Movatterモバイル変換


[0]ホーム

URL:


US9271327B2 - Wireless network throughput enhancement through channel aware scheduling - Google Patents

Wireless network throughput enhancement through channel aware scheduling
Download PDF

Info

Publication number
US9271327B2
US9271327B2US14/028,323US201314028323AUS9271327B2US 9271327 B2US9271327 B2US 9271327B2US 201314028323 AUS201314028323 AUS 201314028323AUS 9271327 B2US9271327 B2US 9271327B2
Authority
US
United States
Prior art keywords
queue
packet
transmission
determined
weights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/028,323
Other versions
US20140016563A1 (en
Inventor
William S. Kish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruckus IP Holdings LLC
Original Assignee
Ruckus Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruckus Wireless IncfiledCriticalRuckus Wireless Inc
Priority to US14/028,323priorityCriticalpatent/US9271327B2/en
Publication of US20140016563A1publicationCriticalpatent/US20140016563A1/en
Assigned to RUCKUS WIRELESS, INC.reassignmentRUCKUS WIRELESS, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: KISH, WILLIAM S.
Priority to US15/050,317prioritypatent/US9674862B2/en
Application grantedgrantedCritical
Publication of US9271327B2publicationCriticalpatent/US9271327B2/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENTreassignmentBANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENTGRANT OF SECURITY INTEREST IN PATENT RIGHTSAssignors: RUCKUS WIRELESS, INC.
Assigned to ARRIS ENTERPRISES LLCreassignmentARRIS ENTERPRISES LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: RUCKUS WIRELESS, INC.
Assigned to RUCKUS WIRELESS, INC.reassignmentRUCKUS WIRELESS, INC.TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTSAssignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Assigned to JPMORGAN CHASE BANK, N.A.reassignmentJPMORGAN CHASE BANK, N.A.ABL SECURITY AGREEMENTAssignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENTreassignmentWILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENTPATENT SECURITY AGREEMENTAssignors: ARRIS ENTERPRISES LLC
Assigned to JPMORGAN CHASE BANK, N.A.reassignmentJPMORGAN CHASE BANK, N.A.TERM LOAN SECURITY AGREEMENTAssignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to WILMINGTON TRUSTreassignmentWILMINGTON TRUSTSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to RUCKUS IP HOLDINGS LLCreassignmentRUCKUS IP HOLDINGS LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ARRIS ENTERPRISES LLC
Assigned to RUCKUS WIRELESS, LLC (F/K/A RUCKUS WIRELESS, INC.), ARRIS SOLUTIONS, INC., COMMSCOPE, INC. OF NORTH CAROLINA, COMMSCOPE TECHNOLOGIES LLC, ARRIS ENTERPRISES LLC (F/K/A ARRIS ENTERPRISES, INC.), ARRIS TECHNOLOGY, INC.reassignmentRUCKUS WIRELESS, LLC (F/K/A RUCKUS WIRELESS, INC.)RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A channel aware scheduler (CAS) is disclosed that takes advantage of changing wireless channel conditions in order to maximize aggregated system throughput. The CAS is aware of the different channel conditions for one or more stations and adjusts its scheduling of packet transmissions in light of the same. A related CAS algorithm may take advantage of that knowledge in order to increase aggregated system throughput while concurrently addressing other potential fairness constraints.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 12/181,274 filed Jul. 28, 2008, which will issue as U.S. Pat. No. 8,547,899 on Oct. 1, 2013, which claims the priority benefit of U.S. provisional application No. 60/952,557 filed Jul. 28, 2007, the disclosures of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to communications networks. More particular, the present invention related to systems and method for increased data throughput in communications networks.
2. Description of the Related Art
A wireless channel is generally understood as a pathway between two communication endpoints. Through a wireless channel, the communication of any number of forms of data may take place. The efficient and effective communication of data is, however, subject to any number of characteristics of a particular wireless channel.
For example, a wireless channel with low throughput would not be recommended for the communication of data related to a high-definition television program. Similarly, the use of a wireless channel with a large amount of available bandwidth may be better utilized in the context of time-sensitive data transfers (e.g., voice communications) rather than the exchange of low priority and low-bandwidth background data queries.
Characteristics of a wireless channel may vary over time. For example, a wireless channel that at one moment has available bandwidth may subsequently be subjected to bottlenecks and dropped data packets thus requiring retransmission of the same. These variances in network characteristics may be a result of, for example, terminal mobility, multipath fading, or interference.
With respect to terminal mobility, a terminal may (while in motion) access wireless services from different locations. The mobility of the terminal requires the network to expend resources related to identifying and locating that terminal. The accessing of the network at different locales over time in conjunction with the need of the network to identify and locate the terminal may affect the quality of a wireless signal in that network.
Multipath fading involves the phenomenon of multipath propagation whereby a radio signal arrives at a receiving station (e.g., an antenna), at different times, via two or more paths. Multipath propagation may be induced by the refracting and reflecting of a wireless signal by various objects in the wireless environment (e.g., walls and metal objects). As a result of multipath propagation, the wireless signal is distorted thereby resulting in a deteriorated communications experience, which may include jitter or ghosting in the case of audio or video content.
Interference, broadly stated, may be mobile or static. In the case of mobile interference, the reception of a signal by a first mobile device (e.g., a wireless terminal) may be impeded or degraded by the transmission of a signal by another mobile device. Static interference is representative of the superposition of white noise (i.e., static) and other disturbing influences on a wireless signal. These influences are inclusive of thermal noise, electronic noise from receiver input circuits, and radiated electromagnetic noise that might be picked up by a receiving station's antenna.
FIG. 1A illustrates how characteristics of a wireless channel may vary over time in light of the aforementioned terminal mobility, multipath fading, and interference.FIG. 1A illustrates awireless channel100 wheresignal quality110 between an access point (AP) and station are illustrated as a function oftime120. As can be seen fromFIG. 1A,signal quality110 is less at T+1 than at T+2. Thesignal quality110 for T+1 and T+2 is less than thesignal quality110 illustrated at T+3, which is nearly equivalent to that of thesignal quality110 exhibited at T+4.Signal quality110 improves at T+5 while experiencing a significant decrease at T+6.
Further complicating the understanding of wireless channel characteristics (and the optimal use of those channels) is that channel conditions often lack correlation amongst one another in a network of stations. The lack of correlation may be a result of different distances from an AP to a particular station, distances from a station (or the AP) to a particular source of interference, the movement of a mobile terminal or station, as well as varying multipath fading effects.FIG. 1B is exemplary in this regard with respect to illustrating thesignal quality110 between the aforementioned AP and Station A (130) and the AP and Station B (140). As shown inFIG. 1B, there is no immediately recognizable correlation in signal quality vis-a-vis the AP and the differing stations (130/140).
One attempt at managing variances in wireless channel characteristics, especially as they pertain to different stations, has been through the use of a scheduler. Schedulers may be embodied in hardware and/or software components—the latter being executable from memory or a storage device by a corresponding processing device—with respect to providing scheduling policies, rules, procedure, or other criteria in making scheduling decisions. A scheduler may, in light of the aforementioned policies or criteria and a given set of packets, select particular packets for serial transmission over a particular wireless channel.
Different scheduling policies may be used in an attempt to ensure a communications network's ability to provide different quality of service (QOS) guarantees. Policies may include strict priority (SP) where a particular station queue is always allocated bandwidth and/or transmitted before other queues. An alternative policy includes round robin (RR) scheduling, which assigns bandwidth and transmits packets in equal portion, in order, and without priority to a particular station queue.
Weighted round robin (WRR), on the other hand, is a best-effort scheduling discipline (i.e., the network does not provide any guarantees that data is delivered or that a user is given a guaranteed QOS level or priority). Through WRR scheduling, station queues can be assigned a weight—an integer value that might indicate capacity or priority. Station queues with higher weights have their packets transmitted prior to those with lesser weights. All queues are eventually given regular transmission access to a channel albeit it those queues with higher weight will get more transmission access attempts than those with lesser weights.
Yet another scheduling policy is fair queuing (FQ), which allows several packet flows to fairly share link capacity. Fair queuing differs from first-in-first-out (FIFO) (i.e., what comes in first is handled first and what comes in next waits until the first is finished) in that an ill-behaved flow that consists of, for example, large data packets or a large number of packets will punish itself and not other packet flows. In FQ scheduling, in order to decide which packet should be forwarded first, the FQ algorithm estimates a virtual finishing time of all candidate packets (i.e., the packets at the head of all non-empty queues) based on, for example, the arrival time of the packet, the packet size, and the number of queues. The FQ scheduling algorithm or policy then compares the virtual finishing time and selects the minimum one. The packet with the minimum virtual finishing time is transmitted.
A still further scheduling policy is weighted fair queuing (WFQ), which allows different scheduling priorities to be statistically multiplexed. WFQ is a generalization of the aforementioned FQ algorithm where each data flow has a separate FIFO queue. Whereas the aforementioned ill-behaved queue will only punish itself, WFQ allows different sessions to have different service shares. If N data flows currently are active, with weights ω1, ω2. . . ωN, data flow number i will achieve an average data rate of
Rωi(ω1|ω2|ωN)
An end-to-end delay bound can be guaranteed in WFQ scheduling. By dynamically regulating WFQ weights, this policy can be used to control QOS and achieve a guaranteed data rate.
Typical wireless devices (e.g., an 802.11x compliant device) implement a simple class and/or priority scheduling mechanism with a FIFO queue per each traffic class. An example of such amechanism200 is illustrated inFIG. 2. Thescheduling mechanism200 ofFIG. 2 illustrates four classes of traffic priority: voice (230), video (240), best-effort (250), and background (260). While the voice, video, best-effort, and background represent the typical four traffic priorities, the actual number of classes may vary in order to accommodate, for example, additional traffic classes and management traffic.
In thescheduling mechanism200 ofFIG. 2, packets are introduced to the wireless device via a network/input interface210. It should be noted that certain hardware components (e.g. a processor or memory) are not illustrated in that one skilled in the art will appreciate and understand the requisite components to implement the various applications disclosed herein. Packets may be received from another wireless device, a network backbone, a router, or a primary source of content that has been converted into data packets for transmission.
Packets are then routed to theclassifier220. Theclassifier220 may identify packets based on application layer data regardless of port. Theclassifier220 may alternatively identify packets based on Internet Protocol (IP) address, port numbers, and so on. Packet classification based on multiple fields may be implemented using basic search algorithms, geometric algorithms, heuristic algorithms, or hardware-specific search algorithms. A variety of methodologies for packet classification are generally known in the art.
Once classified byclassifier220, packets are then routed to an appropriate queue: voice, video, best-effort, background (230-260). Thepriority scheduler270 then schedules the classified and queued packets. In the priority based queuing andscheduling mechanism200 ofFIG. 2, all packet traffic of a specific class (e.g., voice (230) is subjected to FIFO queuing. Scheduling is done strictly by priority (SP). As such, priority N (e.g., voice (230)) must be empty before priority N+1 (e.g., video (240)) is allowed to transmit. Packets are then transmitted or further routed via the appropriate network/output interface280.
Problems exist with respect to prior art scheduling methodologies based on priority queuing with per class FIFO. Channel aware scheduling (as discussed in further detail below) may not be implemented in this context. For example, traffic to different stations is interleaved within each FIFO queue. Further, only one packet is available at any given time—the packet at the head of the highest priority queue.
Typical prior art scheduler implementations also blindly retransmit the head end packet from the highest priority active queue until that packet is either successfully acknowledged by the recipient or some maximum number of retransmissions occurs. This blind retransmission causes head-of-line blocking. As a result, poor system performance results and, in many circumstances, clients may become completely impaired.
SUMMARY OF THE PRESENTLY CLAIMED INVENTION
An embodiment of the presently claimed invention includes a system for increasing wireless network throughput. The system includes a classifier configured to assign a packet to one of a plurality of transmission queues. The system further includes a first scheduling module and a second scheduling module. The first scheduling module is stored in a computer-readable medium and executable by a processing device to select an assigned packet for transmission from one of the plurality of transmission queues in accordance with a strict priority schedule. The second scheduling module is likewise stored in a computer-readable medium and executable to select a priority scheduled packet for transmission, wherein the selection is made in accordance with a weighted scheduling technique.
In a second embodiment of the presently claimed invention, a method for increasing wireless throughput is disclosed. The method includes the steps of assigning a packet to one of a plurality of transmission queues; selecting an assigned packet for transmission from one of the plurality of transmission queues in accordance with a priority schedule; selecting a priority scheduled packet for transmission in accordance with a weighted scheduling technique; and transmitting the packet.
A third embodiment is for a computer-readable storage medium having embodied thereon a program. The program is executable by a processing device to perform a method for increasing wireless throughput, the method includes the steps of assigning a packet to one of a plurality of transmission queues; selecting an assigned packet for transmission from one of the plurality of transmission queues in accordance with a priority schedule; selecting a priority scheduled packet for transmission in accordance with a weighted scheduling technique; and transmitting the packet.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A illustrates a wireless channel where signal quality between an access point and station are sown as a function of time.
FIG. 1B illustrates signal quality between an access point and two stations.
FIG. 2 illustrates a class/priority scheduling mechanism with a FIFO queue for each traffic class.
FIG. 3 illustrates the biasing of a scheduler in a channel aware scheduler network environment involving an AP and two stations.
FIG. 4 illustrates an embodiment of a channel aware scheduling mechanism utilizing hierarchical schedulers.
FIG. 5 illustrates a method for channel aware scheduling transmission including a channel aware scheduler mechanism utilizing a deferred retransmission module.
FIG. 6 illustrates queue weighting as may occur in the context of the channel aware scheduler mechanism ofFIG. 4 and the corresponding method ofFIG. 5.
DETAILED DESCRIPTION
The presently disclosed invention utilizes channel aware scheduling. Through channel aware scheduling, an optimized scheduler—a channel aware scheduler (CAS)—takes advantage of changing wireless channel conditions in order to maximize aggregated system throughput. A CAS is aware of the different channel conditions for one or more stations and adjusts its scheduling of packet transmissions in light of the same. The CAS algorithm may take advantage of that knowledge in order to increase aggregated system throughput while concurrently addressing other potential fairness constraints.
FIG. 3 illustrates an example of how a CAS may be beneficial in anetwork environment300 involving an AP and two stations (A and B). Based on the particular signal quality for each station (A or B) over time (T=0, T+1, T+N), the scheduler is biased toward one station or the other (i.e., the scheduler is aware of the quality of both channels). For example, attime T+1, +2 and, +3, the scheduler is biased toward station B while at time T+4 and T+5, the scheduler is biased to station A.
The CAS mechanism of the present invention allows for finer queuing and scheduling granularity with respect to individual stations and packet flows. An embodiment of the present invention utilizes hierarchical scheduling. In a first level of the hierarchy, an SP scheduling algorithm may be employed as is common to enterprise and service-provider class networking equipment. In a second level, the CAS mechanism may utilize WRR or WFQ scheduling algorithms as described above.
FIG. 4 illustrates an embodiment of aCAS mechanism400 utilizing the aforementioned hierarchical schedulers. Packets are received atclassifier410 following initial receipt by a network/input interface.Classifier410 may operate in a manner similar toclassifier220 as illustrated inFIG. 2.
Following classification of an incoming packet at a wireless device implementing theCAS mechanism400 ofFIG. 4, the packet is routed to a first part of the scheduling hierarchy (i.e., a second level scheduler). InFIG. 4, this first portion of the scheduling hierarchy is represented by a queue with an associated priority. TheCAS mechanism400 ofFIG. 4 illustrates three priority queues, which may be representative of voice, video, and background (420-440, respectively). Differing numbers of priority queues may be implemented subject to the particular type of packet flows being received at theCAS mechanism400. For example, if the wireless device implementingCAS mechanism400 is dedicated to the delivery of Internet Packet Television (IPTV) content, the voice queue (420) may be omitted.
Corresponding to each priority queue (420-440) inFIG. 4 is one or more station queues (420A-420C;430A-430C; and440A-440C). Each of thestation queues420A-420C;430A-430C; and440A-440C operates in conjunction with a WRR mechanism (450-470). Utilizing an associated WRR mechanism, eachstation queue420A-420C;430A-430C; and440A-440C is assigned a weight indicative of capacity or priority.Station queues420A-420C;430A-430C; and440A-440C with higher weights will have their packets transmitted prior to those with lesser weights. Weighting of a station queue is discussed in greater detail with respect toFIG. 6 below.
Following assignment to a priority and weighted station queue in the first portion of the hierarchy, thepriority scheduler480 of the second portion of the hierarchy (i.e., the first level scheduler) assumes responsibility for scheduling the transmission of the classified, prioritized, weighted, and queued packets. Thepriority scheduler480 ofFIG. 4 may operate in a fashion similar to that of thepriority scheduler270 inFIG. 2. Packets are then transmitted or further routed via an appropriate network/output interface.
In some embodiments, theCAS mechanism400 ofFIG. 4 may utilize additional scheduling techniques such as deferred retransmission and weighted feedback. Both of these techniques may be implemented in the context of the second level schedulers ofFIG. 4.
In the case of deferred retransmission, an indication of a failed transmission may be used to temporarily defer transmission or retransmission to the failed station and instead service other active stations in a priority queue. A deferred retransmission module may make direct use of a standard retransmission request mechanism such as an 802.11 acknowledgment (ACK) that would indicates a retransmission is required when no ACK is received.
Alternatively, an Automated Repeat Request (ARQ), which uses acknowledgments and timeouts to achieve reliable data transmission, may be used. A Hybrid Automated Repeat Request (HARQ) may also be used. In standard ARQ, error-detection information (ED) bits are added to data to be transmitted, such as cyclic redundancy check (CRC). In HARQ, forward error correction (FEC) bits are also added to the existing ED bits, such as Reed-Solomon code or Turbo code. As a result HARQ performs better than ordinary ARQ in poor signal conditions but may adversely affect the environment in good signal conditions. HARQ may have particular applicability to the IEEE 802.16-2005 standard for mobile broadband wireless access, also known as ‘mobile WiMAX.’ HARQ mechanisms also tend to be implemented in hardware.
The absence of an ACK or the receipt of an ARQ or HARQ (i.e., a retransmission request) operates as an indication of packet corruption. Packet corruption, in turn, is an indication of potential channel fade or other adverse channel condition. Upon indication of a retransmission requirement, the second level scheduler mechanism may elect to defer retransmission and move on to the next queue station that has pending packets.
FIG. 5 illustrates a method for CAS transmission in accordance with theCAS mechanism400 ofFIG. 4 as well as a CAS mechanism utilizing a deferred retransmission module.
Instep510, a packet is received. Receipt of the packet may occur via a network/input interface. Packets may be received from another wireless device, a network backbone, a router, or a primary source of content that has been converted into data packets for transmission.
Instep520, received packets are classified. The packets may be classified based on an application layer data regardless of port. Packets may also be identified and subsequently classified based on IP address, port numbers, and so on. Packet classification based on multiple fields may be implemented using basic search algorithms, geometric algorithms, heuristic algorithms, or hardware-specific search algorithms.
Instep530, packets are routed to an appropriate priority queue. Packets are then assigned to a station queue instep540. Weighting of the station queues takes place instep550. It should be noted that station queue weighting may be dynamic or static and may take place prior to or concurrent with the transmission of any particular packet or packet flow. Weighting of a station queue is discussed further with respect toFIG. 6. Packets are scheduled solely based on priority in560 and transmitted in accordance with that priority instep570.
In an alternative embodiment of a CAS mechanism that utilizes a deferred retransmission module, a retransmission request is received atoptional step580. In response to the retransmission request, a particular station queue is deferred inoptional step590. Scheduling of the remaining priority and channel queues takes place instep560 as would occur in an embodiment not utilizing a deferred retransmission module. Transmission of the scheduled packets takes place instep570.
FIG. 6 illustrates queue weighting as may occur in the context of the CAS mechanism ofFIG. 4 and the corresponding method ofFIG. 5. Using a WRR algorithm, a weight (640-660) is determined for each queue (610-630). The WRR scheduler670 (e.g., WRR450) then round robins between active queues (those that have pending packets) and transmits up to N packets from a queue where N is the weight associated with that queue.
Weighting may be implemented viacredit register690 that is loaded with a particular weight when anew station queue680 is selected. Thecredit register680 is decremented with each transmission from thatstation queue680. When thecredit register690reaches 0, theWRR scheduler670 advances in a round robin fashion to the next queue with an associated load of credits.
An embodiment of the CAS mechanism utilizing a deferred retransmission module may modify theWRR scheduler670 as follows. Upon receipt of a retransmission requirement, it is determined from which station queue the failed packet originated. The failed packet is then re-queued at the head of that queue. If that particular queue is still active (i.e., the queue still has credits), the queue is penalized through the additional decrement of the credit register or decrementing the credit register to zero thereby forcing an activation of a queue associated with a different station. These penalization activities may take place in the context ofoptional step590 ofFIG. 5.
A further embodiment of the CAS mechanism disclosed herein may implement weighted feedback, which may be applicable to a hierarchical implementation utilizing WFQ or WRR. In such an embodiment, per-station channel conditions are estimated. These estimates may utilize low-level metrics such as signal-to-noise ratio (SNR) or error-to-vector magnitude (EVM). Application level metrics such as estimated throughput may also be utilized. Queue weights are modified to reflect channel conditions such that the scheduler favors stations with the better channel. Generally, weights are proportional to each channel capacity in order to maximize throughput. Weights may be limited to some minimal value to prevent the starvation of poor stations.
A still further embodiment of weight feedback involves, for each associated station, the performance of throughput estimation. Estimation may occur using a throughput model and packet encoding rule (PER) statistics. Packet transmission time stamps may also be used. If the estimated throughput is below some minimum threshold, the estimated throughput is set to the minimum threshold in order to ensure that some minimal bandwidth allocation is made with respect to each station. The WRR or WFQ weight is scaled proportionally to the estimated throughput.
Computer-executable instructions and associated data structures represent examples of the programming means for executing steps of the methods and implementing particular system configurations disclosed herein. Such methodologies may be stored in a computer-readable storage medium. Such methodologies may be executed in the context of a corresponding processing device.
While the present invention has been described in the context of a series of exemplary embodiments, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present description is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

Claims (17)

What is claimed is:
1. A system for increasing wireless network throughput, the system comprising:
a classifier configured to assign a packet to one of a plurality of transmission queues; and
a hierarchical scheduling module stored in a computer-readable storage medium and executable by a processing device, the hierarchical scheduling module configured to:
select a priority scheduled packet for transmission, wherein the selection is made in accordance with a weighted scheduling technique utilizing weighted round robin for determining a weight for each transmission queue,
assign queue weights to stations within each transmission queue,
determine from which of the plurality of transmission queue a failed packet originated,
requeue the failed packet for retransmission at the queue from which the failed packet is determined to have originated, and
penalize a credit register of the determined queue, wherein a transmission queue is activated at a different station when penalizing the credit register of the determined queue results in a predetermined level.
2. The system ofclaim 1, wherein the failed packet is requeued at a head of the queue from which the failed packet is determined to have originated.
3. The system ofclaim 1, wherein retransmission of the failed packet is deferred.
4. The system ofclaim 1, wherein the assigned queue weights are modified based on one or more current channel conditions associated with each transmission queue.
5. The system ofclaim 4, wherein the modification to each of the queue weights is proportional to an associated channel capacity.
6. The system ofclaim 4, wherein the modification is limited to a predetermined minimal value.
7. The system ofclaim 4, wherein the modification to each of the queue weights is proportional to an estimation of throughput performance.
8. The system ofclaim 7, wherein the estimation of throughput performance is based on at least one of a throughput model, packet encoding rule, and packet transmission time.
9. A method for increasing wireless network throughput, the method comprising:
assigning a packet to one of a plurality of transmission queues; and
executing a hierarchical scheduling module stored in a computer-readable storage medium, wherein execution of the hierarchical scheduling module by a processing device:
selects a priority scheduled packet for transmission, wherein the selection is made in accordance with a weighted scheduling technique utilizing weighted round robin for determining a weight for each transmission queue,
assigns queue weights to stations within each transmission queue,
determines from which of the plurality of transmission queues a failed packet originated,
requeues the failed packet for retransmission at the queue from which the failed packet is determined to have originated, and
penalizes a credit register of the determined queue, wherein a transmission queue is activated at a different station when penalizing the credit register of the determined queue results in a predetermined level.
10. The method ofclaim 9, wherein the failed packet is requeued at a head of the queue from which the failed packet is determined to have originated.
11. The method ofclaim 9, further comprising deferring retransmission of the failed packet.
12. The method ofclaim 9, further comprising modifying the assigned queue weights based on one or more current channel conditions associated with each transmission queue.
13. The method ofclaim 12, wherein the modification to each of the queue weights is proportional to an associated channel capacity.
14. The method ofclaim 12, further comprising limiting the modification to a predetermined minimal value.
15. The method ofclaim 12, wherein the modification to each of the queue weights is proportional to an estimation of throughput performance.
16. The method ofclaim 15, wherein the estimation of throughput performance is based on at least one of a throughput model, packet encoding rule, and packet transmission time.
17. A non-transitory computer-readable storage medium, having embodied thereon a program executable by a processor to perform a process for increasing wireless network throughput, the process comprising:
assigning a packet to one of a plurality of transmission queues;
selecting a priority scheduled packet for transmission, wherein the selection is made in accordance with a weighted scheduling technique utilizing weighted round robin for determining a weight for each transmission queue;
assigning queue weights to stations within each transmission queue;
determining from which of the plurality of transmission queue a failed packet originated;
requeuing the failed packet for retransmission at the queue from which the failed packet is determined to have originated; and
penalizing a credit register of the determined queue, wherein a transmission queue is activated at a different station when penalizing the credit register of the determined queue results in a predetermined level.
US14/028,3232007-07-282013-09-16Wireless network throughput enhancement through channel aware schedulingExpired - Fee RelatedUS9271327B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US14/028,323US9271327B2 (en)2007-07-282013-09-16Wireless network throughput enhancement through channel aware scheduling
US15/050,317US9674862B2 (en)2007-07-282016-02-22Wireless network throughput enhancement through channel aware scheduling

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US95255707P2007-07-282007-07-28
US12/181,274US8547899B2 (en)2007-07-282008-07-28Wireless network throughput enhancement through channel aware scheduling
US14/028,323US9271327B2 (en)2007-07-282013-09-16Wireless network throughput enhancement through channel aware scheduling

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US12/181,274ContinuationUS8547899B2 (en)2007-07-282008-07-28Wireless network throughput enhancement through channel aware scheduling

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US15/050,317ContinuationUS9674862B2 (en)2007-07-282016-02-22Wireless network throughput enhancement through channel aware scheduling

Publications (2)

Publication NumberPublication Date
US20140016563A1 US20140016563A1 (en)2014-01-16
US9271327B2true US9271327B2 (en)2016-02-23

Family

ID=40295265

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US12/181,274Active2031-07-31US8547899B2 (en)2007-07-282008-07-28Wireless network throughput enhancement through channel aware scheduling
US14/028,323Expired - Fee RelatedUS9271327B2 (en)2007-07-282013-09-16Wireless network throughput enhancement through channel aware scheduling
US15/050,317Expired - Fee RelatedUS9674862B2 (en)2007-07-282016-02-22Wireless network throughput enhancement through channel aware scheduling

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US12/181,274Active2031-07-31US8547899B2 (en)2007-07-282008-07-28Wireless network throughput enhancement through channel aware scheduling

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US15/050,317Expired - Fee RelatedUS9674862B2 (en)2007-07-282016-02-22Wireless network throughput enhancement through channel aware scheduling

Country Status (1)

CountryLink
US (3)US8547899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10250722B2 (en)2015-12-182019-04-02Sonicwall Inc.TCP traffic priority bandwidth management control based on TCP window adjustment

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7505447B2 (en)2004-11-052009-03-17Ruckus Wireless, Inc.Systems and methods for improved data throughput in communications networks
US8619662B2 (en)*2004-11-052013-12-31Ruckus Wireless, Inc.Unicast to multicast conversion
US9240868B2 (en)2004-11-052016-01-19Ruckus Wireless, Inc.Increasing reliable data throughput in a wireless network
US8638708B2 (en)*2004-11-052014-01-28Ruckus Wireless, Inc.MAC based mapping in IP based communications
US8934416B2 (en)*2005-03-092015-01-13Xirrus, Inc.System for allocating channels in a multi-radio wireless LAN array
US9088907B2 (en)*2007-06-182015-07-21Xirrus, Inc.Node fault identification in wireless LAN access points
US8547899B2 (en)2007-07-282013-10-01Ruckus Wireless, Inc.Wireless network throughput enhancement through channel aware scheduling
US8355343B2 (en)2008-01-112013-01-15Ruckus Wireless, Inc.Determining associations in a mesh network
US8482478B2 (en)*2008-11-122013-07-09Xirrus, Inc.MIMO antenna system
WO2010101002A1 (en)*2009-03-022010-09-10日本電気株式会社Wireless packet transmission apparatus, and packet priority control scheduling method
US8780762B2 (en)*2009-03-112014-07-15Sony CorporationNode query in ad hoc home mesh network
US20100232400A1 (en)*2009-03-112010-09-16Sony CorporationVirtualizing single radio for multiple wireless interfaces in home mesh network
US7974297B2 (en)*2009-03-112011-07-05Sony CorporationQuality of service queue management in home mesh network
US8223786B2 (en)*2009-03-112012-07-17Sony CorporationQuality of service scheduling for home mesh network
US8761174B2 (en)*2009-03-112014-06-24Sony CorporationQuality of service traffic recognition and packet classification home mesh network
US8194593B2 (en)*2009-03-112012-06-05Sony CorporationQuality of service architecture for home mesh network
US8861445B2 (en)*2009-03-112014-10-14Sony CororationMulti-channel single radio communication in home mesh network
US9979626B2 (en)*2009-11-162018-05-22Ruckus Wireless, Inc.Establishing a mesh network with wired and wireless links
WO2011060454A2 (en)*2009-11-162011-05-19Ruckus Wireless, Inc.Establishing a mesh network with wired and wireless links
CN101784082A (en)*2009-12-222010-07-21中兴通讯股份有限公司Method and device for enhancing service quality in wireless local area network
US8462802B2 (en)*2010-09-132013-06-11Juniper Networks, Inc.Hybrid weighted round robin (WRR) traffic scheduling
US20120195200A1 (en)*2011-01-312012-08-02Joe ReganMethod and apparatus for hierarchical policing
US8830854B2 (en)2011-07-282014-09-09Xirrus, Inc.System and method for managing parallel processing of network packets in a wireless access device
US8868002B2 (en)2011-08-312014-10-21Xirrus, Inc.System and method for conducting wireless site surveys
US9055450B2 (en)2011-09-232015-06-09Xirrus, Inc.System and method for determining the location of a station in a wireless environment
JP5768624B2 (en)*2011-09-262015-08-26富士通株式会社 Relay device and relay method
US9584179B2 (en)*2012-02-232017-02-28Silver Spring Networks, Inc.System and method for multi-channel frequency hopping spread spectrum communication
JP6098633B2 (en)*2012-03-022017-03-22日本電気株式会社 Packet transfer apparatus, packet transfer method, and computer program
US9997830B2 (en)2012-05-132018-06-12Amir Keyvan KhandaniAntenna system and method for full duplex wireless transmission with channel phase-based encryption
WO2013173250A1 (en)2012-05-132013-11-21Invention Mine LlcFull duplex wireless transmission with self-interference cancellation
US9167466B2 (en)2012-09-062015-10-20Apple Inc.Enhanced measurement reporting to improve throughput when using multicarrier cells
CN103067308A (en)*2012-12-262013-04-24中兴通讯股份有限公司Method and system for bandwidth distribution
US9148817B1 (en)*2013-01-212015-09-29Sprint Spectrum L.P.Methods and systems for routing signaling traffic
US10177896B2 (en)2013-05-132019-01-08Amir Keyvan KhandaniMethods for training of full-duplex wireless systems
US9236996B2 (en)2013-11-302016-01-12Amir Keyvan KhandaniWireless full-duplex system and method using sideband test signals
US9820311B2 (en)2014-01-302017-11-14Amir Keyvan KhandaniAdapter and associated method for full-duplex wireless communication
US10075965B2 (en)*2016-04-062018-09-11P2 Solutions LimitedApparatus and method for detecting and alleviating unfairness in wireless network
US10333593B2 (en)2016-05-022019-06-25Amir Keyvan KhandaniSystems and methods of antenna design for full-duplex line of sight transmission
US10700766B2 (en)2017-04-192020-06-30Amir Keyvan KhandaniNoise cancelling amplify-and-forward (in-band) relay with self-interference cancellation
CN107483363B (en)*2017-08-152020-04-14无锡职业技术学院 A hierarchical weighted round-robin scheduling device and method
US11057204B2 (en)2017-10-042021-07-06Amir Keyvan KhandaniMethods for encrypted data communications
US11012144B2 (en)2018-01-162021-05-18Amir Keyvan KhandaniSystem and methods for in-band relaying
US10911568B2 (en)*2018-10-032021-02-02Twitter, Inc.Client software back off
US11121953B2 (en)2019-06-112021-09-14Arris Enterprises LlcAccess point performance monitoring and anomaly detection based on temporal and spatial anomalies
US11221883B2 (en)*2019-06-262022-01-11Twilio Inc.Hierarchical scheduler
US12369148B2 (en)*2022-12-212025-07-22Aespula Technology Inc.Sorting method of communication data and communication apparatus thereof

Citations (277)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1653664A (en)1927-12-27Lavatory
US4176356A (en)1977-06-271979-11-27Motorola, Inc.Directional antenna system including pattern control
US4193077A (en)1977-10-111980-03-11Avnet, Inc.Directional antenna system with end loaded crossed dipoles
US4253193A (en)1977-11-051981-02-24The Marconi Company LimitedTropospheric scatter radio communication systems
US4305052A (en)1978-12-221981-12-08Thomson-CsfUltra-high-frequency diode phase shifter usable with electronically scanning antenna
US4513412A (en)1983-04-251985-04-23At&T Bell LaboratoriesTime division adaptive retransmission technique for portable radio telephones
US4814777A (en)1987-07-311989-03-21Raytheon CompanyDual-polarization, omni-directional antenna system
US5097484A (en)1988-10-121992-03-17Sumitomo Electric Industries, Ltd.Diversity transmission and reception method and equipment
US5117430A (en)1991-02-081992-05-26International Business Machines CorporationApparatus and method for communicating between nodes in a network
US5173711A (en)1989-11-271992-12-22Kokusai Denshin Denwa Kabushiki KaishaMicrostrip antenna for two-frequency separate-feeding type for circularly polarized waves
US5203010A (en)1990-11-131993-04-13Motorola, Inc.Radio telephone system incorporating multiple time periods for communication transfer
US5220678A (en)1991-08-121993-06-15Motorola, Inc.Method and apparatus for adjusting the power of a transmitter
US5220340A (en)1992-04-291993-06-15Lotfollah ShafaiDirectional switched beam antenna
EP0534612A3 (en)1991-08-281993-11-24Motorola IncCellular system sharing of logical channels
US5361256A (en)1992-11-271994-11-01International Business Machines CorporationInter-domain multicast routing
US5373548A (en)1991-01-041994-12-13Thomson Consumer Electronics, Inc.Out-of-range warning system for cordless telephone
US5408465A (en)1993-06-211995-04-18Hewlett-Packard CompanyFlexible scheme for admission control of multimedia streams on integrated networks
EP0352787B1 (en)1988-07-281995-05-10Motorola, Inc. High bit rate communication system for overcoming multipath
US5507035A (en)1993-04-301996-04-09International Business Machines CorporationDiversity transmission strategy in mobile/indoor cellula radio communications
US5559800A (en)1994-01-191996-09-24Research In Motion LimitedRemote control of gateway functions in a wireless data communication network
US5570366A (en)1994-12-081996-10-29International Business Machines CorporationBroadcast/multicast filtering by the bridge-based access point
US5608726A (en)1995-04-251997-03-04Cabletron Systems, Inc.Network bridge with multicast forwarding table
US5636213A (en)1994-12-281997-06-03MotorolaMethod, transceiver, and system for providing wireless communication compatible with 10BASE-T Ethernet
US5754145A (en)1995-08-231998-05-19U.S. Philips CorporationPrinted antenna
US5767809A (en)1996-03-071998-06-16Industrial Technology Research InstituteOMNI-directional horizontally polarized Alford loop strip antenna
US5802312A (en)1994-09-271998-09-01Research In Motion LimitedSystem for transmitting data files between computers in a wireless environment utilizing a file transfer agent executing on host system
US5867109A (en)1995-06-061999-02-02Globalstar L.P.Satellite repeater diversity resource management system
US5930259A (en)1995-08-251999-07-27Kabushiki Kaisha ToshibaPacket transmission node device realizing packet transfer scheme and control information transfer scheme using multiple virtual connections
US5940771A (en)1991-05-131999-08-17Norand CorporationNetwork supporting roaming, sleeping terminals
US5960344A (en)1993-12-201999-09-28Norand CorporationLocal area network having multiple channel wireless access
US5964830A (en)1995-08-221999-10-12Durrett; Charles M.User portal device for the world wide web to communicate with a website server
US5970410A (en)1996-02-271999-10-19Airnet Communications Corp.Cellular system plan using in band-translators to enable efficient deployment of high capacity base transceiver systems
US5974034A (en)1997-01-161999-10-26Gwcom, Inc.System and method for synchronized wide and local area communications utilizing a single frequency
GB2306278B (en)1995-10-141999-12-08Nec CorpRadio transmission system
US6018659A (en)1996-10-172000-01-25The Boeing CompanyAirborne broadband communication network
US6034638A (en)1993-05-272000-03-07Griffith UniversityAntennas for use in portable communications devices
US6044062A (en)1996-12-062000-03-28Communique, LlcWireless network system and method for providing same
US6088570A (en)1998-11-242000-07-11Airnet Communications CorporationMethod and apparatus employing delay elements in multiple diversity paths of a wireless system repeater translator to allow for selective diversity and automatic level control in a time-division multiple access system
US6094177A (en)1997-11-272000-07-25Yamamoto; KiyoshiPlanar radiation antenna elements and omni directional antenna using such antenna elements
US6132306A (en)1995-09-062000-10-17Cisco Systems, Inc.Cellular communication system with dedicated repeater channels
US6181697B1 (en)1998-03-312001-01-30At&T Corp.Method for a unicast endpoint client to access a multicast internet protocol (IP) session and to serve as a redistributor of such session
JP2001057560A (en)1999-08-182001-02-27Hitachi Kokusai Electric Inc Wireless LAN system
US6266528B1 (en)1998-12-232001-07-24Arraycomm, Inc.Performance monitor for antenna arrays
US6266537B1 (en)1998-03-272001-07-24Nec CorporationRadio communication system
US6292153B1 (en)1999-08-272001-09-18Fantasma Network, Inc.Antenna comprising two wideband notch regions on one coplanar substrate
US6307524B1 (en)2000-01-182001-10-23Core Technology, Inc.Yagi antenna having matching coaxial cable and driven element impedances
US6317599B1 (en)1999-05-262001-11-13Wireless Valley Communications, Inc.Method and system for automated optimization of antenna positioning in 3-D
US20010047474A1 (en)2000-05-232001-11-29Kabushiki Kaisha ToshibaCommunication control scheme using proxy device and security protocol in combination
US6326922B1 (en)2000-06-292001-12-04Worldspace CorporationYagi antenna coupled with a low noise amplifier on the same printed circuit board
US20010055312A1 (en)2000-04-072001-12-27Negus Kevin J.Asymmetric data traffic throughput in CSMA/CA networks
US20020001310A1 (en)2000-06-292002-01-03Khanh MaiVirtual multicasting
US6337668B1 (en)1999-03-052002-01-08Matsushita Electric Industrial Co., Ltd.Antenna apparatus
US6337628B2 (en)1995-02-222002-01-08Ntp, IncorporatedOmnidirectional and directional antenna assembly
US6339404B1 (en)1999-08-132002-01-15Rangestar Wirless, Inc.Diversity antenna system for lan communication system
US6345043B1 (en)1998-07-062002-02-05National Datacomm CorporationAccess scheme for a wireless LAN station to connect an access point
US6356243B1 (en)2000-07-192002-03-12Logitech Europe S.A.Three-dimensional geometric space loop antenna
US6356242B1 (en)2000-01-272002-03-12George PloussiosCrossed bent monopole doublets
US6356553B1 (en)1996-07-112002-03-12Kabushiki Kaisha ToshibaNetwork node and method of packet transfer
US6356905B1 (en)1999-03-052002-03-12Accenture LlpSystem, method and article of manufacture for mobile communication utilizing an interface support framework
US20020031130A1 (en)2000-05-302002-03-14Kazuaki TsuchiyaMulticast routing method and an apparatus for routing a multicast packet
WO2002025967A1 (en)2000-09-222002-03-28Widcomm Inc.Wireless network and method for providing improved handoff performance
US20020036996A1 (en)1995-06-302002-03-28Ozluturk Fatih M.Initial power control for spread-spectrum communications
US20020045435A1 (en)2000-10-182002-04-18Steve FantaskeWireless communication system
US6377227B1 (en)1999-04-282002-04-23Superpass Company Inc.High efficiency feed network for antennas
US20020047800A1 (en)1998-09-212002-04-25Tantivy Communications, Inc.Adaptive antenna for use in same frequency networks
US6393261B1 (en)1998-05-052002-05-21Telxon CorporationMulti-communication access point
US6392610B1 (en)1999-10-292002-05-21Allgon AbAntenna device for transmitting and/or receiving RF waves
US6404775B1 (en)1997-11-212002-06-11Allen Telecom Inc.Band-changing repeater with protocol or format conversion
US6404386B1 (en)1998-09-212002-06-11Tantivy Communications, Inc.Adaptive antenna for use in same frequency networks
US6407719B1 (en)1999-07-082002-06-18Atr Adaptive Communications Research LaboratoriesArray antenna
WO2002049360A1 (en)2000-12-132002-06-20THE CHINESE UNIVERSITY OF HONG KONG A body corporate of Hong Kong SARMethod and system for delivering media selections through a network
US20020080767A1 (en)2000-12-222002-06-27Ji-Woong LeeMethod of supporting small group multicast in mobile IP
US6414955B1 (en)1999-03-232002-07-02Innovative Technology Licensing, LlcDistributed topology learning method and apparatus for wireless networks
US20020084942A1 (en)2001-01-032002-07-04Szu-Nan TsaiPcb dipole antenna
US6418138B1 (en)2000-03-022002-07-09Worldcom, Inc.Internet radio communication system
US20020105471A1 (en)2000-05-242002-08-08Suguru KojimaDirectional switch antenna device
US20020112058A1 (en)2000-12-012002-08-15Microsoft CorporationPeer networking host framework and hosting API
US6442507B1 (en)1998-12-292002-08-27Wireless Communications, Inc.System for creating a computer model and measurement database of a wireless communication network
US6445688B1 (en)2000-08-312002-09-03Ricochet Networks, Inc.Method and apparatus for selecting a directional antenna in a wireless communication system
US20020143951A1 (en)2001-03-302002-10-03Eyeball.Com Network Inc.Method and system for multicast to unicast bridging
US20020158798A1 (en)2001-04-302002-10-31Bing ChiangHigh gain planar scanned antenna array
US20020158801A1 (en)2001-04-272002-10-31Crilly William J.Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US20020164963A1 (en)2001-04-092002-11-07Tehrani Ardavan MalekiMethod and system for providing antenna diversity
US20020170064A1 (en)2001-05-112002-11-14Monroe David A.Portable, wireless monitoring and control station for use in connection with a multi-media surveillance system having enhanced notification functions
US6493679B1 (en)1999-05-262002-12-10Wireless Valley Communications, Inc.Method and system for managing a real time bill of materials
US20020194367A1 (en)2001-06-142002-12-19The Furukawa Electric Co., Ltd.Data relay method, its apparatus, and data relay system using the apparatus
US6499006B1 (en)1999-07-142002-12-24Wireless Valley Communications, Inc.System for the three-dimensional display of wireless communication system performance
US6498589B1 (en)1999-03-182002-12-24Dx Antenna Company, LimitedAntenna system
US20030003917A1 (en)2001-06-292003-01-02Copley Rich T.Wireless communication system, apparatus and method for providing wireless communication within a building structure
US6505253B1 (en)1998-06-302003-01-07Sun MicrosystemsMultiple ACK windows providing congestion control in reliable multicast protocol
US6507321B2 (en)2000-05-262003-01-14Sony International (Europe) GmbhV-slot antenna for circular polarization
US20030026268A1 (en)2000-11-282003-02-06Siemens Technology-To-Business Center, LlcCharacteristic routing
US20030026240A1 (en)2001-07-232003-02-06Eyuboglu M. VedatBroadcasting and multicasting in wireless communication
JP2003038933A (en)2001-07-262003-02-12Akira MizunoDischarge plasma generating apparatus
US20030030588A1 (en)2001-08-102003-02-13Music Sciences, Inc.Antenna system
US20030043786A1 (en)2001-08-282003-03-06Jan KallApparatus, and associated method, for multicasting data in a radio communications system
US20030063591A1 (en)2001-10-032003-04-03Leung Nikolai K.N.Method and apparatus for data packet transport in a wireless communication system using an internet protocol
US6570883B1 (en)*1999-08-282003-05-27Hsiao-Tung WongPacket scheduling using dual weight single priority queue
US6584080B1 (en)1999-01-142003-06-24Aero-Vision Technologies, Inc.Wireless burstable communications repeater
US20030122714A1 (en)2001-11-162003-07-03Galtronics Ltd.Variable gain and variable beamwidth antenna (the hinged antenna)
US20030133458A1 (en)2002-01-172003-07-17Masaaki SatoUnicast-to-multicast converting apparatus, method, and computer program product, and monitoring system comprising the same
US20030169330A1 (en)2001-10-242003-09-11Microsoft CorporationNetwork conference recording system and method including post-conference processing
US6625454B1 (en)2000-08-042003-09-23Wireless Valley Communications, Inc.Method and system for designing or deploying a communications network which considers frequency dependent effects
US20030184490A1 (en)2002-03-262003-10-02Raiman Clifford E.Sectorized omnidirectional antenna
US20030189514A1 (en)2001-09-062003-10-09Kentaro MiyanoArray antenna apparatus
US20030189523A1 (en)2002-04-092003-10-09Filtronic Lk OyAntenna with variable directional pattern
US20030189521A1 (en)2002-04-052003-10-09Atsushi YamamotoDirectivity controllable antenna and antenna unit using the same
US20030210207A1 (en)2002-02-082003-11-13Seong-Youp SuhPlanar wideband antennas
US20030227414A1 (en)2002-03-042003-12-11Saliga Stephen V.Diversity antenna for UNII access point
US20030228857A1 (en)2002-06-062003-12-11Hitachi, Ltd.Optimum scan for fixed-wireless smart antennas
US20030231593A1 (en)2002-06-042003-12-18James BaumanFlexible multilevel output traffic control
US20040008663A1 (en)2000-12-292004-01-15Devabhaktuni SrikrishnaSelection of routing paths based upon path quality of a wireless mesh network
US20040014432A1 (en)2000-03-232004-01-22U.S. Philips CorporationAntenna diversity arrangement
WO2003079484A3 (en)2002-03-152004-01-22Andrew CorpAntenna interface protocol
US20040017310A1 (en)2002-07-242004-01-29Sarah Vargas-HurlstonPosition optimized wireless communication
US20040017860A1 (en)2002-07-292004-01-29Jung-Tao LiuMultiple antenna system for varying transmission streams
US20040027304A1 (en)2001-04-302004-02-12Bing ChiangHigh gain antenna for wireless applications
US20040028006A1 (en)2002-05-222004-02-12Ntt Docomo, Inc.Random access method and radio station
US20040027291A1 (en)2002-05-242004-02-12Xin ZhangPlanar antenna and array antenna
US20040032378A1 (en)2001-10-312004-02-19Vladimir VolmanBroadband starfish antenna and array thereof
US20040036654A1 (en)2002-08-212004-02-26Steve HsiehAntenna assembly for circuit board
US20040036651A1 (en)2002-06-052004-02-26Takeshi TodaAdaptive antenna unit and terminal equipment
US6701522B1 (en)2000-04-072004-03-02Danger, Inc.Apparatus and method for portal device authentication
US20040041732A1 (en)2001-10-032004-03-04Masayoshi AikawaMultielement planar antenna
US6704301B2 (en)2000-12-292004-03-09Tropos Networks, Inc.Method and apparatus to provide a routing protocol for wireless devices
US20040048593A1 (en)2000-12-212004-03-11Hiroyasu SanoAdaptive antenna receiver
US20040058690A1 (en)2000-11-202004-03-25Achim RatzelAntenna system
US6714551B1 (en)1997-10-142004-03-30Alvarion Israel (2003) Ltd.Method and apparatus for maintaining a predefined transmission quality in a wireless network for a metropolitan area
US20040061653A1 (en)2002-09-262004-04-01Andrew CorporationDynamically variable beamwidth and variable azimuth scanning antenna
US20040070543A1 (en)2002-10-152004-04-15Kabushiki Kaisha ToshibaAntenna structure for electronic device with wireless communication unit
US6725281B1 (en)1999-06-112004-04-20Microsoft CorporationSynchronization of controlled device state using state table and eventing in data-driven remote device control model
US6728514B2 (en)2000-09-082004-04-27Wi-Lan Inc.Scalable wireless network topology systems and methods
US20040080455A1 (en)2002-10-232004-04-29Lee Choon SaeMicrostrip array antenna
US20040085993A1 (en)2002-11-052004-05-06Wentink Maarten MenzoShared-medium contention algorithm exhibiting fairness
US20040095278A1 (en)2001-12-282004-05-20Hideki KanemotoMulti-antenna apparatus multi-antenna reception method, and multi-antenna transmission method
US20040114535A1 (en)2002-09-302004-06-17Tantivy Communications, Inc.Method and apparatus for antenna steering for WLAN
US6753814B2 (en)2002-06-272004-06-22Harris CorporationDipole arrangements using dielectric substrates of meta-materials
US20040125777A1 (en)2001-05-242004-07-01James DoyleMethod and apparatus for affiliating a wireless device with a wireless local area network
WO2004057817A2 (en)2002-12-192004-07-08Koninklijke Philips Electronics N.V.Protecting real-time data in wireless networks
US6762723B2 (en)2002-11-082004-07-13Motorola, Inc.Wireless communication device having multiband antenna
US6778517B1 (en)1999-10-142004-08-17Bellsouth Intellectual Property CorporationWireless broadband service
EP1450521A2 (en)2003-02-192004-08-25Nec CorporationWireless communication system and method which improves reliability and throughput of communication through retransmission timeout optimization
US20040190477A1 (en)2003-03-282004-09-30Olson Jonathan P.Dynamic wireless network
US6819287B2 (en)2002-03-152004-11-16Centurion Wireless Technologies, Inc.Planar inverted-F antenna including a matching network having transmission line stubs and capacitor/inductor tank circuits
US20040260800A1 (en)1999-06-112004-12-23Microsoft CorporationDynamic self-configuration for ad hoc peer networking
US6836481B1 (en)2000-02-172004-12-28Fujitsu LimitedPacket conversion device and packet conversion method
US20040264463A1 (en)2003-06-262004-12-30Hidehiro FukushimaMethod, apparatus and system for distributing multicast data
US20050002395A1 (en)2003-06-042005-01-06Nec CorporationIP multicast distribution system, streaming data distribution system and program therefor
US20050009523A1 (en)2003-07-072005-01-13Nokia CorporationProtocol using forward error correction to improve handover
US20050032531A1 (en)2003-08-062005-02-10Hong Kong Applied Science And Technology Research Institute Co., Ltd.Location positioning in wireless networks
US20050041739A1 (en)2001-04-282005-02-24Microsoft CorporationSystem and process for broadcast and communication with very low bit-rate bi-level or sketch video
US20050042988A1 (en)2003-08-182005-02-24AlcatelCombined open and closed loop transmission diversity system
WO2005008938A3 (en)2003-07-082005-03-24Kiwi Networks IncImplementing 'all wireless' network over wifi equipment using 'scheduled tdma'
US6873627B1 (en)1995-01-192005-03-29The Fantastic CorporationSystem and method for sending packets over a computer network
US6876280B2 (en)2002-06-242005-04-05Murata Manufacturing Co., Ltd.High-frequency switch, and electronic device using the same
US20050074019A1 (en)2003-10-032005-04-07Nortel Networks LimitedMethod and apparatus for providing mobile inter-mesh communication points in a multi-level wireless mesh network
US20050074018A1 (en)1999-06-112005-04-07Microsoft CorporationXML-based template language for devices and services
US20050074108A1 (en)1995-04-212005-04-07Dezonno Anthony J.Method and system for establishing voice communications using a computer network
US6888504B2 (en)2002-02-012005-05-03Ipr Licensing, Inc.Aperiodic array antenna
US6888893B2 (en)2001-01-052005-05-03Microsoft CorporationSystem and process for broadcast and communication with very low bit-rate bi-level or sketch video
US6906678B2 (en)2002-09-242005-06-14Gemtek Technology Co. Ltd.Multi-frequency printed antenna
US20050138193A1 (en)2003-12-192005-06-23Microsoft CorporationRouting of resource information in a network
US20050138137A1 (en)2003-12-192005-06-23Microsoft CorporationUsing parameterized URLs for retrieving resource content items
US20050153720A1 (en)2003-12-152005-07-14White Graeme E.Apparatus, system, and method for managing distribution and coverage channels in a cellular communication system having a wireless backhaul
US6924768B2 (en)2002-05-232005-08-02Realtek Semiconductor Corp.Printed antenna structure
US6931429B2 (en)2001-04-272005-08-16Left Gate Holdings, Inc.Adaptable wireless proximity networking
US20050180381A1 (en)2004-02-122005-08-18Retzer Michael H.Method and apparatus for improving throughput in a wireless local area network
US20050188193A1 (en)2004-02-202005-08-25Microsoft CorporationSecure network channel
US20050185666A1 (en)2004-02-232005-08-25Maxim RayaMisbehaving detection method for contention-based wireless communications
US6941143B2 (en)2002-08-292005-09-06Thomson Licensing, S.A.Automatic channel selection in a radio access network
US6950019B2 (en)2000-12-072005-09-27Raymond BelloneMultiple-triggering alarm system by transmitters and portable receiver-buzzer
US20050226239A1 (en)2004-03-302005-10-13Sony Corporation And Sony Electronics, Inc.Optimizing IEEE 802.11 for TCP/IP data transfer
US6957277B2 (en)2000-02-282005-10-18Nec CorporationMulticast packet transferring apparatus, multicast packet transferring system and storage medium used in same
US6957042B2 (en)2000-01-102005-10-18Airnet Communications CorporationPacket based backhaul channel configuration for a wireless repeater
US20050232179A1 (en)2003-05-082005-10-20Dacosta FrancisMultiple-radio mission critical wireless mesh networks
US6961028B2 (en)2003-01-172005-11-01Lockheed Martin CorporationLow profile dual frequency dipole antenna structure
US20050250544A1 (en)2004-05-072005-11-10Stephen GrantBase station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
US20050267935A1 (en)1999-06-112005-12-01Microsoft CorporationData driven remote device control model with general programming interface-to-network messaging adaptor
US6973622B1 (en)2000-09-252005-12-06Wireless Valley Communications, Inc.System and method for design, tracking, measurement, prediction and optimization of data communication networks
US20050271070A1 (en)2004-05-202005-12-08Matsushita Electric Industrial Co., Ltd.Radio module
US6975834B1 (en)2000-10-032005-12-13Mineral Lassen LlcMulti-band wireless communication device and method
JP2005354249A (en)2004-06-092005-12-22Matsushita Electric Ind Co Ltd Network communication terminal
US20060018335A1 (en)2004-07-262006-01-26Koch Christopher DMulticast to unicast traffic conversion in a network
US6996086B2 (en)2001-04-262006-02-07Telefonaktiebolaget Lm Ericsson (Publ)Radio access network with meshed radio base stations
JP2006060408A (en)2004-08-182006-03-02Nippon Telegr & Teleph Corp <Ntt> Radio packet communication method and radio station
US20060045089A1 (en)2004-08-272006-03-02International Business Machines CorporationMethod and apparatus for providing network virtualization
US7034770B2 (en)2002-04-232006-04-25Broadcom CorporationPrinted dipole antenna
US20060094371A1 (en)2004-10-292006-05-04Colubris Networks, Inc.Wireless access point (AP) automatic channel selection
US7043277B1 (en)2004-05-272006-05-09Autocell Laboratories, Inc.Automatically populated display regions for discovered access points and stations in a user interface representing a wireless communication network deployed in a physical environment
US20060098607A1 (en)2004-10-282006-05-11Meshnetworks, Inc.System and method to support multicast routing in large scale wireless mesh networks
US20060098613A1 (en)2004-11-052006-05-11Video54 Technologies, Inc.Systems and methods for improved data throughput in communications networks
US20060098605A1 (en)2003-04-072006-05-11Shaolin LiMethod of secure communications in a wireless distribution system
US20060098616A1 (en)2004-11-052006-05-11Ruckus Wireless, Inc.Throughput enhancement by acknowledgement suppression
US7050809B2 (en)2001-12-272006-05-23Samsung Electronics Co., Ltd.System and method for providing concurrent data transmissions in a wireless communication network
US7053853B2 (en)2003-06-262006-05-30Skypilot Network, Inc.Planar antenna for a wireless mesh network
US20060114881A1 (en)2000-12-292006-06-01Tropos Networks, Inc.Mesh network that includes fixed and mobile access nodes
US20060123455A1 (en)2004-12-022006-06-08Microsoft CorporationPersonal media channel
US7064717B2 (en)2003-12-302006-06-20Advanced Micro Devices, Inc.High performance low cost monopole antenna for wireless applications
US20060133341A1 (en)2003-06-242006-06-22Tropos Networks, Inc.Client roaming from a first access node to a second access node within a wireless network
US7076274B2 (en)2001-05-022006-07-11Strix Systems, Inc.Method and system for indicating link quality among neighboring wireless base station
US20060184660A1 (en)2005-02-152006-08-17Microsoft CorporationScaling UPnP v1.0 device eventing using peer groups
US20060184693A1 (en)2005-02-152006-08-17Microsoft CorporationScaling and extending UPnP v1.0 device discovery using peer groups
US7113519B2 (en)2001-04-182006-09-26Skypilot Networks, Inc.Network channel access protocol—slot scheduling
US20060225107A1 (en)2005-04-012006-10-05Microsoft CorporationSystem for running applications in a resource-constrained set-top box environment
US20060224690A1 (en)2005-04-012006-10-05Microsoft CorporationStrategies for transforming markup content to code-bearing content for consumption by a receiving device
US20060227761A1 (en)2005-04-072006-10-12Microsoft CorporationPhone-based remote media system interaction
US20060239369A1 (en)2005-04-252006-10-26Benq CorporationMethods and systems for transmission channel drlrction in wireless communication
US7136655B2 (en)2002-11-212006-11-14Bandspeed, Inc.Method and apparatus for coverage and throughput enhancement in a wireless communication system
EP1315311B1 (en)2000-08-102006-11-15Fujitsu LimitedTransmission diversity communication device
US20060268881A1 (en)2003-09-222006-11-30Moreton Michael John VMethod of data handling in a wlan
US7149197B2 (en)2001-08-152006-12-12Meshnetworks, Inc.Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US20060280131A1 (en)2005-05-312006-12-14Rahman Shahriar ISpanning tree protocol for wireless networks
US7157757B2 (en)2004-08-272007-01-02Micron Technology, Inc.Semiconductor constructions
US20070002750A1 (en)*2005-07-012007-01-04Nec Laboratories America, Inc.Generic Real Time Scheduler for Wireless Packet Data Systems
US7161934B2 (en)2001-03-212007-01-09IntelsatSatellite based content distribution system using IP multicast technology
US20070010271A1 (en)2005-06-142007-01-11Interdigital Technology CorporationMethod and system for conveying backhaul link information for intelligent selection of a mesh access point
US7164667B2 (en)2002-06-282007-01-16Belair Networks Inc.Integrated wireless distribution and mesh backhaul networks
US7171223B2 (en)2003-01-102007-01-30Belair Networks, Inc.Automatic antenna selection for mesh backhaul network nodes
US20070027622A1 (en)2005-07-012007-02-01Microsoft CorporationState-sensitive navigation aid
WO2007016326A1 (en)2005-08-022007-02-08Skypilot Networks, Inc.Method and apparatus for maximizing data transmission capacity of a mesh network
US7187925B2 (en)2003-02-282007-03-06Microsoft CorporationAccess point to access point range extension
US20070072612A1 (en)*2005-09-292007-03-29Fujitsu LimitedHSDPA wireless communication system
US7203508B2 (en)2001-06-132007-04-10Ntt Docomo, Inc.Mobile communication systems, mobile communication methods, base stations, mobile stations, and signal transmission methods in the mobile communication systems
EP1608108B1 (en)2004-06-172007-04-25Kabushiki Kaisha ToshibaImproving channel ulilization efficiency in a wireless communication system comprising high-throughput terminals and legacy terminals
US20070101020A1 (en)2005-10-282007-05-03Tzu-Ming LinPacket transmitting method of wireless network
CN1965598A (en)2004-04-022007-05-16特鲁波斯网络公司Multi-channel mesh network
US20070109961A1 (en)2005-11-162007-05-17Tropos Networks Inc.Determining throughput between hosts
US20070135167A1 (en)2005-12-082007-06-14Accton Technology CorporationMethod and system for steering antenna beam
US20070189283A1 (en)2002-03-062007-08-16Agere Systems Inc.Characterizing transmission of data segments within a switch fabric using multiple counters for each destination node
US20070223451A1 (en)2006-03-212007-09-27Tropos Networks, Inc.Mobile access node routing selections through a mesh network
US20070242602A1 (en)2006-04-182007-10-18Cisco Technology, Inc.Blocked redundant link-aware spanning tree protocol enhancement
US7289505B2 (en)2002-06-042007-10-30Lucent Technologies Inc.Efficient reverse path forwarding check mechanism
US7292617B2 (en)2001-05-022007-11-06Strix Systems, Inc.Reducing mutual channel interference in frequency-hopping spread spectrum wireless communication systems
US20070280168A1 (en)*2006-06-022007-12-06Nec CorporationRadio base station apparatus and scheduling method
US7321571B2 (en)2002-09-272008-01-22Telefonaktiebolaget Lm Ericsson (Publ)In-band wireless communication network backhaul
US20080043638A1 (en)2006-08-172008-02-21Cisco Technology, Inc.Content throughput on wireless mesh networks
US7336642B2 (en)2003-08-072008-02-26Skypilot Networks, Inc.Communication protocol for a wireless mesh architecture
US20080069068A1 (en)2006-09-182008-03-20Tropos Networks, Inc.Providing a client with wireless link quality, and network information
US7355997B2 (en)2004-05-072008-04-08Cisco Technology, Inc.Data rate shifting methods and techniques
JP2008088633A (en)2006-09-292008-04-17Taiheiyo Cement CorpBurying type form made of polymer cement mortar
US7362737B2 (en)2004-04-082008-04-22Tropos Networks, Inc.Minimization of channel filters within wireless access nodes
US7369510B1 (en)2002-05-062008-05-06Atheros Communications, Inc.Wireless LAN using RSSI and BER parameters for transmission rate adaptation
US20080159207A1 (en)2006-12-282008-07-03Motorola, Inc.Method and apparatus for cognitive spectrum assignment for mesh networks
US20080225804A1 (en)2007-03-142008-09-18Cisco Technology, Inc.Real-Time Sessions for Wireless Mesh Networks
US20080247327A1 (en)2007-04-032008-10-09Tropos Networks, Inc.Identifying correlations within wireless networks
US20080267116A1 (en)2007-04-272008-10-30Yong KangRouting method and system for a wireless network
US20090019314A1 (en)2007-07-132009-01-15Purenetworks, Inc.Network advisor
US20090028095A1 (en)2007-07-282009-01-29Kish William SWireless Network Throughput Enhancement Through Channel Aware Scheduling
US7489932B2 (en)2004-06-032009-02-10Tropos NetworksChannel assignments within a mesh network
US20090040989A1 (en)2002-10-282009-02-12Mesh Dynamics, Inc.High performance wireless networks using distributed control
US7496680B2 (en)2002-11-132009-02-24Telenor AsaMethod for routing messages from a source node to a destination node in a dynamic network
US20090067369A1 (en)2007-09-062009-03-12Anastasios StamoulisRouting in a mesh network
US20090073921A1 (en)2007-09-192009-03-19At&T Services Inc.Data forwarding in hybrid mesh networks
US20090080333A1 (en)2007-09-202009-03-26Motorola, Inc.Method and device for providing an alternative backhaul portal in a mesh network
US7522731B2 (en)2003-04-282009-04-21Firetide, Inc.Wireless service points having unique identifiers for secure communication
US7546126B2 (en)2001-05-022009-06-09Strix Systems, Inc.Wireless base station neighbor discovery in a communication system, such as a system employing a short-range frequency hopping scheme
US20090154359A1 (en)2007-12-122009-06-18Motorola, Inc.Method for calculating service redundancy of a wireless network
US7551562B2 (en)2000-12-292009-06-23Tropos NetworksDetermining bidirectional path quality within a wireless mesh network
WO2009088488A1 (en)2008-01-112009-07-16Ruckus Wireless, Inc.Determining associations in a mesh network
US20090207730A1 (en)2008-02-142009-08-20Qualcomm IncorporatedScheduling policy-based traffic management
US20090213730A1 (en)2008-02-212009-08-27Jianlin ZengBackhaul failover method and system for a wireless network
US20090225676A1 (en)2008-03-092009-09-10Fluke CorporationMethod and apparatus of duplicate packet detection and discard
US20090262677A1 (en)2008-04-182009-10-22Raja BanerjeaMulticast to unicast conversion system
US20100040056A1 (en)2003-02-062010-02-18Fujitsu LimitedData generating device
US7672274B2 (en)2002-01-112010-03-02Broadcom CorporationMobility support via routing
US20100085916A1 (en)2007-01-312010-04-08Noosphere Communications, Inc.Systems and Methods for Hybrid Wired and Wireless Universal Access Networks
US7715395B2 (en)2004-11-242010-05-11Microsoft CorporationSystem and method for expanding the range of a mesh network
US7733833B2 (en)2003-03-242010-06-08Strix Systems, Inc.Self-configuring, self-optimizing wireless local area network system
US7916684B2 (en)2004-11-112011-03-29Pine Valley Investments, Inc.Wireless communication network providing communication between mobile devices and access points
US20110096712A1 (en)2004-11-052011-04-28William KishUnicast to Multicast Conversion
US20110119401A1 (en)2009-11-162011-05-19Kish William SDetermining Role Assignment in a Hybrid Mesh Network
US20110119360A1 (en)2009-11-162011-05-19Kish William SEstablishing a Mesh Network with Wired and Wireless Links
US20110158233A1 (en)2007-12-202011-06-30Hwan-Sik NAMGUNGGroup communication system using media server having distributed structure and method thereof
US7974223B2 (en)2004-11-192011-07-05Corrigent Systems Ltd.Virtual private LAN service over ring networks
US20110216685A1 (en)2004-11-052011-09-08Kish William SMac based mapping in ip based communications
EP1653664B1 (en)2004-10-292013-03-13Research In Motion LimitedWireless/wired mobile communication device, method and computer program medium with option to automatically block wireless communication when connected for wired communication
US8688834B2 (en)2004-07-092014-04-01Toshiba America Research, Inc.Dynamic host configuration and network access authentication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0338933A (en)1989-07-061991-02-20Oki Electric Ind Co LtdSpace diversity system
JP3038933B2 (en)1991-01-312000-05-08ソニー株式会社 System controller for video signal processor
US5541927A (en)1994-08-241996-07-30At&T Corp.Method of multicasting
US20050259682A1 (en)2000-02-032005-11-24Yuval YosefBroadcast system
US7133361B2 (en)2001-09-262006-11-07Hughes Network Systems, Inc.Method and system for improvement of network performance over asymmetic links
JP4075461B2 (en)2001-11-272008-04-16ソニー株式会社 Communication system, communication terminal, and communication method
JP4428934B2 (en)2003-03-242010-03-10富士通株式会社 Video selection server, video distribution system, and video selection method
CN1864366B (en)2003-10-072011-06-01汤姆森特许公司 Method and device for multicast over unicast in network
US7852837B1 (en)2003-12-242010-12-14At&T Intellectual Property Ii, L.P.Wi-Fi/BPL dual mode repeaters for power line networks
US7684342B2 (en)2004-11-032010-03-23Intel CorporationMedia independent trigger model for multiple network types
WO2006066396A1 (en)2004-12-222006-06-29Dragonwave, Inc.Wireless communication path management methods and systems
WO2008031361A1 (en)2006-09-112008-03-203Dsp CorporationA multi-gateway system and methods for same
WO2009113798A2 (en)2008-03-142009-09-17Lg Electronics Inc.Scanning method in wireless system
US8506395B2 (en)2008-07-182013-08-13Wms Gaming, Inc.Communicating wagering game information using mesh networks

Patent Citations (336)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1653664A (en)1927-12-27Lavatory
US4176356A (en)1977-06-271979-11-27Motorola, Inc.Directional antenna system including pattern control
US4193077A (en)1977-10-111980-03-11Avnet, Inc.Directional antenna system with end loaded crossed dipoles
US4253193A (en)1977-11-051981-02-24The Marconi Company LimitedTropospheric scatter radio communication systems
US4305052A (en)1978-12-221981-12-08Thomson-CsfUltra-high-frequency diode phase shifter usable with electronically scanning antenna
US4513412A (en)1983-04-251985-04-23At&T Bell LaboratoriesTime division adaptive retransmission technique for portable radio telephones
US4814777A (en)1987-07-311989-03-21Raytheon CompanyDual-polarization, omni-directional antenna system
EP0352787B1 (en)1988-07-281995-05-10Motorola, Inc. High bit rate communication system for overcoming multipath
US5097484A (en)1988-10-121992-03-17Sumitomo Electric Industries, Ltd.Diversity transmission and reception method and equipment
US5173711A (en)1989-11-271992-12-22Kokusai Denshin Denwa Kabushiki KaishaMicrostrip antenna for two-frequency separate-feeding type for circularly polarized waves
US5203010A (en)1990-11-131993-04-13Motorola, Inc.Radio telephone system incorporating multiple time periods for communication transfer
US5373548A (en)1991-01-041994-12-13Thomson Consumer Electronics, Inc.Out-of-range warning system for cordless telephone
US5117430A (en)1991-02-081992-05-26International Business Machines CorporationApparatus and method for communicating between nodes in a network
US5940771A (en)1991-05-131999-08-17Norand CorporationNetwork supporting roaming, sleeping terminals
US5220678A (en)1991-08-121993-06-15Motorola, Inc.Method and apparatus for adjusting the power of a transmitter
EP0534612A3 (en)1991-08-281993-11-24Motorola IncCellular system sharing of logical channels
US5220340A (en)1992-04-291993-06-15Lotfollah ShafaiDirectional switched beam antenna
US5361256A (en)1992-11-271994-11-01International Business Machines CorporationInter-domain multicast routing
US5507035A (en)1993-04-301996-04-09International Business Machines CorporationDiversity transmission strategy in mobile/indoor cellula radio communications
US6034638A (en)1993-05-272000-03-07Griffith UniversityAntennas for use in portable communications devices
US5408465A (en)1993-06-211995-04-18Hewlett-Packard CompanyFlexible scheme for admission control of multimedia streams on integrated networks
US5960344A (en)1993-12-201999-09-28Norand CorporationLocal area network having multiple channel wireless access
US5559800A (en)1994-01-191996-09-24Research In Motion LimitedRemote control of gateway functions in a wireless data communication network
US5802312A (en)1994-09-271998-09-01Research In Motion LimitedSystem for transmitting data files between computers in a wireless environment utilizing a file transfer agent executing on host system
US5570366A (en)1994-12-081996-10-29International Business Machines CorporationBroadcast/multicast filtering by the bridge-based access point
US5636213A (en)1994-12-281997-06-03MotorolaMethod, transceiver, and system for providing wireless communication compatible with 10BASE-T Ethernet
US6873627B1 (en)1995-01-192005-03-29The Fantastic CorporationSystem and method for sending packets over a computer network
US6337628B2 (en)1995-02-222002-01-08Ntp, IncorporatedOmnidirectional and directional antenna assembly
US20050074108A1 (en)1995-04-212005-04-07Dezonno Anthony J.Method and system for establishing voice communications using a computer network
US5608726A (en)1995-04-251997-03-04Cabletron Systems, Inc.Network bridge with multicast forwarding table
US5867109A (en)1995-06-061999-02-02Globalstar L.P.Satellite repeater diversity resource management system
US20020036996A1 (en)1995-06-302002-03-28Ozluturk Fatih M.Initial power control for spread-spectrum communications
US5964830A (en)1995-08-221999-10-12Durrett; Charles M.User portal device for the world wide web to communicate with a website server
US5754145A (en)1995-08-231998-05-19U.S. Philips CorporationPrinted antenna
US5930259A (en)1995-08-251999-07-27Kabushiki Kaisha ToshibaPacket transmission node device realizing packet transfer scheme and control information transfer scheme using multiple virtual connections
US6132306A (en)1995-09-062000-10-17Cisco Systems, Inc.Cellular communication system with dedicated repeater channels
GB2306278B (en)1995-10-141999-12-08Nec CorpRadio transmission system
US5970410A (en)1996-02-271999-10-19Airnet Communications Corp.Cellular system plan using in band-translators to enable efficient deployment of high capacity base transceiver systems
US5767809A (en)1996-03-071998-06-16Industrial Technology Research InstituteOMNI-directional horizontally polarized Alford loop strip antenna
US6356553B1 (en)1996-07-112002-03-12Kabushiki Kaisha ToshibaNetwork node and method of packet transfer
US6018659A (en)1996-10-172000-01-25The Boeing CompanyAirborne broadband communication network
US6044062A (en)1996-12-062000-03-28Communique, LlcWireless network system and method for providing same
US6249516B1 (en)1996-12-062001-06-19Edwin B. BrownriggWireless network gateway and method for providing same
US5974034A (en)1997-01-161999-10-26Gwcom, Inc.System and method for synchronized wide and local area communications utilizing a single frequency
US6714551B1 (en)1997-10-142004-03-30Alvarion Israel (2003) Ltd.Method and apparatus for maintaining a predefined transmission quality in a wireless network for a metropolitan area
US6404775B1 (en)1997-11-212002-06-11Allen Telecom Inc.Band-changing repeater with protocol or format conversion
US6094177A (en)1997-11-272000-07-25Yamamoto; KiyoshiPlanar radiation antenna elements and omni directional antenna using such antenna elements
US6266537B1 (en)1998-03-272001-07-24Nec CorporationRadio communication system
US6181697B1 (en)1998-03-312001-01-30At&T Corp.Method for a unicast endpoint client to access a multicast internet protocol (IP) session and to serve as a redistributor of such session
US6393261B1 (en)1998-05-052002-05-21Telxon CorporationMulti-communication access point
US6505253B1 (en)1998-06-302003-01-07Sun MicrosystemsMultiple ACK windows providing congestion control in reliable multicast protocol
US6345043B1 (en)1998-07-062002-02-05National Datacomm CorporationAccess scheme for a wireless LAN station to connect an access point
US6404386B1 (en)1998-09-212002-06-11Tantivy Communications, Inc.Adaptive antenna for use in same frequency networks
US20020047800A1 (en)1998-09-212002-04-25Tantivy Communications, Inc.Adaptive antenna for use in same frequency networks
US6088570A (en)1998-11-242000-07-11Airnet Communications CorporationMethod and apparatus employing delay elements in multiple diversity paths of a wireless system repeater translator to allow for selective diversity and automatic level control in a time-division multiple access system
US6266528B1 (en)1998-12-232001-07-24Arraycomm, Inc.Performance monitor for antenna arrays
US6442507B1 (en)1998-12-292002-08-27Wireless Communications, Inc.System for creating a computer model and measurement database of a wireless communication network
US6584080B1 (en)1999-01-142003-06-24Aero-Vision Technologies, Inc.Wireless burstable communications repeater
US6337668B1 (en)1999-03-052002-01-08Matsushita Electric Industrial Co., Ltd.Antenna apparatus
US6356905B1 (en)1999-03-052002-03-12Accenture LlpSystem, method and article of manufacture for mobile communication utilizing an interface support framework
US6498589B1 (en)1999-03-182002-12-24Dx Antenna Company, LimitedAntenna system
US6414955B1 (en)1999-03-232002-07-02Innovative Technology Licensing, LlcDistributed topology learning method and apparatus for wireless networks
US6377227B1 (en)1999-04-282002-04-23Superpass Company Inc.High efficiency feed network for antennas
US6493679B1 (en)1999-05-262002-12-10Wireless Valley Communications, Inc.Method and system for managing a real time bill of materials
US6317599B1 (en)1999-05-262001-11-13Wireless Valley Communications, Inc.Method and system for automated optimization of antenna positioning in 3-D
US20050074018A1 (en)1999-06-112005-04-07Microsoft CorporationXML-based template language for devices and services
US6779004B1 (en)1999-06-112004-08-17Microsoft CorporationAuto-configuring of peripheral on host/peripheral computing platform with peer networking-to-host/peripheral adapter for peer networking connectivity
US6725281B1 (en)1999-06-112004-04-20Microsoft CorporationSynchronization of controlled device state using state table and eventing in data-driven remote device control model
US7130895B2 (en)1999-06-112006-10-31Microsoft CorporationXML-based language description for controlled devices
US20050240665A1 (en)1999-06-112005-10-27Microsoft CorporationDynamic self-configuration for ad hoc peer networking
US7085814B1 (en)1999-06-112006-08-01Microsoft CorporationData driven remote device control model with general programming interface-to-network messaging adapter
US6910068B2 (en)1999-06-112005-06-21Microsoft CorporationXML-based template language for devices and services
US20040260800A1 (en)1999-06-112004-12-23Microsoft CorporationDynamic self-configuration for ad hoc peer networking
US20050267935A1 (en)1999-06-112005-12-01Microsoft CorporationData driven remote device control model with general programming interface-to-network messaging adaptor
US6892230B1 (en)1999-06-112005-05-10Microsoft CorporationDynamic self-configuration for ad hoc peer networking using mark-up language formated description messages
US20050022210A1 (en)1999-06-112005-01-27Microsoft CorporationSynchronization of controlled device state using state table and eventing in data-driven remote device control model
US20050097503A1 (en)1999-06-112005-05-05Microsoft CorporationXML-based template language for devices and services
US20060291434A1 (en)1999-06-112006-12-28Microsoft CorporationDynamic self-configuration for ad hoc peer networking
US7089307B2 (en)1999-06-112006-08-08Microsoft CorporationSynchronization of controlled device state using state table and eventing in data-driven remote device control model
US6407719B1 (en)1999-07-082002-06-18Atr Adaptive Communications Research LaboratoriesArray antenna
US6499006B1 (en)1999-07-142002-12-24Wireless Valley Communications, Inc.System for the three-dimensional display of wireless communication system performance
US6339404B1 (en)1999-08-132002-01-15Rangestar Wirless, Inc.Diversity antenna system for lan communication system
JP2001057560A (en)1999-08-182001-02-27Hitachi Kokusai Electric Inc Wireless LAN system
US6292153B1 (en)1999-08-272001-09-18Fantasma Network, Inc.Antenna comprising two wideband notch regions on one coplanar substrate
US6570883B1 (en)*1999-08-282003-05-27Hsiao-Tung WongPacket scheduling using dual weight single priority queue
US6778517B1 (en)1999-10-142004-08-17Bellsouth Intellectual Property CorporationWireless broadband service
US6392610B1 (en)1999-10-292002-05-21Allgon AbAntenna device for transmitting and/or receiving RF waves
US6957042B2 (en)2000-01-102005-10-18Airnet Communications CorporationPacket based backhaul channel configuration for a wireless repeater
US6307524B1 (en)2000-01-182001-10-23Core Technology, Inc.Yagi antenna having matching coaxial cable and driven element impedances
US6356242B1 (en)2000-01-272002-03-12George PloussiosCrossed bent monopole doublets
US6836481B1 (en)2000-02-172004-12-28Fujitsu LimitedPacket conversion device and packet conversion method
US6957277B2 (en)2000-02-282005-10-18Nec CorporationMulticast packet transferring apparatus, multicast packet transferring system and storage medium used in same
US6418138B1 (en)2000-03-022002-07-09Worldcom, Inc.Internet radio communication system
US20040014432A1 (en)2000-03-232004-01-22U.S. Philips CorporationAntenna diversity arrangement
US6701522B1 (en)2000-04-072004-03-02Danger, Inc.Apparatus and method for portal device authentication
US20010055312A1 (en)2000-04-072001-12-27Negus Kevin J.Asymmetric data traffic throughput in CSMA/CA networks
US20010047474A1 (en)2000-05-232001-11-29Kabushiki Kaisha ToshibaCommunication control scheme using proxy device and security protocol in combination
US20020105471A1 (en)2000-05-242002-08-08Suguru KojimaDirectional switch antenna device
US6507321B2 (en)2000-05-262003-01-14Sony International (Europe) GmbhV-slot antenna for circular polarization
US20020031130A1 (en)2000-05-302002-03-14Kazuaki TsuchiyaMulticast routing method and an apparatus for routing a multicast packet
US6326922B1 (en)2000-06-292001-12-04Worldspace CorporationYagi antenna coupled with a low noise amplifier on the same printed circuit board
US20020001310A1 (en)2000-06-292002-01-03Khanh MaiVirtual multicasting
US6356243B1 (en)2000-07-192002-03-12Logitech Europe S.A.Three-dimensional geometric space loop antenna
US6625454B1 (en)2000-08-042003-09-23Wireless Valley Communications, Inc.Method and system for designing or deploying a communications network which considers frequency dependent effects
EP1315311B1 (en)2000-08-102006-11-15Fujitsu LimitedTransmission diversity communication device
US6445688B1 (en)2000-08-312002-09-03Ricochet Networks, Inc.Method and apparatus for selecting a directional antenna in a wireless communication system
US6728514B2 (en)2000-09-082004-04-27Wi-Lan Inc.Scalable wireless network topology systems and methods
WO2002025967A1 (en)2000-09-222002-03-28Widcomm Inc.Wireless network and method for providing improved handoff performance
US6973622B1 (en)2000-09-252005-12-06Wireless Valley Communications, Inc.System and method for design, tracking, measurement, prediction and optimization of data communication networks
US6975834B1 (en)2000-10-032005-12-13Mineral Lassen LlcMulti-band wireless communication device and method
US20020045435A1 (en)2000-10-182002-04-18Steve FantaskeWireless communication system
US20040058690A1 (en)2000-11-202004-03-25Achim RatzelAntenna system
US20030026268A1 (en)2000-11-282003-02-06Siemens Technology-To-Business Center, LlcCharacteristic routing
US20020112058A1 (en)2000-12-012002-08-15Microsoft CorporationPeer networking host framework and hosting API
US20060168159A1 (en)2000-12-012006-07-27Microsoft CorporationPeer networking host framework and hosting API
US7171475B2 (en)2000-12-012007-01-30Microsoft CorporationPeer networking host framework and hosting API
US20060184661A1 (en)2000-12-012006-08-17Microsoft CorporationPeer networking host framework and hosting API
US20060123125A1 (en)2000-12-012006-06-08Microsoft CorporationPeer networking host framework and hosting API
US20060123124A1 (en)2000-12-012006-06-08Microsoft CorporationPeer networking host framework and hosting API
US6950019B2 (en)2000-12-072005-09-27Raymond BelloneMultiple-triggering alarm system by transmitters and portable receiver-buzzer
US20020114330A1 (en)2000-12-132002-08-22Cheung Kwok WaiMethod and system for delivering media selections through a network
WO2002049360A1 (en)2000-12-132002-06-20THE CHINESE UNIVERSITY OF HONG KONG A body corporate of Hong Kong SARMethod and system for delivering media selections through a network
US20040048593A1 (en)2000-12-212004-03-11Hiroyasu SanoAdaptive antenna receiver
US20020080767A1 (en)2000-12-222002-06-27Ji-Woong LeeMethod of supporting small group multicast in mobile IP
US7697504B2 (en)2000-12-292010-04-13Tropos Networks, Inc.Mesh network that includes fixed and mobile access nodes
US20060114881A1 (en)2000-12-292006-06-01Tropos Networks, Inc.Mesh network that includes fixed and mobile access nodes
US7551562B2 (en)2000-12-292009-06-23Tropos NetworksDetermining bidirectional path quality within a wireless mesh network
US6704301B2 (en)2000-12-292004-03-09Tropos Networks, Inc.Method and apparatus to provide a routing protocol for wireless devices
US20040008663A1 (en)2000-12-292004-01-15Devabhaktuni SrikrishnaSelection of routing paths based upon path quality of a wireless mesh network
US7505426B2 (en)2000-12-292009-03-17Tropos NetworksMulti-channel mesh network
US20020084942A1 (en)2001-01-032002-07-04Szu-Nan TsaiPcb dipole antenna
US20050135480A1 (en)2001-01-052005-06-23Microsoft CorporationSystem and process for broadcast and communication with very low bit-rate bi-level or sketch video
US6888893B2 (en)2001-01-052005-05-03Microsoft CorporationSystem and process for broadcast and communication with very low bit-rate bi-level or sketch video
US7161934B2 (en)2001-03-212007-01-09IntelsatSatellite based content distribution system using IP multicast technology
US20020143951A1 (en)2001-03-302002-10-03Eyeball.Com Network Inc.Method and system for multicast to unicast bridging
US20020164963A1 (en)2001-04-092002-11-07Tehrani Ardavan MalekiMethod and system for providing antenna diversity
US7113519B2 (en)2001-04-182006-09-26Skypilot Networks, Inc.Network channel access protocol—slot scheduling
US7283494B2 (en)2001-04-182007-10-16Skypilot Networks, Inc.Network channel access protocol-interference and load adaptive
US6996086B2 (en)2001-04-262006-02-07Telefonaktiebolaget Lm Ericsson (Publ)Radio access network with meshed radio base stations
US6931429B2 (en)2001-04-272005-08-16Left Gate Holdings, Inc.Adaptable wireless proximity networking
US20020158801A1 (en)2001-04-272002-10-31Crilly William J.Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US20050041739A1 (en)2001-04-282005-02-24Microsoft CorporationSystem and process for broadcast and communication with very low bit-rate bi-level or sketch video
US20040027304A1 (en)2001-04-302004-02-12Bing ChiangHigh gain antenna for wireless applications
US20020158798A1 (en)2001-04-302002-10-31Bing ChiangHigh gain planar scanned antenna array
US7546126B2 (en)2001-05-022009-06-09Strix Systems, Inc.Wireless base station neighbor discovery in a communication system, such as a system employing a short-range frequency hopping scheme
US7292617B2 (en)2001-05-022007-11-06Strix Systems, Inc.Reducing mutual channel interference in frequency-hopping spread spectrum wireless communication systems
US7076274B2 (en)2001-05-022006-07-11Strix Systems, Inc.Method and system for indicating link quality among neighboring wireless base station
US20020170064A1 (en)2001-05-112002-11-14Monroe David A.Portable, wireless monitoring and control station for use in connection with a multi-media surveillance system having enhanced notification functions
US20040125777A1 (en)2001-05-242004-07-01James DoyleMethod and apparatus for affiliating a wireless device with a wireless local area network
US7203508B2 (en)2001-06-132007-04-10Ntt Docomo, Inc.Mobile communication systems, mobile communication methods, base stations, mobile stations, and signal transmission methods in the mobile communication systems
US20020194367A1 (en)2001-06-142002-12-19The Furukawa Electric Co., Ltd.Data relay method, its apparatus, and data relay system using the apparatus
US20030003917A1 (en)2001-06-292003-01-02Copley Rich T.Wireless communication system, apparatus and method for providing wireless communication within a building structure
US20030026240A1 (en)2001-07-232003-02-06Eyuboglu M. VedatBroadcasting and multicasting in wireless communication
JP2003038933A (en)2001-07-262003-02-12Akira MizunoDischarge plasma generating apparatus
US20030030588A1 (en)2001-08-102003-02-13Music Sciences, Inc.Antenna system
US7149197B2 (en)2001-08-152006-12-12Meshnetworks, Inc.Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US20030043786A1 (en)2001-08-282003-03-06Jan KallApparatus, and associated method, for multicasting data in a radio communications system
US20030189514A1 (en)2001-09-062003-10-09Kentaro MiyanoArray antenna apparatus
US20030063591A1 (en)2001-10-032003-04-03Leung Nikolai K.N.Method and apparatus for data packet transport in a wireless communication system using an internet protocol
US20040041732A1 (en)2001-10-032004-03-04Masayoshi AikawaMultielement planar antenna
US6674459B2 (en)2001-10-242004-01-06Microsoft CorporationNetwork conference recording system and method including post-conference processing
US20030169330A1 (en)2001-10-242003-09-11Microsoft CorporationNetwork conference recording system and method including post-conference processing
US20040032378A1 (en)2001-10-312004-02-19Vladimir VolmanBroadband starfish antenna and array thereof
US20030122714A1 (en)2001-11-162003-07-03Galtronics Ltd.Variable gain and variable beamwidth antenna (the hinged antenna)
US7050809B2 (en)2001-12-272006-05-23Samsung Electronics Co., Ltd.System and method for providing concurrent data transmissions in a wireless communication network
US20040095278A1 (en)2001-12-282004-05-20Hideki KanemotoMulti-antenna apparatus multi-antenna reception method, and multi-antenna transmission method
US7672274B2 (en)2002-01-112010-03-02Broadcom CorporationMobility support via routing
US20030133458A1 (en)2002-01-172003-07-17Masaaki SatoUnicast-to-multicast converting apparatus, method, and computer program product, and monitoring system comprising the same
US6888504B2 (en)2002-02-012005-05-03Ipr Licensing, Inc.Aperiodic array antenna
US20030210207A1 (en)2002-02-082003-11-13Seong-Youp SuhPlanar wideband antennas
US20030227414A1 (en)2002-03-042003-12-11Saliga Stephen V.Diversity antenna for UNII access point
US20070189283A1 (en)2002-03-062007-08-16Agere Systems Inc.Characterizing transmission of data segments within a switch fabric using multiple counters for each destination node
WO2003079484A3 (en)2002-03-152004-01-22Andrew CorpAntenna interface protocol
US6819287B2 (en)2002-03-152004-11-16Centurion Wireless Technologies, Inc.Planar inverted-F antenna including a matching network having transmission line stubs and capacitor/inductor tank circuits
US20030184490A1 (en)2002-03-262003-10-02Raiman Clifford E.Sectorized omnidirectional antenna
US20030189521A1 (en)2002-04-052003-10-09Atsushi YamamotoDirectivity controllable antenna and antenna unit using the same
US20030189523A1 (en)2002-04-092003-10-09Filtronic Lk OyAntenna with variable directional pattern
US7034770B2 (en)2002-04-232006-04-25Broadcom CorporationPrinted dipole antenna
US7369510B1 (en)2002-05-062008-05-06Atheros Communications, Inc.Wireless LAN using RSSI and BER parameters for transmission rate adaptation
US20040028006A1 (en)2002-05-222004-02-12Ntt Docomo, Inc.Random access method and radio station
US6924768B2 (en)2002-05-232005-08-02Realtek Semiconductor Corp.Printed antenna structure
US20040027291A1 (en)2002-05-242004-02-12Xin ZhangPlanar antenna and array antenna
US7289505B2 (en)2002-06-042007-10-30Lucent Technologies Inc.Efficient reverse path forwarding check mechanism
US20030231593A1 (en)2002-06-042003-12-18James BaumanFlexible multilevel output traffic control
US20040036651A1 (en)2002-06-052004-02-26Takeshi TodaAdaptive antenna unit and terminal equipment
US20030228857A1 (en)2002-06-062003-12-11Hitachi, Ltd.Optimum scan for fixed-wireless smart antennas
US6876280B2 (en)2002-06-242005-04-05Murata Manufacturing Co., Ltd.High-frequency switch, and electronic device using the same
US6753814B2 (en)2002-06-272004-06-22Harris CorporationDipole arrangements using dielectric substrates of meta-materials
US7164667B2 (en)2002-06-282007-01-16Belair Networks Inc.Integrated wireless distribution and mesh backhaul networks
US20040017310A1 (en)2002-07-242004-01-29Sarah Vargas-HurlstonPosition optimized wireless communication
US20040017860A1 (en)2002-07-292004-01-29Jung-Tao LiuMultiple antenna system for varying transmission streams
US20040036654A1 (en)2002-08-212004-02-26Steve HsiehAntenna assembly for circuit board
US6941143B2 (en)2002-08-292005-09-06Thomson Licensing, S.A.Automatic channel selection in a radio access network
US6906678B2 (en)2002-09-242005-06-14Gemtek Technology Co. Ltd.Multi-frequency printed antenna
US20040061653A1 (en)2002-09-262004-04-01Andrew CorporationDynamically variable beamwidth and variable azimuth scanning antenna
US7321571B2 (en)2002-09-272008-01-22Telefonaktiebolaget Lm Ericsson (Publ)In-band wireless communication network backhaul
US20040114535A1 (en)2002-09-302004-06-17Tantivy Communications, Inc.Method and apparatus for antenna steering for WLAN
US20040070543A1 (en)2002-10-152004-04-15Kabushiki Kaisha ToshibaAntenna structure for electronic device with wireless communication unit
US20040080455A1 (en)2002-10-232004-04-29Lee Choon SaeMicrostrip array antenna
US20090040989A1 (en)2002-10-282009-02-12Mesh Dynamics, Inc.High performance wireless networks using distributed control
US20040085993A1 (en)2002-11-052004-05-06Wentink Maarten MenzoShared-medium contention algorithm exhibiting fairness
US6762723B2 (en)2002-11-082004-07-13Motorola, Inc.Wireless communication device having multiband antenna
US7496680B2 (en)2002-11-132009-02-24Telenor AsaMethod for routing messages from a source node to a destination node in a dynamic network
US7136655B2 (en)2002-11-212006-11-14Bandspeed, Inc.Method and apparatus for coverage and throughput enhancement in a wireless communication system
WO2004057817A2 (en)2002-12-192004-07-08Koninklijke Philips Electronics N.V.Protecting real-time data in wireless networks
US20060165029A1 (en)2002-12-192006-07-27Koninklijke Philips Electronics N.V.Protecting real-time data in wireless networks
US7171223B2 (en)2003-01-102007-01-30Belair Networks, Inc.Automatic antenna selection for mesh backhaul network nodes
US6961028B2 (en)2003-01-172005-11-01Lockheed Martin CorporationLow profile dual frequency dipole antenna structure
US20100040056A1 (en)2003-02-062010-02-18Fujitsu LimitedData generating device
EP1450521A2 (en)2003-02-192004-08-25Nec CorporationWireless communication system and method which improves reliability and throughput of communication through retransmission timeout optimization
US7187925B2 (en)2003-02-282007-03-06Microsoft CorporationAccess point to access point range extension
US7733833B2 (en)2003-03-242010-06-08Strix Systems, Inc.Self-configuring, self-optimizing wireless local area network system
US7269174B2 (en)2003-03-282007-09-11Modular Mining Systems, Inc.Dynamic wireless network
US20040190477A1 (en)2003-03-282004-09-30Olson Jonathan P.Dynamic wireless network
US20060098605A1 (en)2003-04-072006-05-11Shaolin LiMethod of secure communications in a wireless distribution system
US7522731B2 (en)2003-04-282009-04-21Firetide, Inc.Wireless service points having unique identifiers for secure communication
US20050232179A1 (en)2003-05-082005-10-20Dacosta FrancisMultiple-radio mission critical wireless mesh networks
US20050002395A1 (en)2003-06-042005-01-06Nec CorporationIP multicast distribution system, streaming data distribution system and program therefor
US7586879B2 (en)2003-06-242009-09-08Tropos Networks, Inc.Client roaming from a first access node to a second access node within a wireless network
US20060133341A1 (en)2003-06-242006-06-22Tropos Networks, Inc.Client roaming from a first access node to a second access node within a wireless network
US20040264463A1 (en)2003-06-262004-12-30Hidehiro FukushimaMethod, apparatus and system for distributing multicast data
US7053853B2 (en)2003-06-262006-05-30Skypilot Network, Inc.Planar antenna for a wireless mesh network
US20050009523A1 (en)2003-07-072005-01-13Nokia CorporationProtocol using forward error correction to improve handover
WO2005008938A3 (en)2003-07-082005-03-24Kiwi Networks IncImplementing 'all wireless' network over wifi equipment using 'scheduled tdma'
US20050032531A1 (en)2003-08-062005-02-10Hong Kong Applied Science And Technology Research Institute Co., Ltd.Location positioning in wireless networks
US7336642B2 (en)2003-08-072008-02-26Skypilot Networks, Inc.Communication protocol for a wireless mesh architecture
US20050042988A1 (en)2003-08-182005-02-24AlcatelCombined open and closed loop transmission diversity system
US20060268881A1 (en)2003-09-222006-11-30Moreton Michael John VMethod of data handling in a wlan
US20050074019A1 (en)2003-10-032005-04-07Nortel Networks LimitedMethod and apparatus for providing mobile inter-mesh communication points in a multi-level wireless mesh network
US20050153720A1 (en)2003-12-152005-07-14White Graeme E.Apparatus, system, and method for managing distribution and coverage channels in a cellular communication system having a wireless backhaul
US20050138193A1 (en)2003-12-192005-06-23Microsoft CorporationRouting of resource information in a network
US20050138137A1 (en)2003-12-192005-06-23Microsoft CorporationUsing parameterized URLs for retrieving resource content items
US7064717B2 (en)2003-12-302006-06-20Advanced Micro Devices, Inc.High performance low cost monopole antenna for wireless applications
US20050180381A1 (en)2004-02-122005-08-18Retzer Michael H.Method and apparatus for improving throughput in a wireless local area network
US20050188193A1 (en)2004-02-202005-08-25Microsoft CorporationSecure network channel
US20050185666A1 (en)2004-02-232005-08-25Maxim RayaMisbehaving detection method for contention-based wireless communications
US20050226239A1 (en)2004-03-302005-10-13Sony Corporation And Sony Electronics, Inc.Optimizing IEEE 802.11 for TCP/IP data transfer
CN1965598A (en)2004-04-022007-05-16特鲁波斯网络公司Multi-channel mesh network
US7362737B2 (en)2004-04-082008-04-22Tropos Networks, Inc.Minimization of channel filters within wireless access nodes
US20050250544A1 (en)2004-05-072005-11-10Stephen GrantBase station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
US7355997B2 (en)2004-05-072008-04-08Cisco Technology, Inc.Data rate shifting methods and techniques
US20050271070A1 (en)2004-05-202005-12-08Matsushita Electric Industrial Co., Ltd.Radio module
US7043277B1 (en)2004-05-272006-05-09Autocell Laboratories, Inc.Automatically populated display regions for discovered access points and stations in a user interface representing a wireless communication network deployed in a physical environment
US7489932B2 (en)2004-06-032009-02-10Tropos NetworksChannel assignments within a mesh network
JP2005354249A (en)2004-06-092005-12-22Matsushita Electric Ind Co Ltd Network communication terminal
EP1608108B1 (en)2004-06-172007-04-25Kabushiki Kaisha ToshibaImproving channel ulilization efficiency in a wireless communication system comprising high-throughput terminals and legacy terminals
US8688834B2 (en)2004-07-092014-04-01Toshiba America Research, Inc.Dynamic host configuration and network access authentication
US20060018335A1 (en)2004-07-262006-01-26Koch Christopher DMulticast to unicast traffic conversion in a network
JP2006060408A (en)2004-08-182006-03-02Nippon Telegr & Teleph Corp <Ntt> Radio packet communication method and radio station
US7157757B2 (en)2004-08-272007-01-02Micron Technology, Inc.Semiconductor constructions
US7515589B2 (en)2004-08-272009-04-07International Business Machines CorporationMethod and apparatus for providing network virtualization
US20060045089A1 (en)2004-08-272006-03-02International Business Machines CorporationMethod and apparatus for providing network virtualization
US20060098607A1 (en)2004-10-282006-05-11Meshnetworks, Inc.System and method to support multicast routing in large scale wireless mesh networks
US20060094371A1 (en)2004-10-292006-05-04Colubris Networks, Inc.Wireless access point (AP) automatic channel selection
EP1653664B1 (en)2004-10-292013-03-13Research In Motion LimitedWireless/wired mobile communication device, method and computer program medium with option to automatically block wireless communication when connected for wired communication
US8089949B2 (en)2004-11-052012-01-03Ruckus Wireless, Inc.Distributed access point for IP based communications
US8619662B2 (en)2004-11-052013-12-31Ruckus Wireless, Inc.Unicast to multicast conversion
US20150312727A1 (en)2004-11-052015-10-29Ruckus Wireless, Inc.Distributed access point for ip based communications
US20060098613A1 (en)2004-11-052006-05-11Video54 Technologies, Inc.Systems and methods for improved data throughput in communications networks
US9071942B2 (en)2004-11-052015-06-30Ruckus Wireless, Inc.MAC based mapping in IP based communications
US20100182944A1 (en)2004-11-052010-07-22Kish William SDistributed access point for ip based communications
US9066152B2 (en)2004-11-052015-06-23Ruckus Wireless, Inc.Distributed access point for IP based communications
US20060098616A1 (en)2004-11-052006-05-11Ruckus Wireless, Inc.Throughput enhancement by acknowledgement suppression
US8824357B2 (en)2004-11-052014-09-02Ruckus Wireless, Inc.Throughput enhancement by acknowledgment suppression
US20140177511A1 (en)2004-11-052014-06-26Ruckus Wireless, Inc.Unicast to multicast conversion
US7787436B2 (en)2004-11-052010-08-31Ruckus Wireless, Inc.Communications throughput with multiple physical data rate transmission determinations
US20080137681A1 (en)2004-11-052008-06-12Kish William SCommunications throughput with unicast packet transmission alternative
US20080137682A1 (en)2004-11-052008-06-12Kish William SCommunications throughput with multiple physical data rate transmission determinations
US20140133385A1 (en)2004-11-052014-05-15Ruckus Wireless, Inc.Distributed access point for ip based communications
US20140071879A1 (en)2004-11-052014-03-13Ruckus Wireless, Inc.Mac based mapping in ip based communications
US8638708B2 (en)2004-11-052014-01-28Ruckus Wireless, Inc.MAC based mapping in IP based communications
US8634402B2 (en)2004-11-052014-01-21Ruckus Wireless, Inc.Distributed access point for IP based communications
WO2006052639A3 (en)2004-11-052006-12-21Ruckus Wireless IncSystems and methods for improved data throughput in communications networks
US20130010775A1 (en)2004-11-052013-01-10Kish William SThroughput enhancement by acknowledgment suppression
US20120063379A1 (en)2004-11-052012-03-15Ruckus Wireless, Inc.Distributed access point for ip based communications
US20110096712A1 (en)2004-11-052011-04-28William KishUnicast to Multicast Conversion
US8125975B2 (en)2004-11-052012-02-28Ruckus Wireless, Inc.Communications throughput with unicast packet transmission alternative
US7505447B2 (en)2004-11-052009-03-17Ruckus Wireless, Inc.Systems and methods for improved data throughput in communications networks
US20110216685A1 (en)2004-11-052011-09-08Kish William SMac based mapping in ip based communications
US7916684B2 (en)2004-11-112011-03-29Pine Valley Investments, Inc.Wireless communication network providing communication between mobile devices and access points
US7974223B2 (en)2004-11-192011-07-05Corrigent Systems Ltd.Virtual private LAN service over ring networks
US7715395B2 (en)2004-11-242010-05-11Microsoft CorporationSystem and method for expanding the range of a mesh network
US20060123455A1 (en)2004-12-022006-06-08Microsoft CorporationPersonal media channel
US20060184660A1 (en)2005-02-152006-08-17Microsoft CorporationScaling UPnP v1.0 device eventing using peer groups
US20060184693A1 (en)2005-02-152006-08-17Microsoft CorporationScaling and extending UPnP v1.0 device discovery using peer groups
US20060224690A1 (en)2005-04-012006-10-05Microsoft CorporationStrategies for transforming markup content to code-bearing content for consumption by a receiving device
US20060225107A1 (en)2005-04-012006-10-05Microsoft CorporationSystem for running applications in a resource-constrained set-top box environment
US20060227761A1 (en)2005-04-072006-10-12Microsoft CorporationPhone-based remote media system interaction
US20060239369A1 (en)2005-04-252006-10-26Benq CorporationMethods and systems for transmission channel drlrction in wireless communication
US20060280131A1 (en)2005-05-312006-12-14Rahman Shahriar ISpanning tree protocol for wireless networks
US20070010271A1 (en)2005-06-142007-01-11Interdigital Technology CorporationMethod and system for conveying backhaul link information for intelligent selection of a mesh access point
US20070002750A1 (en)*2005-07-012007-01-04Nec Laboratories America, Inc.Generic Real Time Scheduler for Wireless Packet Data Systems
US20070027622A1 (en)2005-07-012007-02-01Microsoft CorporationState-sensitive navigation aid
WO2007016326A1 (en)2005-08-022007-02-08Skypilot Networks, Inc.Method and apparatus for maximizing data transmission capacity of a mesh network
US20070030811A1 (en)2005-08-022007-02-08Skypilot Networks, Inc.Method and apparatus for maximizing data transmission capacity of a mesh network
US20070072612A1 (en)*2005-09-292007-03-29Fujitsu LimitedHSDPA wireless communication system
US20070101020A1 (en)2005-10-282007-05-03Tzu-Ming LinPacket transmitting method of wireless network
US20070109961A1 (en)2005-11-162007-05-17Tropos Networks Inc.Determining throughput between hosts
US20070135167A1 (en)2005-12-082007-06-14Accton Technology CorporationMethod and system for steering antenna beam
US20070223451A1 (en)2006-03-212007-09-27Tropos Networks, Inc.Mobile access node routing selections through a mesh network
US20070242602A1 (en)2006-04-182007-10-18Cisco Technology, Inc.Blocked redundant link-aware spanning tree protocol enhancement
US20070280168A1 (en)*2006-06-022007-12-06Nec CorporationRadio base station apparatus and scheduling method
US20080043638A1 (en)2006-08-172008-02-21Cisco Technology, Inc.Content throughput on wireless mesh networks
US20080069068A1 (en)2006-09-182008-03-20Tropos Networks, Inc.Providing a client with wireless link quality, and network information
JP2008088633A (en)2006-09-292008-04-17Taiheiyo Cement CorpBurying type form made of polymer cement mortar
US20080159207A1 (en)2006-12-282008-07-03Motorola, Inc.Method and apparatus for cognitive spectrum assignment for mesh networks
US20100085916A1 (en)2007-01-312010-04-08Noosphere Communications, Inc.Systems and Methods for Hybrid Wired and Wireless Universal Access Networks
US20080225804A1 (en)2007-03-142008-09-18Cisco Technology, Inc.Real-Time Sessions for Wireless Mesh Networks
US20080247327A1 (en)2007-04-032008-10-09Tropos Networks, Inc.Identifying correlations within wireless networks
US20080247317A1 (en)2007-04-032008-10-09Tropos Networks, Inc.Monitoring network conditions of a wireless network
US20080267116A1 (en)2007-04-272008-10-30Yong KangRouting method and system for a wireless network
US7853829B2 (en)2007-07-132010-12-14Cisco Technology, Inc.Network advisor
US20090019314A1 (en)2007-07-132009-01-15Purenetworks, Inc.Network advisor
US8547899B2 (en)2007-07-282013-10-01Ruckus Wireless, Inc.Wireless network throughput enhancement through channel aware scheduling
US20090028095A1 (en)2007-07-282009-01-29Kish William SWireless Network Throughput Enhancement Through Channel Aware Scheduling
US20090067369A1 (en)2007-09-062009-03-12Anastasios StamoulisRouting in a mesh network
US20090073921A1 (en)2007-09-192009-03-19At&T Services Inc.Data forwarding in hybrid mesh networks
US20090080333A1 (en)2007-09-202009-03-26Motorola, Inc.Method and device for providing an alternative backhaul portal in a mesh network
US20090154359A1 (en)2007-12-122009-06-18Motorola, Inc.Method for calculating service redundancy of a wireless network
US20110158233A1 (en)2007-12-202011-06-30Hwan-Sik NAMGUNGGroup communication system using media server having distributed structure and method thereof
US8780760B2 (en)2008-01-112014-07-15Ruckus Wireless, Inc.Determining associations in a mesh network
US20090180396A1 (en)2008-01-112009-07-16Kish William SDetermining associations in a mesh network
US20130194969A1 (en)2008-01-112013-08-01William S. KishDetermining associations in a mesh network
US8355343B2 (en)2008-01-112013-01-15Ruckus Wireless, Inc.Determining associations in a mesh network
WO2009088488A1 (en)2008-01-112009-07-16Ruckus Wireless, Inc.Determining associations in a mesh network
US20090207730A1 (en)2008-02-142009-08-20Qualcomm IncorporatedScheduling policy-based traffic management
US20090213730A1 (en)2008-02-212009-08-27Jianlin ZengBackhaul failover method and system for a wireless network
US20090225676A1 (en)2008-03-092009-09-10Fluke CorporationMethod and apparatus of duplicate packet detection and discard
US8089869B2 (en)2008-03-092012-01-03Fluke CorporationMethod and apparatus of duplicate packet detection and discard
US20090262677A1 (en)2008-04-182009-10-22Raja BanerjeaMulticast to unicast conversion system
WO2011060454A2 (en)2009-11-162011-05-19Ruckus Wireless, Inc.Establishing a mesh network with wired and wireless links
US20110119360A1 (en)2009-11-162011-05-19Kish William SEstablishing a Mesh Network with Wired and Wireless Links
EP2350863B1 (en)2009-11-162015-08-26Ruckus Wireless, Inc.Establishing a mesh network with wired and wireless links
CN102763378B (en)2009-11-162015-09-23鲁库斯无线公司Set up and there is wired and mesh network that is wireless link
US20110119401A1 (en)2009-11-162011-05-19Kish William SDetermining Role Assignment in a Hybrid Mesh Network
WO2012061531A1 (en)2010-11-022012-05-10Ruckus Wireless, Inc.Unicast to multicast conversion

Non-Patent Citations (79)

* Cited by examiner, † Cited by third party
Title
Akyildiz et al., "Wireless mesh networks: a survey," Computer Networks, 2005.
Areg Alimian et al., "Analysis of Roaming Techniques," doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
Cato et al., "Method for Easier, Better, and Faster Site Surveys for Wireless Networks," IBM Technical Disclosure Bulletin, vol. 40, No. 1, 1997.
Chang, Nicholas B. et al., "Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access," Sep. 2007.
Chawla, "Design of a Wireless Backhaul Network for Microcells," 1999.
Chinese Application No. 20058001629.7, Office Action dated Aug. 6, 2014.
Chinese Application No. 20058001629.7, Office Action dated Jan. 21, 2014.
Chinese Application No. 201080002467.X, Office Action dated Jul. 3, 2014.
Chinese Application No. 201080002467.X, Second Office Action dated Jan. 26, 2015.
Cisco Systems, "Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service," Aug. 2003.
CN Application No. 20058001629.7, Office Action dated Feb. 21, 2012.
Dell Inc., "How Much Broadcast and Multicast Traffic Should I Allow in My Network," PowerConnect Application Note #5, Nov. 2003.
Dunkels, Adam et al., "Connecting Wireless Sensornets with TCP/IP Networks," Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
Dunkels, Adam et al., "Making TCP/IP Viable for Wireless Sensor Networks," Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004.
Dutta, Ashutosh et al., "MarconiNet Supporting Streaming Media Over Localized Wireless Multicast," Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002.
EP Application No. 10813061.8. Extended European Search Report dated Oct. 21, 2011.
EP Application No. 10813061.8. Supplementary European Search Report dated Jul. 23, 2012.
Fair queuing, http://en.wikipedia.org/wiki/fair-queuing. Aug. 11, 2008.
Festag, Andreas, "What is MOMBASA?" Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002.
Gillham, Burce et al. JUNOSe Internet Software for E-Series Routing Platforms Policy and QoS Configuration Guide, Release 7.0x, Sep. 7, 2005.
Golmie, Nada, "Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands," Cambridge University Press, 2006.
Hewlett Packard, "HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions," 2003.
Hirayama, Koji et al., "Next-Generation Mobile-Access IP Network," Hitachi Review vol. 49, No. 4, 2000.
Hjalmtysson et al., Overcoming Last-Hop/First-Hop Problems in IP Multicast, Reykjavik University, Dept. of Computer Science, Ofanleiti 2, 103 Reykjavik, Iceland, (The Icelandic Center for Research under grant No. 020500002.). Sep. 16-19, 2003.
Ian R. Akyildiz, et al., "A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks," Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Jul. 1, 2001.
Information Society Technologies Ultrawaves, "System Concept / Architecture Design and Communication Stack Requirement Document," Feb. 23, 2004.
Johansson et al., "Relaying Access Points and Related Business Models for Low Cost Mobile Systems," 2004.
Ken Tang, et al., "MAC Layer Broadcast Support in 802.11 Wireless Networks," Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
Ken Tang, et al., "MAC Reliable Broadcast in Ad Hoc Networks," Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013.
Mawa, Rakesh, "Power Control in 3G Systems," Hughes Systique Corporation, Jun. 28, 2006.
Microsoft Corporation, "IEEE 802.11 Networks and Windows XP," Windows Hardware Developer Central, Dec. 4, 2001.
Pat Calhoun et al., "802.11r strengthens wireless voice," Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html.
PCT Search Report and Written Opinion for PCT/US05/039760 mailed Sep. 14, 2006.
PCT Search Report and Written Opinion for PCT/US08/014148 mailed Mar. 30, 2009.
PCT Search Report and Written Opinion for PCT/US10/56908 mailed May 3, 2011.
PCT Search Report and Written Opinion for PCT/US11/059019 mailed Feb. 21, 2012.
Steger, Christopher et al., "Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel," 2003.
Taiwan Application No. 103106913, Office Action dated May 28, 2015.
Toskala, Antti, "Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN," Nokia Networks, Palm Springs, California, Mar. 13-16, 2001.
Tsunekawa, Kouichi "Diversity Antennas for Portable Telephones," 39th IEEE Vehicular Technology, May 1-3, 1989, San Francisco, CA.
TW Application No. 094138837, Office Action dated Apr. 25, 2013.
TW Application No. 094138837, Office Action dated Nov. 28, 2011.
U.S. Appl. No. 11/232,196, Final Office Action mailed Dec. 26, 2007.
U.S. Appl. No. 11/232,196, Office Action mailed Apr. 5, 2007.
U.S. Appl. No. 11/232,196, Office Action mailed May 15, 2008.
U.S. Appl. No. 11/267,477, Decision on Appeal mailed Nov. 14, 2014.
U.S. Appl. No. 11/267,477, Final Office Action mailed Jun. 10, 2009.
U.S. Appl. No. 11/267,477, Final Office Action mailed Oct. 6, 2010.
U.S. Appl. No. 11/267,477, Office Action mailed Jun. 16, 2010.
U.S. Appl. No. 11/267,477, Office Action mailed Sep. 25, 2008.
U.S. Appl. No. 11/985,865, Office Action mailed Dec. 20, 2010.
U.S. Appl. No. 11/985,866, Office Action mailed Dec. 16, 2009.
U.S. Appl. No. 11/985,866, Office Action mailed May 29, 2009.
U.S. Appl. No. 12/008,715, Final Office Action mailed Nov. 23, 2010.
U.S. Appl. No. 12/008,715, Office Action mailed Jun. 7, 2010.
U.S. Appl. No. 12/008,715, Office Action mailed Oct. 16, 2009.
U.S. Appl. No. 12/008,715, Office Action mailed Sep. 2, 2011.
U.S. Appl. No. 12/181,274, Final Office Action mailed Jan. 18, 2012.
U.S. Appl. No. 12/181,274, Final Office Action mailed Jun. 19, 2013.
U.S. Appl. No. 12/181,274, Office Action mailed Jun. 10, 2011.
U.S. Appl. No. 12/181,274, Office Action mailed Nov. 15, 2012.
U.S. Appl. No. 12/938,316, Office Action mailed Nov. 20, 2012.
U.S. Appl. No. 12/947,800, Final Office Action mailed Jul. 17, 2013.
U.S. Appl. No. 12/947,800, Office Action mailed Sep. 26, 2012.
U.S. Appl. No. 12/947,803, Final Office Action mailed Jul. 17, 2013.
U.S. Appl. No. 12/947,803, Office Action mailed Aug. 27, 2012.
U.S. Appl. No. 13/736,017 Office Action mailed Nov. 21, 2013.
U.S. Appl. No. 14/080,488, Office Action mailed Oct. 21, 2014.
U.S. Appl. No. 14/080,488, William S.Kish, Mac Based Mapping in IP Based Communications, Nov. 14, 2013.
U.S. Appl. No. 14/106,514, Office Action mailed Sep. 22, 2014.
U.S. Appl. No. 14/106,514, William S.Kish, Unicast to Multicast Conversion, Dec. 13, 2013.
U.S. Appl. No. 14/160,402 Office Action mailed Oct. 22, 2014.
U.S. Appl. No. 14/748,141, William S. Kish, Distributed Access Point for IP Based Communications, Jun. 23, 2015.
Vincent D. Park, et al., "A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing," IEEE, Jul. 1998, pp. 592-598.
Visoottiviseth et al., Sender-Initiated Mulitcast Forwarding Scheme, Telecommunications, 2003, ICT 2003 10th International Conference, pp. 334-339, downloaded on Mar. 26, 2009 from IEEE Xplore, 0-7803-7661 (c) 2003 IEEE.
Weighted Fair Queuing, http://en.wikipedia.org/wiki/Weighted-fair-queuing. Aug. 11, 2008.
Weighted Round Robin, http:en.wikipedia.org/wiki/Weighted-round-robin Aug. 8, 2008.
Wennstrom, Mattias et al., "Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference," 2001.
Yanikomeroglu, "Cellular Multihop Communications: Infrastructure-Based Relay Network Architecture for 4G Wireless Systems," 2004.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10250722B2 (en)2015-12-182019-04-02Sonicwall Inc.TCP traffic priority bandwidth management control based on TCP window adjustment

Also Published As

Publication numberPublication date
US9674862B2 (en)2017-06-06
US20090028095A1 (en)2009-01-29
US20160249376A1 (en)2016-08-25
US8547899B2 (en)2013-10-01
US20140016563A1 (en)2014-01-16

Similar Documents

PublicationPublication DateTitle
US9674862B2 (en)Wireless network throughput enhancement through channel aware scheduling
US7734805B2 (en)Method for scheduling transmissions in communication systems
US7274676B2 (en)Burst-mode weighted sender scheduling for ad-hoc wireless medium access control protocols
JP4624816B2 (en) Method and apparatus for dynamically allocating resources in a wireless network
US7283814B2 (en)Method and apparatus for scheduling transmissions in wireless data networks
US7697561B2 (en)Communication apparatus, communication method, and communication system
US7349338B2 (en)Scheduler and method for scheduling transmissions in a communication network
US7633863B2 (en)Apparatus and method for scheduling data in a communication system
US9525519B2 (en)Method and system of transferring data in a carrier aggregation environment
CN101346971B (en)Method and device for solving data grouping service congestion
US7668201B2 (en)Bandwidth management in wireless networks
US7724750B2 (en)Expedited data transmission in packet based network
US7032153B1 (en)Dynamic automatic retransmission request in wireless access networks
EP1443719A1 (en)Packet transmission scheduling method and base station device
JP2008502238A (en) Shared physical channel mapping according to quality of service class
US20060291395A1 (en)Packet transmission control method and apparatus
US20100218065A1 (en)Method and apparatus of HARQ process selection
US6728257B1 (en)Fluid flow fair scheduling emulation in wireless shared channel packet communication network
JP4907545B2 (en) Provisions for fair transmission of communication time without using clear traffic specifications for wireless networks
Mukhtar et al.Efficient Internet traffic delivery over wireless networks
Gomez et al.Havana: Supporting application and channel dependent QoS in wireless packet networks
Morawski et al.A Game-Based Scheduler for Reducing Protocol Delay in Multipath Communication
Fukui et al.Packet transfer scheduling scheme with throughput compensated considering wireless conditions
Feller et al.Comparison of opportunistic scheduling algorithms for HSDPA networks
ChenDynamic Flow-Based Scheduling for Low-Latency Elephant VR Flows in Home WiFi Networks

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:RUCKUS WIRELESS, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KISH, WILLIAM S.;REEL/FRAME:034254/0077

Effective date:20080825

ZAAANotice of allowance and fees due

Free format text:ORIGINAL CODE: NOA

ZAABNotice of allowance mailed

Free format text:ORIGINAL CODE: MN/=.

STCFInformation on status: patent grant

Free format text:PATENTED CASE

ASAssignment

Owner name:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text:GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:RUCKUS WIRELESS, INC.;REEL/FRAME:046379/0431

Effective date:20180330

Owner name:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO

Free format text:GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:RUCKUS WIRELESS, INC.;REEL/FRAME:046379/0431

Effective date:20180330

ASAssignment

Owner name:ARRIS ENTERPRISES LLC, PENNSYLVANIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUCKUS WIRELESS, INC.;REEL/FRAME:046730/0854

Effective date:20180401

ASAssignment

Owner name:RUCKUS WIRELESS, INC., CALIFORNIA

Free format text:TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048817/0832

Effective date:20190404

ASAssignment

Owner name:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text:PATENT SECURITY AGREEMENT;ASSIGNOR:ARRIS ENTERPRISES LLC;REEL/FRAME:049820/0495

Effective date:20190404

Owner name:JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text:TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504

Effective date:20190404

Owner name:JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text:ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396

Effective date:20190404

Owner name:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT

Free format text:PATENT SECURITY AGREEMENT;ASSIGNOR:ARRIS ENTERPRISES LLC;REEL/FRAME:049820/0495

Effective date:20190404

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:4

ASAssignment

Owner name:WILMINGTON TRUST, DELAWARE

Free format text:SECURITY INTEREST;ASSIGNORS:ARRIS SOLUTIONS, INC.;ARRIS ENTERPRISES LLC;COMMSCOPE TECHNOLOGIES LLC;AND OTHERS;REEL/FRAME:060752/0001

Effective date:20211115

FEPPFee payment procedure

Free format text:MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

ASAssignment

Owner name:RUCKUS IP HOLDINGS LLC, NORTH CAROLINA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS ENTERPRISES LLC;REEL/FRAME:066399/0561

Effective date:20240103

LAPSLapse for failure to pay maintenance fees

Free format text:PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FPLapsed due to failure to pay maintenance fee

Effective date:20240223

ASAssignment

Owner name:RUCKUS WIRELESS, LLC (F/K/A RUCKUS WIRELESS, INC.), NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217

Owner name:COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217

Owner name:COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217

Owner name:ARRIS SOLUTIONS, INC., NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217

Owner name:ARRIS TECHNOLOGY, INC., NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217

Owner name:ARRIS ENTERPRISES LLC (F/K/A ARRIS ENTERPRISES, INC.), NORTH CAROLINA

Free format text:RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255

Effective date:20241217


[8]ページ先頭

©2009-2025 Movatter.jp