Movatterモバイル変換


[0]ホーム

URL:


US9271904B2 - Controlled release oral delivery systems - Google Patents

Controlled release oral delivery systems
Download PDF

Info

Publication number
US9271904B2
US9271904B2US11/135,153US13515305AUS9271904B2US 9271904 B2US9271904 B2US 9271904B2US 13515305 AUS13515305 AUS 13515305AUS 9271904 B2US9271904 B2US 9271904B2
Authority
US
United States
Prior art keywords
gum
active component
composition
encapsulated
oral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/135,153
Other versions
US20050260266A1 (en
Inventor
Petros Gebreselassie
Navroz Boghani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intercontinental Great Brands LLC
Original Assignee
Intercontinental Great Brands LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/719,298external-prioritypatent/US20050112236A1/en
Application filed by Intercontinental Great Brands LLCfiledCriticalIntercontinental Great Brands LLC
Priority to US11/135,153priorityCriticalpatent/US9271904B2/en
Assigned to CADBURY ADAMS USA LLCreassignmentCADBURY ADAMS USA LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: BOGHANI, NAVROZ, GEBRESELASSIE, PETROS
Publication of US20050260266A1publicationCriticalpatent/US20050260266A1/en
Priority to AU2006249718Aprioritypatent/AU2006249718B2/en
Priority to ES12166166Tprioritypatent/ES2727852T3/en
Priority to CN2006800096900Aprioritypatent/CN101203138B/en
Priority to EP06717548.9Aprioritypatent/EP1924151B1/en
Priority to PL06717548Tprioritypatent/PL1924151T3/en
Priority to DK06717548.9Tprioritypatent/DK1924151T3/en
Priority to CA2598605Aprioritypatent/CA2598605C/en
Priority to ES06717548.9Tprioritypatent/ES2525530T3/en
Priority to JP2008512263Aprioritypatent/JP2008540645A/en
Priority to MX2007014629Aprioritypatent/MX2007014629A/en
Priority to PCT/US2006/000364prioritypatent/WO2006127053A2/en
Priority to EP12166166.4Aprioritypatent/EP2484223B1/en
Priority to PL12166166Tprioritypatent/PL2484223T3/en
Priority to PCT/US2006/019761prioritypatent/WO2006127618A2/en
Priority to EP06760271Aprioritypatent/EP1895992A4/en
Priority to ARP060101961Aprioritypatent/AR057021A1/en
Priority to PCT/US2006/019882prioritypatent/WO2006127689A2/en
Priority to PCT/US2006/019883prioritypatent/WO2006127690A2/en
Priority to EP06770928Aprioritypatent/EP1940239A2/en
Priority to US11/913,267prioritypatent/US20090214445A1/en
Priority to EP06770921Aprioritypatent/EP1885204A1/en
Priority to PCT/US2006/019539prioritypatent/WO2006127498A2/en
Priority to PCT/US2006/019879prioritypatent/WO2006127686A2/en
Priority to PCT/US2006/019878prioritypatent/WO2006127685A2/en
Priority to EP06770931Aprioritypatent/EP1885205A1/en
Priority to EP06770926Aprioritypatent/EP1959749A2/en
Priority to EP06760216Aprioritypatent/EP1909596A2/en
Priority to PCT/US2006/019877prioritypatent/WO2006127684A2/en
Priority to PCT/US2006/019868prioritypatent/WO2006127679A2/en
Priority to EP06770927Aprioritypatent/EP1898716A2/en
Priority to EP06770922Aprioritypatent/EP1885199A1/en
Priority to PCT/US2006/019532prioritypatent/WO2006127494A2/en
Priority to EP06770924Aprioritypatent/EP1898715A2/en
Priority to PCT/US2006/019871prioritypatent/WO2006127681A2/en
Priority to US11/913,262prioritypatent/US20090175982A1/en
Priority to EP06770932Aprioritypatent/EP1885198A2/en
Priority to EP06760210Aprioritypatent/EP1906763A2/en
Priority to PCT/US2006/019869prioritypatent/WO2006127680A2/en
Priority to US11/913,132prioritypatent/US20090162418A1/en
Priority to PCT/US2006/019758prioritypatent/WO2006127616A2/en
Priority to PCT/US2006/019975prioritypatent/WO2006127740A2/en
Priority to US11/913,103prioritypatent/US20090074911A1/en
Priority to US11/913,107prioritypatent/US20100312652A1/en
Priority to US11/913,104prioritypatent/US20090089167A1/en
Priority to PCT/US2006/019977prioritypatent/WO2006127742A2/en
Priority to PCT/US2006/019973prioritypatent/WO2006127738A2/en
Priority to PCT/US2006/019976prioritypatent/WO2006127741A2/en
Priority to US11/913,260prioritypatent/US20090220642A1/en
Priority to PCT/US2006/019666prioritypatent/WO2006127559A2/en
Priority to ARP060102116Aprioritypatent/AR053481A1/en
Priority to ARP060102115Aprioritypatent/AR053480A1/en
Assigned to KRAFT FOODS GLOBAL, INC.reassignmentKRAFT FOODS GLOBAL, INC.MERGER (SEE DOCUMENT FOR DETAILS).Assignors: CADBURY ADAMS USA LLC
Assigned to KRAFT FOODS GLOBAL BRANDS LLCreassignmentKRAFT FOODS GLOBAL BRANDS LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: KRAFT FOODS GLOBAL, INC.
Assigned to INTERCONTINENTAL GREAT BRANDS LLCreassignmentINTERCONTINENTAL GREAT BRANDS LLCCHANGE OF NAME (SEE DOCUMENT FOR DETAILS).Assignors: KRAFT FOODS GLOBAL BRANDS LLC
Application grantedgrantedCritical
Publication of US9271904B2publicationCriticalpatent/US9271904B2/en
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Oral delivery systems including at least one encapsulated active are provided. The oral delivery systems include at least one active component; and a polymer matrix at least partially encapsulating the at least one active component. In some embodiments, the polymer matrix has a tensile strength of at least about 6,500 psi and/or includes at least one polymer having a water absorption of about 0.01% to about 50% by weight. The at least one active component may be an oral care active, which may be encapsulated alone or in combination with other actives, such as a taste masking active.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
The present application is a continuation-in-part of PCT US04/37185, filed Nov. 22, 2004, and a continuation-in-part of U.S. application Ser. No. 11/083,968, filed Mar. 21, 2005 now U.S. Pat. No. 8,828,423 (the U.S. National Phase filing of PCT US04/37185), which are both continuations-in-part of U.S. application Ser. No. 10/719,298, filed Nov. 21, 2003 now abandoned, the contents all of which are incorporated herein by reference in their entirety.
FIELD
The present invention is generally directed to oral delivery systems including an encapsulated active ingredient. In particular, the invention relates to an oral delivery system in which at least one active component is encapsulated in a polymer matrix. In some embodiments, the polymer matrix may have a tensile strength within a desirable range and/or may include at least one hydrophobic polymer to provide controlled release of the active.
BACKGROUND
Unblemished white teeth have long been considered cosmetically desirable. Unfortunately, in the absence of thorough dental cleaning, teeth can become discolored or stained from color-causing substances present in food, beverages, tobacco, and the like, and internal sources such as blood, amalgam-based fillings, and antibiotics (e.g., tetracycline).
Currently, there are a number of methods for removing stains in teeth. These methods are generally based on the use of abrasives, hydrolytic agents or oxidizing agents to break down the staining material. For example, mechanical methods of tooth cleaning are known whereby the stain is mechanically abraded through the use of abrasives or polishing agents normally employed in toothpaste preparations. Typical preparations containing abrasives are toothpastes, gels or powder dentifrices, which require close contact with the teeth. Typical abrasives include hydrated silica, calcium carbonate, sodium bicarbonate and alumina.
Hydrolytic agents, such as proteolytic enzymes, can also be used to whiten teeth. These products are usually in the form of pastes or gels, and function to whiten teeth by removing the plaque and calculus that have entrapped the stain.
Oxidizing agents such as urea peroxide, hydrogen peroxide or calcium peroxide, represent the most common forms of whitening agents for tooth enamels. It is believed that peroxides whiten teeth by releasing hydroxyl radicals capable of breaking down the plaque/stain complex into a form that can be flushed away or removed by an abrasive.
Other active stain-removing components include surface-active agents, such as anionic surfactants and chelators, which have been incorporated into stain-removing compositions because of their stain-removing properties. For example, anionic surfactants typically employed in dentifrice compositions include sodium lauryl sulfate and sodium N-lauryl sarcosinate. Furthermore, chelators, such as polyphosphates, are typically employed in dentifrice compositions as tartar control ingredients. For example, tetrasodium pyrophosphate and sodium tri-polyphosphate are typical ingredients found in such compositions.
Stain-removing gum compositions are known. For example, gum compositions including sodium tripolyphosphate and xylitol are known. Also, gum compositions are known, which include hexametaphosphate and an abrasive silica material. Moreover, a dental gum is known, which includes sodium tripolyphosphate, tetrasodium pyrophosphate, a silica abrasive and zinc acetate. A whitening gum composition is also known, which includes the abrasives sodium bicarbonate and calcium carbonate, and is sold under the brand name V6®.
Moreover, stain-removing gum compositions are known that include anionic surfactants such as fatty acid salts. For example, sodium stearate is a fatty acid salt employed in a gum product sold under the brand name Trident White® (see U.S. Pat. Nos. 6,471,945, 6,479,071 and 6,696,044). Furthermore, copending, commonly-owned U.S. patent application Ser. No. 10/901,511 discloses stain-removing gum compositions containing a salt of ricinoleic acid.
Current delivery systems for oral care/tooth whitening actives present problems. For example, the release of actives from tablets, films, mouthwashes, toothpastes and gels is quite rapid and occurs for a short period of time. Most of these products produce temporary, elevated levels of actives, followed by a rapid decrease to zero levels. Similarly, some tooth whitening actives can be released at elevated levels from gum bases within a few minutes following mastication, followed by a rapid decrease to low levels.
Encapsulating materials have been used previously to encapsulate sweeteners, acids, flavorings, soluble dietary fibers, biologically active agents, breath freshening agents, and the like. Such encapsulating materials have included, for example, cellulose and its derivatives, arabinogalactin, gum arabic, polyolefins, waxes, vinyl polymers, gelatin and zein. In general, encapsulating actives in edible compositions has been used to slow their degradation, to enhance the uniformity of their release, and to prolong their release in a controlled manner.
The selection of a suitable encapsulating material (e.g., polyvinyl acetate, PVAc) has usually been focused on the molecular weight of the encapsulating material, with higher molecular weights generally associated with longer release times. However, this approach is limited in that a predictable modification of the release profile of an active is made only through the modification of the molecular weight of the encapsulating material.
In view of the foregoing, it would be beneficial to provide oral delivery systems wherein a controlled amount of an oral care active is delivered to an oral cavity over a longer period of time, rather than delivering a high concentration of the active followed by no active. In particular, it would be advantageous to encapsulate at least one oral care active in a suitable polymer matrix to enhance the uniformity of its release, and to prolong its release in a controlled manner. In some embodiments, the release profile of the active may be modified by selection of a polymer matrix having a tensile strength within a desirable range and/or may be modified by including in the matrix a polymer having a water absorption within a desirable range.
SUMMARY OF THE INVENTION
The present invention is generally directed to oral delivery systems in which an active component has been effectively encapsulated in a polymer matrix. The oral delivery systems are for use in edible compositions. The polymer matrix prolongs the release of the active in a controlled manner and/or enhances the uniformity of the release of the active. In so doing, the active remains available for its intended purpose in the oral cavity for a longer period of time as compared to an edible composition wherein the active component is free. This will be discussed in greater detail below.
In one aspect of the present invention, there is provided an oral delivery system including at least one active component; and a polymer matrix at least partially encapsulating the at least one active component. The polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.01% to about 50% by weight.
The oral compositions of this invention may include, but are not limited to, any number of compositions, including gums, confectionary compositions, toothpastes and mouthwashes. For example, certain aspects of the present invention relate to tooth whitening gum compositions.
In some embodiments, the gum composition includes a gum base; and a delivery system. The delivery system for use in the gum composition includes at least one active component; and a polymer matrix at least partially encapsulating the at least one active component. The polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.01% to about 50% by weight.
Other aspects of the present invention relate to methods of preparing and using the inventive oral delivery compositions provided herein.
In some embodiments, a method of preparing an oral delivery system includes at least partially encapsulating the least one active component in a polymer matrix, thereby forming an oral delivery system. The polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.0.1% to about 50% by weight.
The oral delivery systems of the present invention may be prepared in any number of ways. For example, the active component(s) can be at least partially encapsulated by the polymer using extrusion. The active component(s) can also be at least partially encapsulated using a high shear mixer, such as a sigma or Banbury mixer to mix the active component(s) with a polymer melt. In another example, the active component(s) can be at least partially encapsulated by using a spray coating of fluidized particles of the polymer.
The present invention also provides a method of preparing an oral composition, such as an oral care composition. The method includes providing an oral delivery system; and combining the oral delivery system with a carrier composition. The oral delivery system for use in preparing the oral composition includes at least one active component; and a polymer matrix at least partially encapsulating the at least one active component. The polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.01% to about 50% by weight.
One particular aspect of the present invention relates to a method of preparing a gum composition. In some embodiments, this method includes at least partially encapsulating at least one active component in a polymer matrix. The polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.01% to about 50%. The method further includes heating a gum base to soften the base; and mixing the softened gum base with the at least partially encapsulated active component to obtain a substantially homogeneous mixture. The method also includes cooling the mixture; and forming the cooled mixture into gum pieces.
Further provided is a method of controlling the release of an active component from an oral delivery system. This method includes providing the oral delivery system of the present invention; and employing the oral delivery system in an oral cavity, whereby a controlled amount of the at least one active component is released into the oral cavity.
BRIEF DESCRIPTION OF THE DRAWING
The FIGURE is a graphical representation of the percentage of sodium tripolyphosphate (STP) that is retained in the bolus of a chewing gum versus the minutes chewed for chewing gum compositions including free (control), and encapsulated STP (inventive).
DETAILED WRITTEN DESCRIPTION
The present invention provides a delivery system for active components. The delivery system is for use in edible compositions, such as gum compositions. The delivery system includes an encapsulating material and at least one active component. The encapsulating material at least partially forms a physical barrier around the at least one active. This physical barrier prolongs the release of the active in an oral cavity in a controlled manner and/or enhances the uniformity of the release of the active in an oral cavity. In so doing, the active remains available for its intended purpose in the oral cavity for a longer period of time as compared to an edible composition wherein the active component is free.
As used herein the transitional term “comprising,” (also “comprises,” etc.) which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps, regardless of its use in the preamble or the body of a claim.
As used herein, the term “gum compositions” is intended to include any gum compositions, including “chewing gum” and “bubble gum.”
As used herein, the term “active component” refers to any encapsulated material included in the compositions of the present invention, wherein the active provides some desirable property upon release from encapsulation (for example, when the encapsulated material has been subjected to mastication). Examples of suitable actives include oral care actives, such as surfactants, anticalculus agents, hydrolytic agents (e.g., enzymes), bleaching or whitening agents, antibacterial agents, anticaries agents, dental remineralization agents, desensitizing agents, agents to counter breath odor or breath freshening agents, plaque acid buffering agents and sweeteners (e.g., high intensity sweeteners). Other examples of suitable actives include flavors, medicaments, vitamins, taste masking agents, etc.
The term “oral delivery system” as used herein is meant to encompass the polymer matrix and at least one active component, which is at least partially encapsulated by the polymer matrix. The term is also meant to include other additives, which may be used to form the oral delivery system (e.g., a solvent, a plasticizer, a filler, etc.). It will be understood that oral compositions (e.g., edible compositions) of the present invention may include a plurality of delivery systems, if desired.
By the term “at least partially encapsulating”, it is meant that the polymer matrix at least partially forms a physical barrier around the at least one active component. Such a barrier may be formed, for example, when a polymer melt and at least one active are mixed under high shear conditions using an extruder, or other high shear mixer. The barrier may also be formed as a polymer coating (e.g., spray coating), or a polymer film, which at least partially surrounds the at least one active, for example.
The oral delivery systems of the present invention are for use in edible compositions. The compositions of the present invention may be in a form selected from, for example, dentifrices including mouthwashes, mouthrinses, toothpastes, tooth powders, tooth hardeners, antiplaque compositions, dental creams, dental flosses, liquids, gels, and the like; chewing gums, including center-filled gums, and the like; and confectionaries, including mints, lozenges, and the like. In some embodiments, the compositions of the present invention are in the form of chewing gums.
In some embodiments, the present invention is directed to compositions with stain-removing properties for producing a whitening effect on dental surfaces that are treated with the same. Such compositions are especially suitable for removing stains, which adhere to, or are entrapped in materials on, the surface of teeth and for preventing build-up of the stain entrapping material and stains on dental surfaces. The compositions of the present invention are retained in the oral cavity for a sufficient time to contact the dental surfaces for purposes of providing beneficial dental effects.
An ingredient in an edible composition will have a release profile when a consumer consumes the edible composition. In some embodiments, the ingredient may be released by mechanical action of the chewing, and/or by chemical action or reaction of the ingredient with another ingredient or saliva or other material in the consumer's mouth. The release profile for the ingredient is indicative of the availability of the ingredient in the consumer's mouth to interact with receptors (e.g., taste receptors), mucous membranes, teeth, etc. in the consumer's mouth. An edible composition may include the same or different release profiles for different ingredients. In some embodiments, the release profile for only a finite number (e.g., one or two) of ingredients may be of primary importance.
The release profile of an ingredient in an edible composition can be influenced by many factors such as, for example, rate of chewing, intensity of chewing, the amount of the ingredient, form of the ingredient added to the edible composition (e.g., encapsulated in a delivery system, unencapsulated, pretreated), how the edible composition is mixed or otherwise prepared, when or how the ingredient is added to other ingredients in the edible composition, the ratio of the amount of the ingredient to the amount of one or more other ingredients in the edible composition, the ratio of the amount of the ingredient to the amount of one or more other ingredients in a delivery system that is included in the edible composition, etc.
In some embodiments, a release profile for an ingredient may be related to a specific time period. For example, release of an ingredient from a delivery system may increase during a first time period, reach a peak, and then decrease during a second time period. Thus, in some embodiments, a release profile for an ingredient may include one or more time periods, each of which has an associated release rate (which may or may not be known or measurable). The time periods may be the same length of time or may be different lengths of time. A first time period may have a fixed or varied release rate for the ingredient during the first time period and an average release rate for the ingredient over the first time period. Similarly, a second time period may have a fixed or varied release rate for the ingredient during the second time period and an average release rate for the ingredient over the second time period. In some embodiments, a release profile for an ingredient in an edible composition may include only one time period or be related to only a single point in time, both of which typically relate or are relative to when consumption of the edible composition has started. In other embodiments, a release profile may relate to two or more time periods and/or two or more points in time, all of which typically relate or are relative to when consumption of the edible product has started.
In some embodiments, a release profile may be defined or characterized by one or more factors or characteristics, even if other or all aspects of the release profile are not determined, selected, or even known. Thus, in some embodiments, a release profile for an ingredient may include only one characteristic. For example, characteristics may include one or more of the following: release rate of an ingredient during a time period, a specific time period during which a minimum, average, or predominant amount of an ingredient is released during consumption of an edible composition that includes the ingredient (even if some of the ingredient is released before or after the specific time period and even if the release rate during the time period is not specified or varies), a specific time after which a minimum, average, or predominant amount of an ingredient is released during consumption of an edible composition that includes the ingredient (even if some of the ingredient is released before the specific time and even if the release rates are or are not specified), etc.
In some embodiments, managing a release profile for one or more ingredients may include changing or otherwise managing the starting and ending times for the time periods, changing or otherwise managing the lengths of the time periods, and/or changing or otherwise managing the release rates during the time periods. For example, managing a release profile may include changing or managing a release rate during a time period. An ingredient can be released more quickly or earlier during a first or second time period by increasing its release rate during these time periods. Likewise, the ingredient can be released more slowly or in a more delayed manner during the first or second time periods by decreasing its release rate during these time periods. As another example, managing a release profile may include shifting the start and end of the time periods in the release profile, but the length of the time periods may stay the same and the release rates of the ingredient(s) during the time periods may stay the same (e.g., the release of an ingredient may be managed to delay the release of the predominant amount of the ingredient by one minute, five minutes, ten minutes, thirty minutes, etc.). As a third example, managing a release profile may include shifting the start or end of one or more time periods and changing the release rate within the one or more time periods.
In some embodiments, causing a delay in a release of an ingredient in an edible composition includes causing a delay in the release or availability of the predominant amount of the ingredient after consumption of the edible product begins and/or causing release or availability of a desire, predominant, or minimum amount of the ingredient at a certain time, after a certain time, or during a desired time period after consumption of the edible composition begins. In some embodiments, none of the ingredient will be released or become available before the certain time or before or after the desired time period. In other embodiments, some of the ingredient may be released or become available before the certain time and/or before or after the desired time period.
In some embodiments, determining or selecting a desired release profile may include determining or selecting one or more factors or characteristics of the desired release profile, as previously described above. The factors or characteristics than serve to define or characterize the release profile, even if other or all aspects of the release profile are not determined or selected. Thus, determining or selecting a release profile for an ingredient can includes situations where only one characteristic for the release of the ingredient is determined or selected. In some embodiments, a characteristic may be determined or measured by one or more techniques or methods such as, for example, chemical and/or mechanical testing and analysis, consumer testing, descriptive or expert taste or chew panel, other in vivo or in vitro testing, etc.
In accordance with the present invention, an oral care active may be employed in the compositions of the present invention. Such an active may be, but is not limited to, a tooth whitening active. For example, the encapsulated tooth whitening active may be one or more of the following: anticalculus agents, such as polyphosphate salts, surfactants, such as fatty acid salts, hydrolytic agents, such as proteolytic enzymes, and oxidizing agents, such as peroxides. Such agents facilitate the effective removal of dental stains. Other oral care actives include, for example, desensitizing agents, dental remineralization agents, antibacterial agents, anticaries agents, agents to counter breath odor or breath freshening agents and plaque acid buffering agents.
As described above, the release of non-encapsulated oral care actives from tablets, films, mouthwashes, toothpastes and gels is quite rapid and occurs for a short period of time. Most of these products produce temporary, elevated levels of actives, followed by a rapid decrease to zero levels. Similarly, some tooth whitening actives can be released at elevated levels from gum bases within a few minutes following mastication, followed by a rapid decrease to low levels. The present invention is directed to overcoming this problem by encapsulating the active(s) in a suitable polymer matrix.
For example, by encapsulating the active within a suitable polymer matrix, the present inventors have found that they can enhance the uniformity of an active's release, and prolong the active's release in a controlled manner. In some embodiments, the release profile of the active may be modified by selection of a polymer matrix having a tensile strength within a desirable range and/or may be modified by including in the matrix a polymer having a water absorption within a desirable range.
In some embodiments, a polymer matrix useful in the present invention has a tensile strength of at least about 6,500 psi. In some embodiments, the polymer matrix has a tensile strength of about 20,000 to about 50,000 psi. The tensile strength may be measured by ASTM D638.
In some embodiments, the polymer matrix includes at least one polymer having a water absorption of about 0.01% to about 50% by weight. In some embodiments, the water absorption of the at least one polymer is measurable by ASTM D570-98. In some embodiments, the at least one polymer has a water absorption of about 0.1% to about 15% by weight.
The at least one polymer of the polymer matrix provides a physical barrier around the at least one active component. In some embodiments, the polymer may be selected from at least one of the following: polyvinyl acetate, polyvinylacetate phthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof. The polymer matrix may further include a solvent, a plasticizer, a filler or a combination of these.
In some embodiments, the delivery system, when used in an oral composition, releases a controlled amount of the active component in an oral cavity over a longer period of time as compared to an oral composition wherein the active component is free. In one embodiment, this period of time is about 5 to about 60 minutes.
The present inventors have found that, when employed in a chewing gum composition, an oral delivery system of the present invention was useful for controlling and sustaining the release of actives in the oral cavity.
In some embodiments, at least about 50% of the active component remains in the oral composition after the time period of about 5 to about 60 minutes. For example, as shown in the Examples below, in vitro chew-out studies showed that chewing gum containing an inventive oral delivery system delayed the release of tooth whitening actives significantly during at least 30 minutes of chewing time as compared to a chewing gum containing free actives. This is significant because tooth whitening actives, if not released quickly, are not efficacious.
As described above, the oral delivery systems of the present invention include at least one active component. In some embodiments the at least one active component is selected from the following: anticalculus agents, abrasive agents, oral cleaning agents, bleaching or whitening agents, densensitizing agents, dental remineralization agents, surfactants, antibacterial agents, anticaries agents, agents to counter breath odor or breath freshening agents, plaque acid buffering agents, sweetening agents, cooling agents, warming agents, herbal agents, medicaments, vitamins, taste masking agents and combinations thereof.
In one desired embodiment, the at least one active component is an anticalculus agent and a taste masking agent. Examples of anticalculus agents include polyphosphates and sodium bicarbonate. Such anticalculus agents may be bitter in taste. Therefore, in some desired embodiments, the anticalculus agent (or any other unpleasant tasting active) may be encapsulated along with at least one taste masking agent. In some embodiments, the taste masking agent is a sweetener, such as an intense sweetener.
As described above, a suitable active for encapsulation may be a tooth whitening active. A tooth whitening active is preferably employed in the compositions of the present invention in a stain-removing effective amount. The stain-removing effective amount is an amount of the tooth whitening active that is sufficient to prevent, eliminate, or at least reduce, the presence of stains on dental surfaces in warm-blooded animals including humans, but low enough to avoid any undesirable side effects. This stain-removing effective amount of a tooth whitening active(s) may vary with the type and extent of the particular stain, the age and physical condition of the warm-blooded animal, including humans being treated, the duration of treatment, the nature of concurrent therapy, the specific tooth whitening active employed, and the particular carrier from which the tooth whitening active is applied.
The concentration of a tooth whitening active(s) in a composition of the present invention depends on the type of composition (e.g., toothpaste, mouthwash and rinse, lozenge, chewing gum, confectionary, and the like) used to apply the tooth whitening active(s) to the dental surfaces, due to the differences in the efficiency of the compositions contacting the teeth and due also to the effective amount of the composition generally used. The concentration may also depend on the levels of the stains present.
Except as otherwise noted, the amount of the components incorporated into the compositions according to the present invention is designated as percentage by weight based on the total weight of the composition.
As described above, an oral composition of the present invention can be a gum composition, such as chewing gum composition. The chewing gum compositions of the present invention may be coated or uncoated, and be in the form of slabs, sticks, pellets, balls and the like. The composition of the different forms of the chewing gum compositions will be similar but may vary with regard to the ratio of the components. For example, coated gum compositions may contain a lower percentage of softeners. Pellets and balls may have a chewing gum core, which has been coated with either a sugar solution or a sugarless solution to create the hard shell. Slabs and sticks are usually formulated to be softer in texture than the chewing gum core.
Center-filled gum is another common gum form. The gum portion has a similar composition and mode of manufacture to that described above. However, the center-fill is typically an aqueous liquid or gel, which is injected into the center of the gum during processing. A suitable encapsulated active(s) could optionally be incorporated into the center-fill during manufacture of the fill, incorporated directly into the chewing gum portion of the total gum composition, or both. The center-filled gum may also be optionally coated and may be prepared in various forms, such as in the form of a lollipop.
In some embodiments of the present invention, a coated gum may be formed, wherein the encapsulated active(s) is in at least one of the core or the gum coating. For example, an encapsulated abrasive agent may be incorporated into the coating, and encapsulated surface actives (e.g., surfactant and/or anticalculus agent) may be incorporated into the gum base. By providing an encapsulated abrasive in the coating, the stain is first mechanically abraded by the abrasive in combination with chewing, which requires close contact with the teeth. Whereas the abrasive continues to have a chemical effect in removing the stain after it is released from the coating into the saliva, it may be advantageous to enhance the mechanical abrasion initially by providing it in the coating layer. Furthermore, the coating provides another effective vehicle for delivering an encapsulated surface-active.
It is also well within the contemplation of the present invention that encapsulated active(s) can be incorporated into the gum base. The gum base provides another effective vehicle for delivering the active(s), such as abrasives and surface-active agents because it permits protracted contact of the active(s) with the teeth. For example, a tooth whitening agent(s) can chemically remove the stain once released from the gum base and/or gum coating into saliva. The oral delivery systems of the present invention, when employed in tooth whitening gums or other oral care compositions, permit controlled and sustained release of the active(s) in the oral cavity. This improves the efficacy of the active.
Chewing gum compositions of the present invention may include a gum base and most of the other typical chewing composition components, such as sweeteners, softeners, flavorants and the like. At least one encapsulated oral care active, such as a tooth whitening active, is employed in some embodiments of the gum compositions.
Surfactants
The oral compositions of the present invention may include encapsulated tooth whitening agent(s) as provided herein. For example, in some embodiments the at least one active component employed in the oral delivery system is a surfactant. Suitable surfactants may include anionic surfactants and nonionic surfactants or mixtures thereof. Anionic surfactants useful herein include medium and long chain fatty acid esters and salts. In some embodiments, the anionic surfactant is a water-soluble salt of a fatty acid having from 14 to 25 carbon atoms. The salt may include a metal ion that can be a divalent metal ion or a monovalent metal ion. For example, the metal ion can be selected from sodium, potassium, calcium, magnesium and combinations thereof.
Suitable examples of fatty acid salts include salts of stearate and palmitrate. Other examples include hydroxy fatty acid salts, such as salts of ricinoleic acid, castor oil and ergot oil. In some embodiments, the fatty acid salt is sodium stearate or sodium ricinoleate.
Ricinoleic acid accounts for about 90% of the triglyceride fatty acids of castor oil, and up to about 40% of the glyceride fatty acids of ergot oil. Other suitable hydroxy fatty acid salts include, but are not limited to, those derived from the following: lesquerolic acid, densipolic acid, auricolic acid and β-dimorphecolic acid. Combinations of hydroxy fatty acid salts may also be employed.
The water-soluble salts of hydroxy fatty acids may be derived from naturally occurring fatty acids having at least one hydroxyl functionality, such as ricinoleic acid. Furthermore, the surfactants employed in the present invention or the fatty acids from which they are derived may be chemically or enzymatically modified so as to contain at least one hydroxyl functionality.
The fatty acid salts may be derived from fatty acids found, for example, in animals, plants or bacteria. The polar —COOH group on short-chain fatty acids (e.g., 2-4 carbon atoms) and even medium-chain (e.g., 6 to 10 carbon atoms) is typically enough to make them soluble in water. However, as chain length increases (e.g., from 14 to 25 carbons), the fatty acid type becomes progressively less water soluble and tends to take on oily or fatty characteristics. The presence of a hydroxy group on long-chain fatty acids increases water solubility. Therefore, water-soluble salts of hydroxy fatty acids having from 14 to 25 carbon atoms are useful in the compositions of the present invention. In particular, the water solubility of a hydroxy fatty acid salt allows it to solubilize an established stain into the saliva and loosens it so that it can be easily removed by chewing, brushing or saliva.
In some embodiments, the inventive oral compositions can include other anionic or nonionic surfactants. For example, other suitable surfactants may include the following anionic or non-ionic surfactants: sulfated butyl oleate, sodium oleate, salts of fumaric acid, potassium glomate, organic acid esters of mono- and diglycerides, stearyl monoglyceridyl citrate, succistearin, dioctyl sodium sulfosuccinate, glycerol tristearate, lecithin, hydroxylated lecithin, sodium lauryl sulfate, acetylated monoglycerides, succinylated monoglycerides, monoglyceride citrate, ethoxylated mono- and diglycerides, sorbitan monostearate, calcium stearyl-2-lactylate, sodium stearyl lactylate, lactylated fatty acid esters of glycerol and propylene glycerol, glycerol-lactoesters of C8-C24fatty acids, polyglycerol esters of C8-C24fatty acids, propylene glycol alginate, sucrose C8-C24fatty acid esters, diacetyl tartaric and citric acid esters of mono- and diglycerides, triacetin, sarcosinate surfactants, isethionate surfactants, tautate surfactants, pluronics, polyethylene oxide condensates of alkyl phenols, products derived from the condensation of ethylene oxide with the reaction product of propylene oxide and ethylene di amine, ethylene oxide condensates of aliphatic alcohols, long chain tertiary amine oxides, long chain tertiary phosphine oxides, long chain dialkyl sulfoxides and mixtures thereof.
The surfactant, alone or in combination with other surfactants, may be present in oral compositions of the present invention in concentrations of about 0.001% to about 20% by weight of the total composition. In some embodiments, the surfactant may be present at about 0.05 to about 10% by weight of the total composition. Moreover, in some embodiments, the surfactant may be present in amounts of about 0.05 to about 2% by weight of the total composition.
In some embodiments, the surfactant employed in the compositions of the present invention is sodium stearate, sodium ricinolente, a sodium lauryl sulfate, or a combination of these.
Anticalculus Agents
As described above, the oral compositions of the present invention may include encapsulated anticalculus active(s). These agents may be chelating agents that strongly interact with metal ions, such as the calcium found in the cell walls of mouth bacteria. Anticalculus agents can also disrupt plaque by removing calcium from the calcium bridges which help hold this biomass intact.
One group of agents suitable for use as anticalculus agents in the compositions of the present invention are phosphate salts. In some embodiments, the phosphate salt selected from the following: pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof. The anticalculus agent can be a dialkali metal pyrophosphate salt, a tetra alkali polyphosphate salt or a combination thereof. For example, in some embodiments, the chelating agent can be selected from the following: tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate and combinations of these.
In some embodiments, the at least one encapsulated active is sodium hexametaphosphate. In further embodiments, the at least one encapsulated active is sodium tripolyphosphate.
Other anticalculus agents that can be employed in the compositions of the present invention may include tartaric acid and salts thereof, citric acid and alkali metal citrates and mixtures thereof.
In some embodiments, the anticalculus agent is present in amounts of about 0.001 to about 5% by weight of the inventive oral composition. Furthermore, in some embodiments, the anticalculus agent is present in amounts of about 0.5 to about 3% by weight of the oral composition.
Taste Masking Agents
In some embodiments, the encapsulated active is a taste masking agent. It may be useful to include a taste masking agent in oral compositions, which include unpleasant tasting compounds, such as bitter and/or metal tasting compounds. For example, as described above, polyphosphates can have a bitter taste. By encapsulating the polyphosphate in a suitable polymer matrix along with a taste masking agent, the bitter taste can be masked.
Examples of taste masking agents include high intensity sweeteners, hydrogenated castor oil, Cremophor RH40 from BASF, sodium citrate, acid salts, cherry flavor, fruit flavors, flavors Cremophor, and cooling compounds, for example. Taste masking agents may be employed in amounts of about 0.1% to about 7% by weight of the oral composition.
Oral Cleaning Agents (e.g. Enzymes)
In some embodiments, the oral compositions of the present invention include encapsulated oral cleaning agents. Suitable oral cleaning agents include enzymes, which are hydrolytic agents. Enzymes function to whiten teeth by removing the plaque and calculus that entrap dental stains. For example, a protease, lipase, amylase, glucoamylase, dextranase, mutanase, or glucose oxidase may be included in the invention compositions.
In some embodiments, the enzyme is present in amounts of about 0.01% to about 5.0% of the inventive oral composition. Furthermore, in some embodiments, the enzyme is present in amounts of about 0.01% to about 3.0%, or more specifically from about 0.1% to about 1.0% by weight of the oral composition.
Bleaching or Whitening Agents
The oral compositions of the present invention may include encapsulated bleaching or whitening agents. Suitable bleaching or whitening agents include peroxide compounds. Peroxides are believed to whiten teeth by releasing hydroxyl radicals capable of breaking down the plaque-stain complex into a form that can be flushed away or removed by abrasives. Useful peroxides should contain an 0-0 bond, which can break down to provide at least one active specie. Examples of preferred peroxide compounds are inorganic peroxides, such as hydrogen peroxide, calcium peroxide, strontium peroxide, zinc peroxide or magnesium peroxide, and organic peroxides including, but not limited to, carbamide peroxide.
The amount of the peroxide compound incorporated into the present composition will vary depending upon the particular individual or combinations of stain removing agents employed and the type of other components or components of the compositions and their respective amounts. The peroxide compound may be present in a stain removing effective amount of from about 0.01% to 10%, preferably from about 0.1% to 5%, and more preferably from about 0.2% to 3% by weight based on the total weight of the composition.
Sweetening Agents
In some embodiments, the oral compositions of the present invention include encapsulated sweetening agents, such as high intensity sweeteners. High intensity sweeteners include sucralose, aspartame, neotame, salts of acesulfame, and the like. In particular, it is common to employ such sugar substitutes in oral care compositions, such as tooth whitening gum compositions. Such high intensity sweeteners are desirably present in amounts up to about 1.0% by weight of the oral composition.
Other suitable sweeteners, which may be encapsulated, are the same as those described below.
Abrasive Agents
In some embodiments, the oral compositions of the present invention may include an encapsulated abrasive agent. Suitable abrasives include silicas, aluminas, phosphates, carbonates and combinations thereof. In some embodiments, the abrasive agent is a silica selected from: precipitated silica, silica gels and combinations thereof. Moreover, in some embodiments the abrasive agent is selected from the following: calcium carbonate, sodium bicarbonate, sodium metaphosphate, potassium metaphosphate, tricalcium phosphate, dehydrated dicalcium phosphate and combinations thereof. In some embodiments, the abrasive agent is sodium bicarbonate, which can also be considered an anticalculus.
The abrasive polishing material contemplated for use in the compositions of the present invention can be any material which does not excessively abrade dentin. However, silica dental abrasives have unique benefits of exceptional dental cleaning and polishing performance without unduly abrading tooth enamel or dentin.
The silica abrasive polishing materials herein, as well as other abrasives, generally have an average particle size ranging between about 0.1 to about 30 microns, and preferably from about 5 to about 15 microns. The abrasive can be precipitated silica or silica gels such as the silica xerogels described in U.S. Pat. No. 3,538,230 to Pader, et al. and U.S. Pat. No. 3,862,307 to DiGiulio, both incorporated herein by reference in their entirety. Preferred are the silica xerogels marketed under the trade name “Syloid” by the W. R. Grace & Company, Davison Chemical Division. Also preferred are the precipitated silica materials, such as those marketed by the J. M. Huber Corporation under the trade name “Zeodent”, particularly the silica carrying the designation “Zeodent 119”. The types of silica dental abrasives useful in the present invention are described in detail in U.S. Pat. No. 4,340,583 to Wason, incorporated herein by reference in its entirety. Silica abrasives described in U.S. patent application Ser. Nos. 08/434,147 and 08/434,149, both filed May 2, 1995, are also herein incorporated by reference.
In some embodiments, an abrasive is present in amounts from about 0.1 to about 30% by weight of the oral composition. The abrasive agent may be more typically employed in amounts from about 0.5 to about 5% by weight of the total composition. The abrasive in the toothpaste compositions of this invention is generally present at a level of from about 0.5% to about 10% by weight of the composition. Moreover, inventive chewing gum may contain from about 1% to about 6% of abrasive, by weight of the oral composition.
The silica used to prepare a chewing gum composition of the present invention is differentiated by means of its oil absorption value, having oil absorption value of less than 100 cc/100 g, and preferably in the range of from 45 cc/100 g silica to less than 70 cc/100 g silica. Silica particularly useful in the practice of the present invention is marketed under the trade designation SYLODENT XWA GRACE Davison Co., Columbia, DS 21044. An example of such silica is SYLODENT XWA 150, a silica precipitate having a water content of 4.7% by weight averaging from about 7 to about 11 microns in diameter, having an Einlehner Hardness of 5, a BET surface area of 390 m.sup.2/g of silica, an oil absorption of less than 70 cm.sup.3/100 g of silica. This silica exhibits low abrasiveness to tooth enamel.
A silica abrasive can be used as the sole abrasive in preparing a chewing gum of the present invention or in combination with other known abrasives or polishing agents, including calcium carbonate, sodium bicarbonate, sodium metaphosphate, potassium metaphosphate, tricalcium phosphate, dehydrated dicalcium phosphate, or other siliceous materials, or combinations thereof.
In some embodiments, the total quantity of abrasive silica present in a chewing gum composition of the present invention is at a concentration of from about 0.1 to about 20% by weight. Moreover, in some embodiments, the total quantity of abrasive silica present in a chewing gum composition of the present invention is from about 0.5% to about 5% by weight.
Antibacterial Agents
In some embodiments, the oral compositions of the present invention include at least one encapsulated antibacterial agent. The antibacterial agent may be, but is not limited to, the following: triclosan, chlorhexidine, zinc citrate, silver nitrate, copper and cetylpyridinium chloride.
In some embodiments, the antibacterial agent is present in an oral composition of the present invention at a concentration of from about 0.01% to about 3.0% by weight.
Anticaries Agent
In still other embodiments, the oral compositions of the present invention include at least one encapsulated anticaries agent. An anticaries agent for use in the present invention may be a fluoride ion or a fluoride-providing component. Desirably, the anticaries agent would be useful in an amount sufficient to supply about 1 ppm to about 1,500 ppm of fluoride ions.
Anticaries agents include inorganic fluoride salts, such as soluble alkali metal salts. Examples include sodium fluoride, potassium fluoride, sodium fluorosilicate, ammonium fluorosilicate, and sodium monofluorophosphate. Suitable anticaries agents further include tin fluorides, such as stannous fluoride and stannous chloride. In one embodiment, sodium fluoride is a preferred anticaries agent.
A fluoride-containing compound having a beneficial effect on the care and hygiene of the oral cavity, e.g., diminution of enamel solubility in acid and protection of the teeth against decay, may also be incorporated encapsulated. Examples of fluoride-containing compounds, which would be suitable in this regard include sodium fluoride, stannous fluoride, potassium fluoride, potassium stannous fluoride, sodium hexafluorostannate, stannous chlorofluoride, sodium fluorozirconate and sodium monofluorophosphate. These materials, which disassociate or release fluoride-containing ions in water, suitably may be present in an effective, but not toxic amount, usually within the range of about 0.01 to about 1.0% by weight of the water-soluble fluoride content thereof.
Other anticaries agents may include xylitol and calcium casein peptone-calcium phosphate (CCP-CP).
Agents to Counter Breath Odor/Breath Freshening Agents
In some embodiments, the oral compositions of the present invention include at least one encapsulated agent to counter breath odor or freshen breath. These agents may be present in an oral composition of this invention an amount of about 0.01% to about 7.0% by weight.
Such agents include, for example, an essential oil, a flavoring aldehyde, or an alcohol. Examples of essential oils include oils of spearmint, peppermint, wintergreen, sassafras chlorophyll, clove, sage, eucalyptus, marjoram, cinnamon, lemon, lime, grapefruit and orange. Also useful are menthol, carvone and anethole. Of these, the most commonly employed are oils of peppermint, spearmint and chlorophyll. Other suitable flavoring agents are the same as those described below.
Suitable agents to counter breath odor or freshening breath also include the following: zinc citrate, zinc acetate, zinc fluoride, zinc ammonium sulfate, zinc bromide, zinc iodide, zinc chloride, zinc nitrate, zinc fluosilicate, zinc gluconate, zinc tartarate, zinc succinate, zinc formate, zinc chromate, zinc phenol sulfonate, zinc dithionate, zinc sulfate, silver nitrate, zinc salicylate, zinc glycerophosphate, copper nitrate and combinations thereof.
Other Active Components
In some embodiments, the at least one encapsulated active component is a desensitizing agent. The desensitizing agent may be, for example, potassium nitrate or potassium citrate.
In other embodiments, the at least one encapsulated active component is a dental remineralization agent. For example, the dental remineralization agent may be calcium casein peptone-calcium phosphate (CCP-CP) or calcium phosphates casein glycomacropeptide.
In further embodiments, the encapsulated active component is a plaque buffering agent, an example of which is urea.
In still other embodiments, the encapsulated active component may be a cooling agent or warming agent. Suitable examples, and their amounts are provided below.
In yet still other embodiments, the encapsulated active may be an herbal agent, a medicament or a vitamin.
Carrier Composition
The oral compositions of the present invention include a carrier composition, in an appropriate amount to accommodate the other components of the formulation. The term “carrier composition” refers to a vehicle capable of being mixed with the encapsulated active components for delivery to the oral cavity for oral care purposes, and which will not cause harm to warm-blooded animals, including humans. The carriers further include those components of the composition that are capable of being commingled without interaction in a manner which would substantially reduce the composition's stability and/or efficacy for dental stain-removal in the oral cavity of warm-blooded animals, including humans, in accordance with the compositions and methods of the present invention.
The carriers of the present invention can include one or more compatible solid or liquid filler diluents or encapsulating substances, which are suitable for oral administration. The carriers or excipients employed in the present invention may be in any form appropriate to the mode of delivery, for example, solutions, colloidal dispersions, emulsions, suspensions, rinses, gels, foams, powders, solids, and the like, and can include conventional components of toothpastes (including gels), mouthwashes and rinses, mouth sprays, chewing gums, lozenges, and confectionaries. Carriers suitable for the preparation of compositions of the present invention are well known in the art. Their selection will depend on secondary considerations like taste, cost, shelf stability and the like.
In some embodiments, an oral composition of the present invention includes a carrier composition selected from the following: a gum base, a confectionary base, a toothpaste base, a gel dentifrice base and a tooth powder base. For example, the oral composition may be a gum composition, lozenge composition, mint composition, candy composition, toothpaste composition, gel dentifrice composition, mouth rinse or mouthwash composition, or a toothpowder composition.
Types of additives or ingredients, which may be included in the present compositions include one or more desirable stain-removing agents as provided herein. The inventive compositions may also include a component selected from the following: elastomers, elastomer solvents, waxes, emulsifiers, plasticizers, softeners, dispersing agents, sweeteners, flavorants, humectants, active agents, cooling agents, warming agents, tooth whitening agents, colorants, bulking agents, fillers and combinations thereof.
Moreover, in some embodiments a film-forming polymer may be included in the compositions of the present invention. For example, the film-forming polymer may be a synthetic anionic polymeric polycarboxylate (SAPP), such a PVM/MA copolymer (Gantrez S-97, GAF Corp.). Such polymers are described in U.S. Pat. Nos. 5,334,375 and 5,505,933, which are incorporated by reference herein in their entirety. SAPP's have previously been described as being useful for dentin sensitivity reduction. Moreover, SAPP's have previously been described as antibacterial-enhancing agents, which enhance delivery of an antibacterial agent to oral surfaces, and which enhance the retention of the antibacterial agent on oral surfaces. It is well within the contemplation of the present invention that film-forming polymers, such as PVM/MA copolymer, may be employed in the compositions of the present invention as a means of reducing stain formation.
As described above, in some embodiments, the inventive composition may be a gum composition including a gum base and the encapsulated active.
As described above, in some embodiments, the inventive composition may be a gum composition including a gum base and the encapsulated active. The gum base may be present in an amount of about 20 to about 40% by weight of the total composition. It may include any component known in the chewing gum art. For example, the gum base may include sweeteners, elastomers, bulking agents, waxes, elastomer solvents, emulsifiers, plasticizers, fillers, mixtures thereof and may include a desirable oral care agent(s) as provided herein.
In some embodiments, the gum base may include a suitable sugar bulking agent. For example, the gum base may include a specific polyol composition including at least one polyol which is from about 30% to about 80% by weight of the gum base, and desirably from 50% to about 60%. The polyol composition may include any polyol known in the art including, but not limited to maltitol, sorbitol, erythritol, xylitol, mannitol, isomalt, lactitol and combinations thereof. Lycasin which is a hydrogenated starch hydrolysate including sorbitol and maltitol, may also be used.
The elastomers (rubbers) employed in the gum base will vary greatly depending upon various factors such as the type of gum base desired, the consistency of gum composition desired and the other components used in the composition to make the final chewing gum product. The elastomer may be any water-insoluble polymer known in the art, and includes those gum polymers utilized for chewing gums and bubble gums. Illustrative examples of suitable polymers in gum bases include both natural and synthetic elastomers. For example, those polymers which are suitable in gum base compositions include, without limitation, natural substances (of vegetable origin) such as chicle, natural rubber, crown gum, nispero, rosidinha, jelutong, perillo, niger gutta, tunu, balata, guttapercha, lechi capsi, sorva, gutta kay, and the like, and mixtures thereof. Examples of synthetic elastomers include, without limitation, styrene-butadiene copolymers (SBR), polyisobutylene, isobutylene-isoprene copolymers, polyethylene, polyvinyl acetate and the like, and mixtures thereof.
The amount of elastomer employed in the gum base may vary depending upon various factors such as the type of gum base used, the consistency of the gum composition desired and the other components used in the composition to make the final chewing gum product. In general, the elastomer will be present in the gum base in an amount from about 10% to about 60% by weight of the gum region, desirably from about 35% to about 40% by weight.
When a wax is present in the gum base, it softens the polymeric elastomer mixture and improves the elasticity of the gum base. The waxes employed will have a melting point below about 60° C., and preferably between about 45° C. and about 55° C. The low melting wax may be a paraffin wax. The wax may be present in the gum base in an amount from about 6% to about 10%, and preferably from about 7% to about 9.5%, by weight of the gum base.
In addition to the low melting point waxes, waxes having a higher melting point may be used in the gum base in amounts up to about 5%, by weight of the gum base. Such high melting waxes include beeswax, vegetable wax, candelilla wax, carnuba wax, most petroleum waxes, and the like, and mixtures thereof.
In addition to the components set out above, the gum base may include a variety of other components, such as components selected from elastomer solvents, emulsifiers, plasticizers, fillers, and mixtures thereof.
The gum base may contain elastomer solvents to aid in softening the elastomer component. Such elastomer solvents may include those elastomer solvents known in the art, for example, terpinene resins such as polymers of alpha-pinene or beta-pinene, methyl, glycerol and pentaerythritol esters of rosins and modified rosins and gums such as hydrogenated, dimerized and polymerized rosins, and mixtures thereof. Examples of elastomer solvents suitable for use herein may include the pentaerythritol ester of partially hydrogenated wood and gum rosin, the pentaerythritol ester of wood and gum rosin, the glycerol ester of wood rosin, the glycerol ester of partially dimerized wood and gum rosin, the glycerol ester of polymerized wood and gum rosin, the glycerol ester of tall oil rosin, the glycerol ester of wood and gum rosin and the partially hydrogenated wood and gum rosin and the partially hydrogenated methyl ester of wood and rosin, and the like, and mixtures thereof. The elastomer solvent may be employed in the gum base in amounts from about 2% to about 15%, and preferably from about 7% to about 1%, by weight of the gum base.
The gum base may also include emulsifiers which aid in dispersing any immiscible components into a single stable system. The emulsifiers useful in this invention include glyceryl monostearate, lecithin, fatty acid monoglycerides, diglycerides, propylene glycol monostearate, and the like, and mixtures thereof. The emulsifier may be employed in amounts from about 2% to about 15%, and more specifically, from about 7% to about 1%, by weight of the gum base.
The gum base may also include plasticizers or softeners to provide a variety of desirable textures and consistency properties. Because of the low molecular weight of these components, the plasticizers and softeners are able to penetrate the fundamental structure of the gum base making it plastic and less viscous. Useful plasticizers and softeners include lanolin, palmitic acid, oleic acid, stearic acid, sodium stearate, potassium stearate, glyceryl triacetate, glyceryl lecithin, glyceryl monostearate, propylene glycol monostearate, acetylated monoglyceride, glycerine, and the like, and mixtures thereof. Waxes, for example, natural and synthetic waxes, hydrogenated vegetable oils, petroleum waxes such as polyurethane waxes, polyethylene waxes, paraffin waxes, microcrystalline waxes, fatty waxes, sorbitan monostearate, tallow, propylene glycol, mixtures thereof, and the like, may also be incorporated into the gum base. The plasticizers and softeners are generally employed in the gum base in amounts up to about 20% by weight of the gum base, and more specifically in amounts from about 9% to about 17%, by weight of the gum base.
Plasticizers also include are the hydrogenated vegetable oils and include soybean oil and cottonseed oil which may be employed alone or in combination. These plasticizers provide the gum base with good texture and soft chew characteristics. These plasticizers and softeners are generally employed in amounts from about 5% to about 14%, and more specifically in amounts from about 5% to about 13.5%, by weight of the gum base.
Anhydrous glycerin may also be employed as a softening agent, such as the commercially available United States Pharmacopeia (USP) grade. Glycerin is a syrupy liquid with a sweet warm taste and has a sweetness of about 60% of that of cane sugar. Because glycerin is hygroscopic, the anhydrous glycerin may be maintained under anhydrous conditions throughout the preparation of the chewing gum composition.
Although softeners may be present to modify the texture of the gum composition, they may be present in reduced amounts as compared to typical gum compositions. For example, they may be present from about 0.5 to about 10% by weight based on the total weight of the composition, or they may not be present in the composition, since a surfactant active can act as a softener.
The gum base of this invention may also include effective amounts of bulking agents such as mineral adjuvants, which may serve as fillers and textural agents. Useful mineral adjuvants include calcium carbonate, magnesium carbonate, alumina, aluminum hydroxide, aluminum silicate, talc, tricalcium phosphate, dicalcium phosphate, calcium sulfate and the like, and mixtures thereof. These fillers or adjuvants may be used in the gum base compositions in various amounts. Preferably the amount of filler, when used, will be present in an amount from about 15% to about 40%, and desirably from about 20% to about 30%, by weight of the gum base.
A variety of traditional additives may be optionally included in the gum base in effective amounts such as coloring agents, antioxidants, preservatives, flavoring agents, and the like. For example, titanium dioxide and other dyes suitable for food, drug and cosmetic applications, known as F. D. & C. dyes, may be utilized. An anti-oxidant such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, and mixtures thereof, may also be included. Other conventional chewing gum additives known to one having ordinary skill in the chewing gum art may also be used in the gum base.
Some embodiments extend to methods of making the gum compositions. The manner in which the gum base components are mixed is not critical and is performed using standard techniques and apparatus known to those skilled in the art. In a typical method, an elastomer is admixed with an elastomer solvent and/or a plasticizer and/or an emulsifier and agitated for a period of from 1 to 30 minutes. The remaining components, such as the low melting point wax, are then admixed, either in bulk or incrementally, while the gum base mixture is blended again for 1 to 30 minutes.
The gum composition may include amounts of conventional additives selected from, but not limited to, the following: sweetening agents (sweeteners), plasticizers, softeners, emulsifiers, waxes, fillers, bulking agents (carriers, extenders, bulk sweeteners), mineral adjuvants, flavoring agents (flavors, flavorings), coloring agents (colorants, colorings), antioxidants, acidulants, thickeners, medicaments, and the like, and mixtures thereof. Some of these additives may serve more than one purpose. For example, in sugarless gum compositions, a sweetener, such as maltitol or other sugar alcohol, may also function as a bulking agent.
The plasticizers, softening agents, mineral adjuvants, waxes and antioxidants discussed above, as being suitable for use in the gum base, may also be used in the chewing gum composition. Examples of other conventional additives which may be used include emulsifiers, such as lecithin and glyceryl monostearate, thickeners, used alone or in combination with other softeners, such as methyl cellulose, alginates, carrageenan, xanthan gum, gelatin, carob, tragacanth, locust bean, and carboxy methyl cellulose, acidulants such as malic acid, adipic acid, citric acid, tartaric acid, fumaric acid, and mixtures thereof, and fillers, such as those discussed above under the category of mineral adjuvants.
In some embodiments, the gum region may also contain a bulking agent. Suitable bulking agents may be water-soluble and include sweetening agents selected from, but not limited to, monosaccharides, disaccharides, polysaccharides, sugar alcohols, and mixtures thereof; randomly bonded glucose polymers such as those polymers distributed under the tradename POLYDEXTROSE by Pfizer, Inc., Groton, Conn.; isomalt (a racemic mixture of alpha-D-glucopyranosyl-1,6-mannitol and alpha-D-glucopyranosyl-1,6-sorbitol manufactured under the tradename PALATINIT by Suddeutsche Zucker), maltodextrins; hydrogenated starch hydrolysates; hydrogenated hexoses; hydrogenated disaccharides; minerals, such as calcium carbonate, talc, titanium dioxide, dicalcium phosphate; celluloses; and mixtures thereof.
Suitable sugar bulking agents include monosaccharides, disaccharides and polysaccharides such as xylose, ribulose, glucose (dextrose), mannose, galactose, fructose (levulose), sucrose (sugar), maltose, invert sugar, partially hydrolyzed starch and corn syrup solids, and mixtures thereof.
Suitable sugar alcohol bulking agents include sorbitol, xylitol, mannitol, galactitol, maltitol, and mixtures thereof.
Suitable hydrogenated starch hydrolysates include those disclosed in U.S. Pat. Nos. 25,959, 3,356,811, 4,279,931 and various hydrogenated glucose syrups and/or powders which contain sorbitol, hydrogenated disaccharides, hydrogenated higher polysaccharides, or mixtures thereof. Hydrogenated starch hydrolysates are primarily prepared by the controlled catalytic hydrogenation of corn syrups. The resulting hydrogenated starch hydrolysates are mixtures of monomeric, dimeric, and polymeric saccharides. The ratios of these different saccharides give different hydrogenated starch hydrolysates different properties. Mixtures of hydrogenated starch hydrolysates, such as LYCASIN, a commercially available product manufactured by Roquette Freres of France, and HYSTAR, a commercially available product manufactured by Lonza, Inc., of Fairlawn, N.J., are also useful.
The sweetening agents used may be selected from a wide range of materials including water-soluble sweeteners, water-soluble artificial sweeteners, water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, dipeptide based sweeteners, and protein based sweeteners, including mixtures thereof. Without being limited to particular sweeteners, representative categories and examples include:
    • (a) water-soluble sweetening agents such as dihydrochalcones, monellin, steviosides, glycyrrhizin, dihydroflavenol, and sugar alcohols such as sorbitol, mannitol, maltitol, and L-aminodicarboxylic acid aminoalkenoic acid ester amides, such as those disclosed in U.S. Pat. No. 4,619,834, which disclosure is incorporated herein by reference, and mixtures thereof;
    • (b) water-soluble artificial sweeteners such as soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (Acesulfame-K), the free acid form of saccharin, and mixtures thereof;
    • (c) dipeptide based sweeteners, such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (Aspartame), N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine 1-methyl ester (Neotame), and materials described in U.S. Pat. No. 3,492,131, L-alphaaspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-D-alaninamide hydrate (Alitame), methyl esters of L-aspartyl-L-phenylglycerine and L-aspartyl-L-2,5-dihydrophenyl-glycine, L-aspartyl-2,5-dihydro-L-phenylalanine; L-aspartyl-L-(1-cyclohexen)-alanine, and mixtures thereof;
    • (d) water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, such as chlorinated derivatives of ordinary sugar (sucrose), e.g., chlorodeoxysugar derivatives such as derivatives of chlorodeoxysucrose or chlorodeoxygalactosucrose, known, for example, under the product designation of Sucralose; examples of chlorodeoxysucrose and chlorodeoxygalactosucrose derivatives include but are not limited to: 1-chloro-1′-deoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-alpha-D-fructofuranoside, or 4-chloro-4-deoxygalactosucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1-chloro-1-deoxy-beta-D-fructo-furanoside, or 4,1′-dichloro-4,1′-dideoxygalactosucrose; 1′,6′-dichloro1′,6′-dideoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,1′,6′-trichloro-4,1′,6′-trideoxygalactosucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galactopyranosyl-6-chloro-6-deoxy-beta-D-fructofuranoside, or 4,6,6′-trichloro-4,6,6′-trideoxygalactosucrose; 6,1′,6′-trichloro-6,1′,6′-trideoxysucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galacto-pyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,6,1′,6′-tetrachloro4,6,1′,6′-tetradeoxygalacto-sucrose; and 4,6,1′,6′-tetradeoxy-sucrose, and mixtures thereof; and
    • (e) protein based sweeteners such as thaumaoccous danielli (Thaumatin I and II).
The intense sweetening agents may be used in many distinct physical forms well-known in the art to provide an initial burst of sweetness and/or a prolonged sensation of sweetness. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
Desirably, the sweetener is a high intensity sweetener such as aspartame, sucralose, and acesulfame potassium (Ace-K).
In general, an effective amount of sweetener may be utilized to provide the level of sweetness desired, and this amount may vary with the sweetener selected. The amount of sweetener may be present in amounts from about 0.001% to about 3%, by weight of the gum composition, depending upon the sweetener or combination of sweeteners used. The exact range of amounts for each type of sweetener may be selected by those skilled in the art.
The flavoring agents which may be used include those flavors known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics and/or oils, oleoresins and extracts derived from plants, leaves, flowers, fruits, and so forth, and combinations thereof. Nonlimiting representative flavor oils include spearmint oil, cinnamon oil, oil of wintergreen (methyl salicylate), peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, thyme oil, cedar leaf oil, oil of nutmeg, allspice, oil of sage, mace, oil of bitter almonds, and cassia oil. Also useful flavorings are artificial, natural and synthetic fruit flavors such as vanilla, and citrus oils including lemon, orange, lime, grapefruit, and fruit essences including apple, pear, peach, grape, strawberry, raspberry, cherry, plum, pineapple, apricot and so forth. These flavoring agents may be used in liquid or solid form and may be used individually or in admixture. Commonly used flavors include mints such as peppermint, menthol, spearmint, artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture.
Other useful flavorings include aldehydes and esters such as cinnamyl acetate, cinnamaldehyde, citral diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylamisol, and so forth may be used. Generally any flavoring or food additive such as those described in Chemicals Used in Food Processing, publication 1274, pages 63-258, by the National Academy of Sciences, may be used. This publication is incorporated herein by reference.
Further examples of aldehyde flavorings include but are not limited to acetaldehyde (apple), benzaldehyde (cherry, almond), anisic aldehyde (licorice, anise), cinnamic aldehyde (cinnamon), citral, i.e., alpha-citral (lemon, lime), neral, i.e., beta-citral (lemon, lime), decanal (orange, lemon), ethyl vanillin (vanilla, cream), heliotrope, i.e., piperonal (vanilla, cream), vanillin (vanilla, cream), alpha-amyl cinnamaldehyde (spicy fruity flavors), butyraldehyde (butter, cheese), valeraldehyde (butter, cheese), citronellal (modifies, many types), decanal (citrus fruits), aldehyde C-8 (citrus fruits), aldehyde C-9 (citrus fruits), aldehyde C-12 (citrus fruits), 2-ethyl butyraldehyde (berry fruits), hexenal, i.e., trans-2 (berry fruits), tolyl aldehyde (cherry, almond), veratraldehyde (vanilla), 2,6-dimethyl-5-heptenal, i.e., melonal (melon), 2,6-dimethyloctanal (green fruit), and 2-dodecenal (citrus, mandarin), cherry, grape, strawberry shortcake, and mixtures thereof.
In some embodiments, the flavoring agent may be employed in either liquid form and/or dried form. When employed in the latter form, suitable drying means such as spray drying the oil may be used. Alternatively, the flavoring agent may be absorbed onto water soluble materials, such as cellulose, starch, sugar, maltodextrin, gum arabic and so forth or may be encapsulated. The actual techniques for preparing such dried forms are well-known.
In some embodiments, the flavoring agents may be used in many distinct physical forms well-known in the art to provide an initial burst of flavor and/or a prolonged sensation of flavor. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
The amount of flavoring agent employed herein may be a matter of preference subject to such factors as the type of final chewing gum composition, the individual flavor, the gum base employed, and the strength of flavor desired. Thus, the amount of flavoring may be varied in order to obtain the result desired in the final product and such variations are within the capabilities of those skilled in the art without the need for undue experimentation. In gum compositions, the flavoring agent is generally present in amounts from about 0.02% to about 5%, and more specifically from about 0.1% to about 2%, and even more specifically, from about 0.8% to about 1.8%, by weight of the chewing gum composition.
Coloring agents may be used in amounts effective to produce the desired color. The coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the gum composition. For example, titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the gum composition. The colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as F.D.& C. dyes and lakes. The materials acceptable for the foregoing uses are preferably water-soluble. Illustrative nonlimiting examples include the indigoid dye known as F.D.& C. Blue No. 2, which is the disodium salt of 5,5-indigotindisulfonic acid. Similarly, the dye known as F.D.& C. Green No. 1 comprises a triphenylmethane dye and is the monosodium salt of 4-[4-(N-ethyl-p-sulfoniumbenzylamino)diphenylmethylene]-[1-(N-ethyl-N-p-sulfoniumbenzyl)-delta-2,5-cyclohexadieneimine]. A full recitation of all F.D.& C. colorants and their corresponding chemical structures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition, involume 5 at pages 857-884, which text is incorporated herein by reference.
Suitable oils and fats usable in gum compositions include partially hydrogenated vegetable or animal fats, such as coconut oil, palm kernel oil, beef tallow, and lard, among others. These components when used are generally present in amounts up to about 7%, and preferably up to about 3.5%, by weight of the gum composition.
Some embodiments may include a method for preparing the gum compositions, including both chewing gum and bubble gum compositions. The chewing gum compositions may be prepared using standard techniques and equipment known to those skilled in the art. The apparatus useful in accordance with some embodiments comprises mixing and heating apparatus well known in the chewing gum manufacturing arts, and therefore the selection of the specific apparatus will be apparent to the artisan.
In some embodiments, a method of preparing a tooth whitening gum composition includes at least partially encapsulating at least one active component of the composition in a polymer matrix. In some embodiments, the polymer matrix may have a tensile strength of at least about 6,500 psi and/or may include at least one polymer having a water absorption of about 0.01% to about 50%. The method also includes heating a gum base to soften the base and then mixing the softened gum base with the at least partially encapsulated active component so as to obtain a substantially homogeneous mixture. The method further includes cooling the mixture and forming the cooled mixture into individual gum pieces. Further components may be mixed into the softened gum base. For example, one or more of the following may typically be added: bulking agent, filler, humectant, flavorant, colorant, dispersing agent, softener, plasticizer, preservative, warming agent, cooling agent, tooth whitening agent and sweetener.
In some desired embodiment, the method of preparing a gum composition of the present invention can involve combining at least one encapsulated active with a gum base. The encapsulation procedure may, in one desired embodiment, involve extrusion.
For example, as detailed in the examples below, an oral delivery system of the present invention may be prepared by first melting a suitable polymer, such as polyvinyl acetate (PVAC), in a high shear mixer. A hydrogenated oil may then be added to the molten polymer. The active ingredient may then be added to the resulting mixture and mixed under high shear. The resulting filled polymer melt is then cooled and ground to a suitable size (e.g., less than 590 microns). The encapsulated active matrix may be stored in an air tight container with low humidity until it is to be employed in a gum base.
In some other embodiments, the method of preparing a gum composition of the present invention can involve suspending tooth whitening active particles in a fluidized air stream; and spraying a coating onto the suspended active particles. In some embodiments, the coating may include at least one polymer having a water absorption of about 0.01% to about 50%. Moreover, in some embodiments, the polymer may have a tensile strength of at least about 6,500 psi in the oral delivery system. Suitable actives are the same as those described above. Moreover, suitable polymers are the same as those described above. One or more coating layers may be sprayed onto the suspended active particles. The coating composition sprayed on the particles may include any solvent. The encapsulated particles may be combined with a gum base, as described in the Examples Section
The encapsulated particles of some embodiments may be prepared by any suitable spray coating method as known in the art. One suitable process is the Wurster process. This process provides a method for encapsulating individual particulate materials. First the particles to be encapsulated are suspended in a fluidizing air stream which provides a generally cyclic flow in front of a spray nozzle. The spray nozzle sprays an atomized flow of the coating solution.
The atomized barrier coating solution collides with the particles as they are carried away from the nozzle to provide a particle coating with the coating solution. The temperature of the fluidizing air stream, which also serves to suspend the particles to be coated, may be adjusted to evaporate the solvent shortly after the coating solution contacts the particles. This serves to solidify the coating on the particles, resulting in the desired encapsulated particle.
This process may be repeated until the desired thickness of the coating is achieved. Alternatively, the process may be repeated with a different coating solution to provide different and distinct coating layers in the encapsulated particle composition.
Following the coating process, the particles may then be formed to an appropriate size as desired, generally from an average particle size range of about 50 μm to about 800 μm. This may be accomplished by any suitable means such as chopping, pulverizing, milling or grinding the particles.
In some embodiments, gum pieces may be coated with an aqueous gum coating composition, which may be applied by any method known in the art. The gum coating composition may be present in an amount from about 25% to about 35% by weight of the total gum piece, more specifically about 30% by weight of the gum piece.
The outer gum coating may be hard or crunchy. Typically, the outer gum coating may include sorbitol, maltitol, xylitol, isomalt, and other crystallizable polyols; sucrose may also be used. Flavors may also be added to yield unique product characteristics. Moreover, the outer gum coating may include one or more of the encapsulated active agents provided herein.
The gum coating, if present, may include several opaque layers, such that the chewing gum composition is not visible through the coating itself, which can optionally be covered with a further one or more transparent layers for aesthetic, textural and protective purposes. The outer gum coating may also contain small amounts of water and gum arabic. The gum coating can be further coated with wax. The gum coating may be applied in a conventional manner by successive applications of a coating solution, with drying in between each coat. As the coating dries it usually becomes opaque and is usually white, though other colorants may be added. A polyol coating can be further coated with wax. The gum coating can further include colored flakes or speckles.
If the composition comprises a gum coating, it is possible that one or more oral care actives can be dispersed throughout the coating. This may be preferred if one or more oral care actives is incompatible in a single phase composition with another of the actives. Moreover, it is well within the contemplation of the present invention that providing one or more of the stain-removing agents in the gum coating can enhance the stain-removing efficacy of the total composition.
The encapsulated active can be included in one or more of the chewing gum regions such as the gum coating, the gum base or both. Additionally, the encapsulated active can be added at different stages of the manufacture, alone or as a premix with other components. For example, in some embodiments, the method for preparing a gum composition includes heating a gum base to soften the base; and mixing the softened gum base with at least one of the following: elastomer, wax, emulsifier, bulking agent, filler, humectant, flavorant, colorant, dispersing agent, softener, plasticizer, preservative, warming agent, cooling agent, encapsulated active agent and sweetener to obtain a substantially homogeneous mixture. The method also involves cooling the mixture; forming the cooled mixture into individual gum pieces; and coating the gum pieces with a gum coating solution including the encapsulated active. One or more other components may be included in the gum coating, such as including, but not limited to, the following: gum arabic, flavorant, colorant, sweetener, bulking agent, filler, anti-adherent compound, dispersing agent, moisture absorbing compound, warming agent, cooling agent and film-forming agent.
The gum coating may be formulated to assist with increasing the thermal stability of the gum piece and preventing leaking of a liquid fill if the gum product is a center-filled gum. In some embodiments, the gum coating may include a gelatin composition. The gelatin composition may be added as a 40% by weight solution and may be present in the gum coating composition from about 5% to about 10% by weight of the gum coating composition, and more specifically about 7% to about 8%. The gel strength of the gelatin may be from about 130 bloom to about 250 bloom.
Additives, such as physiological cooling agents, throat-soothing agents, spices, warming agents, tooth-whitening agents, breath-freshening agents, vitamins minerals, caffeine, drugs and other actives may be included in any or all portions of the chewing gum composition. Such components may be used in amounts sufficient to achieve their intended effects.
With respect to cooling agents, a variety of well known cooling agents may be employed. For example, among the useful cooling agents are included menthol, xylitol, menthane, menthone, menthyl acetate, menthyl salicylate, N,2,3-trimethyl-2-isopropyl butanamide (WS-23), N-ethyl-p-menthane-3-carboxamide (WS-3), menthyl succinate, 3,1-menthoxypropane 1,2-diol, among others. These and other suitable cooling agents are further described in the following U.S. patents, all of which are incorporated in their entirety by reference hereto: U.S. Pat. Nos. 4,230,688 and 4,032,661 to Rowsell et al.; U.S. Pat. No. 4,459,425 to Amano et al.; U.S. Pat. No. 4,136,163 to Watson et al.; and U.S. Pat. No. 5,266,592 to Grub et al. These cooling agents may be present in one or more of the outer gum coatings, the gum region surrounding the liquid fill, the liquid fill per se, or in any combination of those three gum areas. Cooling agents, when used in the outer coating composition for the gum, are generally present in amount of 0.01% to about 1.0%. When used in the other portions of the gum, such as the gum region or the center fill, they may be present in amounts of about 0.001 to about 10% by weight of the total chewing gum piece.
Warming components may be selected from a wide variety of compounds known to provide the sensory signal of warming to the user. These compounds offer the perceived sensation of warmth, particularly in the oral cavity, and often enhance the perception of flavors, sweeteners and other organoleptic components. Among the useful warming compounds included are vanillyl alcohol n-butylether (TK-1000) supplied by Takasago Perfumary Company Limited, Tokyo, Japan, vanillyl alcohol n-propylether, vanillyl alcohol isopropylether, vanillyl alcohol isobutylether, vanillyl alcohol n-aminoether, vanillyl alcohol isoamyleather, vanillyl alcohol n-hexyleather, vanillyl alcohol methylether, vanillyl alcohol ethyleather, gingerol, shogaol, paradol, zingerone, capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, ethanol, isopropol alcohol, iso-amylalcohol, benzyl alcohol, glycerine, and combinations thereof.
The features and advantages of the present invention are more fully shown by the following examples which are provided for purposes of illustration, and are not to be construed as limiting the invention in any way.
EXAMPLESExample 1Encapsulation of Sodium tripolyphosphate (STP)
An oral delivery system is prepared in the present example. The system includes sodium tripolyphosphate (STP) as the active component; and a polyvinylacetate matrix encapsulating the STP. The components of the delivery system are shown in Table 1.
TABLE 1
ComponentsWt. Percent
Polyvinyl Acetate52.00
Hydrogenated Oil3.00
STP45.00
Total100
The procedure used to prepare the delivery system is as follows: Polyvinyl acetate is melted at a temperature of about 105° C. in a high shear mixer, such as an extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil is added to the molten polyvinyl acetate. Sodium tripolyphosphate (STP) is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to a particle size of less than 590 microns. The encapsulated STP matrix is stored in air tight containers with low humidity below 35° C.
Example 2Encapsulation of Sodium Tripolyphosphate (STP), Sodium Hexametaphosphate (SHMP) and Sucralose
A further oral delivery system is prepared in the present example. The system includes STP, SHMP and sucralose as the active components. The system also includes a polyvinyl acetate matrix, which encapsulates the actives. The components of the delivery system are shown in Table 2.
TABLE 2
ComponentsWt. Percent
Polyvinyl Acetate62.00
Hydrogenated Oil3.00
STP20.00
SHMP10.00
Sucralose5.00
Total100
The procedure used to prepare the delivery system is as follows: Polyvinyl acetate is melted at a temperature of about 85° C. in a high shear mixer, such as an extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil is then added to the molten polyvinyl acetate. STP, SHMP and sucralose are added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to a particle size of less than 590 microns. The encapsulation is stored in air tight containers with low humidity below 35° C.
Example 3Encapsulation of Sodium Tripolyphosphate, Sodium Stearate and Sucralose
Yet another oral delivery system is prepared in the present example. This system includes the following actives: STP, sodium stearate and sucralose. The system also includes polyvinyl acetate, which at least partially encapsulates the actives. The components of the delivery system are shown in Table 3.
TABLE 3
ComponentsWt. Percent
Polyvinyl Acetate57.00
Hydrogenated Oil3.00
STP20.00
Sodium stearate15.00
Sucralose5.00
Total100
The procedure used to prepare the delivery system is as follows: Polyvinyl acetate is melted at a temperature of about 85° C. in a high shear mixer, such as an extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil is then added to the molten polyvinyl acetate. STP, sodium stearate and sucralose are added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to a particle size of less than 590 microns. The encapsulation is stored in air tight containers with low humidity below 35° C.
Example 4Chewing Gum Composition Including STP/Polyvinylacetate Encapsulation (From Example 1)
A chewing gum composition is prepared according to know procedures using the polyvinyl acetate encapsulated STP prepared in Example 1. The chewing gum components are shown in Table 4.
TABLE 4
ComponentsWt. Percent
Gum Base36.0
Sorbitol53.8
Glycerin1.0
Flavor2.5
Sodium tripolyphosphate/polyvinyl6.7
acetate encapsulation (from Example 1)
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Table 5 below shows the release of STP from chewing gums including encapsulated STP (composition of Table 4), as compared to the same gum composition including free STP. The % amount of STP remaining in the bolus was measured over a period of about 20 minutes. The results in Table 5 are presented graphically inFIG. 1.
TABLE 5
Chewing Time
0 Min.5 Min.10 Min.15 Min.20 Min.
Free STP100.0%20.3%2.0%1.3%0.0%
Encapsulated100.0%79.0%44.0%27.0%14.0%
STP
Based on the results in Table 5 (andFIG. 1), it can be seen that a delivery system of the present invention permits a controlled amount of the active (e.g., STP) to be released over a longer period of time, as compared to a gum composition where the active is free. In contrast, in the gum where the active is free, a high concentration of the active is initially delivered, followed by no active, which is undesirable. The delivery systems of the present invention enhance the uniformity of the active's release, and prolong its release in a controlled manner.
Example 5Evaluation of Stain Removal Efficacy of Chewing Gum Compositions Including Free Versus Encapsulated Active(s)
Chewing gums containing free and encapsulated STP were evaluated for their stain removal efficacy. In particular, the chewing gum compositions were tested for their ability to remove stains on eight enamel pieces. The mean values are shown in Table 6 below. The experiment was conducted using a modification of the laboratory methods developed by Kleber, C J et al; A mastication device designed for the evaluation of chewing gums, J Dent Res. 60 (11); 109-114, November 1981. The amount of stain on the teeth before and after treatment was measured quantitatively using a colorimeter. In preparation for treatment, the baseline L*a*b* stain scores of the tooth specimens were determined and used to stratify the teeth into balanced groups of 8 specimens each. A mechanical instrument with a flow system to simulate the human mastication was used to treat the tooth specimens with the test chewing gum. For testing, a specimen block with an enamel squares was placed in both the upper and lower tooth holders of the instrument.
Artificial saliva (15 ml, pH 7.5) was placed in the reservoir. Approximately 1.5 grams of test chewing gum (i.e. 2 tablets) was placed between the repositioning paddles directly over the lower tooth specimen. Then the mastication motor was started and the two specimen blocks with the enamel squares were treated with the chewing gums for 10 minutes. This treatment procedure was repeated for 6 consecutive times (a total of 60 minutes of treatment. Fresh gums and artificial saliva were used for each 10-minute treatment period. Following the 6thtreatment, the specimens were rinsed, allowed to dry for 30 minutes, and color readings made.
Stain Measurement
The color of the extrinsic stain on the bovine teeth was measured by taking diffuse reflectance absorbance readings with a Minolta spectrophotometer8. Absorbance measurement over the entire visible color spectrum were obtained using the CIELAB color scale. This scale quantifies color according to a 3 parameters, L* (lightness-darkness scale), a* (red-green chroma), and b* (yellow-blue chroma). In order to obtain reproducible readings, the stained enamel specimens were allowed to air-dry at room temperature for 30 minutes before measurements were made. Measurements were conducted by aligning the center of the 4-mm square segment of stained enamel directly over the 3-mm-diameter targeting aperture of the Minolta spectrophotometer. An average of 3 absorbance readings using the L*a*b* scale were taken for each specimen.
Stain Calculations
The overall change in the color of the stained teeth was calculated using the CIELAB equation ΔE=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2. The individual components of the L*a*b* scale represent the specific changes in the whiteness (L*), red-green color (a*), and yellow-blue color (b*). The ΔE value summarizes the overall change for each color factor (ΔL*, Δa*, and Δb*) and represents the ability of the test chewing gum to remove stain and whiten teeth. The data were calculated and defined as follows: Stain Removed=ΔE score after treatment (Table 6 below).
TABLE 6
Stain Removal Efficacy of Chewing Gums Including Free
Versus Encapsulated Active(s)
PrototypeΔE
Free STP 0.5%2.4
Encapsulated STP 0.5% (from Example 1)3.6
Free Sodium Stearate 0.5%, STP 0.5%, (from Example 2)4.3
Encapsulated Sodium stearate 0.5%, STP 0.5%5.1
As shown in Table 6, a chewing gum composition including encapsulated STP (from Example 1), changed the color of the stained teeth by a greater amount than the same gum composition including free STP. Moreover, a chewing gum composition including encapsulated sodium stearate and STP (from Example 2) changed the color of the stained teeth by a greater amount than the same gum composition including free sodium stearate and STP.
Example 6Encapsulation of Enzymes
The delivery systems of Example 6 are directed to encapsulation of glucose oxidase, either alone (Table 7) or in combination with other actives (Table 8). The delivery system components are shown below in Tables 7 and 8.
In the delivery systems of the present example, glucose oxidase is first encapsulated in gum Arabic. This is done in an effort to provide the heat-labile enzyme with a protective coating prior to its encapsulation in polyvinyl acetate. For example, the glucose oxidase may be spray coated onto suspended enzyme particles in a fluidized air stream. A gum arabic coating may then be sprayed onto the suspended enzyme particles. Thereafter, the coated enzyme particles may be encapsulated in polyvinyl acetate, alone or in combination with other actives. In the delivery systems of the present example, glucose is an enzyme activator. The reaction of glucose with glucose oxidase results in the production of a peroxide. Sucralose, where present, serves as a taste masking agent.
TABLE 7
Encapsulation of Glucose Oxidase (GO)
ComponentsWt. Percent
Glucose oxidase (encapsulated w/gum3.00
Arabic, 30% GO)
Glucose4.00
Hydrogenated Oil3.00
Silicon dioxide30.00
PVAc60.00
Total100
TABLE 8
Encapsulation of Glucose Oxidase with Taste Masking Active
ComponentsWt. Percent
Glucose oxidase (encapsulated w/gum4.00
Arabic, 30% GO)
Glucose4.00
Fat3.00
Silicon dioxide23.00
PVAc60.00
Sucralose6.00
Total100
The delivery systems of the present example are prepared as follows: PVAc is melted at about 85° C. in a high shear mixer. The hydrogenated oil (fat) is then added to the molten PVAc. The remaining components, including the coated enzyme particles, are added to the resulting mixture and mixed under high shear to completely disperse the components. The resulting filled polymer melt is cooled and ground to a particle size of less than 590 microns, and the encapsulated active(s) matrix is stored as described in Example 1.
Example 7Chewing Gum Compositions Including Encapsulated Glucose Oxidase
A chewing gum composition is prepared using the encapsulated glucose oxidase prepared in Example 6 (Tables 7 or 8). The chewing gum components are shown in Table 9 below.
TABLE 9
Chewing Gum Composition
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.00
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated Glucose Oxidase2.0
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining ingredients are then added to the melted gum base and mixed until the ingredients are completely dispersed. The resulting chewing gum composition is sized.
Example 8Encapsulation of Surfactants
The delivery systems of Example 8 are directed to encapsulation of a surfactant (e.g., sodium stearate), either alone (Table 10) or in combination with other actives (Tables 11 and 12). The delivery system components are shown below in Tables 10-12. Sucralose serves as a taste masking active.
TABLE 10
Encapsulation of Sodium Stearate
ComponentsWt.Percent
Sodium stearate
20
Filler20
PVAc60
Total100
TABLE 11
Encapsulation of Sodium Stearate with Taste Masking Active
ComponentsWt. Percent
Sodium stearate30
Talc8
PVAc56
Sucralose6
Total100
TABLE 12
Encapsulation of Combination of Actives With Taste Masking Active
ComponentsWt.Percent
Sodium stearate
10
Sodium tripolyphosphate (STP)10
Silicon dioxide14
PVAc60
Sucralose6
Total100
The delivery systems of the present invention are prepared as follows: PVAc is melted as described above in Example 1. The remaining components of the delivery systems of Table 10, 11, or 12 are added to the molten PVAc and mixed under high shear. The resulting filled polymer melt is cooled and ground to a particle size of less than 590 microns, and the encapsulated active(s) matrix is stored as described in Example 1.
Example 8AChewing Gum Compositions Including Encapsulated Sodium Stearate
A chewing gum composition is prepared using the encapsulated sodium stearate prepared in Example 8 (Table 10, 11 or 12). The chewing gum components are shown in Table 13 below.
TABLE 13
Chewing Gum Composition
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.0
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated Sodium Stearate5.0
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining ingredients are then added to the melted gum base and mixed until the ingredients are completely dispersed. The resulting chewing gum composition is sized.
Example 9Encapsulation of Peroxides
In the present example, carbamide peroxide, either alone (Table 15) or in combination with dicalcium phosphate (Table 14) is encapsulated using a spray coating of fluidized particles of PVA.
TABLE 14
Encapsulation of Carbamide Peroxide and Dicalcium Phosphate
ComponentsWet PercentDry Percent
Center Cores
Carbamide Peroxide22.850
Dicalcium phosphate9.020
Coating Solution
Toluene54.5
Polyvinyl acetate13.630
100100
TABLE 15
Encapsulation of Carbamide Peroxide
ComponentsWet PercentDry Percent
Center Cores
Carbamide Peroxide18.2440
STP9.020
Sucralose4.6610
Coating Solution
Toluene54.5
Polyvinyl acetate13.630
100100
The procedure used to prepare the delivery systems in the present example is as follows: The Wurster process is used to encapsulate carbamide peroxide, either alone (Table 15) or in combination with dicalcium phosphate (Table 14). Coating solutions are prepared using the compositions in Table 14 or 15 by stirring toluene and polyvinylacetate at 35° C. for 2 hrs. Carbamide peroxide/Dicalcium phosphate powders are suspended in a fluidizing air stream, which provides a generally cyclic flow in front of a spray nozzle. The spray nozzle sprays an atomized flow of coating solution for 240 minutes. The coated particles are then dried in the fluidized chamber for 50 minutes and stored below 35° C. under dry conditions.
Example 10Chewing Gum Compositions Including Encapsulated Carbamide Peroxide
A chewing gum composition is prepared using encapsulated carbamide peroxide prepared in Example 9 (Table 14 or 15). The chewing gum components are shown in Table 16 below.
TABLE 16
Chewing Gum Compositions
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.0
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated Carbamide Peroxide6.0
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 11Encapsulation of Calcium Casein Peptone-Calcium Phosphate CCP-CP (Recaldent)
Example 11 is directed to the encapsulation of a dental remineralization agent (i.e., recaldent), either alone (Table 17) or in combination with other actives (Table 18). As shown in Table 18, the recaldent can be combined with other actives, such as an anticaries agent (e.g., sodium fluoride), an anticalculus agent (e.g., STP), and a taste masking agent (e.g., sucralose). Taste masking agents are useful in masking bitter and/or metal tastes, such as those that may be associated with anticalculus agents, such as phosphate salts, etc.
TABLE 17
ComponentsWt. Percent
Recaldent29
Hydrogenated Oil3
Talc7
PVAc61
TABLE 18
Combination of Actives with Taste Masking Active
ComponentsWt.Percent
Recaldent
20
Sodium Fluoride1
Sodium tripolyphosphate (STP)17
Hydrogenated Oil3
Sucralose6
PVAc53
The delivery systems shown in Tables 17 and 18 are prepared using similar methods to the method described in Example 1.
Example 12Chewing Gum Compositions Including Encapsulated Recaldent
Chewing gum compositions are prepared using encapsulated recaldent prepared in Example 11 (Table 17 or 18). The chewing gum components are shown in Table 19.
TABLE 19
Chewing Gum compositions
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.0
Flavor10.00
Glycerin1.5
Lecitin0.2
Encapsulated Recaldent5.0
Total100
The chewing gum compositions are prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum compositions are sized.
Example 13Encapsulation of Breath Freshening Agents
Example 13 is directed to the encapsulation of a breath freshening agent (chlorophyll), either alone (Table 20), or in combination with other actives (Tables 21 and 22). In the delivery system composition of Table 21, chlorophyll is encapsulated with sucralose, which may serve as both a sweetener and a taste masking agent. Moreover, in the delivery system composition of Table 22, chlorophyll and menthol-cyclodextrin each serve as breath freshening agents, which are encapsulated along with sucralose (a taste masking agent/sweetener) in the PVAc polymer matrix.
TABLE 20
Encapsulation of Chlorophyll
ComponentsWt. Percent
Chlorophyll40
PVAc60
TABLE 21
Encapsulation of Chlorophyll with Taste Masking Active
ComponentsWt. Percent
Chlorophyll34
PVAc60
Sucralose6
TABLE 22
Encapsulation of Combination of Actives with Taste Masking Active
ComponentsWt. Percent
Chlorophyll27
Menthol-cyclodextrin complex7
Sucralose6
PVAc60
The delivery system compositions in the present example are prepared by melting PVAc at a temperature of about 105° C. in a high shear mixer. The remaining components are then added and mixed under high shear. The resulting filled polymer melt is cooled and ground as described in Example 1, and the encapsulated active(s) matrix is stored in air tight containers with low humidity below 35° C.
Example 14Chewing Gum Compositions Including Encapsulated Chlorophyll Compositions
Chewing gum compositions are prepared using encapsulated chlorophyll compositions prepared in Example 13 (compositions of Tables 20, 21 or 22). The chewing gum components are shown in Table 23
TABLE 23
Chewing Gum Compositions
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.0
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated Chlorophyll5.0
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 15Encapsulation of Agents to Counter Breath Odor
Example 15 is directed to the encapsulation of an agent to counter breath odor (e.g., zinc citrate), either alone (Table 24) or in combination with other active agents (Tables 24A and 25). In the delivery system composition of Table 24A, zinc citrate is encapsulated along with an anticalculus agent (e.g., STP) and a taste masking agent/sweetener (e.g., sucralose). In the delivery system composition of Table 25, zinc citrate is encapsulated along with an anticalculus agent (e.g., STP), a surfactant (e.g., sodium stearate) and a taste masking agent/sweetener (e.g., sucralose).
TABLE 24
Encapsulation of Zinc Citrate
ComponentsWt. Percent
Zinc citrate40
PVAc60
TABLE 24A
Encapsulation of Combination of Actives with Taste Masking Active
ComponentsWt. Percent
Zinc citrate7
Sodium tripolyphosphate (STP)27
PVAc60
Sucralose6
TABLE 25
Encapsulation of Combination of Actives with Taste Masking Active
ComponentsWt.Percent
Zinc citrate
10
Sodium tripolyphosphate (STP)17
Sucralose3
Sodium stearate10
PVAc60
The delivery system compositions are prepared as described above in Example 13.
Example 16Chewing Gum Compositions Including Encapsulated Zinc Citrate
Chewing gum compositions are prepared using encapsulated zinc citrate prepared in Example 15 (Tables 24, 24A or 25). The chewing gum components are shown in Table 26.
TABLE 26
Chewing Gum Compositions
ComponentsWt. Percent
Gum Base39.0
SorbitolQS
Mannitol9.0
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated zinc citrate5.0
Total100
The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 17Encapsulation of Desensitizing Agent
Example 17 is directed to the encapsulation of a desensitizing agent (e.g., potassium nitrate), either alone (Table 27) or in combination with other actives (Tables 28 and 29). In the delivery system composition of Table 28, potassium nitrate is encapsulated along with sucralose (a sweetener/taste masking agent). Furthermore, in the delivery system composition of Table 29, potassium nitrate is encapsulated along with STP (an anticalculus agent) and sucralose (sweetener/taste masking agent).
TABLE 27
Encapsulation of Potassium Nitrate
ComponentsWt. Percent
Potassium nitrate40
PVAc60
TABLE 28
Encapsulation of Potassium Nitrate with a Taste Masking Active
ComponentsWt. Percent
Potassium nitrate38
PVAc60
Sucralose2
TABLE 29
Encapsulation of Combination of Actives with a Taste Masking Active
ComponentsWt. Percent
Potassium nitrate17
Sodium tripolyphosphate (STP)16
PVAc60
Sucralose7
The delivery system compositions are prepared as described above in Example 13.
Example 18Chewing Gum Compositions Including Encapsulated Potassium Nitrate
Chewing gum compositions are prepared using encapsulated potassium nitrate prepared in Example 17 (Tables 27, 28 or 29). The chewing gum components are shown in Table 30.
TABLE 30
Chewing Gum Compositions
ComponentsWt. Percent
Gum base39.0
SorbitolQS
Mannitol9.0
Flavor4.67
Glycerin1.5
Lecithin0.2
Encapsulated Potassium Nitrate3.0
Total100
The chewing gum compositions are prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Examples 18 to 31 (Tables 3-44) below are directed to further oral delivery systems of the present invention. In Examples 18 to 31, a single active component is at least partially encapsulated in a PVAc matrix using extrusion. The active is encapsulated along with a plasticizer (hydrogenated oil) and an emulsifier (glycerol monostearate). Examples 32-43 (Tables 45-56) are directed to gum compositions including these delivery systems.
Example 18Encapsulation of Sodium Tripolyphosphate
TABLE 31
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium tripolyphosphate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinylacetate. STP is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 19Encapsulation of Sodium Fluoride (NaF)
TABLE 32
ComponentsWt. Percent
Polyvinyl Acetate65.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Fluoride30.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. NaF is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 20Encapsulation of Calcium Peroxide
TABLE 33
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Calcium Peroxide40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Calcium peroxide is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 21Encapsulation of Zinc Chloride
TABLE 34
ComponentsWt. Percent
Polyvinyl Acetate65.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Zinc Chloride30.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. zinc chloride is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 22Encapsulation of Carbamide Peroxide
TABLE 35
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Carbamide Peroxide40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Carbamide peroxide is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 23Encapsulation of Potassium Nitrate (KNO3)
TABLE 36
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Potassium Nitrate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. KNO3 is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 24Encapsulation of Chlorhexidine
TABLE 37
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Chlorhexidine40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Chlorhexidine is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 25Encapsulation of Sodium Stearate
TABLE 38
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium stearate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Sodium stearate is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 26Encapsulation of Sodium Bicarbonate
TABLE 39
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Bicarbonate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. NaHCO3 is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 27Encapsulation of Cetylpyridinium Chloride (CPC)
TABLE 40
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Cetylpyridinium chloride40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. CPC is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 28Encapsulation of Calcium Casein Peptone-Calcium Phosphate CCP-CP (Recaldent)
TABLE 41
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Recaldent40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Recaldent is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 29Encapsulation of Sodium Ricinoleate
TABLE 42
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Ricinoleate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Sodium ricinoleate is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 30Encapsulation of Sodium Hexametaphosphate (SHMP)
TABLE 43
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Hexametaphosphate40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. SHMP is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 31Encapsulation of Urea
TABLE 44
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Urea40.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Urea is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 32Chewing Gum Composition Including Encapsulated Sodium Tripolyphosphate (STP)
TABLE 45
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated STP (from Example 18)7.00
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 33Chewing Gum Composition Including Encapsulated Sodium Fluoride (NaF)
TABLE 46
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated NaF (from Example 19)0.40
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 34Chewing Gum Composition Including Encapsulated Calcium Peroxide
TABLE 47
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Calcium peroxide3.40
(from Example 20)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 35Chewing Gum Composition Including Encapsulated Zinc Chloride
TABLE 48
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Zinc chloride1.10
(from Example 21)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 36Chewing Gum Composition Including Encapsulated Carbamide Peroxide
TABLE 49
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated carbamide peroxide3.00
(from Example 22)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 37Chewing Gum Composition Including Encapsulated Potassium Nitrate
TABLE 50
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Potassium Nitrate6.00
(from Example 23)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 38Chewing Gum Composition Including Encapsulated Sodium Stearate
TABLE 51
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated sodium stearate3.00
(from Example 25)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 39Chewing Gum Composition Including Encapsulated Sodium Bicarbonate
TABLE 52
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated sodium bicarbonate4.00
(from Example 26)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 40Chewing Gum Composition Including Encapsulated Recaldent
TABLE 53
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Recaldent4.00
(from Example 28)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 41Chewing Gum Composition Including Encapsulated Sodium Ricinoleate
TABLE 54
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated sodium ricinoleate2.00
(from Example 29)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 42Chewing Gum Composition Including Encapsulated Sodium Hexametaphosphate (SHMP)
TABLE 55
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated SHMP (from Example 30)5.00
Encapsulated sucralose0.90
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 43Chewing Gum Composition Including Encapsulated Urea
TABLE 56
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Urea (from Example 31)5.00
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Examples 44-57 (Tables 57-70) below are directed to still further oral delivery systems of the present invention. In Examples 44-57, multiple active components are at least partially encapsulated in a PVAc matrix using extrusion. The actives are encapsulated, along with a plasticizer (hydrogenated oil) and an emulsifier (glycerol monostearate). Examples 58-71 (Tables 71-84) are directed to gum compositions including these delivery systems.
Example 44Encapsulation of Sodium Tripolyphosphate (STP), Sodium Stearate and Sucralose
TABLE 57
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium tripolyphosphate20.00
Sodium stearate10.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 45Encapsulation of Sodium Fluoride (NaF), STP and Sucralose
TABLE 58
ComponentsWt. Percent
Polyvinyl Acetate57.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium tripolyphosphate25.00
Sodium Fluoride3.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 46Encapsulation of Calcium Peroxide, SHMP and Sucralose
TABLE 59
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Calcium Peroxide7.00
Sodium hexametaphosphate23.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 47Encapsulation of Zinc Chloride, STP and Aspartame
TABLE 60
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Zinc Chloride4.00
Sodium tripolyphosphate26.00
Aspartame10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 48Encapsulation of Carbamide Peroxide, STP and Sucralose
TABLE 61
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium tripolyphosphate20.00
Carbamide Peroxide10.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 49Encapsulation of Potassium Nitrate (KNO3), STP and Sucralose
TABLE 62
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Potassium Nitrate10.00
Sodium tripolyphosphate20.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 50Encapsulation of Chlorhexidine, STP, NaF and Aspartame
TABLE 63
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Chlorhexidine4.00
Sodium tripolyphosphate23.00
Sodium Fluoride3.00
Aspartame10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 51Encapsulation of Sodium Stearate, STP, Menthol and Sucralose
TABLE 64
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium stearate4.00
Sodium tripolyphosphate19.00
Menthol7.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 52Encapsulation of Sodium Bicarbonate, STP, Sodium Stearate and Sucralose
TABLE 65
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium stearate4.00
Sodium tripolyphosphate19.00
Sodium bicarbonate7.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 53Encapsulation of Cetylpyridinium Chloride (CPC), NaF, STP and Sucralose
TABLE 66
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Cetylpyridinium chloride4.00
Sodium tripolyphosphate23.00
Sodium Fluoride3.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 54Encapsulation of Calcium Casein Peptone-Calcium Phosphate CCP-CP (Recaldent), STP and Sucralose
TABLE 67
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Recaldent10.00
Sodium tripolyphosphate20.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 55Encapsulation of Sodium Ricinoleate, STP and Aspartame
TABLE 68
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Ricinoleate4.00
Sodium tripolyphosphate26.00
Aspartame10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 56Encapsulation of Sodium Hexametaphosphate (SHMP), Sodium Stearate and Sucralose
TABLE 69
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Sodium Hexametaphosphate26.00
Sodium stearate4.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 110° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. SHMP is then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 57Encapsulation of Urea, STP and Sucralose
TABLE 70
ComponentsWt. Percent
Polyvinyl Acetate55.00
Hydrogenated Oil3.75
Glycerol Monostearate1.25
Urea10.00
Sodium tripolyphosphate20.00
Sucralose10.00
Total100
Procedure: Polyvinyl acetate is melted at a temperature of about 80° C. in a high shear mixer such as extruder (single or twin screw) or sigma or Banbury mixer. The hydrogenated oil and Glycerol monostearate are then added to the molten polyvinyl acetate. Actives are then added to the resulting mixture and mixed under high shear to completely disperse the ingredients. The resulting filled polymer melt is cooled and ground to particle size of less than 420 microns. The encapsulated matrix is stored in air tight containers with low humidity below 35° C.
Example 58Chewing Gum Composition Including Encapsulated Sodium Tripolyphosphate (STP), Sodium Stearate and Sucralose
TABLE 71
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated STP, Sodium stearate and7.00
sucralose (from Example 44)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 59Chewing Gum Composition Including Encapsulated Sodium Fluoride (NaF), STP, and Sucralose
TABLE 72
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated NaF, STP and5.00
sucralose (from Example 45)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 60Chewing Gum Composition Including Encapsulated Calcium Peroxide, SHMP and Sucralose
TABLE 73
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Calcium peroxide, SHMP5.00
and sucralose (from Example 46)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 61Chewing Gum Composition Including Encapsulated Zinc Chloride, STP and Aspartame
TABLE 74
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Zinc chloride, STP5.00
and aspartame (from Example 47)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 62Chewing Gum Composition Including Encapsulated Carbamide Peroxide, STP and Sucralose
TABLE 75
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated carbamide peroxide, STP3.00
and sucralose (from Example 48)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 63Chewing Gum Composition Including Encapsulated Potassium Nitrate, STP and Sucralose
TABLE 76
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Potassium Nitrate and6.00
STP and sucralose (from Example 49)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 64Chewing Gum Composition Including Encapsulated Chlorhexidine, STP, NaF and Aspartame
TABLE 77
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated chlorehexidine, STP,6.00
NaF and aspartame (from Example 50)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 65Chewing Gum Composition Including Encapsulated Sodium Stearate, Menthol, STP and Sucralose
TABLE 78
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated sodium stearate, menthol,6.00
STP and sucralose (from Example 51)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 66Chewing Gum Composition Including Encapsulated Sodium Bicarbonate, STP, Sodium Stearate and Sucralose
TABLE 79
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Sodium bicarbonate, STP,6.00
Sodium stearate and sucralose (from Example 52)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 67Chewing Gum Composition Including Encapsulated Cetylpyridinium Chloride (CPC), NaF, STP and Sucralose
TABLE 80
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated CPC, NaF, STP4.00
and sucralose (from Example 53)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 68Chewing Gum Composition Including Encapsulated Recaldent, STP and Sucralose
TABLE 81
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Recaldent, STP and4.00
sucralose (from Example 54)
Total100.00
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 69Chewing Gum Composition Including Encapsulated Sodium Ricinoleate, STP and Aspartame
TABLE 82
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Sodium recinolate, STP4.00
and aspartame (from Example 55)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 70Chewing Gum Composition Including Encapsulated Sodium Hexametaphosphate (SHMP), Sodium Stearate and Sucralose
TABLE 83
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated SHMP, sodium stearate5.00
and sucralose (from Example 56)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.
Example 71Chewing Gum Composition Containing Encapsulated Urea, STP and Sucralose
TABLE 84
ComponentsWt. Percent
Gum Base39.00
SorbitolQS
Mannitol9.00
Flavor3.67
Glycerin1.50
Lecithin0.20
Aspartame0.30
AceK0.15
Encapsulated Urea, STP and5.00
sucralose (from Example 57)
Total100
Procedure: The chewing gum composition is prepared as follows. The gum base is melted at a suitable temperature in a mixer. The remaining components are then added to the melted gum base and mixed until the components are completely dispersed. The resulting chewing gum composition is sized.

Claims (26)

What is claimed is:
1. An oral delivery system comprising:
at least one active component; wherein the at least one active component is an anticalculus agent is selected from the group consisting of pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof; and
a polymer matrix at least partially encapsulating said at least one active component, said polymer matrix having a tensile strength of at least 6,500 psi and comprising at least one polymer having a water absorption of about 0.1% to about 15% by weight as measurable by ASTM D570-98 and hydrogenated oil; wherein the polymer is selected from the group consisting of polyvinyl acetate, polyvinyl acetatephthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof.
2. The system ofclaim 1, wherein the delivery system, when used in an oral composition, releases a controlled amount of the active component in an oral cavity over a longer period of time as compared to an oral composition wherein the active component is free.
3. The system ofclaim 2, wherein the period of time is about 5 to about 60 minutes.
4. The system ofclaim 3, wherein at least 50% of the active component remains in the oral composition after the time period of about 5 to about 60 minutes.
5. The system ofclaim 1, wherein the polymer matrix has a tensile strength of about 20,000 to about 50,000 psi.
6. The system ofclaim 1, wherein the anticalculus agent is sodium hexametaphosphate.
7. The system ofclaim 1, wherein the anticalculus agent is sodium tripolyphosphate.
8. An oral composition comprising the oral delivery system ofclaim 1.
9. The oral composition ofclaim 8, further comprising a carrier composition selected from the group consisting of a gum base, a confectionary base, a toothpaste base, a gel dentifrice base and a tooth powder base.
10. The oral composition ofclaim 9, wherein the composition is a gum composition.
11. A gum composition comprising:
(a) a gum base; and
(b) a delivery system, said delivery system comprising (i) at least one active component; and (ii) a polymer matrix at least partially encapsulating said at least one active component, said polymer matrix having a tensile strength of at least 6,500 psi and comprising at least one polymer having a water absorption of about 0.1% to about 15% by weight as measurable by ASTM D570-98 and hydrogenated oil; wherein the at least one active component is an anticalculus agent is selected from the group consisting of pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof; and wherein the polymer is selected from the group consisting of polyvinyl acetate, polyvinyl acetatephthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof.
12. The gum composition ofclaim 11, wherein the polymer matrix has a tensile strength of about 20,000 to about 50,000 psi.
13. A method for preparing an oral delivery system, the method comprising:
at least partially encapsulating at least one active component, wherein the at least one active component is an anticalculus agent is selected from the group consisting of pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof in a polymer matrix, thereby forming an oral delivery system, said polymer matrix having a tensile strength of at least 6,500 psi and comprising at least one polymer having a water absorption of about 0.1% to about 15% by weight as measurable by ASTM D570-98 and hydrogenated oil; wherein the polymer is selected from the group consisting of polyvinyl acetate, polyvinyl acetatephthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof.
14. The method ofclaim 13, wherein the polymer matrix has a tensile strength of about 20,000 to about 50,000 psi.
15. A method for preparing an oral composition comprising:
providing an oral delivery system, said system comprising (i) at least one active component; wherein the at least one active component is an anticalculus agent is selected from the group consisting of pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof; and (ii) a polymer matrix at least partially encapsulating said at least one active component, said polymer matrix having a tensile strength of at least 6,500 psi and comprising at least one polymer having a water absorption of about 0.1% to about 15% by weight as measurable by ASTM D570-98 and hydrogenated oil; wherein the polymer is selected from the group consisting of polyvinyl acetate, polyvinyl acetatephthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof; and
combining the oral delivery system with a carrier composition.
16. The method ofclaim 15, wherein the carrier composition is selected from the group consisting of a gum base, a confectionary base, a toothpaste base, a gel dentifrice base and a tooth powder base.
17. A method for preparing a gum composition, the method comprising:
at least partially encapsulating at least one active component; wherein the at least one active component is an anticalculus agent is selected from the group consisting of pyrophosphates, triphosphates, polyphosphates, polyphosphonates and combinations thereof, in a polymer matrix, said polymer matrix having a tensile strength of at least about 6,500 psi and comprising at least one polymer having a water absorption of about 0.1% to about 15% by weight as measurable by ASTM D570-98 and hydrogenated oil; wherein the polymer is selected from the group consisting of polyvinyl acetate, polyvinyl acetatephthalate, polymethylmethacrylate, polyethylene terephthalate and combinations thereof;
heating a gum base to soften the base;
mixing the softened gum base with the at least partially encapsulated active component to obtain a substantially homogeneous mixture;
cooling the mixture; and
forming the cooled mixture into gum pieces.
18. A method of controlling the release of an active component from an oral delivery system comprising:
providing the oral delivery system ofclaim 1;
employing the oral delivery system in an oral cavity, whereby a controlled amount of the at least one active component is released into the oral cavity.
19. The method ofclaim 18, wherein the oral delivery system is present in a gum, the controlled amount of the at least one active component being released into the oral cavity upon mastication of the gum.
20. The oral delivery system ofclaim 1, which is made by melting the polymer in a mixer, adding a hydrogenated oil to the mixer, and adding the at least one active component to the mixer, mixing the polymer, the hydrogenated oil, and the at least one active component in the mixer to form a polymer matrix at least partially encapsulating the at least one active component.
21. The oral delivery system ofclaim 20, wherein the mixer is an extruder.
22. The system ofclaim 1 wherein the at least one active component is a dialkali metal pyrophosphate salt, a tetra alkali polyphosphate salt, or a combination thereof.
23. The system ofclaim 1 wherein the at least one active component is selected from the group consisting of tetrasodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, and combinations thereof.
24. The system ofclaim 1, wherein said polymer is polyvinyl acetate.
25. The system ofclaim 1, wherein said system additionally contains a taste masking agent.
26. The system ofclaim 1, wherein the polymer matrix fully encapsulates the at least one active component.
US11/135,1532003-11-212005-05-23Controlled release oral delivery systemsActive2030-11-22US9271904B2 (en)

Priority Applications (52)

Application NumberPriority DateFiling DateTitle
US11/135,153US9271904B2 (en)2003-11-212005-05-23Controlled release oral delivery systems
PL12166166TPL2484223T3 (en)2005-05-232006-01-09Controlled release oral delivery systems
DK06717548.9TDK1924151T3 (en)2005-05-232006-01-09 Controlled release oral release system
ES06717548.9TES2525530T3 (en)2005-05-232006-01-09 Oral controlled release delivery systems
CN2006800096900ACN101203138B (en)2005-05-232006-01-09Oral cavity delivering system for managing release
EP06717548.9AEP1924151B1 (en)2005-05-232006-01-09Controlled release oral delivery systems
PL06717548TPL1924151T3 (en)2005-05-232006-01-09Controlled release oral delivery systems
AU2006249718AAU2006249718B2 (en)2003-11-212006-01-09Controlled release oral delivery systems
CA2598605ACA2598605C (en)2005-05-232006-01-09Controlled release oral delivery systems
ES12166166TES2727852T3 (en)2005-05-232006-01-09 Oral delivery controlled delivery systems
JP2008512263AJP2008540645A (en)2005-05-232006-01-09 Oral delivery system with controlled release
MX2007014629AMX2007014629A (en)2005-05-232006-01-09Controlled release oral delivery systems.
PCT/US2006/000364WO2006127053A2 (en)2005-05-232006-01-09Controlled release oral delivery systems
EP12166166.4AEP2484223B1 (en)2005-05-232006-01-09Controlled release oral delivery systems
EP06760271AEP1895992A4 (en)2005-05-232006-03-22 ADMINISTRATION SYSTEMS BASED ON COMPRESSIBLE CHEMICAL GUM FOR THE RELEASE OF INGREDIENTS
PCT/US2006/019761WO2006127618A2 (en)2005-05-232006-03-22Compressible gum based delivery systems for the release of ingredients
ARP060101961AAR057021A1 (en)2005-05-232006-05-16 ORAL SUPPLY SYSTEMS WITH CONTROLLED SUPPLY
PCT/US2006/019877WO2006127684A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on tensile strength
EP06770926AEP1959749A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on tensile strength
PCT/US2006/019869WO2006127680A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on the coating
EP06770928AEP1940239A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition
US11/913,267US20090214445A1 (en)2005-05-232006-05-19Delivery systems for managing release of functional ingredients in an edible composition
EP06770921AEP1885204A1 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on hydrophobicity
PCT/US2006/019539WO2006127498A2 (en)2005-05-232006-05-19Delivery systems for managing release of flavors in an edible composition
PCT/US2006/019879WO2006127686A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition
PCT/US2006/019878WO2006127685A2 (en)2005-05-232006-05-19Delivery systems for managing release of sweeteners in an edible composition
EP06770931AEP1885205A1 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on ratios of ingredients to encapsulating materials
PCT/US2006/019882WO2006127689A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on ratios of ingredients to encapsulating materials
EP06760216AEP1909596A2 (en)2005-05-232006-05-19Delivery systems for managing release of flavors in an edible composition
PCT/US2006/019883WO2006127690A2 (en)2005-05-232006-05-19Delivery systems for managing release of sensates in an edible composition
PCT/US2006/019868WO2006127679A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on hydrophobicity
EP06770927AEP1898716A2 (en)2005-05-232006-05-19Delivery systems for managing release of sweeteners in an edible composition
EP06770922AEP1885199A1 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on the coating
PCT/US2006/019532WO2006127494A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on average particle size
EP06770924AEP1898715A2 (en)2005-05-232006-05-19Delivery systems for managing release of functional ingredients in an edible composition
PCT/US2006/019871WO2006127681A2 (en)2005-05-232006-05-19Delivery systems for managing release of functional ingredients in an edible composition
US11/913,262US20090175982A1 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition
EP06770932AEP1885198A2 (en)2005-05-232006-05-19Delivery systems for managing release of sensates in an edible composition
EP06760210AEP1906763A2 (en)2005-05-232006-05-19Methods for managing release of one or more ingredients in an edible composition based on average particle size
US11/913,132US20090162418A1 (en)2005-05-232006-05-22Indicia-bearing package for delivery systems for managing release of flavors in an edible composition
PCT/US2006/019666WO2006127559A2 (en)2005-05-232006-05-22Indicia bearing package for a deliery system comprising an edible composition
US11/913,260US20090220642A1 (en)2003-11-212006-05-22Compressible gum based delivery systems for the release of ingredients
PCT/US2006/019975WO2006127740A2 (en)2005-05-232006-05-22Indicia-bearing package for delivery systems for managing release of sweeteners, sensates, functional ingredients, food acids and flavors in a compressible gum system
US11/913,103US20090074911A1 (en)2005-05-232006-05-22Indicia-Bearing Package For Delivery Systems
US11/913,107US20100312652A1 (en)2005-05-232006-05-22Indicia-bearing package for delivery systems for managing release of sensates in an edible composition
US11/913,104US20090089167A1 (en)2003-11-212006-05-22Indicia-Bearing Package for Delivery Systems for Managing Release of Functional Ingredients in an Edible Composition
PCT/US2006/019977WO2006127742A2 (en)2005-05-232006-05-22Indicia bearing package for delivery systems
PCT/US2006/019973WO2006127738A2 (en)2005-05-232006-05-22Compressible chewing gums for delivery of actives
PCT/US2006/019976WO2006127741A2 (en)2005-05-232006-05-22Indicia-bearing package for delivery systems for managing release of sensates in an edible composition
PCT/US2006/019758WO2006127616A2 (en)2005-05-232006-05-22Indicia-bearing package for delivery systems for managing release of flavors in an edible composition
ARP060102115AAR053480A1 (en)2005-05-232006-05-23 GUM COMPOSITIONS WITH SUPPLY OF ENCAPSULATED COMPOUNDS
ARP060102116AAR053481A1 (en)2005-05-232006-05-23 GUM COMPOSITIONS WITH SUPPLY OF ENCAPSULATED COMPOUNDS

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US10/719,298US20050112236A1 (en)2003-11-212003-11-21Delivery system for active components as part of an edible composition having preselected tensile strength
PCT/US2004/037185WO2005051427A1 (en)2003-11-212004-11-22A delivery system for active components as part of an endible composition having preselected tensile strength
US11/083,968US8828423B2 (en)2003-11-212005-03-21Delivery system for active components as part of an edible composition having preselected tensile strength
US11/135,153US9271904B2 (en)2003-11-212005-05-23Controlled release oral delivery systems

Related Parent Applications (4)

Application NumberTitlePriority DateFiling Date
PCT/US2004/037185Continuation-In-PartWO2005051427A1 (en)2003-11-212004-11-22A delivery system for active components as part of an endible composition having preselected tensile strength
US11/083,968Continuation-In-PartUS8828423B2 (en)2003-11-212005-03-21Delivery system for active components as part of an edible composition having preselected tensile strength
US11/134,367Continuation-In-PartUS8591974B2 (en)2003-11-212005-05-23Delivery system for two or more active components as part of an edible composition
US11/134,367ContinuationUS8591974B2 (en)2003-11-212005-05-23Delivery system for two or more active components as part of an edible composition

Related Child Applications (2)

Application NumberTitlePriority DateFiling Date
US11/135,149Continuation-In-PartUS20060263474A1 (en)2003-11-212005-05-23Enhanced flavor-release comestible compositions and methods for same
US11/135,149ContinuationUS20060263474A1 (en)2003-11-212005-05-23Enhanced flavor-release comestible compositions and methods for same

Publications (2)

Publication NumberPublication Date
US20050260266A1 US20050260266A1 (en)2005-11-24
US9271904B2true US9271904B2 (en)2016-03-01

Family

ID=36950245

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US11/135,153Active2030-11-22US9271904B2 (en)2003-11-212005-05-23Controlled release oral delivery systems

Country Status (12)

CountryLink
US (1)US9271904B2 (en)
EP (2)EP1924151B1 (en)
JP (1)JP2008540645A (en)
CN (1)CN101203138B (en)
AR (1)AR057021A1 (en)
AU (1)AU2006249718B2 (en)
CA (1)CA2598605C (en)
DK (1)DK1924151T3 (en)
ES (2)ES2727852T3 (en)
MX (1)MX2007014629A (en)
PL (2)PL1924151T3 (en)
WO (1)WO2006127053A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020160534A1 (en)*2019-02-012020-08-06Belle-Aire Fragrances, Inc.Oral care product
US12053536B2 (en)2021-04-082024-08-06Colgate-Palmolive CompanyOral care compositions

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8591974B2 (en)2003-11-212013-11-26Kraft Foods Global Brands LlcDelivery system for two or more active components as part of an edible composition
US8591968B2 (en)2005-05-232013-11-26Kraft Foods Global Brands LlcEdible composition including a delivery system for active components
US8389031B2 (en)2005-05-232013-03-05Kraft Foods Global Brands LlcCoated delivery system for active components as part of an edible composition
US8389032B2 (en)2005-05-232013-03-05Kraft Foods Global Brands LlcDelivery system for active components as part of an edible composition having selected particle size
US8591973B2 (en)2005-05-232013-11-26Kraft Foods Global Brands LlcDelivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US9271904B2 (en)*2003-11-212016-03-01Intercontinental Great Brands LlcControlled release oral delivery systems
US20090220642A1 (en)*2003-11-212009-09-03Cadbury Adams Usa LlcCompressible gum based delivery systems for the release of ingredients
US8591972B2 (en)2005-05-232013-11-26Kraft Foods Global Brands LlcDelivery system for coated active components as part of an edible composition
US8597703B2 (en)2005-05-232013-12-03Kraft Foods Global Brands LlcDelivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US20050112236A1 (en)2003-11-212005-05-26Navroz BoghaniDelivery system for active components as part of an edible composition having preselected tensile strength
US20060068058A1 (en)*2004-09-302006-03-30Cadbury Adams Usa LlcThermally stable, high tensile strength encapsulation compositions for actives
US20080063747A1 (en)*2004-08-252008-03-13Cadbury Adams Usa LlcDusting compositions for chewing gum products
US7727565B2 (en)2004-08-252010-06-01Cadbury Adams Usa LlcLiquid-filled chewing gum composition
US7955630B2 (en)2004-09-302011-06-07Kraft Foods Global Brands LlcThermally stable, high tensile strength encapsulated actives
US9198448B2 (en)*2005-02-072015-12-01Intercontinental Great Brands LlcStable tooth whitening gum with reactive ingredients
US20060193896A1 (en)*2005-02-252006-08-31Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible composition
US20070298061A1 (en)*2005-02-252007-12-27Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible compostion
EP1895992A4 (en)*2005-05-232012-03-28Kraft Foods Global Brands Llc ADMINISTRATION SYSTEMS BASED ON COMPRESSIBLE CHEMICAL GUM FOR THE RELEASE OF INGREDIENTS
US7851005B2 (en)2005-05-232010-12-14Cadbury Adams Usa LlcTaste potentiator compositions and beverages containing same
EP1906747A4 (en)*2005-05-232011-12-14Cadbury Adams Usa LlcConfectionery composition including an elastomeric component, a cooked saccharide component, and a modified release component
US7851006B2 (en)2005-05-232010-12-14Cadbury Adams Usa LlcTaste potentiator compositions and beverages containing same
US20090175982A1 (en)*2005-05-232009-07-09Cadbury Adams Usa Llc.,Methods for managing release of one or more ingredients in an edible composition
WO2006127936A2 (en)*2005-05-232006-11-30Cadbury Adams Usa LlcTaste potentiator compositions and edible confectionery and chewing gum products containing same
US20060275361A1 (en)*2005-06-032006-12-07Cadbury Adams Usa Llc.Rapidly dissolving gelatin compositions and products made therefrom
US8268371B2 (en)*2005-08-222012-09-18Kraft Foods Global Brands LlcDegradable chewing gum
US8518383B2 (en)*2006-02-032013-08-27Wm. Wrigley Jr. CompanyOral care products comprising buffer systems for improved mineralization/remineralization benefits
US20090098241A1 (en)*2006-02-202009-04-16Gumlink A/SResin encapsulated food acid
DK2020864T3 (en)*2006-03-222010-10-11Wrigley W M Jun Co Compressed rubber and its process
EP2026745A4 (en)*2006-04-052013-11-20Kraft Foods Global Brands LlcCalcium phosphate complex in acid containing confectionery
RU2437646C2 (en)*2006-04-052011-12-27КЭДБЕРИ АДАМС ЮЭсЭй ЛЛСImpact with calcium phosphate complex on dental caries
WO2007117627A2 (en)2006-04-052007-10-18Cadbury Adams Usa LlcCalcium phosphate complex and salts in oral delivery systems
EP2032171A4 (en)*2006-06-282010-08-25Cadbury Adams Usa LlcA process for manufacturing a delivery system for active components as part of an edible composition
WO2008024219A2 (en)*2006-08-212008-02-28Creative Specialty Products, LlcDental whitening strip
US20080166449A1 (en)*2006-11-292008-07-10Cadbury Adams Usa LlcConfectionery compositions including an elastomeric component and a saccharide component
KR100870232B1 (en)*2006-12-072008-11-24재단법인서울대학교산학협력재단Teeth Whitening Functional Materials Delivery System
US20080213440A1 (en)*2007-03-012008-09-04Cadbury Adams Usa LlcNon-Aldehyde Cinnamon Flavor and Delivery Systems Therefor
US8178483B2 (en)*2007-03-302012-05-15Colgate-Palmolive CompanyPolymeric encapsulates having a quaternary ammonium salt and methods for producing the same
US8356606B2 (en)*2007-06-012013-01-22Philip Morris Usa Inc.Production of micronized encapsulated tobacco particles for tobacco flavor delivery from an oral pouch
GB0718346D0 (en)*2007-09-202007-10-31Ind Res & Technology LtdTooth-bleaching preparations
GB2453770A (en)*2007-10-192009-04-22Reckitt Benckiser HealthcareOral composition comprising a cooling agent
JP5117579B2 (en)*2008-01-252013-01-16アール・ジエイ・レイノルズ・タバコ・カンパニー Process for producing easily destructible capsules useful for tobacco products
US20110230587A1 (en)*2008-08-292011-09-22A. Schulman, Inc.Flavored polymeric articles
KR20110069793A (en)*2008-08-292011-06-23에이. 슐만, 인크. Optimized Flavored Polymer Composition
US9167835B2 (en)2008-12-302015-10-27Philip Morris Usa Inc.Dissolvable films impregnated with encapsulated tobacco, tea, coffee, botanicals, and flavors for oral products
US9167847B2 (en)2009-03-162015-10-27Philip Morris Usa Inc.Production of coated tobacco particles suitable for usage in a smokeless tobacoo product
US8962057B2 (en)*2009-04-292015-02-24The Procter & Gamble CompanyMethods for improving taste and oral care compositions with improved taste
MY160387A (en)*2009-05-262017-03-15Colgate Palmolive CoDentifrice composition
JP5614571B2 (en)*2009-12-252014-10-29ダイヤ製薬株式会社 Chewing gum medicine and method for producing chewing gum medicine
US20110293710A1 (en)*2010-02-022011-12-01Delphine SaulnierImmunomodulatory properties of lactobacillus strains
SG190859A1 (en)2010-12-202013-07-31Colgate Palmolive CoGelatin encapsulated oral care composition containing hydrophilic active, hydrophobic structuring agent and oil carrier
EP2701532B1 (en)*2011-04-292017-11-15Intercontinental Great Brands LLCEncapsulated acid, method for the preparation thereof, and chewing gum comprising same
IN2014CN02723A (en)*2011-10-112015-07-03Intercontinental Great Brands Llc
WO2014060857A1 (en)*2012-10-192014-04-24Wockhardt LimitedPharmaceutical compositions of diclofenac or salts thereof
US8815952B1 (en)2013-03-152014-08-26Carnell & Herzog, LLCChlorhexadine antiseptic
CN107072888B (en)*2014-03-252021-03-09拜尔丹托瑞明有限公司Dentifrice composition
JP2017522299A (en)*2014-06-302017-08-10コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Encapsulation of oral care active agent
EP3389628A4 (en)2015-12-192019-08-07Dixit, Manesh A.Soft-chew tablet pharmaceutical formulations
US20190022013A1 (en)2015-12-192019-01-24First Time Us Generics LlcSoft-chew tablet pharmaceutical formulations
EP3192497B1 (en)*2016-01-122020-05-20Unilever PLCOral care composition comprising an enzyme and a natural gum
WO2017182876A1 (en)*2016-04-212017-10-26Berkeley Nox LimitedCompositions, apparatus and methods for monitoring and improving oral health
CN109195450A (en)*2016-05-312019-01-11Wm.雷格利 Jr.公司Anti-coloring preparation
EP3454877A4 (en)*2017-05-122019-12-04The Trustees of The University of Pennsylvania COMPOSITIONS AND METHODS FOR INHIBITING DEPOSITION AND PRODUCTION OF BIOFILMS
US12049584B2 (en)*2019-03-182024-07-30Sabine ZureikatComposition and method for producing the sensory stimulant
JP2023523305A (en)*2020-05-052023-06-02ザ プロクター アンド ギャンブル カンパニー Oral care composition containing dicarboxylic acid
CA3175478A1 (en)*2020-05-082021-11-11Fertin Pharma A/SOral powder mixture with small sized particles
WO2023164863A1 (en)*2022-03-032023-09-07Mars Wrigley Confectionery (China) LimitedDeep cleaning chewing gum
IT202300016812A1 (en)2023-08-072025-02-07Perfetti Van Melle Spa ACTIVE INGREDIENT ENCAPSULATION SYSTEM

Citations (314)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1633336A (en)1925-09-281927-06-21Winford P LarsonDentifrice
US1936456A (en)1929-05-011933-11-21Wm S Merrell CoTherapeutic preparation
US2191199A (en)1937-09-171940-02-20Hall Lab IncAbrasive detergent composition
US2197719A (en)1938-12-071940-04-16Wrigley W M Jun CoChewing gum
US2876167A (en)1954-11-241959-03-03Colgate Palmolive CoFluoride dentifrice stabilized by a water-soluble acid phosphate compound
US2886443A (en)1956-08-151959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886444A (en)1956-08-151959-05-12Gen Foods CorpProcess of preparing a chewing gum and the resulting product
US2886440A (en)1956-07-031959-05-12Gen Foods CorpChewing gum and method of producing
US2886449A (en)1959-03-101959-05-12Gen Foods CorpMethod of making chewing gum and the resulting product
US2886445A (en)1958-12-081959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886441A (en)1956-07-031959-05-12Gen Foods CorpProduct and process
US2886446A (en)1958-12-081959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886442A (en)1956-07-271959-05-12Gen Foods CorpChewing gum and method of producing
GB875763A (en)1959-05-011961-08-23Gen Foods CorpChewing gum having controlled flavour release
US3004897A (en)1955-02-091961-10-17Shore JosephDental preparation
US3052552A (en)1959-09-161962-09-04Beech Nut Life Savers IncPrinting on confection items and the resulting product
US3117027A (en)1960-01-081964-01-07Wisconsin Alumni Res FoundApparatus for coating particles in a fluidized bed
US3124459A (en)1964-03-10Organoleptic compositions
US3159585A (en)1961-04-121964-12-01Nat Starch Chem CorpMethod of encapsulating water insoluble oils and product thereof
US3241520A (en)1964-10-191966-03-22Wisconsin Alumni Res FoundParticle coating apparatus
US3341416A (en)1963-12-111967-09-12Ncr CoEncapsulation of aspirin in ethylcellulose and its product
US3475533A (en)1966-05-191969-10-28Extar CoWater-free toothpastes containing metaphosphates,calcium carbonate,and mineral oil
US3538230A (en)1966-12-051970-11-03Lever Brothers LtdOral compositions containing silica xerogels as cleaning and polishing agents
US3664962A (en)1971-01-111972-05-23Jerry D KellyStain remover
US3664963A (en)1969-10-221972-05-23Balchem CorpEncapsulation process
US3677771A (en)1970-09-211972-07-18Ralston Purina CoProcess for the manufacture of caramels
US3691090A (en)1969-01-161972-09-12Fuji Photo Film Co LtdEncapsulation method
US3795744A (en)1970-10-211974-03-05Lotte Co LtdFlavor variable chewing gum and methods of preparing the same
US3819838A (en)1970-08-041974-06-25Bush Boake Allen LtdEncapsulated flavoring composition
US3821417A (en)1970-11-091974-06-28Warner Lambert CoFlavor preservation in chewing gum compositions and candy products
US3826847A (en)1970-10-211974-07-30Lotte Co LtdProcess for preparation of flavor durable chewing gum
US3857964A (en)1973-02-091974-12-31Brook DControlled release flavor compositions
US3862307A (en)1973-04-091975-01-21Procter & GambleDentifrices containing a cationic therapeutic agent and improved silica abrasive
US3872021A (en)1972-11-131975-03-18Audrey M McknightCleaning composition
US3878938A (en)1971-04-081975-04-22Lever Brothers LtdToothpastes
US3912817A (en)1973-10-031975-10-14Topps Chewing Gum IncGum product and method of making the same
US3930026A (en)1974-08-281975-12-30Squibb & Sons IncChewing gum having enhanced flavor
US3943258A (en)1972-10-051976-03-09General Foods CorporationChewing gums of longer lasting sweetness and flavor
US3962416A (en)1971-01-251976-06-08Sol KatzenPreserved nutrients and products
US3962463A (en)1972-04-031976-06-08Life Savers, Inc.Chewing gum having surface impregnated, microencapsulated flavor particles
GB1444024A (en)1973-07-201976-07-28Passwaterr AFood and feed supplents
US3974293A (en)1975-11-261976-08-10Life Savers, Inc.Non-adhesive chewing gum composition
US3984574A (en)1975-04-111976-10-05Wm. Wrigley Jr. CompanyNon-tack chewing gum composition
US4037000A (en)1975-10-241977-07-19Tate & Lyle LimitedIcing mixture
US4045581A (en)1975-05-151977-08-30Life Savers, Inc.Long-lasting mint-flavored chewing gum
US4083995A (en)1976-07-221978-04-11The United States Of America As Represented By The Secretary Of Agriculture(Z)-9-Tetradecen-1-ol formate and its use as a communication disruptant for Heliothis
US4107360A (en)1976-11-041978-08-15Sagapha A. G.Process for packing a pasty stain remover in portion capsules
US4130638A (en)1976-11-031978-12-19Richardson-Merrell Inc.Mouthwash compositions
US4136163A (en)1971-02-041979-01-23Wilkinson Sword LimitedP-menthane carboxamides having a physiological cooling effect
US4139639A (en)1977-01-241979-02-13General Foods CorporationFixation of APM in chewing gum
US4148872A (en)1977-11-281979-04-10General Mills, Inc.Plaque inhibiting composition and method
US4150112A (en)1977-11-281979-04-17General Mills, Inc.Plaque inhibiting composition and method
US4156715A (en)1977-11-281979-05-29General Mills, Inc.Plaque inhibiting composition and method
US4156716A (en)1977-11-281979-05-29General Mills, Inc.Plaque inhibiting composition and method
US4157385A (en)1977-11-281979-06-05General Mills, Inc.Plaque inhibiting composition and method
US4159315A (en)1977-11-281979-06-26General Mills, Inc.Plaque inhibiting composition and method
US4160054A (en)1977-11-281979-07-03General Mills, Inc.Plaque inhibiting composition and method
US4160820A (en)1977-11-281979-07-10General Mills, Inc.Plaque inhibiting composition and method
US4187320A (en)1978-05-011980-02-05Warner-Lambert CompanyProcess for preparing chewing gum base using solid elastomer
US4208431A (en)1978-05-051980-06-17Life Savers, Inc.Long-lasting chewing gum having good processibility and method
US4217368A (en)1977-07-081980-08-12Life Savers, Inc.Long-lasting chewing gum and method
US4224345A (en)1978-10-161980-09-23Lotte Co., LtdChewing gum base and a combination of a chewing gum with fatty matter
US4230688A (en)1972-04-181980-10-28Wilkinson Sword LimitedAcyclic carboxamides having a physiological cooling effect
US4271199A (en)1979-11-231981-06-02Life Savers, Inc.Sugar-containing chewing gum having smooth texture and long-lasting sweetness
US4276312A (en)1978-05-251981-06-30Merritt Carleton GEncapsulation of materials
US4295845A (en)1979-06-181981-10-20Lever Brothers CompanyPretreatment composition for stain removal
US4314990A (en)1979-10-151982-02-09The Procter & Gamble CompanyToothpaste compositions
US4340583A (en)1979-05-231982-07-20J. M. Huber CorporationHigh fluoride compatibility dentifrice abrasives and compositions
US4352823A (en)1981-04-131982-10-05Nabisco Brands, Inc.Coextruded chewing gum containing a soft non-SBR gum core portion
US4352825A (en)1981-02-231982-10-05Nabisco Brands, Inc.Coextruded chewing gum containing a soft core portion
US4363756A (en)1979-06-181982-12-14Lever Brothers CompanyPretreatment composition for stain removal
US4370350A (en)*1980-04-281983-01-25Wm. Wrigley Jr. CompanyChewing gum method
US4384004A (en)1981-06-021983-05-17Warner-Lambert CompanyEncapsulated APM and method of preparation
US4386106A (en)1981-12-011983-05-31Borden, Inc.Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4452821A (en)1981-12-181984-06-05Gerhard GergelyConfectionery product, particularly chewing gum, and process for its manufacture
US4457857A (en)1980-10-201984-07-03Lever Brothers CompanyPretreatment composition for stain removal
US4459425A (en)1981-11-201984-07-10Takasago Perfumery Co., Ltd.3-Levo-Menthoxypropane-1,2-diol
US4485118A (en)1983-04-211984-11-27Warner-Lambert CompanyGum composition with plural time releasing flavors and method of preparation
US4513012A (en)1983-05-131985-04-23Warner-Lambert CompanyPowdered center-filled chewing gum compositions
US4515769A (en)1981-12-011985-05-07Borden, Inc.Encapsulated flavorant material, method for its preparation, and food and other compositions incorporating same
WO1985003414A1 (en)1984-01-311985-08-15Scm CorporationEncapsulation matrix composition and encapsulate containing same
US4585649A (en)1984-12-211986-04-29Ici Americas Inc.Dentifrice formulation and method of treating teeth, mouth and throat therewith to reduce plaque accumulation and irritation
US4590075A (en)1984-08-271986-05-20Warner-Lambert CompanyElastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4597970A (en)1984-10-051986-07-01Warner-Lambert CompanyChewing gum compositions containing novel sweetener delivery systems and method of preparation
CA1208966A (en)1983-07-131986-08-05Ronald E. BarnettFoodstuffs containing sweetness modifying agents
US4614649A (en)1983-12-091986-09-30Sterling Drug Inc.Antiplaque saccharin salt dentrifices and method of use thereof
US4614654A (en)1984-08-241986-09-30Wm. Wrigley Jr. CompanyTaffy-like chewing gum confection and method
EP0132444B1 (en)1983-07-131986-11-20General Foods CorporationSweetening composition and process for modifying the sweetness perception of a foodstuff
US4627987A (en)1983-03-221986-12-09General Foods CorporationEdible material containing meta-hydroxybenzoic or salts
US4634593A (en)1985-07-311987-01-06Nabisco Brands, Inc.Composition and method for providing controlled release of sweetener in confections
US4673577A (en)1983-02-181987-06-16Wm. Wrigley Jr. CompanyShellac encapsulant for high-potency sweeteners in chewing gum
JPS62215349A (en)1986-01-071987-09-22ワ−ナ−−ランバ−ト・コンパニ−Filler composition used in chewing gum and food
EP0252374A1 (en)1986-06-251988-01-13Nabisco Brands, Inc.Encapsulated actice ingredients, process for preparing them and their use in ingested products
WO1988000463A1 (en)1986-07-111988-01-28Oral Research Laboratories, Inc.Compositions for the prolonged action of anti-plaque agents
US4722845A (en)1986-12-231988-02-02Warner-Lambert CompanyStable cinnamon-flavored chewing gum composition
US4726953A (en)1986-10-011988-02-23Nabisco Brands, Inc.Sweet flavorful soft flexible sugarless chewing gum
EP0134120B1 (en)1983-08-231988-04-20Warner-Lambert CompanyA non-adhesive chewing gum base composition, and a non-adhesive chewing gum composition
US4740376A (en)*1986-01-071988-04-26Warner-Lambert CompanyEncapsulation composition for use with chewing gum and edible products
US4741905A (en)1986-06-191988-05-03Warner-Lambert CompanyChewing gum candy
US4749575A (en)1983-10-031988-06-07Bio-Dar Ltd.Microencapsulated medicament in sweet matrix
US4751095A (en)1983-07-281988-06-14Karl Curtis LAspartame stabilization with cyclodextrin
US4752481A (en)1986-06-191988-06-21Warner-Lambert CompanyFlavor emulsions and chewing gum compositions containing the same
US4753790A (en)1986-12-161988-06-28Warner-Lambert CompanySorbitol coated comestible and method of preparation
US4764382A (en)1984-11-151988-08-16Hercon Laboratories CorporationDevice for controlled release drug delivery
US4771784A (en)1987-02-171988-09-20Kuibyshevksy Politekhnichesky InstitutOphthalmorheographic transducer
US4800087A (en)1986-11-241989-01-24Mehta Atul MTaste-masked pharmaceutical compositions
US4804548A (en)1984-10-051989-02-14Warner-Lambert CompanyNovel sweetener delivery systems
US4816265A (en)1986-12-231989-03-28Warner-Lambert CompanySweetener delivery systems containing polyvinyl acetate
US4822599A (en)1987-08-261989-04-18The Procter & Gamble CompanyOral compositions
US4824681A (en)1986-12-191989-04-25Warner-Lambert CompanyEncapsulated sweetener composition for use with chewing gum and edible products
US4828845A (en)1986-12-161989-05-09Warner-Lambert CompanyXylitol coated comestible and method of preparation
US4828857A (en)1984-10-051989-05-09Warner-Lambert CompanyNovel sweetener delivery systems
US4842762A (en)1985-06-071989-06-27The Dow Chemical CompanyLaundry soil and stain remover in applicator stick form
US4871570A (en)1983-03-221989-10-03General Foods Corp.Foodstuffs containing hydrobenzene organic acids as sweetness modifying agents
WO1989011212A3 (en)1989-08-301990-01-25Wrigley W M Jun CoMethod of controlling release of cyclamate in chewing gum and gum produced thereby
US4904482A (en)1988-12-221990-02-27Wm. Wrigley Jr. CompanyChewing gums containing hydrated emulsifier and methods of preparation
US4911934A (en)1986-12-191990-03-27Warner-Lambert CompanyChewing gum composition with encapsulated sweetener having extended flavor release
US4915958A (en)1986-12-101990-04-10Warner-Lambert CompanyHigh-base gum composition with extended flavor release
US4918182A (en)1986-07-151990-04-17Tate & Lyle Public Limited CompanySweetener
US4919841A (en)1988-06-061990-04-24Lever Brothers CompanyWax encapsulated actives and emulsion process for their production
US4923684A (en)1989-05-081990-05-08Beecham, Inc.Tripolyphosphate-containing anti-calculus toothpaste
WO1990004926A1 (en)1988-11-041990-05-17Wm. Wrigley Jr. CompanyEmulsifiers for flavor prolongation in chewing gum
US4927646A (en)1986-11-131990-05-22Tate & Lyle PlcSucralose sweetening composition
US4929447A (en)1986-01-071990-05-29Warner-Lambert CompanyEncapsulation composition for use with chewing gum and edible products
US4931293A (en)1986-12-231990-06-05Warner-Lambert CompanyFood acid delivery systems containing polyvinyl acetate
US4933190A (en)1986-12-231990-06-12Warner-Lambert Co.Multiple encapsulated sweetener delivery system
US4952407A (en)1988-09-121990-08-28Wm. Wrigley Jr. CompanyChewing gum containing glycerol mono laurate
JPH02227044A (en)1988-11-071990-09-10Mitajiri Kagaku Kogyo KkSeasoning containing high-purity miraculin and food containing same
WO1990007859A3 (en)1989-11-221990-10-04Wrigley W M Jun CoMethod of controlling release of sucralose in chewing gum and gum produced thereby
WO1990012512A1 (en)1989-04-191990-11-01Wm. Wrigley Jr. CompanyUse of encapsulated salts in chewing gum
US4971797A (en)1988-12-221990-11-20Warner-Lambert CompanyStabilized sucralose complex
US4971806A (en)1984-01-311990-11-20Warner-Lambert CompanyMulti-layered chewing gum composition having different rates of flavor release
US4978537A (en)1989-04-191990-12-18Wm. Wrigley Jr. CompanyGradual release structures for chewing gum
US4981698A (en)1986-12-231991-01-01Warner-Lambert Co.Multiple encapsulated sweetener delivery system and method of preparation
US4985236A (en)1989-05-081991-01-15Beecham Inc.Tripolyphosphate-containing anti-calculus toothpaste
US4986991A (en)1987-05-151991-01-22Wm Wrigley, Jr., CompanyChewing gum having an extended sweetness
US4997659A (en)1989-03-281991-03-05The Wm. Wrigley Jr. CompanyAlitame stability in chewing gum by encapsulation
US5004595A (en)1986-12-231991-04-02Warner-Lambert CompanyMultiple encapsulated flavor delivery system and method of preparation
WO1990013994A3 (en)1990-07-171991-04-04Wrigley W M Jun CoControlled release of dihydrochalcones in chewing gum
US5009900A (en)1989-10-021991-04-23Nabisco Brands, Inc.Glassy matrices containing volatile and/or labile components, and processes for preparation and use thereof
US5017385A (en)1988-11-251991-05-21The Procter & Gamble CompanyChewing gum
US5043154A (en)1987-01-301991-08-27Colgate-Palmolive Co.Antibacterial, antiplaque, anticalculus oral composition
US5043169A (en)1990-05-251991-08-27Warner-Lambert CompanyStabilized Sweetner Composition
US5057328A (en)1988-11-141991-10-15Warner-Lambert CompanyFood acid delivery systems containing polyvinyl acetate
US5057327A (en)1989-12-291991-10-15Wm. Wrigley Jr. CompanyChewing gum with longer lasting sweetness using alitame
US5059429A (en)1989-10-271991-10-22Warner-Lambert CompanySucralose sweetened chewing gum
US5064658A (en)1990-10-311991-11-12Warner-Lamber CompanyEncapsulated synergistic sweetening agent compositions comprising aspartame and acesulfame-K and methods for preparing same
US5073389A (en)1990-01-241991-12-17The Procter & Gamble CompanyMineral supplemented candy product containing multiple discrete regions
US5080877A (en)1984-02-201992-01-14Rhone-Poulenc Specialties ChimiquesNovel cerium oxide particulates
US5082671A (en)1989-10-271992-01-21Warner-Lambert CompanyLow moisture sucralose sweetened chewing gum
US5084278A (en)1989-06-021992-01-28Nortec Development Associates, Inc.Taste-masked pharmaceutical compositions
WO1992002145A1 (en)1990-08-091992-02-20Warner-Lambert CompanyFlavor delivery system with improved release and method of preparation
US5096701A (en)1990-12-181992-03-17The Procter & Gamble CompanyOral compositions
US5096699A (en)1990-12-201992-03-17Colgate-Palmolive CompanyAnticalculus oral compositions
US5100678A (en)1990-11-151992-03-31Wm. Wrigley Jr. CompanyChewing gum with prolonged flavor release incorporating unsaturated, purified monoglycerides
WO1992006160A1 (en)1990-09-281992-04-16The Procter & Gamble CompanyNonionic surfactant systems containing polyhydroxy fatty acid amides and one or more additional nonionic surfactants
US5108763A (en)1991-04-031992-04-28Warner-Lambert CompanyMicroencapsulated high intensity sweetening agents having prolonged sweetness release and methods for preparing same
US5126151A (en)1991-01-241992-06-30Warner-Lambert CompanyEncapsulation matrix
US5139798A (en)1990-11-211992-08-18Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of codried sucralose for use in chewing gum
US5139793A (en)1990-07-101992-08-18Wm. Wrigley Jr. CompanyMethod of prolonging flavor in chewing gum by the use of cinnamic aldehyde propylene glycol acetal
US5154939A (en)1989-04-191992-10-13Wm. Wrigley Jr. CompanyUse of salt to improve extrusion encapsulation of chewing gum ingredients
US5164210A (en)1991-10-081992-11-17Wm. Wrigley Jr. CompanyZein/shellac encapsulation of high intensity sweeteners in chewing gum
US5169657A (en)1991-07-171992-12-08Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of sucralose from solutions for use in chewing gum
US5169658A (en)1989-04-191992-12-08Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum
US5174514A (en)1990-11-231992-12-29Savio S.P.A.Thread-laying device with rotating thread-guide elements on two converging inclined planes
US5176900A (en)1990-12-181993-01-05The Procter & Gamble CompanyCompositions for reducing calculus
US5198251A (en)1989-04-191993-03-30Wm. Wrigley Jr. CompanyGradual release structures for chewing gum
US5202112A (en)1991-08-011993-04-13Colgate-Palmolive CompanyViscoelastic dentifrice composition
US5208009A (en)1990-12-201993-05-04Colgate-Palmolive CompanyAnticalculus oral compositions
US5226335A (en)1990-04-111993-07-13Hellmuth SitteAutomatic initial-cutting device for microtomes, particularly ultramicrotomes
US5227182A (en)1991-07-171993-07-13Wm. Wrigley Jr. CompanyMethod of controlling release of sucralose in chewing gum using cellulose derivatives and gum produced thereby
US5229148A (en)1989-04-191993-07-20Wm. Wrigley Jr. CompanyMethod of combining active ingredients with polyvinyl acetates
US5240710A (en)1988-02-261993-08-31Niels BukhMethod of treating conditions of teeth and their supporting tissue with sucralfate
JPH0538258Y2 (en)1988-08-051993-09-28
US5256402A (en)1991-09-131993-10-26Colgate-Palmolive CompanyAbrasive tooth whitening dentifrice of improved stability
US5273741A (en)1988-12-291993-12-28Colgate-Palmolive CompanyPackaged anti-plaque oral compositions
US5334375A (en)1988-12-291994-08-02Colgate Palmolive CompanyAntibacterial antiplaque oral composition
US5334396A (en)1992-10-191994-08-02Wm. Wrigley Jr. CompanyChewing gum sweetened with alitame and having a high level of lecithin
US5336509A (en)1992-06-301994-08-09The Wm. Wrigley Jr. CompanyWax-free low calorie, high base chewing gum
US5352439A (en)1991-10-171994-10-04Colgate Palmolive CompanyDesensitizing anti-tartar dentifrice
US5364627A (en)1989-10-101994-11-15Wm. Wrigley Jr. CompanyGradual release structures made from fiber spinning techniques
US5380530A (en)1992-12-291995-01-10Whitehill Oral TechnologiesOral care composition coated gum
US5385729A (en)1991-08-011995-01-31Colgate Palmolive CompanyViscoelastic personal care composition
US5391315A (en)1991-09-271995-02-21Ashkin; AbrahamSolid cake detergent carrier composition
US5413799A (en)1994-04-121995-05-09Wm. Wrigley Jr. CompanyMethod of making fruit-flavored chewing with prolonged flavor intensity
US5415880A (en)1994-04-121995-05-16Wm. Wrigley Jr. CompanyFruit flavored chewing gum with prolonged flavor intensity
US5431930A (en)1994-08-181995-07-11Wm. Wrigley Jr. Co.Chewing gum containing medium chain triglycerides
US5437878A (en)1993-11-101995-08-01Nabisco, Inc.Chewing gum exhibiting reduced adherence to dental work
US5437876A (en)1993-03-021995-08-01Wm. Wrigley Jr. CompanyWax-free chewing gums with controlled sweetener release
US5462754A (en)1992-03-031995-10-31Wm. Wrigley Jr. CompanyAbhesive chewing gum with improved sweetness profile
WO1995033034A1 (en)1994-06-011995-12-07The Procter & Gamble CompanyOleoyl sarcosinate with polyhydroxy fatty acid amides in cleaning products
US5474787A (en)1994-10-211995-12-12The Wm. Wrigley Jr. CompanyChewing gum containing a lecithin/glycerol triacetate blend
US5480668A (en)1992-11-121996-01-02Nofre; ClaudeN-substituted derivatives of aspartame useful as sweetening agents
US5487902A (en)1989-07-241996-01-30Fertin Laboratories Ltd. (Dansk Tyggegummi Fabrik A/S)Chewing gum composition with accelerated, controlled release of active agents
US5498378A (en)1993-11-121996-03-12Lever Brothers Company, Division Of Conopco, Inc.Process for preparing capsules with structuring agents
US5505933A (en)1994-06-271996-04-09Colgate Palmolive CompanyDesensitizing anti-tartar dentifrice
US5523098A (en)1992-06-301996-06-04Wm. Wrigley Jr. CompanyWax-free chewing gum base that includes oil
WO1996019193A1 (en)1994-12-221996-06-27The Procter & Gamble CompanyOral compositions
US5532004A (en)1993-06-231996-07-02Nabisco, Inc.Chewing gum containing hydrophobic flavorant encapsulated in a hydrophilic shell
WO1996020608A1 (en)*1994-12-291996-07-11Wm. Wrigley Jr. CompanyChewing gum containing encapsulated combinations of aspartame and acesulfame k
US5582816A (en)1995-06-011996-12-10Colgate Palmolive CompanyPreparation of a visually clear gel dentifrice
US5589160A (en)1995-05-021996-12-31The Procter & Gamble CompanyDentifrice compositions
US5589194A (en)1993-09-201996-12-31Minnesota Mining And Manufacturing CompanyMethod of encapsulation and microcapsules produced thereby
WO1997002009A1 (en)1995-07-051997-01-23Cafosa Gum, S.A.Chewing-gum for the buccal hygiene and base gum for its preparation
WO1997002011A1 (en)1995-07-051997-01-23The Procter & Gamble CompanyOral compositions
US5599527A (en)1994-11-141997-02-04Colgate-Palmolive CompanyDentifrice compositions having improved anticalculus properties
US5603971A (en)1993-04-161997-02-18Mccormick & Company, Inc.Encapsulation compositions
US5603920A (en)1994-09-261997-02-18The Proctor & Gamble CompanyDentifrice compositions
US5618517A (en)1995-10-031997-04-08Church & Dwight Co., Inc.Chewing gum product with dental care benefits
US5626892A (en)1993-11-241997-05-06Nabisco, Inc.Method for production of multi-flavored and multi-colored chewing gum
US5629035A (en)1995-12-181997-05-13Church & Dwight Co., Inc.Chewing gum product with encapsulated bicarbonate and flavorant ingredients
US5637618A (en)1990-06-011997-06-10Bioresearch, Inc.Specific eatable taste modifiers
EP0608712B1 (en)1993-01-261997-06-11Societe Des Produits Nestle S.A.Salt taste enhancers
JP2623769B2 (en)1988-09-201997-06-25ライオン株式会社 Micro capsule
US5645821A (en)1995-10-061997-07-08Libin; Barry M.Alkaline oral hygiene composition
US5651958A (en)1995-05-021997-07-29The Procter & Gamble CompanyDentifrice compositions
US5658553A (en)1995-05-021997-08-19The Procter & Gamble CompanyDentifrice compositions
US5676932A (en)1995-05-021997-10-14J.M. Huber CorporationSilica abrasive compositions
US5693334A (en)1995-10-051997-12-02Church & Dwight Co., Inc.Chewing gum product with dental health benefits
US5698215A (en)1994-03-281997-12-16Kalili; TomChewing gum composition with fluoride and citric acid
US5702687A (en)1995-10-031997-12-30Church & Dwight Co., Inc.Chewing gum product with plaque-inhibiting benefits
US5713738A (en)1995-12-121998-02-03Britesmile, Inc.Method for whitening teeth
US5716601A (en)1996-03-221998-02-10The Procter & Gamble CompanyDentifrice compositions
US5736175A (en)1996-02-281998-04-07Nabisco Technology Co.Chewing gums containing plaque disrupting ingredients and method for preparing it
WO1998018339A1 (en)1996-10-311998-05-07Hideki AokiChewing gum composition and process for the production thereof
US5756074A (en)1995-01-301998-05-26L'orealCompositions based on an abrasive system and on a surfactant system
WO1998023165A1 (en)1996-11-271998-06-04Wm. Wrigley Jr. CompanyMethod of controlling release of caffeine in chewing gum and gum produced thereby
WO1998029088A1 (en)1997-01-031998-07-09Rinne Ari EA method and product for cleaning and/or whitening of teeth
DE19653100A1 (en)1996-12-191998-07-23Adolf MetzImproved lactose-containing magnetic capsules for intestinal use
US5789002A (en)1996-10-031998-08-04Warner-Lambert CompanyGum sweetener/acid processing system
US5800848A (en)1995-06-201998-09-01The Wm. Wrigley Jr. CompanyChewing gum containing sucrose polyesters
US5824291A (en)1997-06-301998-10-20Media GroupChewing gum containing a teeth whitening agent
US5869028A (en)1996-03-221999-02-09J.M. Huber CorporationPrecipitated silicas having improved dentifrice performance characteristics and methods of preparation
US5879728A (en)1996-01-291999-03-09Warner-Lambert CompanyChewable confectionary composition and method of preparing same
WO1999015032A1 (en)1997-09-241999-04-01Holland Sweetener Company V.O.F.Sweetening composition comprising aspartame and 2,4-dihydroxybenzoic acid
WO1999015192A1 (en)1997-09-191999-04-01Auckland Uniservices LimitedNeuronal rescue agent
WO1999027798A1 (en)1997-12-031999-06-10Wm. Wrigley Jr. CompanyImproved chewing gum formulations including aspartame and sodium bicarbonate
US5912007A (en)1996-02-291999-06-15Warner-Lambert CompanyDelivery system for the localized administration of medicaments to the upper respiratory tract and methods for preparing and using same
US5939051A (en)1998-02-271999-08-17Colgate-Palmolive CompanyDental abrasive
WO1999043294A1 (en)1998-02-271999-09-02The Procter & Gamble CompanyOral care compositions comprising chlorite and methods
WO2000001253A1 (en)1998-07-072000-01-13Mcneil Specialty Products Company, Division Of Mcneil-Ppc, Inc.Method of improving sweetness delivery of sucralose
US6027746A (en)1997-04-232000-02-22Warner-Lambert CompanyChewable soft gelatin-encapsulated pharmaceutical adsorbates
US6056992A (en)1988-06-022000-05-02Campbell Soup CompanyEncapsulated additives
WO2000035296A1 (en)1996-11-272000-06-22Wm. Wrigley Jr. CompanyImproved release of medicament active agents from a chewing gum coating
WO2000035398A1 (en)1998-12-182000-06-22Kimberly-Clark Worldwide, Inc.Absorbent article with non-irritating refastenable seams
WO2000069282A1 (en)1999-05-132000-11-23The Nutrasweet CompanyModification of the taste and physicochemical properties of neotame using hydrophobic acid additives
WO2000075274A1 (en)1999-06-082000-12-14Greither, PeterCapsule containing detergents
US6174514B1 (en)1999-04-122001-01-16Fuisz Technologies Ltd.Breath Freshening chewing gum with encapsulations
US6190644B1 (en)1996-11-212001-02-20The Procter & Gamble CompanyDentifrice compositions containing polyphosphate and monofluorophosphate
US6239690B1 (en)1997-11-122001-05-29U.S. Philips CorporationBattery economizing in a communications system
US6261540B1 (en)1997-10-222001-07-17Warner-Lambert CompanyCyclodextrins and hydrogen peroxide in dental products
US6290933B1 (en)2000-05-092001-09-18Colgate-Palmolive CompanyHigh cleaning dentifrice
WO2002000039A2 (en)2000-06-272002-01-03Societe Des Produits Nestle S.A.Flavour composition
US6365209B2 (en)2000-06-062002-04-02Capricorn Pharma, Inc.Confectionery compositions and methods of making
US20020044968A1 (en)1996-10-282002-04-18General Mills, Inc.Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
US6379654B1 (en)2000-10-272002-04-30Colgate Palmolive CompanyOral composition providing enhanced tooth stain removal
US20020054859A1 (en)1998-02-062002-05-09Biocosmetic, S.L.Composition for the treatment of halitosis
US6416744B1 (en)2001-06-212002-07-09Colgate Palmolive CompanyTooth whitening chewing gum
WO2002055649A1 (en)2001-01-092002-07-18Henkel Kommanditgesellschaft Auf AktienMicro-capsules containing washing and cleaning substances
US6428827B1 (en)1999-04-012002-08-06Wm. Wrigley Jr. CompanyLong flavor duration releasing structures for chewing gum and method of making
US20020122842A1 (en)2000-12-152002-09-05Seielstad Donald A.Encapsulated acid mixtures and products including same
WO2002076231A1 (en)2001-03-232002-10-03Gumlink A/SBiodegradable chewing gum and method of manufacturing such chewing gum
US20020150616A1 (en)1997-06-052002-10-17Roger Petrus Gerebern VandecruysPharmaceutical compositions comprising cyclodextrins
US6471945B2 (en)2000-03-102002-10-29Warner-Lambert CompanyStain removing chewing gum and confectionery compositions, and methods of making and using the same
US6475469B1 (en)1996-11-212002-11-05Applied Dental Sciences, Inc.Compositions for removing tooth stains
US6479071B2 (en)2000-03-102002-11-12Warner-Lambert CompanyChewing gum and confectionery compositions with encapsulated stain removing agent compositions, and methods of making and using the same
US6485739B2 (en)2000-03-102002-11-26Warner-Lambert CompanyStain removing chewing gum and confectionery compositions, and methods of making and using the same
WO2002102362A1 (en)2001-06-152002-12-27Numico Research B.V.Dietetic preparation and use of an alpha-hydroxy carboxylic acid (citric acid for the treatment of obesity
US6506366B1 (en)1998-10-012003-01-14Henkel Kommanditgesellschaft Auf AktienLiquid tooth cleaning gel
US6534091B1 (en)1999-07-022003-03-18Cognis Iberia S. L.Microcapsules
US20030077362A1 (en)2001-10-232003-04-24Panhorst Dorothy A.Encapsulated flavors as inclusion in candy confections
US6555145B1 (en)2000-06-062003-04-29Capricorn Pharma, Inc.Alternate encapsulation process and products produced therefrom
US20030091721A1 (en)1999-11-292003-05-15Shigenori OhtaMethod of enhancing salty taste, salty taste enhancer, salty taste seasoning agent and salty taste-enhanced foods
US20030099740A1 (en)2000-04-262003-05-29Roberto ColleChewing gum containing encapsulated abrasive filler substance
US20030113274A1 (en)2000-03-102003-06-19Holme Samantha KatharineChewing gum and confectionery compositions with encapsulated stain removing agent compostions, and methods of making and using the same
GB2388581A (en)2003-08-222003-11-19DaniscoCoated aqueous beads
WO2004006967A1 (en)2002-07-112004-01-22Firmenich SaComposition of controlled release of perfumes and flavours
US6685916B1 (en)2002-10-312004-02-03Cadbury Adams Usa LlcCompositions for removing stains from dental surfaces, and methods of making and using the same
US6692778B2 (en)1998-06-052004-02-17Wm. Wrigley Jr. CompanyMethod of controlling release of N-substituted derivatives of aspartame in chewing gum
US6759066B2 (en)2000-09-122004-07-06Wm. Wrigley Jr. CompanyChewing gum formulations including encapsulated aspartame and sodium pyrophosphate
US20040146599A1 (en)2001-03-232004-07-29Lone AndersenCoated degradable chewing gum with improved shelf life and process for preparing same
US20040175489A1 (en)2003-03-032004-09-09Wm. Wrigley Jr. CompanyFast flavor release coating for confectionery
US20040238993A1 (en)2002-01-102004-12-02Daniel BenczediProcess for the preparation of extruded delivery systems
US20050025721A1 (en)2002-10-312005-02-03Cadbury Adams, LlcCompositions for removing stains from dental surfaces and methods of making and using the same
WO2005016022A1 (en)2003-08-142005-02-24Cargill, IncorporatedChewing gum compositions comprising monatin and methods of making same
US20050112236A1 (en)2003-11-212005-05-26Navroz BoghaniDelivery system for active components as part of an edible composition having preselected tensile strength
WO2005079598A1 (en)2004-01-232005-09-01Firmenich SaLarge glassy beads
WO2005087020A1 (en)2004-03-052005-09-22Richmond Chemical CorporationHigh-intensity sweetener-polyol compositions
US20050260266A1 (en)2003-11-212005-11-24Cadbury Adams Usa, Llc.Controlled release oral delivery systems
WO2006003349A1 (en)2004-06-302006-01-12Cadbury Schweppes PlcChewing gum comprising flavor emulsion
US20060034897A1 (en)2003-11-212006-02-16Cadbury Adams Usa LlcDelivery system for two or more active components as part of an edible composition
US20060068059A1 (en)2004-09-302006-03-30Cadbury Adams Usa LlcEncapsulated compositions and methods of preparation
US20060068057A1 (en)2004-09-302006-03-30Cadbury Adams Usa LlcThermally stable, high tensile strength encapsulated actives
US7022352B2 (en)2002-07-232006-04-04Wm. Wrigley Jr. CompanyEncapsulated flavors and chewing gum using same
US7025999B2 (en)2001-05-112006-04-11Wm. Wrigley Jr. CompanyChewing gum having prolonged sensory benefits
WO2006079056A1 (en)2005-01-202006-07-27Stephen HoltHerbal compositions containing hoodia
WO2006086061A1 (en)2005-02-072006-08-17Cadbury Adams Usa LlcStable tooth whitening gum with reactive ingredients
US20060193896A1 (en)2005-02-252006-08-31Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible composition
US20060263413A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US20060263472A1 (en)2005-05-232006-11-23Cadbury Adam Usa LlcDelivery system for coated active components as part of an edible composition
US20060263477A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcEdible composition including a delivery system for active components
US20060263478A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcCoated delivery system for active components as part of an edible composition
US20060263480A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition having selected particle size
US20060263479A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US20060263473A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcCompressed delivery system for active components as part of an edible composition
WO2005091918A3 (en)2004-03-122006-12-07Gen Mills IncDry mix compositions and method for making and utilizing the same having an enhanced anti-microbial shelf life
CA2238925C (en)1998-05-282007-08-21Levente Laszio DiosadySalt formulation and process for production thereof
US20070298061A1 (en)2005-02-252007-12-27Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible compostion
US20080063747A1 (en)2004-08-252008-03-13Cadbury Adams Usa LlcDusting compositions for chewing gum products
US20080160138A1 (en)2005-05-232008-07-03Cadbury Adams Usa LlcConfectionery Composition Including an Elastomeric Component, a Cooked Saccharide Component, and a Modified Release Component
US20080166449A1 (en)2006-11-292008-07-10Cadbury Adams Usa LlcConfectionery compositions including an elastomeric component and a saccharide component
US20090098252A1 (en)2004-09-302009-04-16Cadbury Adams Usa LlcThermally stable, high tensile strength encapsulation compositions for actives
US20090175982A1 (en)2005-05-232009-07-09Cadbury Adams Usa Llc.,Methods for managing release of one or more ingredients in an edible composition
US20090220642A1 (en)2003-11-212009-09-03Cadbury Adams Usa LlcCompressible gum based delivery systems for the release of ingredients

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US113274A (en)*1871-04-04Improvement in felted fabrics
US99740A (en)*1870-02-08Improvement in preparing anhydrous grahamite
US25959A (en)1859-11-01duckworth
US136928A (en)*1873-03-18Improvement in wheels for vehicles
US3356811A (en)1965-01-151967-12-05Westinghouse Electric CorpOil-type circuit breakers having outer continuous insulating support tube and inner stacked insulating plates providing lateral vent openings
US3492131A (en)1966-04-181970-01-27Searle & CoPeptide sweetening agents
CA1027347A (en)1972-07-201978-03-07David G. RowsellCompounds having a physiological cooling effect and compositions containing them
FR2444080A1 (en)1978-12-111980-07-11Roquette Freres NON-CARIOGENIC HYDROGENIC STARCH HYDROLYSATE FOR CONFECTIONERY AND PROCESS FOR PREPARING THIS HYDROLYSATE
US4619834A (en)1985-05-061986-10-28General Foods CorporationSweetening with L-aminodicarboxylic acid aminoalkenoic acid ester amides
DE4110973A1 (en)1991-04-051992-10-08Haarmann & Reimer Gmbh MEDIUM WITH A PHYSIOLOGICAL COOLING EFFECT AND EFFECTIVE COMPOUNDS SUITABLE FOR THIS MEDIUM
CN1522587A (en)*2003-09-082004-08-25苏 韩A chewing gum and its preparation method

Patent Citations (337)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3124459A (en)1964-03-10Organoleptic compositions
US1633336A (en)1925-09-281927-06-21Winford P LarsonDentifrice
US1936456A (en)1929-05-011933-11-21Wm S Merrell CoTherapeutic preparation
US2191199A (en)1937-09-171940-02-20Hall Lab IncAbrasive detergent composition
US2197719A (en)1938-12-071940-04-16Wrigley W M Jun CoChewing gum
US2876167A (en)1954-11-241959-03-03Colgate Palmolive CoFluoride dentifrice stabilized by a water-soluble acid phosphate compound
US3004897A (en)1955-02-091961-10-17Shore JosephDental preparation
US2886441A (en)1956-07-031959-05-12Gen Foods CorpProduct and process
US2886440A (en)1956-07-031959-05-12Gen Foods CorpChewing gum and method of producing
US2886442A (en)1956-07-271959-05-12Gen Foods CorpChewing gum and method of producing
US2886443A (en)1956-08-151959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886444A (en)1956-08-151959-05-12Gen Foods CorpProcess of preparing a chewing gum and the resulting product
US2886446A (en)1958-12-081959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886445A (en)1958-12-081959-05-12Gen Foods CorpProcess for making chewing gum and product
US2886449A (en)1959-03-101959-05-12Gen Foods CorpMethod of making chewing gum and the resulting product
GB875763A (en)1959-05-011961-08-23Gen Foods CorpChewing gum having controlled flavour release
US3052552A (en)1959-09-161962-09-04Beech Nut Life Savers IncPrinting on confection items and the resulting product
US3117027A (en)1960-01-081964-01-07Wisconsin Alumni Res FoundApparatus for coating particles in a fluidized bed
US3159585A (en)1961-04-121964-12-01Nat Starch Chem CorpMethod of encapsulating water insoluble oils and product thereof
US3341416A (en)1963-12-111967-09-12Ncr CoEncapsulation of aspirin in ethylcellulose and its product
US3241520A (en)1964-10-191966-03-22Wisconsin Alumni Res FoundParticle coating apparatus
US3475533A (en)1966-05-191969-10-28Extar CoWater-free toothpastes containing metaphosphates,calcium carbonate,and mineral oil
US3538230A (en)1966-12-051970-11-03Lever Brothers LtdOral compositions containing silica xerogels as cleaning and polishing agents
US3691090A (en)1969-01-161972-09-12Fuji Photo Film Co LtdEncapsulation method
US3664963A (en)1969-10-221972-05-23Balchem CorpEncapsulation process
US3819838A (en)1970-08-041974-06-25Bush Boake Allen LtdEncapsulated flavoring composition
US3677771A (en)1970-09-211972-07-18Ralston Purina CoProcess for the manufacture of caramels
US3795744A (en)1970-10-211974-03-05Lotte Co LtdFlavor variable chewing gum and methods of preparing the same
US3826847A (en)1970-10-211974-07-30Lotte Co LtdProcess for preparation of flavor durable chewing gum
US3821417A (en)1970-11-091974-06-28Warner Lambert CoFlavor preservation in chewing gum compositions and candy products
US3664962A (en)1971-01-111972-05-23Jerry D KellyStain remover
US3962416A (en)1971-01-251976-06-08Sol KatzenPreserved nutrients and products
US4136163A (en)1971-02-041979-01-23Wilkinson Sword LimitedP-menthane carboxamides having a physiological cooling effect
US3878938A (en)1971-04-081975-04-22Lever Brothers LtdToothpastes
US3962463A (en)1972-04-031976-06-08Life Savers, Inc.Chewing gum having surface impregnated, microencapsulated flavor particles
US4230688A (en)1972-04-181980-10-28Wilkinson Sword LimitedAcyclic carboxamides having a physiological cooling effect
US3943258A (en)1972-10-051976-03-09General Foods CorporationChewing gums of longer lasting sweetness and flavor
US3872021A (en)1972-11-131975-03-18Audrey M McknightCleaning composition
US3857964A (en)1973-02-091974-12-31Brook DControlled release flavor compositions
US3862307A (en)1973-04-091975-01-21Procter & GambleDentifrices containing a cationic therapeutic agent and improved silica abrasive
GB1444024A (en)1973-07-201976-07-28Passwaterr AFood and feed supplents
US3912817A (en)1973-10-031975-10-14Topps Chewing Gum IncGum product and method of making the same
US3930026A (en)1974-08-281975-12-30Squibb & Sons IncChewing gum having enhanced flavor
US3984574A (en)1975-04-111976-10-05Wm. Wrigley Jr. CompanyNon-tack chewing gum composition
US4045581A (en)1975-05-151977-08-30Life Savers, Inc.Long-lasting mint-flavored chewing gum
US4037000A (en)1975-10-241977-07-19Tate & Lyle LimitedIcing mixture
US3974293A (en)1975-11-261976-08-10Life Savers, Inc.Non-adhesive chewing gum composition
US4083995A (en)1976-07-221978-04-11The United States Of America As Represented By The Secretary Of Agriculture(Z)-9-Tetradecen-1-ol formate and its use as a communication disruptant for Heliothis
US4130638A (en)1976-11-031978-12-19Richardson-Merrell Inc.Mouthwash compositions
US4107360A (en)1976-11-041978-08-15Sagapha A. G.Process for packing a pasty stain remover in portion capsules
US4139639A (en)1977-01-241979-02-13General Foods CorporationFixation of APM in chewing gum
US4217368A (en)1977-07-081980-08-12Life Savers, Inc.Long-lasting chewing gum and method
US4160054A (en)1977-11-281979-07-03General Mills, Inc.Plaque inhibiting composition and method
US4150112A (en)1977-11-281979-04-17General Mills, Inc.Plaque inhibiting composition and method
US4157385A (en)1977-11-281979-06-05General Mills, Inc.Plaque inhibiting composition and method
US4159315A (en)1977-11-281979-06-26General Mills, Inc.Plaque inhibiting composition and method
US4148872A (en)1977-11-281979-04-10General Mills, Inc.Plaque inhibiting composition and method
US4160820A (en)1977-11-281979-07-10General Mills, Inc.Plaque inhibiting composition and method
US4156716A (en)1977-11-281979-05-29General Mills, Inc.Plaque inhibiting composition and method
US4156715A (en)1977-11-281979-05-29General Mills, Inc.Plaque inhibiting composition and method
US4187320A (en)1978-05-011980-02-05Warner-Lambert CompanyProcess for preparing chewing gum base using solid elastomer
US4208431A (en)1978-05-051980-06-17Life Savers, Inc.Long-lasting chewing gum having good processibility and method
US4276312A (en)1978-05-251981-06-30Merritt Carleton GEncapsulation of materials
US4224345A (en)1978-10-161980-09-23Lotte Co., LtdChewing gum base and a combination of a chewing gum with fatty matter
US4340583A (en)1979-05-231982-07-20J. M. Huber CorporationHigh fluoride compatibility dentifrice abrasives and compositions
US4363756A (en)1979-06-181982-12-14Lever Brothers CompanyPretreatment composition for stain removal
US4295845A (en)1979-06-181981-10-20Lever Brothers CompanyPretreatment composition for stain removal
US4314990A (en)1979-10-151982-02-09The Procter & Gamble CompanyToothpaste compositions
US4314990B1 (en)1979-10-151991-09-03Procter & Gamble
US4271199A (en)1979-11-231981-06-02Life Savers, Inc.Sugar-containing chewing gum having smooth texture and long-lasting sweetness
US4370350A (en)*1980-04-281983-01-25Wm. Wrigley Jr. CompanyChewing gum method
US4457857A (en)1980-10-201984-07-03Lever Brothers CompanyPretreatment composition for stain removal
US4352825A (en)1981-02-231982-10-05Nabisco Brands, Inc.Coextruded chewing gum containing a soft core portion
US4352823A (en)1981-04-131982-10-05Nabisco Brands, Inc.Coextruded chewing gum containing a soft non-SBR gum core portion
US4384004B1 (en)1981-06-021993-06-22Warner Lambert Co
US4384004A (en)1981-06-021983-05-17Warner-Lambert CompanyEncapsulated APM and method of preparation
EP0067595B1 (en)1981-06-021987-03-04Warner-Lambert CompanyA chewing gum composition incorporating encapsulated l-aspartyl-l-phenylalanine methyl ester
US4459425A (en)1981-11-201984-07-10Takasago Perfumery Co., Ltd.3-Levo-Menthoxypropane-1,2-diol
US4515769A (en)1981-12-011985-05-07Borden, Inc.Encapsulated flavorant material, method for its preparation, and food and other compositions incorporating same
US4386106A (en)1981-12-011983-05-31Borden, Inc.Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4452821A (en)1981-12-181984-06-05Gerhard GergelyConfectionery product, particularly chewing gum, and process for its manufacture
US4673577A (en)1983-02-181987-06-16Wm. Wrigley Jr. CompanyShellac encapsulant for high-potency sweeteners in chewing gum
US4627987A (en)1983-03-221986-12-09General Foods CorporationEdible material containing meta-hydroxybenzoic or salts
US4871570A (en)1983-03-221989-10-03General Foods Corp.Foodstuffs containing hydrobenzene organic acids as sweetness modifying agents
US4485118A (en)1983-04-211984-11-27Warner-Lambert CompanyGum composition with plural time releasing flavors and method of preparation
US4513012A (en)1983-05-131985-04-23Warner-Lambert CompanyPowdered center-filled chewing gum compositions
EP0132444B1 (en)1983-07-131986-11-20General Foods CorporationSweetening composition and process for modifying the sweetness perception of a foodstuff
CA1208966A (en)1983-07-131986-08-05Ronald E. BarnettFoodstuffs containing sweetness modifying agents
US4751095A (en)1983-07-281988-06-14Karl Curtis LAspartame stabilization with cyclodextrin
EP0134120B1 (en)1983-08-231988-04-20Warner-Lambert CompanyA non-adhesive chewing gum base composition, and a non-adhesive chewing gum composition
US4749575A (en)1983-10-031988-06-07Bio-Dar Ltd.Microencapsulated medicament in sweet matrix
US4614649A (en)1983-12-091986-09-30Sterling Drug Inc.Antiplaque saccharin salt dentrifices and method of use thereof
US4971806A (en)1984-01-311990-11-20Warner-Lambert CompanyMulti-layered chewing gum composition having different rates of flavor release
WO1985003414A1 (en)1984-01-311985-08-15Scm CorporationEncapsulation matrix composition and encapsulate containing same
US5080877A (en)1984-02-201992-01-14Rhone-Poulenc Specialties ChimiquesNovel cerium oxide particulates
US4614654A (en)1984-08-241986-09-30Wm. Wrigley Jr. CompanyTaffy-like chewing gum confection and method
US4590075A (en)1984-08-271986-05-20Warner-Lambert CompanyElastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4597970A (en)1984-10-051986-07-01Warner-Lambert CompanyChewing gum compositions containing novel sweetener delivery systems and method of preparation
US4828857A (en)1984-10-051989-05-09Warner-Lambert CompanyNovel sweetener delivery systems
US4804548A (en)1984-10-051989-02-14Warner-Lambert CompanyNovel sweetener delivery systems
US4764382A (en)1984-11-151988-08-16Hercon Laboratories CorporationDevice for controlled release drug delivery
US4585649A (en)1984-12-211986-04-29Ici Americas Inc.Dentifrice formulation and method of treating teeth, mouth and throat therewith to reduce plaque accumulation and irritation
US4842762A (en)1985-06-071989-06-27The Dow Chemical CompanyLaundry soil and stain remover in applicator stick form
US4634593A (en)1985-07-311987-01-06Nabisco Brands, Inc.Composition and method for providing controlled release of sweetener in confections
JPS62215349A (en)1986-01-071987-09-22ワ−ナ−−ランバ−ト・コンパニ−Filler composition used in chewing gum and food
US4711784A (en)1986-01-071987-12-08Warner-Lambert CompanyEncapsulation composition for use with chewing gum and edible products
US4929447A (en)1986-01-071990-05-29Warner-Lambert CompanyEncapsulation composition for use with chewing gum and edible products
US4740376A (en)*1986-01-071988-04-26Warner-Lambert CompanyEncapsulation composition for use with chewing gum and edible products
US4752481A (en)1986-06-191988-06-21Warner-Lambert CompanyFlavor emulsions and chewing gum compositions containing the same
US4741905A (en)1986-06-191988-05-03Warner-Lambert CompanyChewing gum candy
EP0252374A1 (en)1986-06-251988-01-13Nabisco Brands, Inc.Encapsulated actice ingredients, process for preparing them and their use in ingested products
WO1988000463A1 (en)1986-07-111988-01-28Oral Research Laboratories, Inc.Compositions for the prolonged action of anti-plaque agents
US4918182A (en)1986-07-151990-04-17Tate & Lyle Public Limited CompanySweetener
US4726953A (en)1986-10-011988-02-23Nabisco Brands, Inc.Sweet flavorful soft flexible sugarless chewing gum
US4927646A (en)1986-11-131990-05-22Tate & Lyle PlcSucralose sweetening composition
US4800087A (en)1986-11-241989-01-24Mehta Atul MTaste-masked pharmaceutical compositions
US4915958A (en)1986-12-101990-04-10Warner-Lambert CompanyHigh-base gum composition with extended flavor release
US4828845A (en)1986-12-161989-05-09Warner-Lambert CompanyXylitol coated comestible and method of preparation
US4753790A (en)1986-12-161988-06-28Warner-Lambert CompanySorbitol coated comestible and method of preparation
US4824681A (en)1986-12-191989-04-25Warner-Lambert CompanyEncapsulated sweetener composition for use with chewing gum and edible products
US4911934A (en)1986-12-191990-03-27Warner-Lambert CompanyChewing gum composition with encapsulated sweetener having extended flavor release
US5004595A (en)1986-12-231991-04-02Warner-Lambert CompanyMultiple encapsulated flavor delivery system and method of preparation
US4816265A (en)1986-12-231989-03-28Warner-Lambert CompanySweetener delivery systems containing polyvinyl acetate
US4931293A (en)1986-12-231990-06-05Warner-Lambert CompanyFood acid delivery systems containing polyvinyl acetate
US4933190A (en)1986-12-231990-06-12Warner-Lambert Co.Multiple encapsulated sweetener delivery system
US4981698A (en)1986-12-231991-01-01Warner-Lambert Co.Multiple encapsulated sweetener delivery system and method of preparation
US4722845A (en)1986-12-231988-02-02Warner-Lambert CompanyStable cinnamon-flavored chewing gum composition
US5043154A (en)1987-01-301991-08-27Colgate-Palmolive Co.Antibacterial, antiplaque, anticalculus oral composition
US4771784A (en)1987-02-171988-09-20Kuibyshevksy Politekhnichesky InstitutOphthalmorheographic transducer
US4986991A (en)1987-05-151991-01-22Wm Wrigley, Jr., CompanyChewing gum having an extended sweetness
US4822599A (en)1987-08-261989-04-18The Procter & Gamble CompanyOral compositions
US5240710A (en)1988-02-261993-08-31Niels BukhMethod of treating conditions of teeth and their supporting tissue with sucralfate
US6056992A (en)1988-06-022000-05-02Campbell Soup CompanyEncapsulated additives
US4919841A (en)1988-06-061990-04-24Lever Brothers CompanyWax encapsulated actives and emulsion process for their production
JPH0538258Y2 (en)1988-08-051993-09-28
US4952407A (en)1988-09-121990-08-28Wm. Wrigley Jr. CompanyChewing gum containing glycerol mono laurate
JP2623769B2 (en)1988-09-201997-06-25ライオン株式会社 Micro capsule
WO1990004926A1 (en)1988-11-041990-05-17Wm. Wrigley Jr. CompanyEmulsifiers for flavor prolongation in chewing gum
JPH02227044A (en)1988-11-071990-09-10Mitajiri Kagaku Kogyo KkSeasoning containing high-purity miraculin and food containing same
US5057328A (en)1988-11-141991-10-15Warner-Lambert CompanyFood acid delivery systems containing polyvinyl acetate
US5017385A (en)1988-11-251991-05-21The Procter & Gamble CompanyChewing gum
US4971797A (en)1988-12-221990-11-20Warner-Lambert CompanyStabilized sucralose complex
US4904482A (en)1988-12-221990-02-27Wm. Wrigley Jr. CompanyChewing gums containing hydrated emulsifier and methods of preparation
US5273741A (en)1988-12-291993-12-28Colgate-Palmolive CompanyPackaged anti-plaque oral compositions
US5334375A (en)1988-12-291994-08-02Colgate Palmolive CompanyAntibacterial antiplaque oral composition
US4997659A (en)1989-03-281991-03-05The Wm. Wrigley Jr. CompanyAlitame stability in chewing gum by encapsulation
WO1990012512A1 (en)1989-04-191990-11-01Wm. Wrigley Jr. CompanyUse of encapsulated salts in chewing gum
US5139794A (en)1989-04-191992-08-18Wm. Wrigley Jr. CompanyUse of encapsulated salts in chewing gum
US5198251A (en)1989-04-191993-03-30Wm. Wrigley Jr. CompanyGradual release structures for chewing gum
US5229148A (en)1989-04-191993-07-20Wm. Wrigley Jr. CompanyMethod of combining active ingredients with polyvinyl acetates
US4978537A (en)1989-04-191990-12-18Wm. Wrigley Jr. CompanyGradual release structures for chewing gum
US5169658A (en)1989-04-191992-12-08Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum
US5154939A (en)1989-04-191992-10-13Wm. Wrigley Jr. CompanyUse of salt to improve extrusion encapsulation of chewing gum ingredients
US4923684A (en)1989-05-081990-05-08Beecham, Inc.Tripolyphosphate-containing anti-calculus toothpaste
US4985236A (en)1989-05-081991-01-15Beecham Inc.Tripolyphosphate-containing anti-calculus toothpaste
US5084278A (en)1989-06-021992-01-28Nortec Development Associates, Inc.Taste-masked pharmaceutical compositions
US5487902A (en)1989-07-241996-01-30Fertin Laboratories Ltd. (Dansk Tyggegummi Fabrik A/S)Chewing gum composition with accelerated, controlled release of active agents
WO1989011212A3 (en)1989-08-301990-01-25Wrigley W M Jun CoMethod of controlling release of cyclamate in chewing gum and gum produced thereby
US5009900A (en)1989-10-021991-04-23Nabisco Brands, Inc.Glassy matrices containing volatile and/or labile components, and processes for preparation and use thereof
US5364627A (en)1989-10-101994-11-15Wm. Wrigley Jr. CompanyGradual release structures made from fiber spinning techniques
US5082671A (en)1989-10-271992-01-21Warner-Lambert CompanyLow moisture sucralose sweetened chewing gum
US5059429A (en)1989-10-271991-10-22Warner-Lambert CompanySucralose sweetened chewing gum
WO1990007859A3 (en)1989-11-221990-10-04Wrigley W M Jun CoMethod of controlling release of sucralose in chewing gum and gum produced thereby
WO1991007104A1 (en)1989-11-221991-05-30Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of sucralose from solutions for use in chewing gum
US5057327A (en)1989-12-291991-10-15Wm. Wrigley Jr. CompanyChewing gum with longer lasting sweetness using alitame
US5073389A (en)1990-01-241991-12-17The Procter & Gamble CompanyMineral supplemented candy product containing multiple discrete regions
US5226335A (en)1990-04-111993-07-13Hellmuth SitteAutomatic initial-cutting device for microtomes, particularly ultramicrotomes
US5043169A (en)1990-05-251991-08-27Warner-Lambert CompanyStabilized Sweetner Composition
US5637618A (en)1990-06-011997-06-10Bioresearch, Inc.Specific eatable taste modifiers
US5139793A (en)1990-07-101992-08-18Wm. Wrigley Jr. CompanyMethod of prolonging flavor in chewing gum by the use of cinnamic aldehyde propylene glycol acetal
WO1990013994A3 (en)1990-07-171991-04-04Wrigley W M Jun CoControlled release of dihydrochalcones in chewing gum
WO1992002145A1 (en)1990-08-091992-02-20Warner-Lambert CompanyFlavor delivery system with improved release and method of preparation
WO1992006160A1 (en)1990-09-281992-04-16The Procter & Gamble CompanyNonionic surfactant systems containing polyhydroxy fatty acid amides and one or more additional nonionic surfactants
US5064658A (en)1990-10-311991-11-12Warner-Lamber CompanyEncapsulated synergistic sweetening agent compositions comprising aspartame and acesulfame-K and methods for preparing same
US5100678A (en)1990-11-151992-03-31Wm. Wrigley Jr. CompanyChewing gum with prolonged flavor release incorporating unsaturated, purified monoglycerides
US5139798A (en)1990-11-211992-08-18Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of codried sucralose for use in chewing gum
US5174514A (en)1990-11-231992-12-29Savio S.P.A.Thread-laying device with rotating thread-guide elements on two converging inclined planes
US5096701A (en)1990-12-181992-03-17The Procter & Gamble CompanyOral compositions
US5176900A (en)1990-12-181993-01-05The Procter & Gamble CompanyCompositions for reducing calculus
US5208009A (en)1990-12-201993-05-04Colgate-Palmolive CompanyAnticalculus oral compositions
US5096699A (en)1990-12-201992-03-17Colgate-Palmolive CompanyAnticalculus oral compositions
US5126151A (en)1991-01-241992-06-30Warner-Lambert CompanyEncapsulation matrix
US5108763A (en)1991-04-031992-04-28Warner-Lambert CompanyMicroencapsulated high intensity sweetening agents having prolonged sweetness release and methods for preparing same
US5227182A (en)1991-07-171993-07-13Wm. Wrigley Jr. CompanyMethod of controlling release of sucralose in chewing gum using cellulose derivatives and gum produced thereby
US5169657A (en)1991-07-171992-12-08Wm. Wrigley Jr. CompanyPolyvinyl acetate encapsulation of sucralose from solutions for use in chewing gum
US5300283A (en)1991-08-011994-04-05Colgate Palmolive CompanyViscoelastic dentifrice composition
US5385729A (en)1991-08-011995-01-31Colgate Palmolive CompanyViscoelastic personal care composition
US5202112A (en)1991-08-011993-04-13Colgate-Palmolive CompanyViscoelastic dentifrice composition
US5256402A (en)1991-09-131993-10-26Colgate-Palmolive CompanyAbrasive tooth whitening dentifrice of improved stability
US5391315A (en)1991-09-271995-02-21Ashkin; AbrahamSolid cake detergent carrier composition
US5164210A (en)1991-10-081992-11-17Wm. Wrigley Jr. CompanyZein/shellac encapsulation of high intensity sweeteners in chewing gum
US5352439A (en)1991-10-171994-10-04Colgate Palmolive CompanyDesensitizing anti-tartar dentifrice
US5503823A (en)1991-10-171996-04-02Colgate Palmolive CompanyDesensitizing anti-tartar dentifrice
JPH05292890A (en)1991-10-181993-11-09Wm Wrigley Junior CoSlow releasing structure for chewing gum
US5462754A (en)1992-03-031995-10-31Wm. Wrigley Jr. CompanyAbhesive chewing gum with improved sweetness profile
US5336509A (en)1992-06-301994-08-09The Wm. Wrigley Jr. CompanyWax-free low calorie, high base chewing gum
US5523098A (en)1992-06-301996-06-04Wm. Wrigley Jr. CompanyWax-free chewing gum base that includes oil
US5334396A (en)1992-10-191994-08-02Wm. Wrigley Jr. CompanyChewing gum sweetened with alitame and having a high level of lecithin
US5480668A (en)1992-11-121996-01-02Nofre; ClaudeN-substituted derivatives of aspartame useful as sweetening agents
US5380530A (en)1992-12-291995-01-10Whitehill Oral TechnologiesOral care composition coated gum
EP0608712B1 (en)1993-01-261997-06-11Societe Des Produits Nestle S.A.Salt taste enhancers
US5437876A (en)1993-03-021995-08-01Wm. Wrigley Jr. CompanyWax-free chewing gums with controlled sweetener release
US5603971A (en)1993-04-161997-02-18Mccormick & Company, Inc.Encapsulation compositions
US5532004A (en)1993-06-231996-07-02Nabisco, Inc.Chewing gum containing hydrophobic flavorant encapsulated in a hydrophilic shell
US5589194A (en)1993-09-201996-12-31Minnesota Mining And Manufacturing CompanyMethod of encapsulation and microcapsules produced thereby
US5437878A (en)1993-11-101995-08-01Nabisco, Inc.Chewing gum exhibiting reduced adherence to dental work
US5498378A (en)1993-11-121996-03-12Lever Brothers Company, Division Of Conopco, Inc.Process for preparing capsules with structuring agents
US5626892A (en)1993-11-241997-05-06Nabisco, Inc.Method for production of multi-flavored and multi-colored chewing gum
US5698215A (en)1994-03-281997-12-16Kalili; TomChewing gum composition with fluoride and citric acid
US5415880A (en)1994-04-121995-05-16Wm. Wrigley Jr. CompanyFruit flavored chewing gum with prolonged flavor intensity
US5413799A (en)1994-04-121995-05-09Wm. Wrigley Jr. CompanyMethod of making fruit-flavored chewing with prolonged flavor intensity
US5501864A (en)1994-04-121996-03-26Wm. Wrigley Jr. CompanyMethod of making sugar-containing chewing gum with prolonged sweetness intensity
WO1995033034A1 (en)1994-06-011995-12-07The Procter & Gamble CompanyOleoyl sarcosinate with polyhydroxy fatty acid amides in cleaning products
US5505933A (en)1994-06-271996-04-09Colgate Palmolive CompanyDesensitizing anti-tartar dentifrice
US5431930A (en)1994-08-181995-07-11Wm. Wrigley Jr. Co.Chewing gum containing medium chain triglycerides
WO1996008166A1 (en)1994-09-141996-03-21Wm. Wrigley Jr. CompanyAbhesive chewing gum with improved sweetness profile
US5603920A (en)1994-09-261997-02-18The Proctor & Gamble CompanyDentifrice compositions
US5474787A (en)1994-10-211995-12-12The Wm. Wrigley Jr. CompanyChewing gum containing a lecithin/glycerol triacetate blend
US5599527A (en)1994-11-141997-02-04Colgate-Palmolive CompanyDentifrice compositions having improved anticalculus properties
WO1996019193A1 (en)1994-12-221996-06-27The Procter & Gamble CompanyOral compositions
WO1996020608A1 (en)*1994-12-291996-07-11Wm. Wrigley Jr. CompanyChewing gum containing encapsulated combinations of aspartame and acesulfame k
US5756074A (en)1995-01-301998-05-26L'orealCompositions based on an abrasive system and on a surfactant system
US5676932A (en)1995-05-021997-10-14J.M. Huber CorporationSilica abrasive compositions
US5589160A (en)1995-05-021996-12-31The Procter & Gamble CompanyDentifrice compositions
US5651958A (en)1995-05-021997-07-29The Procter & Gamble CompanyDentifrice compositions
US5658553A (en)1995-05-021997-08-19The Procter & Gamble CompanyDentifrice compositions
US5582816A (en)1995-06-011996-12-10Colgate Palmolive CompanyPreparation of a visually clear gel dentifrice
US5800848A (en)1995-06-201998-09-01The Wm. Wrigley Jr. CompanyChewing gum containing sucrose polyesters
WO1997002011A1 (en)1995-07-051997-01-23The Procter & Gamble CompanyOral compositions
WO1997002009A1 (en)1995-07-051997-01-23Cafosa Gum, S.A.Chewing-gum for the buccal hygiene and base gum for its preparation
US5618517A (en)1995-10-031997-04-08Church & Dwight Co., Inc.Chewing gum product with dental care benefits
US5702687A (en)1995-10-031997-12-30Church & Dwight Co., Inc.Chewing gum product with plaque-inhibiting benefits
US5693334A (en)1995-10-051997-12-02Church & Dwight Co., Inc.Chewing gum product with dental health benefits
US5645821A (en)1995-10-061997-07-08Libin; Barry M.Alkaline oral hygiene composition
US5713738A (en)1995-12-121998-02-03Britesmile, Inc.Method for whitening teeth
US5629035A (en)1995-12-181997-05-13Church & Dwight Co., Inc.Chewing gum product with encapsulated bicarbonate and flavorant ingredients
US5879728A (en)1996-01-291999-03-09Warner-Lambert CompanyChewable confectionary composition and method of preparing same
US5736175A (en)1996-02-281998-04-07Nabisco Technology Co.Chewing gums containing plaque disrupting ingredients and method for preparing it
US5912007A (en)1996-02-291999-06-15Warner-Lambert CompanyDelivery system for the localized administration of medicaments to the upper respiratory tract and methods for preparing and using same
US5869028A (en)1996-03-221999-02-09J.M. Huber CorporationPrecipitated silicas having improved dentifrice performance characteristics and methods of preparation
US5716601A (en)1996-03-221998-02-10The Procter & Gamble CompanyDentifrice compositions
US5789002A (en)1996-10-031998-08-04Warner-Lambert CompanyGum sweetener/acid processing system
US20020044968A1 (en)1996-10-282002-04-18General Mills, Inc.Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
WO1998018339A1 (en)1996-10-311998-05-07Hideki AokiChewing gum composition and process for the production thereof
US6475469B1 (en)1996-11-212002-11-05Applied Dental Sciences, Inc.Compositions for removing tooth stains
US6190644B1 (en)1996-11-212001-02-20The Procter & Gamble CompanyDentifrice compositions containing polyphosphate and monofluorophosphate
WO1998023165A1 (en)1996-11-271998-06-04Wm. Wrigley Jr. CompanyMethod of controlling release of caffeine in chewing gum and gum produced thereby
WO2000035296A1 (en)1996-11-272000-06-22Wm. Wrigley Jr. CompanyImproved release of medicament active agents from a chewing gum coating
DE19653100A1 (en)1996-12-191998-07-23Adolf MetzImproved lactose-containing magnetic capsules for intestinal use
WO1998029088A1 (en)1997-01-031998-07-09Rinne Ari EA method and product for cleaning and/or whitening of teeth
US6027746A (en)1997-04-232000-02-22Warner-Lambert CompanyChewable soft gelatin-encapsulated pharmaceutical adsorbates
US20020150616A1 (en)1997-06-052002-10-17Roger Petrus Gerebern VandecruysPharmaceutical compositions comprising cyclodextrins
US5824291A (en)1997-06-301998-10-20Media GroupChewing gum containing a teeth whitening agent
WO1999015192A1 (en)1997-09-191999-04-01Auckland Uniservices LimitedNeuronal rescue agent
WO1999015032A1 (en)1997-09-241999-04-01Holland Sweetener Company V.O.F.Sweetening composition comprising aspartame and 2,4-dihydroxybenzoic acid
US6261540B1 (en)1997-10-222001-07-17Warner-Lambert CompanyCyclodextrins and hydrogen peroxide in dental products
US6239690B1 (en)1997-11-122001-05-29U.S. Philips CorporationBattery economizing in a communications system
WO1999027798A1 (en)1997-12-031999-06-10Wm. Wrigley Jr. CompanyImproved chewing gum formulations including aspartame and sodium bicarbonate
US20020054859A1 (en)1998-02-062002-05-09Biocosmetic, S.L.Composition for the treatment of halitosis
WO1999043294A1 (en)1998-02-271999-09-02The Procter & Gamble CompanyOral care compositions comprising chlorite and methods
US5939051A (en)1998-02-271999-08-17Colgate-Palmolive CompanyDental abrasive
CA2238925C (en)1998-05-282007-08-21Levente Laszio DiosadySalt formulation and process for production thereof
US6692778B2 (en)1998-06-052004-02-17Wm. Wrigley Jr. CompanyMethod of controlling release of N-substituted derivatives of aspartame in chewing gum
US20030059519A1 (en)1998-07-072003-03-27Merkel Carolyn M.Method of improving sweetness delivery of sucralose
WO2000001253A1 (en)1998-07-072000-01-13Mcneil Specialty Products Company, Division Of Mcneil-Ppc, Inc.Method of improving sweetness delivery of sucralose
US6506366B1 (en)1998-10-012003-01-14Henkel Kommanditgesellschaft Auf AktienLiquid tooth cleaning gel
WO2000035398A1 (en)1998-12-182000-06-22Kimberly-Clark Worldwide, Inc.Absorbent article with non-irritating refastenable seams
US6428827B1 (en)1999-04-012002-08-06Wm. Wrigley Jr. CompanyLong flavor duration releasing structures for chewing gum and method of making
US6174514B1 (en)1999-04-122001-01-16Fuisz Technologies Ltd.Breath Freshening chewing gum with encapsulations
WO2000069282A1 (en)1999-05-132000-11-23The Nutrasweet CompanyModification of the taste and physicochemical properties of neotame using hydrophobic acid additives
WO2000075274A1 (en)1999-06-082000-12-14Greither, PeterCapsule containing detergents
US6534091B1 (en)1999-07-022003-03-18Cognis Iberia S. L.Microcapsules
US20030091721A1 (en)1999-11-292003-05-15Shigenori OhtaMethod of enhancing salty taste, salty taste enhancer, salty taste seasoning agent and salty taste-enhanced foods
US6696044B2 (en)2000-03-102004-02-24Cadbury Adams Usa LlcStain removing chewing gum and confectionery compositions, and methods of making and using the same
US20030113274A1 (en)2000-03-102003-06-19Holme Samantha KatharineChewing gum and confectionery compositions with encapsulated stain removing agent compostions, and methods of making and using the same
US6471945B2 (en)2000-03-102002-10-29Warner-Lambert CompanyStain removing chewing gum and confectionery compositions, and methods of making and using the same
US6479071B2 (en)2000-03-102002-11-12Warner-Lambert CompanyChewing gum and confectionery compositions with encapsulated stain removing agent compositions, and methods of making and using the same
US6485739B2 (en)2000-03-102002-11-26Warner-Lambert CompanyStain removing chewing gum and confectionery compositions, and methods of making and using the same
US20030099740A1 (en)2000-04-262003-05-29Roberto ColleChewing gum containing encapsulated abrasive filler substance
US6290933B1 (en)2000-05-092001-09-18Colgate-Palmolive CompanyHigh cleaning dentifrice
US6365209B2 (en)2000-06-062002-04-02Capricorn Pharma, Inc.Confectionery compositions and methods of making
US6555145B1 (en)2000-06-062003-04-29Capricorn Pharma, Inc.Alternate encapsulation process and products produced therefrom
WO2002000039A2 (en)2000-06-272002-01-03Societe Des Produits Nestle S.A.Flavour composition
US6759066B2 (en)2000-09-122004-07-06Wm. Wrigley Jr. CompanyChewing gum formulations including encapsulated aspartame and sodium pyrophosphate
US6379654B1 (en)2000-10-272002-04-30Colgate Palmolive CompanyOral composition providing enhanced tooth stain removal
US20020122842A1 (en)2000-12-152002-09-05Seielstad Donald A.Encapsulated acid mixtures and products including same
WO2002055649A1 (en)2001-01-092002-07-18Henkel Kommanditgesellschaft Auf AktienMicro-capsules containing washing and cleaning substances
WO2002076231A1 (en)2001-03-232002-10-03Gumlink A/SBiodegradable chewing gum and method of manufacturing such chewing gum
US20040146599A1 (en)2001-03-232004-07-29Lone AndersenCoated degradable chewing gum with improved shelf life and process for preparing same
US7025999B2 (en)2001-05-112006-04-11Wm. Wrigley Jr. CompanyChewing gum having prolonged sensory benefits
WO2002102362A1 (en)2001-06-152002-12-27Numico Research B.V.Dietetic preparation and use of an alpha-hydroxy carboxylic acid (citric acid for the treatment of obesity
US6416744B1 (en)2001-06-212002-07-09Colgate Palmolive CompanyTooth whitening chewing gum
US20030077362A1 (en)2001-10-232003-04-24Panhorst Dorothy A.Encapsulated flavors as inclusion in candy confections
US20040238993A1 (en)2002-01-102004-12-02Daniel BenczediProcess for the preparation of extruded delivery systems
WO2003063604A1 (en)2002-01-282003-08-07Cadbury Adams Usa LlcChewing gum and confectionery compositions with encapsulated stain removing agent compositions, and methods of making and using the same
WO2004006967A1 (en)2002-07-112004-01-22Firmenich SaComposition of controlled release of perfumes and flavours
US7022352B2 (en)2002-07-232006-04-04Wm. Wrigley Jr. CompanyEncapsulated flavors and chewing gum using same
US20040136928A1 (en)2002-10-312004-07-15Holme Samantha K.Compositions for removing stains from dental surfaces, and methods of making and using the same
US6685916B1 (en)2002-10-312004-02-03Cadbury Adams Usa LlcCompositions for removing stains from dental surfaces, and methods of making and using the same
US20050025721A1 (en)2002-10-312005-02-03Cadbury Adams, LlcCompositions for removing stains from dental surfaces and methods of making and using the same
US20040175489A1 (en)2003-03-032004-09-09Wm. Wrigley Jr. CompanyFast flavor release coating for confectionery
WO2004077956A3 (en)2003-03-032005-07-07Wrigley W M Jun CoFast flavor release coating for confectionery
WO2005016022A1 (en)2003-08-142005-02-24Cargill, IncorporatedChewing gum compositions comprising monatin and methods of making same
GB2388581A (en)2003-08-222003-11-19DaniscoCoated aqueous beads
WO2005051427A1 (en)2003-11-212005-06-09Cadbury Adams Usa LlcA delivery system for active components as part of an endible composition having preselected tensile strength
US20090220642A1 (en)2003-11-212009-09-03Cadbury Adams Usa LlcCompressible gum based delivery systems for the release of ingredients
US20050220867A1 (en)2003-11-212005-10-06Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition having preselected tensile strength
US20050260266A1 (en)2003-11-212005-11-24Cadbury Adams Usa, Llc.Controlled release oral delivery systems
US20050112236A1 (en)2003-11-212005-05-26Navroz BoghaniDelivery system for active components as part of an edible composition having preselected tensile strength
US20060034897A1 (en)2003-11-212006-02-16Cadbury Adams Usa LlcDelivery system for two or more active components as part of an edible composition
US20050214348A1 (en)2003-11-212005-09-29Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition having preselected tensile strength
WO2005079598A1 (en)2004-01-232005-09-01Firmenich SaLarge glassy beads
WO2005087020A1 (en)2004-03-052005-09-22Richmond Chemical CorporationHigh-intensity sweetener-polyol compositions
WO2005091918A3 (en)2004-03-122006-12-07Gen Mills IncDry mix compositions and method for making and utilizing the same having an enhanced anti-microbial shelf life
WO2006003349A1 (en)2004-06-302006-01-12Cadbury Schweppes PlcChewing gum comprising flavor emulsion
US20080063747A1 (en)2004-08-252008-03-13Cadbury Adams Usa LlcDusting compositions for chewing gum products
US20060068057A1 (en)2004-09-302006-03-30Cadbury Adams Usa LlcThermally stable, high tensile strength encapsulated actives
US20090098252A1 (en)2004-09-302009-04-16Cadbury Adams Usa LlcThermally stable, high tensile strength encapsulation compositions for actives
US20060068059A1 (en)2004-09-302006-03-30Cadbury Adams Usa LlcEncapsulated compositions and methods of preparation
WO2006079056A1 (en)2005-01-202006-07-27Stephen HoltHerbal compositions containing hoodia
WO2006086061A1 (en)2005-02-072006-08-17Cadbury Adams Usa LlcStable tooth whitening gum with reactive ingredients
US20060193896A1 (en)2005-02-252006-08-31Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible composition
US20070298061A1 (en)2005-02-252007-12-27Cadbury Adams Usa LlcProcess for manufacturing a delivery system for active components as part of an edible compostion
US20060263480A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition having selected particle size
US20080187621A1 (en)2005-05-232008-08-07Cadbury Adams Usa LlcConfectionery Composition Including an Elastomeric Component, a Cooked Saccharide Component, and a Functional Ingredient
US20060263479A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US20060263478A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcCoated delivery system for active components as part of an edible composition
US20060263477A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcEdible composition including a delivery system for active components
US20080160138A1 (en)2005-05-232008-07-03Cadbury Adams Usa LlcConfectionery Composition Including an Elastomeric Component, a Cooked Saccharide Component, and a Modified Release Component
US20060263413A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcDelivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US20060263473A1 (en)2005-05-232006-11-23Cadbury Adams Usa LlcCompressed delivery system for active components as part of an edible composition
US20080199564A1 (en)2005-05-232008-08-21Cadbury Adams Usa LlcConfectionery Composition Including an Elastomeric Component and a Cooked Saccharide Component
JP2008540690A (en)2005-05-232008-11-20キャドバリー・アダムズ・ユーエスエイ・エルエルシー Active ingredient delivery system and preselected hydrophobic material as part of an edible composition
JP2008539801A (en)2005-05-232008-11-20キャドバリー・アダムズ・ユーエスエイ・エルエルシー Active ingredient delivery system as part of an edible composition comprising an encapsulant and an active ingredient in a fixed ratio
US20060263472A1 (en)2005-05-232006-11-23Cadbury Adam Usa LlcDelivery system for coated active components as part of an edible composition
US20090175982A1 (en)2005-05-232009-07-09Cadbury Adams Usa Llc.,Methods for managing release of one or more ingredients in an edible composition
US20080166449A1 (en)2006-11-292008-07-10Cadbury Adams Usa LlcConfectionery compositions including an elastomeric component and a saccharide component

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Anonymous; "Caprol 3GO CAS No. 9007-48-1" XP002401201. Retrieved from the Internet: URL:http://www.abiteccorp.com/documents/3go-17-000.pdf (retrieved Sep. 28, 2006).
Anonymous; "HLB Systems" [Online] pp. 1-4, XP002401202. Retrieved from the Internet: URL:http://pharmal.tripod.com/ch17.htm. (retrieved Sep. 28, 2006).
Demmers et al.; Effect of Surfactants and Proteolytic Enzymes on Artificial Calculus Formation; Surfactants and Enzymes: Calculus; pp. 28-35.
Gantrez® AN; ISP Polymers for Oral Care; http://www.ispcorp.com/products/oralcare/content/brochure/oral/prod.html, printed Jun. 9, 2004, pp. 1-5.
JP 02083030 A-Lion Corp., "Microcapsule for Foods", Mar. 23, 1990, Abstract.
Ovejero-Lopez et al.; Flavor Release Measurement from Gum Model System; J.Agric. Food Chem.; 2004, vol. 52, pp. 8119-8126.
Prencipe et al.; Squeezing out a better toothpaste; Chemtech, Dec. 1995;http://pubs.acs.org/hotartcl/chemtech/95/dec/dec.html; printed Apr. 20, 2004; pp. 1-7.
Rassing, M.R.; Chewing Gum as a Drug Delivery System; Advanced Drug Delivery Reviews, 1994; vol. 13, No. 1-2; pp. 89-121.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020160534A1 (en)*2019-02-012020-08-06Belle-Aire Fragrances, Inc.Oral care product
US12053536B2 (en)2021-04-082024-08-06Colgate-Palmolive CompanyOral care compositions

Also Published As

Publication numberPublication date
AR057021A1 (en)2007-11-14
WO2006127053A3 (en)2007-03-01
US20050260266A1 (en)2005-11-24
PL2484223T3 (en)2019-09-30
JP2008540645A (en)2008-11-20
CN101203138B (en)2011-10-26
CA2598605A1 (en)2006-11-30
DK1924151T3 (en)2014-12-01
WO2006127053A2 (en)2006-11-30
ES2727852T3 (en)2019-10-21
EP2484223A3 (en)2014-09-17
EP2484223A2 (en)2012-08-08
EP1924151B1 (en)2014-09-24
PL1924151T3 (en)2015-03-31
EP2484223B1 (en)2019-03-20
CA2598605C (en)2013-01-08
MX2007014629A (en)2008-01-24
AU2006249718A1 (en)2006-11-30
CN101203138A (en)2008-06-18
EP1924151A2 (en)2008-05-28
AU2006249718B2 (en)2011-02-10
ES2525530T3 (en)2014-12-26

Similar Documents

PublicationPublication DateTitle
US9271904B2 (en)Controlled release oral delivery systems
US9198448B2 (en)Stable tooth whitening gum with reactive ingredients
US8105082B2 (en)Compositions for removing stains from dental surfaces and methods of making and using the same
US7641892B2 (en)Tooth whitening compositions and delivery systems therefor
AU2005278181B2 (en)Tooth whitening compositions and delivery systems therefor

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:CADBURY ADAMS USA LLC, NEW JERSEY

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GEBRESELASSIE, PETROS;BOGHANI, NAVROZ;REEL/FRAME:016857/0807

Effective date:20050627

ASAssignment

Owner name:KRAFT FOODS GLOBAL, INC., ILLINOIS

Free format text:MERGER;ASSIGNOR:CADBURY ADAMS USA LLC;REEL/FRAME:025833/0596

Effective date:20101222

ASAssignment

Owner name:KRAFT FOODS GLOBAL BRANDS LLC, ILLINOIS

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAFT FOODS GLOBAL, INC.;REEL/FRAME:026034/0923

Effective date:20110101

ASAssignment

Owner name:INTERCONTINENTAL GREAT BRANDS LLC, NEW JERSEY

Free format text:CHANGE OF NAME;ASSIGNOR:KRAFT FOODS GLOBAL BRANDS LLC;REEL/FRAME:032152/0215

Effective date:20130515

STCFInformation on status: patent grant

Free format text:PATENTED CASE

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:4

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:8


[8]ページ先頭

©2009-2025 Movatter.jp