall thickness of the unwelded fabric.
Yet another embodiment or objective of the present invention is to provide a method for producing a hose assembly comprising a hot air welding or seaming process whereby the outer tube is formed via welding, preferably hot air welding, around the inner tube, preferably utilizing a continuous process. It is possible for the circumferential size of the outer tube to be varied in order to produce hose assemblies having different maximum internal diameters of the inner tube.
An additional embodiment or objective of the present invention is to provide a method for producing a hose assembly comprising the steps of obtaining a polymeric or synthetic fabric, heating lateral sides of the fabric at or above a melting temperature thereof and bonding the lateral sides together around an inner tube in order to form a weld. As the fabric is bonded along the length of the inner tube, the outer tube is formed having a weld seam along the longitudinal length of the hose assembly. Advantageously, the process for preparing the hose assembly of the present invention allows manufacture of an outer tube having a weld that is stronger than the original fabric has relatively low labor costs and also produces a construction having the inner tube inserted into the outer tube as part of the welding process.
An additional embodiment or objective of the present invention is to provide a hose assembly capable of resisting water pressures in the 400 psi range (pounds per square inch) 2758 kPa. Even though the hose is of a robust construction, the assembly is relatively light in weight, for example about 4 lbs per 50 feet (0.12 kg per meter) in one preferred embodiment.
In one aspect, a hose assembly is disclosed, comprising an inner tube comprising an elastomeric material, wherein the inner tube has a longitudinal length and a first circumference below a minimum expansion pressure, wherein the inner tube and is expandable to a larger, second circumference upon application of fluid pressure on an inner surface of the inner tube at or above the minimum expansion pressure; and an outer tube covering the inner tube, the outer tube having a longitudinal length and a weld seam along the longitudinal length of the outer tube, the weld seam comprising melted fabric. The inner tube and outer fabric covering are the same length in a preferred embodiment.
In another aspect a process for producing a hose assembly is disclosed, comprising the steps of obtaining an inner tube comprising an elastomeric material; obtaining a fabric having a first end, a second end a first side and a second side, the sides located between the ends; wrapping the fabric around the inner tube and abutting the first side and the second side of the fabric, and heating the fabric to melt and bond the first side to the second side along a length of the side thereby forming an outer tube having a weld seam along a longitudinal length of the hose assembly, wherein during formation of the outer tube a section of the inner tube is located inside the outer tube.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be better understood and other features and advantages will become apparent by reading the detailed description of the invention, taken together with the drawings, wherein:
FIG. 1 is a partial, cross-sectional, longitudinal side view of one embodiment of a hose assembly of the present invention in a circumferentially contracted position;
FIG. 2 is a partial, cross-sectional, longitudinal side view of one embodiment of a hose assembly of the present invention in a circumferentially expanded position; and
FIG. 3 is a partial, longitudinal side view of one embodiment of the hose assembly of the present invention particularly illustrating a weld seam of the outer tube produced by a hot air seaming method that encases an inner tube within the outer tube.
DETAILED DESCRIPTION OF THE INVENTION
In this specification, all numbers disclosed herein designate a set value, individually, in one embodiment, regardless of whether the word “about” or “approximate” or the like is used in connection therewith. In addition, when the term such as “about” or “approximate” is used in conjunction with a value, the numerical range may also vary, for example by 1%, 2%, 5%, or more in various other, independent, embodiments.
The hose assembly of the present invention includes a fabric jacketed inner tube, with the hose assembly being relatively light in weight, durable and versatile. The inner tube can expand circumferentially or radially to an expanded position or state in response to at least a minimum fluid pressure applied internally to the inner tube. The circumference of the fabric jacket controls radial expansion of the inner tube. The inner tube circumferentially or radially contracts when fluid pressure inside the tube falls below the minimum fluid pressure to a contracted or non-expanded position or state. In one embodiment, the outer tube jacket is formed around the inner tube in a continuous process that welds a fabric, preferably using hot air, into the jacket.
Referring now to the drawings wherein like reference numbers refer to like parts throughout the several views, ahose assembly10 is illustrated inFIGS. 1 and 2, whereinFIG. 1 illustrates the hose assembly in an out-of-service or contracted position andFIG. 2 an expanded position.Hose assembly10 includes aninlet14 and anoutlet16, withfluid passage12 being located therebetween. The hose assembly includes aninner tube20 that extends between and fitting or couplers, see for examplemale coupler60 andfemale coupler50. Theinner tube20 is self-expanding and self-contracting.Inner tube20 has aninner surface22 and anouter surface24, seeFIGS. 1-2, for example. When a fluid, such as water when the hose assembly is utilized as a garden hose, is introduced into theinner tube20 and exerts at least a minimum fluid pressure on aninner surface22, theinner tube20 expands, generally radially, from a first circumference to a larger, second circumference in an expanded position.Inner tube20 can be formed such that the second circumference provides the tubeinner surface22 with a desired inner diameter, for example about 0.5 inch (1.27 cm) or about 0.625 inch (1.59 cm). When fluid pressure decreases below the minimum fluid pressure, theinner tube20 relaxes or contracts radially, preferably back to the first circumference.
The thickness of theinner tube20 can vary depending upon the materials utilized to construct the same. In various embodiments, the wall thickness of the inner tube ranges generally from about 1.0 to about 2.0 mm, desirably from about 1.2 to about 1.8 mm, preferably from about 1.40 to about 1.65 mm, as measured in a radial direction in a contracted position.
Hose assembly10 also includes a jacket sheath orouter tube40 that is also connected between first and second couplers, see for examplemale couplers60 andfemale couplers50. In one embodiment, theouter tube40 is not connected or attached to theinner tube20 or an outerslip coating layer30, further described below, between the couplers. Stated in another manner, theouter tube40 is preferably unattached, unconnected, unbonded, and unsecured to either theinner tube20 orslip coating layer30, when present, along the entire length of theinner tube20 andslip coating layer30 between the first end and the second end of theouter tuber40, and thus thetube40 is able to move freely with respect to theinner tube20 and/or slipcoating layer30 when the hose assembly expands or contracts. In one embodiment, the circumferential or radial expansion ofinner tube20 is limited by the dimensions, i.e. maximum inner diameter or circumference ofouter tube40. Theouter tube40 is configured to protect theinner tube20 andslip coating layer30, when present, such as from cuts, friction, abrasion, puncture, over-expansion (bursting) or UV exposure.
In various embodiments theouter tube40 can be braided or woven into a fabric that is subsequently formed into the tube. Suitable materials include, but are not limited to, polyolefins, polyesters, and polyamides such as nylon. Polyester is preferred in some embodiments.Outer tube40 should be formed from a material that is pliable and strong enough to withstand a desired internal pressure that can be exerted byouter surface24 ofinner tube20. Thickness of theouter tube40 is dependent on yarn denier used. This will be dictated by desired internal pressure as mentioned above.
In an important aspect of the present invention, the hose assembly jacket orouter tube40 is formed around theinner tube20, preferably in a continuous process. In a preferred embodiment a hot air welding process is utilized. During the process, a piece of fabric having first and second ends and first and second sides located therebetween is formed into a tubular shape. A portion of the first side and the second side is heated to a temperature where the material, in particular polymer, that forms the fabric melts and the sides are bonded together, with the inner tube being present within or surrounded by the outer tube formed by the fabric. A weld46 is formed in the area where the fabric is heated and the sides are joined. As the fabric is joined along the length of the sides, the welded fabric forms a spine or weld seam48 extending longitudinally along the length of the fabric, comprising melted fabric. In a preferred embodiment, the weld seam has an overlap or weld width of 0.375 inch (9.5 mm)+/−0.0625 inch (+/−1.5 mm), generally measured perpendicular to the longitudinal length of the weld seam. In another embodiment, the variation is +/−3 mm. In one embodiment, the process that forms the welded seam is a continuous process that heats the fabric with hot air, with temperatures ranging between 550 and 750° C. and preferably between 600 and 700° C. The welding process also produces a weld seam having a wall thickness that is generally at least 50% greater, desirably at least 75% greater and preferably about 100% greater, i.e. two times greater, than the average thickness of the non-welded fabric of the outer tube.
In one embodiment, theinner tube20 is supplied from a reel or spool. In another embodiment, theinner tube20 is supplied directly from an upstream extrusion line. The inner tube enters a folding fixture which contains a series of guides and is combined with a flat, woven fabric. The fabric is supplied from a fabric source, such as a bulk container and straightened and tensioned as it enters the folding fixture. The folding fixture partially forms the fabric around the inner tube. The inner tube and fabric then enter a die which completes the forming process by shaping the fabric into a round, tubular shape. The tubular fabric profile and inner tube exit the die. At the exit of the die, a nozzle directs hot air between the overlapped fabric side surfaces. This hot air heats the fabric to or above its melting point just before the fabric and inner tube pass through a set of nip rollers which force the heated fabric surfaces against each other under pressure. A strong bond between the two fabric surfaces is formed at this point. The fabric and tube may be wound onto a reel for future assembly or cut to length and processed into a finished hose immediately. Hot air seaming devices are available from companies such as Miller Weldmaster of Navarre, Ohio.
Inner tube20 can be formed from any suitable elastic material. Suitable materials include, but are not limited to, rubbers including natural rubber, synthetic rubber and combinations thereof; and various thermoplastic elastomers including thermoplastic vulcanizates. Suitable thermoplastic elastomers include but are not limited to styrenic block copolymers, for example SEBS, SEEPS, and SBS; and SIS. In one embodiment the inner tube has a hardness that ranges from 20 to 60 Shore A, desirably from 25 to 60 Shore A, and preferably from 30 to 50 Shore A, as measured according to ASTM D-2240.
The inner tube compositions of the present invention may include additional additives including, but not limited to antioxidants, foam agent, pigments, heat stabilizers, UV absorber/stabilizer, processing aids, flow enhancing agents, nanoparticles, platelet fillers and non-platelet fillers.
In some embodiments of the present invention,slip coating layer30 is provided onouter surface24 ofinner tube20, seeFIGS. 1 and 2. In a preferred embodiment, theslip coating layer30 can be extruded onto or coextruded with theinner tube20 layer. Other application methods such as coating would also be acceptable so long as the slip coating performs its intended function.
Theslip coating layer30 can be a continuous or discontinuous layer or layers. In one preferred embodiment the slip coating layer is continuous, at least prior to a first expansion ofinner tube20 after the slip coating layer has been applied. Depending on the thickness of theslip coating layer30 relatively thin layers, after one or more expansions of theinner tube20, may exhibit cracking, splitting, crazing, fracturing or the like. Importantly though, such layers have still been found to be effective. That said, the initial thickness of theslip coating layer30 ranges generally from about 0.025 mm to about 0.51 mm, desirably from about 0.05 to about 0.25 and preferably from about 0.10 to about 020 mm, or about 0.15 mm measured in a radial direction.
As illustrated inFIGS. 1 and 2, theslip coating layer30 is located between theinner tube20 and the outer tube covering40. In a preferred embodiment, the slip coating layer is not directly connected to the outer tube covering40 between the first coupler and the second coupler, e.g.male coupler60 andfemale coupler50, such that the outer tube covering40 can slide or otherwise move in relation to theslip coating layer30 during expansion and contraction ofhose assembly10. In an expanded position, the outer surface of theslip coating layer30 is in contact with the inner surface of the outer tube covering40.
The slip coating layer comprises a lubricant, optionally incorporated into or blended with a carrier material.
In one embodiment, the lubricant is a siloxane polymer or copolymer, or a fluorinated polymer or a combination thereof. A siloxane polymer masterbatch is available from Dow-Corning as MB50321™ and from Wacker as Genioplast™. Fluorinated polymer is available from McLube as MAC 1080™ In some embodiments lubricant is present in the slip coating layer in an amount generally from about 1 to about 40 parts, desirably from about 2 to about 30 parts and preferably in an amount from about 3 to about 20 parts based on 100 total parts by weight of the slip coating layer. In other embodiments, the lubricant can be a liquid, semi-solid or solid material that serves to reduce friction between the inner tube and the outer tube. Non-limiting examples of other lubricants include, but are not limited to, oils such as silicone oil, waxes, polymers, including elastomers.
As described herein, in one embodiment the lubricant is mixed with a carrier material that aids in affixing the lubricant on an outer surface of the inner tube. Suitable materials include, but are not limited to, polyolefins, thermoplastic elastomers or a combination thereof. In one embodiment, the carrier material comprises a polyolefin and one or more of the thermoplastic elastomers utilized in the inner tube layer.
Along with the lubricant, the slip coating layer may also include additional additives including, but not limited to, antioxidants, foaming agents, pigments, heat stabilizers, UV absorber/stabilizer, processing aids, flow enhancing agents, nanoparticles, platelet fillers and non-platelet fillers.
Hose assembly10 includesmale coupler60 at a first end andfemale coupler50 at a second end. Themale coupler60 includes an external threadedsection62 and aninternal connector63 fixedly connected, such as by a press fit, tomain body66 ofmale coupler60.Connector63 includes astem64 initially having asmaller diameter portion63 that is connected to a larger diameter portion connected to the inner side of threadedsection62. Fluid passing throughmale coupler60 passes throughinternal connector63, generally throughaperture67 instem64 and out through the end ofconnector63 within threadedsection62. In one embodiment, thestem64 is inserted into theinner tube20. A portion of the outer tube covering40 is also located betweenstem64,inner tube20 and theferrule68 ofmale coupler60.Inner tube20 andouter tube40 are operatively connected and secured tomale coupler60 by expansion of thestem64 outwardly towardsferrule68. In other embodiments the ferrule can be crimped towards a relatively rigid stem in order to capture the inner tube and outer tube therebetween, securing the tubes to themale coupler60. Other attachment mechanisms could also be utilized.
Thefemale coupler50 includes amain body56 having an internal threadedsection52 that is operatively and rotatably connected to a second end ofhose assembly10 opposite the end containingmale coupler60. Threadedsection52 is constructed such that it can be operatively connected to a male fitting of a spigot, faucet, or other similar valve control device.
Theinternal connector53 offemale coupler50 is rotatable in relation tomain body56 such that the main body is also rotatable in relation to theinner tube20 andouter tube40 which are operatively connected or fixed to stem54. A ferrule51 is placed onto the jacket orouter tube40 andinner tube20. The ferrule51,inner tube20, and fabric jacketouter tube40 are then fitted ontostem63.Stem63 is then expanded to secure the hose to the fitting. As mentioned above with respect to the male coupler, alternative constructions can be utilized to secure theinner tube20 andouter tube40 to thefemale coupler50. As illustrated inFIG. 1,connector53 includes areceptacle55 in the form of a cavity, recess, or the like that accommodatesflange57 of themain body56. In the embodiment illustrated, theflange57 is a ring-like feature projecting inwardly from themain body56 and includes an end that is located withinreceptacle55. The flange structure allows themain body56 to spin or rotate aroundconnector53. Awasher59 is located at the base of threadedsection52 in order to provide a desired seal between the female coupler and a device that is threadably connectable to threadedsection52.
Alternatively, other common couplers, fittings or hose end connections can be utilized and include, but are not limited, crimped (external), barbed, or clamped couplings made from plastics, metals, or combinations thereof.
Thehose assembly10 is illustrated in a contracted position with respect to circumference inFIG. 1. In this position, the elasticinner tube20 is in a contracted or relaxed state with no internal force being applied to theinner surface22 sufficient to expand or stretchinner tube20. Depending on the material utilized for outer tube covering40, space may exist between the same and theslip coating layer30, if present, and/orinner tube20 when the hose assembly is in a contracted position.
The fluid pressure withininner tube20 can be increased for example by preventing fluid from being expelled throughoutlet16, such as with the use of an associated nozzle or the like (not shown) and introducing fluid under pressure into theinlet14 ofhose assembly10. Once a minimum threshold pressure is met or exceeded, theinner tube20 undergoes circumferential expansion. Expansion ofinner tube20 results in a decrease in wall thickness of the inner tube and an increase in the circumference or diameter of the inner tube. Thus, a higher volume of fluid can be present ininner tube20 in the expanded position as compared to the volume of fluid that can be present in a contracted position, below the minimum fluid pressure.
Depending upon the construction of the outer tube covering40, in the expanded position, the covering may exhibit a relatively smooth, cylindrical character along its length, seeFIG. 2 for example.
Standard water pressure for water exiting a spigot from a municipal water system is about 45 to about 75 psi (310.3 to 517.1 kPa) and typically about 60 psi, 413.7 kPa. Such pressure is sufficiently above a minimum fluid pressure required for the hose to expand. The minimum fluid pressure that causes theinner tube20 ofhose assembly10 to expand will vary depending on the construction or composition thereof. When a nozzle or other flow restricting device is connected to themale coupler60 ofhose assembly10, with the female coupler70 being operatively connected to a spigot, theinner tube20 will expand when the spigot valve is opened or turned on as water under pressure will flow into the hose. If the nozzle prevents the flow of fluid through the inner tube, the pressure inside the inner tube will achieve substantially the same pressure as that coming from the fluid pressure source, such as 60 psi (289.6 kPa) in the case of a standard municipal water supply. When fluid is released from theoutlet16 ofhose assembly10 through a suitable nozzle, the pressure inside theinner tube20 is reduced. The hose assembly will remain in an expanded position when the fluid pressure remains above the minimum fluid pressure. In a preferred embodiment, the couplers are full flow fittings. They are not designed to create back pressure within the hose.
The hose assemblies formed by the present invention are relatively lightweight, when compared to a conventional garden hose. Hose assemblies of the present invention are capable of withstanding water pressures in the 400 psi (2758 kPa) range while still being relatively light. For example, a 50 foot hose assembly of the present invention including couplers or end fittings can weigh about 4 lbs. with inner and outer tubes that are about 50 feet in length. The hose assemblies are very flexible and can be easily stored in compact spaces that a conventional garden hose would not fit, such as a bucket or similar container. The hot air seaming or welding process according to the present invention allows manufacture of a hose assembly utilizing less labor input, while having the inner tube automatically inserted into the outer tube which is formed therearound as part of the welding process.
The hose assemblies of the present invention are particularly suitable for cold water applications.
Due to the flexibility and versatility of the hose assemblies, one can utilize a fastener system such as a hook and loop fastener system, for example VELCRO® to harness the hose assembly when not in use. A fastener strap can be attached to one end of the hose by threading an end of a fastener through a female eyelet thereof such that the fastener can be permanently affixed to the hose assembly.
The hose assemblies of the present invention can also be formed from FDA listed ingredients for non-food contact applications, such as RV and marine drinking water service.
EXAMPLES
Burst Testing
One embodiment of a garden hose assembly according to the present invention including a fabric outer tube having a weld seam formed from a hot air welding process, the weld seam extending along a longitudinal length of the outer tube, the weld seam comprising melted fabric, was pressurized to failure. The peak pressure was recorded. This product was comparable to heavy duty, conventional constructions.
Elevated Temperature Burst
Garden hose assemblies as described in the example above were burst tested at 120° F. to determine how they would perform in hot conditions. This inventive construction did not lose as much burst strength at high temperatures compared to existing constructions.
Puncture Resistance
A pointed penetrator was forced against a pressurized hose assembly as described above. The peak force required to form a leak was recorded. This construction was comparable to heavy duty, conventional constructions.
While in accordance with the patent statutes the best mode and preferred embodiment have been set forth, the scope of the invention is not limited thereto, but rather by the scope of the attached claims.

Claims (20)

What is claimed is:
1. A hose assembly, comprising:
an inner tube comprising an elastomeric material, wherein the inner tube has a longitudinal length and a first circumference below a minimum expansion pressure, wherein the inner tube is expandable to a larger, second circumference upon application of fluid pressure on an inner surface of the inner tube at or above the minimum expansion pressure; and
an outer tube covering the inner tube, the outer tube having a longitudinal length and a weld seam along the longitudinal length of the outer tube, the weld seam comprising melted fabric, wherein the hose assembly further includes a male coupler connected to first ends of the inner tube and the outer tube and a female coupler connected to second ends of the inner tube and the outer tube, and wherein the outer tube is not connected or attached to the inner tube between the male coupler and the female coupler.
2. The hose assembly according toclaim 1, wherein the outer tube has a first end and a second end and two sides between ends, wherein the two sides are bonded at the weld seam, and wherein the outer tube has a fixed longitudinal length.
3. The hose assembly according toclaim 1, wherein the outer tube has an inner surface with a circumference and the second circumference of the inner tube is less than or equal to the outer tube inner surface circumference.
4. The hose assembly according toclaim 1, wherein a slip coating layer comprising a lubricant is present on an outer surface of the inner tube.
5. The hose assembly according toclaim 1, wherein the weld seam has a weld width of 9.5 mm+/−3.0 mm, and wherein the weld seam has a weld thickness that is at least 50% greater than a thickness of the fabric of the outer tube in a non-weld seam section.
6. The hose assembly according toclaim 5, wherein the weld seam weld width is 9.5 mm+/−1.50 mm, and wherein the weld thickness is at least 75% greater than the thickness of the fabric of the outer tube in the non-weld seam section.
7. The hose assembly according toclaim 6, wherein the weld seam weld thickness is at least 100% greater than the thickness of the fabric of the outer tube in the non-weld seam section.
8. A process for producing the hose assembly according toclaim 1, comprising:
obtaining the inner tube comprising the elastomeric material;
obtaining a fabric having a first end, a second end, a first side and a second side, the sides located between the ends;
wrapping the fabric around the inner tube and abutting the first side and the second side of the fabric, and
heating the fabric to melt and bond the first side to the second side along a length of the sides thereby forming the outer tube having the weld seam along the longitudinal length of the hose assembly, wherein during formation of the outer tube a section of the inner tube is located inside the outer tube.
9. The process according toclaim 8, further including the step of overlapping the first side and the second side of the fabric 9.5 mm+/−3.0 mm.
10. The process according toclaim 9, further including the step of overlapping the first side and the second side of the fabric 9.5 mm+/−1.5 mm.
11. The process according toclaim 9, wherein the heating step comprises heating the fabric with hot air at a temperature between 550° C. and 750° C.
12. The process according toclaim 11, further including the step of partially forming the fabric around the inner tube with a folding fixture and shaping the fabric into a round, tubular profile using a die.
13. The process according toclaim 12, further including a step of passing the inner tube and outer tube through a set of rollers which force the heated fabric surfaces against each other under pressure after the heating step.
14. The process according toclaim 8, wherein the heating step comprises heating the fabric with hot air at a temperature between 550° C. and 750° C.
15. The process according toclaim 14, further including the step of partially forming the fabric around the inner tube with a folding fixture and shaping the fabric into a round, tubular profile using a die.
16. The process according toclaim 15, further including a step of passing the inner tube and outer tube through a set of rollers which force the heated fabric surfaces against each other under pressure after the heating step.
17. A hose assembly, comprising:
an inner tube comprising an elastomeric material, wherein the inner tube has a longitudinal length and a first circumference below a minimum expansion pressure, wherein the inner tube is expandable to a larger, second circumference upon application of fluid pressure on an inner surface of the inner tube at or above the minimum expansion pressure; and
an outer tube covering the inner tube, the outer tube having a longitudinal length and a weld seam along the longitudinal length of the outer tube, the weld seam consisting of melted fabric, wherein the hose assembly further includes a male coupler connected to first ends of the inner tube and the outer tube and a female coupler connected to second ends of the inner tube and the outer tube, and wherein the outer tube is not connected or attached to the inner tube between the male coupler and the female coupler.
18. The hose assembly according toclaim 17, wherein the outer tube has a first end and a second end and two sides between ends, wherein the two sides are bonded at the weld seam, and wherein the outer tube has a fixed longitudinal length.
19. The hose assembly according toclaim 18, wherein the weld seam has a weld width of 9.5 mm+/−3.0 mm, and wherein the weld seam has a weld thickness that is at least 50% greater than a thickness of the fabric of the outer tube in a non-weld seam section.
20. The hose assembly according toclaim 19, wherein the weld seam weld width is 9.5 mm+/−1.50 mm, and wherein the weld thickness is at least 75% greater than the thickness of the fabric of the outer tube in the non-weld seam section.
US14/695,9122015-04-242015-04-24Lightweight, high flow hose assembly and method of manufactureActive2036-01-27US9815254B2 (en)

Priority Applications (15)

Application NumberPriority DateFiling DateTitle
US14/695,912US9815254B2 (en)2015-04-242015-04-24Lightweight, high flow hose assembly and method of manufacture
US14/730,852US9810357B2 (en)2015-04-242015-06-04Lightweight, high flow hose assembly and method of manufacture
US14/850,225US10000035B2 (en)2015-04-242015-09-10Lightweight, high flow hose assembly and method of manufacture
US15/084,961US10132435B2 (en)2015-04-242016-03-30Lightweight, high flow hose assembly and method of manufacture
US15/085,031US10458574B2 (en)2015-04-242016-03-30Lightweight, high flow hose assembly and method of manufacture
PL16783638TPL3286472T3 (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
AU2016252113AAU2016252113B2 (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
MX2017012045AMX2017012045A (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture.
NZ735708ANZ735708B2 (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
PCT/US2016/028037WO2016172019A1 (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
DK16783638.6TDK3286472T3 (en)2015-04-242016-04-18 LIGHTWEIGHT HOSE COLLECTION WITH HIGH FLOW AND MANUFACTURING METHOD
CA2980363ACA2980363C (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
EP16783638.6AEP3286472B1 (en)2015-04-242016-04-18Lightweight, high flow hose assembly and method of manufacture
CN201680028008.6ACN107614953B (en)2015-04-242016-04-18Lightweight high flow hose assembly and method of manufacture
US15/782,101US10344899B2 (en)2015-04-242017-10-12Lightweight, high flow hose assembly and method of manufacture

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US14/695,912US9815254B2 (en)2015-04-242015-04-24Lightweight, high flow hose assembly and method of manufacture

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US14/730,852Continuation-In-PartUS9810357B2 (en)2015-04-242015-06-04Lightweight, high flow hose assembly and method of manufacture

Publications (2)

Publication NumberPublication Date
US20160312926A1 US20160312926A1 (en)2016-10-27
US9815254B2true US9815254B2 (en)2017-11-14

Family

ID=57147551

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US14/695,912Active2036-01-27US9815254B2 (en)2015-04-242015-04-24Lightweight, high flow hose assembly and method of manufacture

Country Status (1)

CountryLink
US (1)US9815254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20190093797A1 (en)*2017-09-252019-03-28Zhejiang Helen Plastic Co., Ltd.Water pipe with synchronously retractable multi-layer
US10267437B2 (en)2017-01-092019-04-23Yeiser Research & Development LLCMetal garden hose with strain relief
US11732826B2 (en)2021-11-082023-08-22E. Mishan & Sons, Inc.Garden hose with metal sheath and fabric cover

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
RU2735459C2 (en)*2016-06-152020-11-02Эксель Индастриз СаHose device
CN107338513A (en)*2017-07-122017-11-10黑龙江金达麻业有限公司The new lift spindle structure of spinning

Citations (104)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1104508A (en)1913-03-051914-07-21Charles K HuthsingHose construction.
US2612910A (en)*1948-11-121952-10-07Goodrich Co B FFlexible hose
GB904638A (en)1960-06-201962-08-29Btr Industries LtdImprovements in or relating to flame-resistant hose
US3073353A (en)*1958-06-251963-01-15Porter Co Inc H KAbrasion-resistant ventilating jacket for jet engine starter hoses
US3162470A (en)1961-05-231964-12-22Charlie H DavidsonQuick disconnect high pressure coupling
US3205913A (en)*1962-11-131965-09-14Ametek IncFluid containing means
GB1017331A (en)1961-07-171966-01-19Btr Industries LtdImprovements in or relating to hose
US3530900A (en)*1968-08-301970-09-29Murray CorpHose assembly
US3885593A (en)*1972-12-181975-05-27Automation Ind IncStretchable reinforced wrapper for insulated flexible duct
US3939875A (en)1970-08-061976-02-24Boyle And OsbornPermeable flexible plastic tubing
US4181157A (en)*1978-01-031980-01-01Flexfab, Inc.Fire sleeving
USD254505S (en)1977-04-281980-03-18Frederick L. ParsonsHose coupling
US4477109A (en)1981-07-291984-10-16Gfk PartnershipConnector for hoses and the like
US4541657A (en)1981-11-261985-09-17Sabco Ltd.Quick release hose coupling
USD283342S (en)1983-06-061986-04-08Rain Bird Consumer Products Mfg. Corp.Hose coupling
US4850620A (en)*1989-02-211989-07-25Winzeler Stamping CompanyComposite male hose coupler
US4929478A (en)*1988-06-171990-05-29The Bentley-Harris Manufacturing CompanyProtective fabric sleeves
USD334046S (en)1991-08-261993-03-16Friedrich Grohe AktiengesellschaftCombined shower and sprinkler head
US5195563A (en)1988-11-151993-03-23Oakleigh Limited C/O Havelet Trust Company International LimitedFlexible hose and fittings
US5285561A (en)1992-08-211994-02-15Dayco Products, Inc.Hose coupling, ferrule therefor and methods of making the same
US5413147A (en)1993-04-291995-05-09Parker-Hannifin CorporationFlexible hose and fitting assembly
USD368304S (en)1994-12-191996-03-26Australasian Steel Products Pty. Ltd.Combined hose and flow line coupling member
USD383378S (en)1994-02-091997-09-09Wfi International, Inc.Tapered threaded coupling
USD387146S (en)1995-06-261997-12-02Australasian Steel Products Pty Ltd.Combined hose and flow line coupling member
USD392722S (en)1996-11-271998-03-24Renus Armaturen GmbhHose connector
USD413657S (en)1998-11-021999-09-07The Goodyear Tire & Rubber CompanyHose
USD413968S (en)1998-08-071999-09-14Electrolock, Inc.Flexible tubing
US6024132A (en)1997-11-192000-02-15Tigers Polymer CorporationFlexible hoses
US6113153A (en)1998-06-052000-09-05Yang; Ming-ShunStructure of a water spray hose device
US6186181B1 (en)1998-04-232001-02-13AlcatelFlexible line pipe
US20030111126A1 (en)2001-12-172003-06-19Gregory MoultonCurrent carrying stretch hose
USD483096S1 (en)2002-07-252003-12-02Kunihiko GotohPipe coupling socket
US20040256016A1 (en)*2003-06-232004-12-23Tetsuya ArimaVibration absorbing hose
US6948527B2 (en)2001-11-242005-09-27Gary Dean RagnerPressure-actuated linearly retractable and extendible hose
US7168451B1 (en)2006-02-062007-01-30Dundas Robert DRemovable hose cover
US20080000540A1 (en)*2004-11-252008-01-03Veritas AgFlexible Hose
USD575377S1 (en)2005-10-142008-08-19Claber SpaHose fitting
US20080262403A1 (en)*2005-10-202008-10-23Millet InnovationSleeve with lining layer for body part protection or care
USD586435S1 (en)2005-09-022009-02-10Reckseen David LWater hose
USD605737S1 (en)2007-10-122009-12-08Neoperl GmbhBraided hose
US20100071795A1 (en)2008-09-222010-03-25Veyance Technologies, Inc.Flexible hoses having a kink, crush, and burst resistant construction
USD613378S1 (en)2008-05-192010-04-06Hinson Michael DHoses
USD613780S1 (en)2009-10-122010-04-13Miller Weldmaster CorporationFabric welding machine
USD613827S1 (en)2009-03-132010-04-13Thetford CorporationHose fitting
USD631351S1 (en)2010-04-022011-01-25Darren CoonDispensing cap for a water bottle
US7887662B2 (en)2006-04-202011-02-15Certainteed CorporationCorrugated hose with non-conforming outer layer for dispensing loose-fill insulation
US20110083787A1 (en)2009-10-122011-04-14Miller Weldmaster CorporationMethod of impulse welding non-waterproof, digitally printable fabrics
US7971617B2 (en)2009-10-122011-07-05Miller Weldmaster CorporationWelding machine incorporating vacuum track assembly
US7975633B2 (en)2008-06-272011-07-12Miller Weldmaster CorporationBi-directional seaming machine
USD642245S1 (en)2010-12-202011-07-26Fitt S.P.A.Garden hose
USD645632S1 (en)2009-10-122011-09-20Miller Weldmaster CorporationSide wall for a beam
USD650052S1 (en)2010-11-112011-12-06Longyear Tm, Inc.Seal for head assembly
US8141609B2 (en)2009-10-122012-03-27Miller Weldmaster CorporationExtendable welding machine
USD666644S1 (en)2011-10-212012-09-04Miller Weldmaster CorporationPortable heat welding machine
US20120227363A1 (en)2011-03-072012-09-13Miller Weldmaster CorporationMethod and apparatus for top sealing woven bags
US8272420B2 (en)2009-10-122012-09-25Miller Weldmaster CorporationFabric welding machine
US8291942B2 (en)2011-11-042012-10-23Blue Gentian, LlcExpandable hose assembly
US8291941B1 (en)2011-11-042012-10-23Blue Gentian, LlcExpandable and contractible hose
USD671196S1 (en)2011-06-092012-11-20Veyance Technologies, IncGarden hose
US8371143B2 (en)2011-02-222013-02-12Ragner Technology CorporationHose reinforcement knitting machine and knitting process
USD679784S1 (en)2011-05-032013-04-09Alfred Kaercher Gmbh & Co. KgHose coupling
US20130098887A1 (en)2011-10-212013-04-25Miller Weldmaster CorporationPortable heat welding machine
US20130113205A1 (en)2011-11-042013-05-09Blue Gentian, LlcExpandable hose assembly coupling member
US8479776B2 (en)2011-11-042013-07-09Blue Gentian, LlcExpandable garden hose
USD691261S1 (en)2011-06-282013-10-08Daikyo Seiko, Ltd.Nozzle cap for syringe
US20140007881A1 (en)2011-03-152014-01-09Resmed LimitedAir delivery conduit
US20140124125A1 (en)2012-11-052014-05-08Miller Weldmaster CorporationMethod and apparatus for controlling welding of flexible fabrics
US20140124136A1 (en)2012-11-062014-05-08Miller Weldmaster CorporationDual roll fabric welding machine and method of operation
US20140124127A1 (en)2012-11-052014-05-08Miller Weldmaster CorporationFolding system
US20140130930A1 (en)2012-11-092014-05-15Ragner Technology CorporationElastic and spring biased retractable hoses
USD705285S1 (en)2012-11-062014-05-20Miller Weldmaster CorporationControl box for fabric welding machine
USD705284S1 (en)2012-11-062014-05-20Miller Weldmaster CorporationControl box for fabric welding machine
US20140150889A1 (en)2012-12-012014-06-05Ragner Technology CorporationCollapsible hoses and pressure systems
USD706904S1 (en)2012-10-042014-06-10Adma Elena Faraon Chaul HuertaWater-flow regulator
US8757213B2 (en)2011-11-042014-06-24Blue Gentian, LlcCommercial hose
US8776836B2 (en)2001-11-242014-07-15Ragner Technology CorporationLinearly retractable pressure hose structure
USD714935S1 (en)2013-01-102014-10-07Fuso Pharmaeutical Industries, Ltd.Adapter for connecting a needle to a syringe
WO2014169057A1 (en)2013-04-092014-10-16Blue Gentian, LlcAutomatically expandable hose
US20140305586A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationHot wedge welding machine and method of operation
US20140307987A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationBag with thermal welded back seam
US20140305587A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationBack seam welder and method of operation
USD717406S1 (en)2012-12-102014-11-11Enviro Water Solutions, Inc.Backwash fitting
USD717848S1 (en)2012-11-052014-11-18Miller Weldmaster CorporationFolding system
US20140374020A1 (en)2013-06-212014-12-25Miller Weldmaster CorporationMethod and apparatus for welding a curved seam
US20150007902A1 (en)2012-11-092015-01-08Ragner Technology CorporationLubricated elastically biased stretch hoses
US20150041016A1 (en)2013-08-102015-02-12Ragner Technology CorporationRetractable elastic bungee hose
USD722681S1 (en)2012-07-192015-02-17Blue Gentian, LlcExpandable hose
USD723669S1 (en)2012-07-192015-03-03Blue Gentian, LlcExpandable hose
USD724187S1 (en)2013-02-152015-03-10Victaulic CompanyIdentification sleeve and flexible hose
USD724186S1 (en)2012-07-192015-03-10Blue Gentian, LlcExpandable hose assembly
USD731032S1 (en)2012-10-032015-06-02Telebrands Corp.Hose and connectors
US20150219259A1 (en)2014-02-062015-08-06Weems Industries, Inc.Swivel hose coupling with outer grip
US20150219260A1 (en)2009-03-032015-08-06Neoperl GmbhHose coupling
USD736358S1 (en)2013-11-122015-08-11Teknor Apex CompanyFemale hose couplings
USD736357S1 (en)2013-11-122015-08-11Teknor Apex CompanyFemale hose couplings
USD736359S1 (en)2013-11-122015-08-11Teknor Apex CompanyMale hose couplings
USD736914S1 (en)2014-01-292015-08-18Joseph P. SchultzShielded medical connector
USD738471S1 (en)2013-11-122015-09-08Teknor Apex CompanyFemale hose coupling
USD739493S1 (en)2012-12-052015-09-22Combined Manufacturing, Inc.Nozzle adaptor
USD744563S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly base component
USD744562S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly
USD744564S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly nose component
USD757233S1 (en)2015-04-242016-05-24Teknor Apex CompanyMale hose fitting
USD760363S1 (en)2012-10-032016-06-28Telebrands Corp.Hose connector

Patent Citations (120)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1104508A (en)1913-03-051914-07-21Charles K HuthsingHose construction.
US2612910A (en)*1948-11-121952-10-07Goodrich Co B FFlexible hose
US3073353A (en)*1958-06-251963-01-15Porter Co Inc H KAbrasion-resistant ventilating jacket for jet engine starter hoses
GB904638A (en)1960-06-201962-08-29Btr Industries LtdImprovements in or relating to flame-resistant hose
US3162470A (en)1961-05-231964-12-22Charlie H DavidsonQuick disconnect high pressure coupling
GB1017331A (en)1961-07-171966-01-19Btr Industries LtdImprovements in or relating to hose
US3205913A (en)*1962-11-131965-09-14Ametek IncFluid containing means
US3530900A (en)*1968-08-301970-09-29Murray CorpHose assembly
US3939875A (en)1970-08-061976-02-24Boyle And OsbornPermeable flexible plastic tubing
US3885593A (en)*1972-12-181975-05-27Automation Ind IncStretchable reinforced wrapper for insulated flexible duct
USD254505S (en)1977-04-281980-03-18Frederick L. ParsonsHose coupling
US4181157A (en)*1978-01-031980-01-01Flexfab, Inc.Fire sleeving
US4477109A (en)1981-07-291984-10-16Gfk PartnershipConnector for hoses and the like
US4541657A (en)1981-11-261985-09-17Sabco Ltd.Quick release hose coupling
USD283342S (en)1983-06-061986-04-08Rain Bird Consumer Products Mfg. Corp.Hose coupling
US4929478A (en)*1988-06-171990-05-29The Bentley-Harris Manufacturing CompanyProtective fabric sleeves
US5195563A (en)1988-11-151993-03-23Oakleigh Limited C/O Havelet Trust Company International LimitedFlexible hose and fittings
US4850620A (en)*1989-02-211989-07-25Winzeler Stamping CompanyComposite male hose coupler
USD334046S (en)1991-08-261993-03-16Friedrich Grohe AktiengesellschaftCombined shower and sprinkler head
US5285561A (en)1992-08-211994-02-15Dayco Products, Inc.Hose coupling, ferrule therefor and methods of making the same
US5413147A (en)1993-04-291995-05-09Parker-Hannifin CorporationFlexible hose and fitting assembly
USD383378S (en)1994-02-091997-09-09Wfi International, Inc.Tapered threaded coupling
USD368304S (en)1994-12-191996-03-26Australasian Steel Products Pty. Ltd.Combined hose and flow line coupling member
USD387146S (en)1995-06-261997-12-02Australasian Steel Products Pty Ltd.Combined hose and flow line coupling member
USD392722S (en)1996-11-271998-03-24Renus Armaturen GmbhHose connector
US6024132A (en)1997-11-192000-02-15Tigers Polymer CorporationFlexible hoses
US6186181B1 (en)1998-04-232001-02-13AlcatelFlexible line pipe
US6113153A (en)1998-06-052000-09-05Yang; Ming-ShunStructure of a water spray hose device
USD413968S (en)1998-08-071999-09-14Electrolock, Inc.Flexible tubing
USD413657S (en)1998-11-021999-09-07The Goodyear Tire & Rubber CompanyHose
US8776836B2 (en)2001-11-242014-07-15Ragner Technology CorporationLinearly retractable pressure hose structure
US6948527B2 (en)2001-11-242005-09-27Gary Dean RagnerPressure-actuated linearly retractable and extendible hose
US9022076B2 (en)2001-11-242015-05-05Ragner Technology CorporationLinearly retractable pressure hose structure
US7549448B2 (en)2001-11-242009-06-23Gary Dean RagnerLinearly retractable pressure hose
US20030111126A1 (en)2001-12-172003-06-19Gregory MoultonCurrent carrying stretch hose
USD483096S1 (en)2002-07-252003-12-02Kunihiko GotohPipe coupling socket
US20040256016A1 (en)*2003-06-232004-12-23Tetsuya ArimaVibration absorbing hose
US20080000540A1 (en)*2004-11-252008-01-03Veritas AgFlexible Hose
USD586435S1 (en)2005-09-022009-02-10Reckseen David LWater hose
USD575377S1 (en)2005-10-142008-08-19Claber SpaHose fitting
US20080262403A1 (en)*2005-10-202008-10-23Millet InnovationSleeve with lining layer for body part protection or care
US7168451B1 (en)2006-02-062007-01-30Dundas Robert DRemovable hose cover
US7887662B2 (en)2006-04-202011-02-15Certainteed CorporationCorrugated hose with non-conforming outer layer for dispensing loose-fill insulation
USD605737S1 (en)2007-10-122009-12-08Neoperl GmbhBraided hose
USD613378S1 (en)2008-05-192010-04-06Hinson Michael DHoses
US8826838B2 (en)2008-06-272014-09-09Miller Weldmaster CorporationBi-directional seaming machine and method of seaming
US8359991B2 (en)2008-06-272013-01-29Miller Weldmaster CorporationBi-directional seaming machine and method of seaming
US7975633B2 (en)2008-06-272011-07-12Miller Weldmaster CorporationBi-directional seaming machine
US20100071795A1 (en)2008-09-222010-03-25Veyance Technologies, Inc.Flexible hoses having a kink, crush, and burst resistant construction
US20150219260A1 (en)2009-03-032015-08-06Neoperl GmbhHose coupling
USD613827S1 (en)2009-03-132010-04-13Thetford CorporationHose fitting
US8211262B2 (en)2009-10-122012-07-03Miller Weldmaster CorporationMethod of using a welding machine incorporating a vacuum track assembly
USD648502S1 (en)2009-10-122011-11-08Miller Weldmaster CorporationSide wall combination for a beam
US8141609B2 (en)2009-10-122012-03-27Miller Weldmaster CorporationExtendable welding machine
USD645632S1 (en)2009-10-122011-09-20Miller Weldmaster CorporationSide wall for a beam
USD613780S1 (en)2009-10-122010-04-13Miller Weldmaster CorporationFabric welding machine
US8951380B2 (en)2009-10-122015-02-10Miller Weldmaster CorporationFabric welding machine
US8272420B2 (en)2009-10-122012-09-25Miller Weldmaster CorporationFabric welding machine
US8453701B2 (en)2009-10-122013-06-04Miller Weldmaster CorporationFabric welding machine
US7971617B2 (en)2009-10-122011-07-05Miller Weldmaster CorporationWelding machine incorporating vacuum track assembly
USD648503S1 (en)2009-10-122011-11-08Miller Weldmaster CorporationSide wall combination for a beam
US20110083787A1 (en)2009-10-122011-04-14Miller Weldmaster CorporationMethod of impulse welding non-waterproof, digitally printable fabrics
USD631351S1 (en)2010-04-022011-01-25Darren CoonDispensing cap for a water bottle
USD650052S1 (en)2010-11-112011-12-06Longyear Tm, Inc.Seal for head assembly
USD642245S1 (en)2010-12-202011-07-26Fitt S.P.A.Garden hose
US8371143B2 (en)2011-02-222013-02-12Ragner Technology CorporationHose reinforcement knitting machine and knitting process
US20120227363A1 (en)2011-03-072012-09-13Miller Weldmaster CorporationMethod and apparatus for top sealing woven bags
US20140007881A1 (en)2011-03-152014-01-09Resmed LimitedAir delivery conduit
USD679784S1 (en)2011-05-032013-04-09Alfred Kaercher Gmbh & Co. KgHose coupling
USD687528S1 (en)2011-05-032013-08-06Alfred Kaercher Gmbh & Co. KgHose coupling
USD671196S1 (en)2011-06-092012-11-20Veyance Technologies, IncGarden hose
USD691261S1 (en)2011-06-282013-10-08Daikyo Seiko, Ltd.Nozzle cap for syringe
USD693393S1 (en)2011-10-212013-11-12Miller Weldmaster CorporationPortable heat welding machine
US20130098887A1 (en)2011-10-212013-04-25Miller Weldmaster CorporationPortable heat welding machine
USD666644S1 (en)2011-10-212012-09-04Miller Weldmaster CorporationPortable heat welding machine
US8291942B2 (en)2011-11-042012-10-23Blue Gentian, LlcExpandable hose assembly
US8291941B1 (en)2011-11-042012-10-23Blue Gentian, LlcExpandable and contractible hose
US20130113205A1 (en)2011-11-042013-05-09Blue Gentian, LlcExpandable hose assembly coupling member
US20140345734A1 (en)2011-11-042014-11-27Blue Gentian, LlcCommercial hose
US9279525B2 (en)2011-11-042016-03-08Blue Gentian, LlcCommercial hose
US8479776B2 (en)2011-11-042013-07-09Blue Gentian, LlcExpandable garden hose
US8757213B2 (en)2011-11-042014-06-24Blue Gentian, LlcCommercial hose
USD722681S1 (en)2012-07-192015-02-17Blue Gentian, LlcExpandable hose
USD723669S1 (en)2012-07-192015-03-03Blue Gentian, LlcExpandable hose
USD724186S1 (en)2012-07-192015-03-10Blue Gentian, LlcExpandable hose assembly
USD731032S1 (en)2012-10-032015-06-02Telebrands Corp.Hose and connectors
USD760363S1 (en)2012-10-032016-06-28Telebrands Corp.Hose connector
USD706904S1 (en)2012-10-042014-06-10Adma Elena Faraon Chaul HuertaWater-flow regulator
US20140124125A1 (en)2012-11-052014-05-08Miller Weldmaster CorporationMethod and apparatus for controlling welding of flexible fabrics
USD717848S1 (en)2012-11-052014-11-18Miller Weldmaster CorporationFolding system
US20140124127A1 (en)2012-11-052014-05-08Miller Weldmaster CorporationFolding system
US20140124136A1 (en)2012-11-062014-05-08Miller Weldmaster CorporationDual roll fabric welding machine and method of operation
USD705284S1 (en)2012-11-062014-05-20Miller Weldmaster CorporationControl box for fabric welding machine
USD705285S1 (en)2012-11-062014-05-20Miller Weldmaster CorporationControl box for fabric welding machine
US20150007902A1 (en)2012-11-092015-01-08Ragner Technology CorporationLubricated elastically biased stretch hoses
US8936046B2 (en)2012-11-092015-01-20Ragner Technology CorporationElastic and spring biased retractable hoses
US20150129042A1 (en)2012-11-092015-05-14Ragner Technology CorporationSpring biased retractable hoses
US20140130930A1 (en)2012-11-092014-05-15Ragner Technology CorporationElastic and spring biased retractable hoses
US20140150889A1 (en)2012-12-012014-06-05Ragner Technology CorporationCollapsible hoses and pressure systems
USD739493S1 (en)2012-12-052015-09-22Combined Manufacturing, Inc.Nozzle adaptor
USD717406S1 (en)2012-12-102014-11-11Enviro Water Solutions, Inc.Backwash fitting
USD714935S1 (en)2013-01-102014-10-07Fuso Pharmaeutical Industries, Ltd.Adapter for connecting a needle to a syringe
USD724187S1 (en)2013-02-152015-03-10Victaulic CompanyIdentification sleeve and flexible hose
WO2014169057A1 (en)2013-04-092014-10-16Blue Gentian, LlcAutomatically expandable hose
US20140305586A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationHot wedge welding machine and method of operation
US20140305587A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationBack seam welder and method of operation
US20140307987A1 (en)2013-04-152014-10-16Miller Weldmaster CorporationBag with thermal welded back seam
US20140374020A1 (en)2013-06-212014-12-25Miller Weldmaster CorporationMethod and apparatus for welding a curved seam
US20150041016A1 (en)2013-08-102015-02-12Ragner Technology CorporationRetractable elastic bungee hose
WO2015023592A1 (en)2013-08-102015-02-19Ragner Technology CorporationRetractable elastic bungee hose
USD736358S1 (en)2013-11-122015-08-11Teknor Apex CompanyFemale hose couplings
USD736357S1 (en)2013-11-122015-08-11Teknor Apex CompanyFemale hose couplings
USD736359S1 (en)2013-11-122015-08-11Teknor Apex CompanyMale hose couplings
USD738471S1 (en)2013-11-122015-09-08Teknor Apex CompanyFemale hose coupling
USD736914S1 (en)2014-01-292015-08-18Joseph P. SchultzShielded medical connector
US20150219259A1 (en)2014-02-062015-08-06Weems Industries, Inc.Swivel hose coupling with outer grip
USD744562S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly
USD744564S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly nose component
USD744563S1 (en)2014-09-222015-12-01Victor Equipment CompanyTwo-piece nozzle assembly base component
USD757233S1 (en)2015-04-242016-05-24Teknor Apex CompanyMale hose fitting

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chapman, Declaration Regarding Test Results of HydroHose Brand Hose Assembly, Declaration, May 18, 2017, 1 page.
International Search Report dated Jul. 18, 2016.
target.com, 50′ HydroHose Compact Garden Hose and Nozzle—Saint Tropez, website pages, date unknown, 3 pages, Target.com, place of publication unknown.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10267437B2 (en)2017-01-092019-04-23Yeiser Research & Development LLCMetal garden hose with strain relief
US10995886B2 (en)2017-01-092021-05-04Yeiser Research & Development, LlcMetal garden hose with strain relief
US20190093797A1 (en)*2017-09-252019-03-28Zhejiang Helen Plastic Co., Ltd.Water pipe with synchronously retractable multi-layer
US10890280B2 (en)*2017-09-252021-01-12Zhejiang Helen Plastic Co., Ltd.Water pipe with synchronously retractable multi-layer
US11732826B2 (en)2021-11-082023-08-22E. Mishan & Sons, Inc.Garden hose with metal sheath and fabric cover

Also Published As

Publication numberPublication date
US20160312926A1 (en)2016-10-27

Similar Documents

PublicationPublication DateTitle
US10344899B2 (en)Lightweight, high flow hose assembly and method of manufacture
AU2016252113B2 (en)Lightweight, high flow hose assembly and method of manufacture
US9815254B2 (en)Lightweight, high flow hose assembly and method of manufacture
US10000035B2 (en)Lightweight, high flow hose assembly and method of manufacture
US10458574B2 (en)Lightweight, high flow hose assembly and method of manufacture
US9863565B2 (en)Multi-layer expandable hose
US7094310B2 (en)Method for joining high-pressure composite pipes
US10132435B2 (en)Lightweight, high flow hose assembly and method of manufacture
US9249905B2 (en)Integral pipe and fitting assembly of polymer material, and method of making same
PL194169B1 (en)Multilayer composite pipe, fluid conduit system using multilayer composite pipe and method of making the composite pipe
KR20130103498A (en)A fluid handling assembly having a robust insert
US10458576B2 (en)Hose assembly with modified thermoplastic inner tube
NZ735708B2 (en)Lightweight, high flow hose assembly and method of manufacture
ES1168960U (en)High flow light hose assembly (Machine-translation by Google Translate, not legally binding)
US20180149293A1 (en)Irrigation pipe comprising axially extending load bearing members

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:TEKNOR APEX COMPANY, RHODE ISLAND

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MELO, MICHAEL;BLANCHETTE, GIL;CORREA, STEVE;AND OTHERS;REEL/FRAME:035508/0433

Effective date:20150424

STCFInformation on status: patent grant

Free format text:PATENTED CASE

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:4

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:8


[8]ページ先頭

©2009-2025 Movatter.jp