Movatterモバイル変換


[0]ホーム

URL:


US8951596B2 - Implants and methods for manufacturing same - Google Patents

Implants and methods for manufacturing same
Download PDF

Info

Publication number
US8951596B2
US8951596B2US13/942,104US201313942104AUS8951596B2US 8951596 B2US8951596 B2US 8951596B2US 201313942104 AUS201313942104 AUS 201313942104AUS 8951596 B2US8951596 B2US 8951596B2
Authority
US
United States
Prior art keywords
particles
composition
shell
pores
leachable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/942,104
Other versions
US20130302511A1 (en
Inventor
Alexei Goraltchouk
Dennis Van Epps
Thomas E. Powell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan IncfiledCriticalAllergan Inc
Priority to US13/942,104priorityCriticalpatent/US8951596B2/en
Publication of US20130302511A1publicationCriticalpatent/US20130302511A1/en
Priority to US14/602,907prioritypatent/US20150132469A1/en
Application grantedgrantedCritical
Publication of US8951596B2publicationCriticalpatent/US8951596B2/en
Assigned to ALLERGAN, INC.reassignmentALLERGAN, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: JUDGE, FEARGAL D., DEMPSEY, KEVIN J.
Assigned to ALLERGAN, INC.reassignmentALLERGAN, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: POWELL, THOMAS E., GORALTCHOUK, ALEXEI, VAN EPPS, DENNIS E.
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Implantable prosthesis, components of prosthesis, and methods of making same are provided. The methods generally include the steps of providing an implant shell, applying a curable fluid composition to the shell to form a coating thereon and applying a particulate component to the composition. The composition is a mixture, for example, an emulsion, containing a silicone-based elastomer dispersion and droplets of a suspended leachable agent. After the elastomer is stabilized and cured, the particulate component and leachable agent are removed, resulting in an implantable member having a porous, open-cell surface texture designed to be effective in reducing incidence of capsular formation or contraction.

Description

RELATED APPLICATION
This application is a continuation of U.S. patent application Ser. No. 12/897,498, filed Oct. 4, 2010, which claims priority to U.S. Provisional Patent Application No. 61/252,330, filed on Oct. 16, 2009, the entire disclosures of which are incorporated herein by this specific reference.
BACKGROUND
The present invention generally relates to soft tissue implants and more specifically relates to soft tissue implants designed to enhance fixation in the body and/or alter or reduce capsular formation.
Soft tissue implants, particularly mammary prostheses, are plagued by problems of capsular formation and contracture. Soon after an implant is placed into the body, an inflammatory response begins to deposit a fibrous capsule around the implant. In most cases, particularly for relatively large and smooth implants, the capsule is comprised of highly organized or aligned collagen fibers. As the capsule matures, certain events may trigger the differentiation of fibroblasts to a contractile phenotype (myofibroblasts). In this or similar scenarios, and if the collagen fibers are aligned, capsular contracture may ensue.
Capsular contracture can be debilitating to the patient because of discomfort or even pain caused thereby, can diminish the efficacy of the aesthetic results in both the look and feel of the implant, and can sometimes damage the implant itself. Problems with capsular formation and contracture occur in many implant types such as pacemakers, dura matter substitutes, implantable cardiac defibrillators, pacemaker leads, hernia repair meshes as well as breast and other esthetic implants.
It has been established in the literature that surface texturing of implants often helps to reduce the incidence of capsular contracture when compared to smooth surface implants. Furthermore there is increasing evidence regarding the ability of foam covered implants, for example, polyurethane foam coated implants, to reduce contracture rates. However, polyurethane foam coatings are biodegradable and lose their efficacy once the polyurethane degrades. Further, it can be appreciated that degradation of polyurethane foam into the body is undesirable and potentially unhealthy.
The present invention addresses at least some of these drawbacks of conventional implants.
SUMMARY OF THE INVENTION
The present invention provides implantable members and methods for manufacturing implantable members, for example, prostheses, for example, mammary prostheses, as well as components of prostheses, for example, elastomeric shells, which serve as components of mammary prostheses. The invention further provides coverings, for example, laminates for applying to surfaces of implantable devices. The implantable members have surfaces which may enhance fixation and/or alter or reduce capsular formation. In one aspect of the invention, the textured surfaces are defined by a network of interconnected pores and channels which encourages tissue ingrowth and discourages organization of the collagen capsule. Generally, the pores have, on average, more than two interconnections assuming that the average number of interconnections per pore does not vary significantly.
The method generally comprises the steps of providing an implantable member, for example an implant shell, for example, a conventional smooth silicone-based implant shell, and applying a curable fluid composition to the shell to form a coating thereon. In one embodiment, the composition comprises a silicone-based mixture including a solvent, and a pore-forming material, for example, a leachable agent, dispersed therein. The composition is allowed to stabilize on the shell, for example, by allowing some of the solvent to evaporate out of the composition or allowing a chemical reaction to occur inducing precipitation of the soluble components. Alternatively, stabilization can be achieved during crosslinking of polymerization of the silicone, precipitation of the silicone or pore-forming material of a combination of the above alone or in conjunction with solvent evaporation.
Next, a particulate component, hereinafter sometimes simply referred to as “particles” or a “particle coating”, is applied to the composition coating while the composition coating is less than entirely cured, or at least has a stickiness or tackiness capable of retaining the particulate coating.
In some embodiments, the steps of applying a curable fluid composition and applying a particle coating are then repeated, for example, one or more times, for example, three, five or even up to 20 times, until a final coating is applied. The final coating may be a particle coating or a composition coating.
After the final coating of particles or fluid composition is applied to the shell, the coated shell is then subjected to suitable curing conditions to solidify the composition with the particles embedded therein.
In one embodiment, the particulate coating itself is used to stabilize the coating composition, for example, by absorbing some or all of the solvent, increasing the rate of polymerization of crosslinking of the silicone, promoting precipitation of the silicone or porogen, or a combination of one or more of the above.
Once solidified, the leachable agent contained in the composition and the particles embedded therein are then removed from the coating thereby revealing a network of interconnected pores (the structure may include both relatively large pores and relatively smaller pores, for example, micropores) within the cured elastomer. The surface topography created by the processes described herein, when used as a part of an implant at the tissue/implant interface, may be highly effective in altering capsular formation so as to achieve a more preferred morphology, or in reducing or preventing capsular contracture, relative to conventional surface topographies.
Removal of the particles and leachable agent may be accomplished by any suitable means effective to remove these materials from the surrounding elastomer “matrix”, and create the desirable surface topography.
For example, the particles and/or leachable agent(s) may be extracted by exposing the coating to one or more suitable mediums capable of dissolving, extracting or otherwise removing the particles and/or leachable agent while leaving the cured elastomer matrix generally intact.
Generally, the particles, which are typically larger in size than the dispersed leachable agent, serve to create cavities or pores in the cured elastomer while the dispersed leachable agent serves to create microcavities or micropores which serve as interconnections between the pores. This network of interconnected pores and micropores facilitates tissue ingrowth, encourages better fixation of the implant in the patient, and discourages organization of the fibrous capsule, which may help reduce or prevent capsule formation and contraction.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention may be more clearly understood and the aspects and advantages thereof more clearly appreciated with reference to the following detailed description and accompanying drawings of which:
FIGS. 1A-1C represents suitable process steps in a method for manufacturing an elastomeric shell in accordance with an embodiment of the invention;
FIGS. 2-6 are cross-sectional views of components of the shell during various steps of the process for making the shell shown inFIGS. 1A-1C.
FIG. 7 is a simplified flow chart showing steps in a method for manufacturing an implant shell in accordance with an embodiment of the invention.
DETAILED DESCRIPTION
Accordingly, implantable composite members and methods for manufacturing such implantable composite members are provided.
In one aspect of the invention, the present invention provides an implantable composite member, hereinafter, typically referred to as an “implant”, having a surface that renders the implant effective in reducing the occurrence or severity of capsule formation when the implant is placed in the body. In a specific exemplary embodiment that will now be described, the implant is a fillable mammary prosthesis useful in breast reconstruction or breast augmentation. It should be appreciated, however, that the present invention is not limited to mammary prostheses, but is useful in many situations in which an implant is intended to be permanently or temporarily placed in the body and which capsule formation or contraction is to be avoided or impaired.
First, in a method of the invention, an implant member is provided. The implant member may be a fillable, elastomeric implant shell having a configuration of a breast prosthesis. Such shells are intended to be filled, typically, with saline or silicone gel before or after implantation in the breast.
Generally, manufacture of such shells is commonly accomplished by applying a liquid dispersion, for example, a silicone elastomer dispersion, to a mandrel having a desired form. The dispersion generally contains a silicone elastomer and a solvent. The silicone elastomer may be polydimethylsiloxane, polydiphenyl-siloxane or some combination of these two materials. Typical solvents include xylene, trichloromethane, heptane, hexane, and toluene.
The silicone dispersion forms an elastomeric coating on the mandrel. The coating is cured and the solvent evaporates therefrom. This procedure may be repeated a number of times in order to obtain an implant shell having a desired thickness. This shell may be used as base component for many of the implants of the present invention.
In accordance with one aspect of the invention, an implantable member having a desired surface topography is provided. The method comprises the steps of applying a curable fluid composition to a substrate, for example, a surface of an implant shell described above, applying a particulate material to the composition, and in some instances, repeating these steps to achieve layers, for example, alternating layers of composition and particulates. The composition includes a leachable component to be described elsewhere herein. The composition layers are allowed to stabilize between subsequent applications.
Once the layering steps are completed, the composition is subject to conditions to allow it to at least partially cure. Curing process steps will depend on the materials used. One or more process steps are performed to remove the particles of the particle layer(s) and the leachable component from the elastomer.
The resulting implant has an external surface at least a portion of which is an open-cell porous structure having a topography or porosity that affects capsule formation and/or adhesion of the implant when implanted in a patient.
The curable fluid composition may be in the form of an emulsion, dispersion, solution, suspension or mixture containing an elastomer component, a solvent component and a leachable component.
The elastomer component may be an uncured silicone polymer, for example, a silicone elastomer. For example, in some embodiments, the elastomer component is a room temperature vulcanizing (RTV) silicone elastomer. The elastomer component may be polydimethyl siloxane, polydiphenyl siloxane or a combination of these two. Possible silicone elastomer systems useful in the present invention include, but are not limited to, oxime, platinum or tin catalyst based systems. Alternatively, the elastomer component may be a non-silicone based material.
The solvent component may be any suitable solvent or solvent system, appropriate to the elastomer. Representative examples of solvents include chloroform, acetone, water (buffered saline), dimethyl sulfoxide (DMSO), propylene glycol methyl ether (PM), isopropyl alcohol (IPA), n-propyl alcohol, methanol, ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl acetamide (DMAC), N-Methylpyrrolidone (NMP), benzene, toluene, xylene, hexane, cyclohexane, heptane, octane, pentane, nonane, decane, decalin, ethyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate, butanol, diacetone alcohol, benzyl alcohol, 2-butanone, cyclohexanone, dioxane, methylene chloride, carbon tetrachloride, tetrachloroethylene, tetrachloro ethane, chlorobenzene, 1,1,1-trichloroethane, formamide, hexafluoroisopropanol, 1,1,1-trifluoroethanol, and hexamethyl phosphoramide and combinations thereof. In one embodiment, the solvent is selected from the group of solvents consisting of xylene, pentane, hexane, heptane, dichloromethane, trichloromethane, toluene, dimethyl sulfoxide, dioxane, NMP, DMAC, and combinations thereof. The solvent component may comprise one or more different solvents. For example, the solvent component may comprise between one and twenty different solvents. Generally, the solvent may comprise any suitable protic or aprotic solvent, mixture or solution thereof.
The leachable component is a leachable material/agent in the form of any suitable solid particulates, semi-solids, composites, gels, for example, hydrogels, liquid droplets, etc. The leachable agent may comprise any suitable polymer, ceramic, metal, composite or combination thereof that can be dissolved or otherwise removed by suitable means from the cured formulation. In some embodiments, the composition comprises one or more different leachable agents. For example, the composition may comprise between one and twenty different types of leachable agents.
The elastomer component can be present in the composition in a range of about 1% to about 99% of volume as part of the total dissolved solids and the leachable agent can be in the range of about 1% to about 99% of volume as part of the total dissolved solids. In a specific embodiment of the invention, the composition includes up to 96% leachable phase. In some embodiments, the elastomer component is present in the composition in a range of about 5% to about 80% and the leachable agent is present in the composition in a range of about 20% to about 95% of total dissolved solids. Generally, the total dissolved solids in the composition can range from about 1% to about 50% by weight in solution.
The ratio of leachable phase to matrix phase in the composition generally affects the porosity of the final cured composition. For example, a greater percentage of leachable component in the composition will produce a composition layer having greater interconnections between pores.
In an exemplary embodiment, the curable fluid composition is in the form of an emulsion, and the leachable agent is present in a concentration of up to about 50% concentration by volume of the emulsion. In some embodiments, the composition comprises a microphase separation containing an elastomer matrix phase and droplets of leachable material in suspended phase, the droplets being about 0.01 μm to about 10,000 μm in diameter, for example, about 1 μm to about 5,000 μm in diameter, for example, about 50 μm to about 400 μm in diameter. After the leachable agent has been leached from the elastomer, voids left behind by the leachable agent will serve as interconnections between voids left by the removed particles.
The leachable agent may be, for example, any material that can be dispersed through the elastomer dispersion (elastomer component/solvent system) and can be removed therefrom once the elastomer component is cured. The leachable agent may be an agent that can be removed from the cured elastomer, for example, by leaching, evaporation, sublimation, dissolution, etc. In an exemplary embodiment, the leachable agent is a water soluble material dispersed throughout the elastomer dispersion.
Typical leachable agent in accordance with the invention may comprise, for example, polyethylene glycol (PEG) (also known as polyoxyethylene), polyalkylene oxides including polyethylene oxide and polyethylene oxide/polypropylene oxide copolymers (also known as poloxamers), polyhydroxyethylmethacrylate, polyvinylpyrrolidone, polyacrylamide and its copolymers, polylactides, polyglycolides, polyanhydrides, polyorthoesters and their copolymers, proteins including albumin, peptides, liposomes, cationic lipids, ionic or nonionic detergents, salts including potassium chloride, sodium chloride and calcium chloride; sugars including galactose, glucose and sucrose; polysaccharides including soluble celluloses, heparin, cyclodextrins and dextran; and any combination thereof.
In some embodiments, the leachable agent is an agent selected from the group of agents consisting of polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polymethacrylate, poly-lactide, polyglycolide, polycaprolatone, polydioxanone; and derivatives, blends, copolymers, terpolymers, and combinations thereof.
In some embodiments, the leachable agent is in the form of droplets of leachable material having diameters in a range of between about 0.01 micron to about 10,000 microns. For example, the leachable agent may be in the form of droplets having diameters in a range of between about 1 micron to about 5,000 microns, for example, in a range of between about 50 microns to about 400 microns.
The particulates of the particle layer comprise any suitable particles which may be removed from the cured elastomer, leaving cavities where the particles had been.
For example, the particles may comprise particles that can be removed from the elastomer by at least one of mechanical abrasion, leaching, evaporation, sublimation, dissolution etc.
In an exemplary embodiment, the particles are a solid, water soluble material. For example, the particles may be material selected from the group of materials consisting of sodium chloride, barium sulfate, potassium nitrate and sodium carbonate.
In addition, the particles may have dimensions and shapes as desired to bring about a resulting topography. For example, the particles may be substantially round or spherical, multifaceted, angular, or cubic or a combination thereof. The particles may have an average particle size in a range of between about 0.01 micron to about 10,000 microns, for example, in a range of between about 10 microns to about 6,000 microns, for example, in a range of between about 100 microns to about 900 microns.
In some embodiments, the size of the particles is approximately proportional to the thickness of the composition coating on which they are deposited, or the thickness of adjacent interconnecting composition coatings in a multilayered embodiment. For example, particles with an average size of about 500 micron could be used in conjunction with a composition layer having a thickness of about 100 microns to about 500 microns. For particles with an average size of about 300 microns, a composition layer of about 50 microns to about 400 microns could be used.
FIGS. 1A-1C illustrate an exemplary process for making an implant in accordance with an embodiment of the invention. Step one is illustrated in1A. InFIG. 1A, a flexible, elastomericimplantable member12 is depicted. The partial crosssectional view11 of theelastomeric implant member12 is shown inFIG. 1A as well asFIG. 2. Theimplantable member12 may be a cured implant shell, such as a conventional, relatively smooth-surfaced, silicone-based elastomeric implant shell, for example, a shell intended to be filled with silicone gel or saline and used as a breast prosthesis.
A curable fluid composition14, as described elsewhere herein, is applied to the outer surface of theshell12.FIG. 3 shows a partial cross sectional view of ashell12 having acomposition coating10. This may be accomplished by dipping the shell (as shown by shaded line13), while the shell is fixed to a mandrel (not shown) into a solution bath containing the curable fluid composition14 (FIG. 1A). The composition14 comprises a silicone-based mixture including a solvent, and a leachable agent, as described elsewhere herein. The step of applying the composition14 to theshell12 may be accomplished by any suitable means of application, such as dipping and spraying.
Next, the composition coating is allowed to stabilize on theshell12. For example, theshell12 can be held in a stable position until the composition coating no longer flows freely. This occurs as some of the solvent evaporates from the coating, raising its viscosity. It can be appreciated that the step of allowing the composition to stabilize may be accomplished by various means, for example, by allowing some of the solvent to evaporate out of the composition or allowing a chemical reaction to occur, inducing precipitation of the soluble components. Alternatively, stabilization can be achieved during crosslinking of polymerization of the silicone, or precipitation of the silicone or pore-forming material. Also, a combination of the above-mentioned methods may be used for stabilization of the composition coating.
Once the composition14 has stabilized on theshell12, the second step is to immerse (see shaded line15) theshell12 in aparticle bath16 to apply particles to the composition coating on the shell12 (FIG. 1B). Theparticles18 applied to a composition-coatedshell12 is depicted inFIG. 1B.FIG. 4 shows a partial cross sectional view of ashell12 with acomposition coat10 andparticles18. Application of the particle coating onto theshell12, is performed while the composition coating on theshell12 is still tacky and able to retain the particles. Stabilizing the composition prior to particle application may be accomplished by allowing at least some of the solvent in the composition to evaporate out of the composition until the composition is stable and tacky but not fully cured. Another method, in accordance with one aspect of the invention, for stabilizing the composition is provided in the Example below.
Steps one and two can be repeated before the leaching step is carried out, as indicated by shadedline17. The steps of applying a curable fluid composition and applying a particle coating can be repeated, for example, one or more times, for example, three, five or even up to 20 times, until a final coating is applied. The final coating may be a particle or a composition coating.
After the final coating of particles or fluid composition is applied to the shell, the coated shell is then subjected to suitable curing conditions to solidify the composition with the particles embedded therein.
In the leaching step19 (FIG. 1C), which takes place after the solidification step described above, the embedded particles and leachable agent in the composition coating are immersed in aleaching bath20 and removed. After the removal of the particles, what remains is a network of interconnected pores21 (the structure may include both relatively large pores and relatively smaller pores, for example, micropores) on the shell.
Also seeFIG. 7 for a flow chart of the process described herein.
EXAMPLE 1
A mixture of about 7.5 wt. % PVA 2000 in water and about 40 wt. % acetoxy RTV silicone in xylene in a 3:1 volumetric ratio is prepared and homogenized for 30 seconds. An acetyl mandrel is placed into the mixture and coated uniformly as in a standard dip-coating process for the manufacturing of breast implant shells. The mandrel is then placed into a fluidized bed reactor with salt granules until no more granules can be deposited on the mandrel (about 5-10 seconds). This addition of salt particles tends to dry and stabilize the mixture by absorbing some of the water, thereby increasing the viscosity of the mixture. The coating is allowed to stabilize further at either 90° C. for about 15 minutes or at room temperature for about ½ hour, or otherwise sufficiently such that the next layer of composition may be applied. The procedure is repeated 3-5 times to obtain a coating of desired thickness.
Final curing may be performed at 165° C. for 2 hours, leaching with water or DCM for about 30 minutes for about 3 cycles with each (with agitation), and drying in vacuum overnight.
In one embodiment, a material is added to the composition before or after the composition has been applied to the shell, the material being effective to increase the viscosity of the composition, for example, by absorbing some of the solvent. When the leachable agent is in water, for example, a salt can be added in order to dry/stabilize the phase by absorbing the solvent. Other materials that may be helpful in this regard include sugars and other appropriate materials that can accelerate removal of solvent from the composition.
Next, a particle coating is applied to the composition to form the pores or cavities in the final elastomer foam structure. Application of the particles may be accomplished by any suitable means, for example, by sprinkling and pressing the particles into the tacky composition coating, or by immersing the tacky, coated shell in a bath of the particles. In the example shown, the particles are applied by immersing the coated shell into afluidized bath18 comprising afluidization medium19, for example, air, and particulates, for example, salt particles.
In some embodiments, the steps of applying the curable fluid composition and applying the particle coating are then repeated one or more times, for example, from about 0.5 up to about 20 times, for example, about 1 to about 10 times, for example, about 2 to about 5 times.
In one aspect of the invention, the particle coatings applied to the composition coatings may comprise coatings of particles having relatively different dimensions, one layer from the other. In other words, a first layer of particles may be relatively fine particles and a second layer of particles may be relatively coarse particles, or vice versa.
It is contemplated that in some embodiments, interconnectivity between pores may be increased or controlled by causing the particulates in the particle layer to fuse together. For example, in the event that the particles are salt crystals, application of moist heat may be effective increase interconnectivity thereof. Alternatively or additionally, an appropriate amount of a solvent for the particle material may be applied in order to cause the particles to fuse together. Further information which may be useful in appreciating this aspect of the invention may be found in copending, commonly owned U.S. Provisional Patent Application No. 61/177,955, filed on May 13, 2009 and entitled: IMPLANTS AND METHODS FOR MANUFACTURING SAME, the entire disclosure of which is incorporated herein by this reference.
For example, in one embodiment, the steps of applying alternating particle and compositions coatings includes applying a first layer of the curable fluid composition to the shell, applying a first layer of particles, for example, relatively small particles, to the composition, applying a second layer of the composition to the first layer of particles, applying a second layer of particles, for example, relatively larger particles, to the second layer of the composition.FIG. 5 is a cross sectional view of a shell showing alternating layers ofcompositions coatings10 andparticle coatings18. In a specific embodiment, the first layer of particles comprises particles having an average size in a range of between about 30 microns to about 150 microns, and the second layer of particles comprises particles having an average size in a range of between about 100 microns to about 450 microns. In yet other embodiments, the method further includes applying a third layer of the composition to the second layer of particles, and optionally, providing a third layer of particles, to the third layer of composition. The third layer of particles may have an average size in a range of between about 250 microns to about 750 microns.
The layered, coated shell is then subjected to suitable curing conditions to solidify and further stabilize the composition with the particles embedded therein.
Next, the particles and leachable agent are then removed from the cured coating, thereby revealing a network of highly interconnected pores within the cured elastomer.FIG. 6 shows the partial cross sectional view of theshell11 with a network of interconnected pores21 after the removal of the particles. The step of removing the particles may comprise causing the particles to dissolve or contacting the particles with an abrasive surface. In the same step or in a different step, the leachable agent in the composition layers are removed from the elastomer.
In some embodiments, a conventional gas foaming process is used in addition to one or more of the presently described processes of the invention. For example, prior to the steps of applying the composition to the shell, the composition may be aerated by passing a gas, for example, air, through the composition to aerate the composition and create bubbles therein. Advantageously, any surface skin that may begin to form on the aerated composition coating would be opened up during extraction of the leachable phase to reveal highly interconnected pores resulting from the leachable materials, the particulates and the gas bubbles.
Removal of the particles and leachable agents may be accomplished by extracting these materials by exposing the layers to one or more suitable mediums capable of dissolving the particles and/or leachable agents. For example, the coated shell is dipped or submerged in a leaching bath19 (FIG. 1C). The leaching bath may comprise water or an aqueous solution containing an agent capable of dissolving, leaching or otherwise removing the leachable agent and/or particles while leaving the cured elastomer substantially intact.
In some embodiments, the particles which are typically larger than the dispersed leachable agent, serve to create pores in the cured elastomer and the dispersed leachable agent serves to create micropores or interconnections between the relatively larger pores.
The resulting open-cell structure is believed to facilitate tissue ingrowth, improve fixation or adhesion of the implant and discourages organization of the collagen capsule which forms about the implant, which may help reduce capsular contraction.
In another aspect of the invention, an implantable composite member is provided in which the composite member has an external surface at least a portion of which is an open-cell porous structure, the composite member being made by one of the processes described herein.
In yet other embodiments of the invention, each of the first and second layers of particles are made up of substantially uniformly sized/shaped particles. In another aspect of the invention, each of the first and second layers of particles are made up of differently sized or shaped components.
After finishing the shell according to the steps described above, the steps required to make a finished mammary prosthesis may be conventional. First, any opening left by the mandrel support is patched with uncured silicone elastomer sheeting. If the prosthesis is to be filled with silicone gel, this gel is added and cured, the filled prosthesis packaged, and the packaged prosthesis sterilized. If the prosthesis is to be inflated with a saline solution, a valve is assembled and installed, the prosthesis is post cured if required, and the prosthesis is then cleaned, packaged and sterilized. A combination silicone/saline mammary prosthesis can also be made.
A method has been described for creating an outer layer having an open-cell structure in a silicone elastomer member. More specifically, the method can be applied to create a medical implant with an external surface layer of silicone elastomer having an open-cell structure, to create strips having a textured surface for control of scar formation, or to improve a process for making mammary prostheses. The product made by this method has also been described and is expected to have great utility in reducing capsular contraction, in preventing or controlling scar formation, and in anchoring medical implants.
Scar tissue formation in the healing of a wound or surgical incision is also a process involving the growth of fibrous tissue. A visible scar results from this healing process because the fibrous tissue is aligned in one direction. However, it is often aesthetically desirable to prevent scar formation, especially in certain types of plastic surgery. A member having an open-cell structure surface made in accordance with the present invention can be placed subcutaneously within a healing wound or incision to prevent the fibrous tissue from aligning and thereby prevent or reduce scar formation.
It is often important to anchor medical implants against movement. Mammary prostheses are one example of implants that must be anchored. Facial implants are another example of implants that must be anchored. With facial implants it is particularly important that they be anchored securely against movement because of their prominent location. Providing such implants with an open-cell structure surface made in accordance with the present invention is a particularly advantageous way to ensure that they will be anchored securely.
EXAMPLE 2
A composition is prepared by mixing polyethylene glycol monomethyl ether (2000 Da), which will serve as a leachable agent, with a low viscosity silicone elastomer dispersion, for example, (e.g. polydimethylsiloxane, polydiphenylsiloxane, poly(dimethylsiloxane-co-diphenylsiloxane), poly(dimethylsiloxane-ran-diphenylsiloxane), etc.), in an organic solvent (e.g. xylene), and at about 5 to about 40 wt %, or in some specific embodiments, 17, 25 and 35 wt % of acetoxy RTV silicone. This composition is applied to the surface of an elastomeric shell held on a mandrel or other mechanical support. The layer is allowed to evaporate most of the solvent off.
A coating of sodium chloride crystals (about 250 μm to about 850 μm size) are applied to the tacky composition layer by submerging the coated shell into a fluidized bath of salt and air. This forms a relatively uniformly distributed single layer particle coating.
The elastomer is allowed to evaporate the solvent off and subsequently cured at approximately 145° C.
The coated shell is then submerged in an aqueous washing medium at approximately 40° C. and gently agitated to remove the particles and leachable agent.
EXAMPLE 3
The same process is performed as in Example, 1, except that the composition is a mixture of 10 mL xylene, 10 mL DCM, 5 mL by dry volume PEG 2000 and 5 mL by dry volume acetoxy RTV silicone elastomer.
EXAMPLE 4
The same process is performed as in Example 2, except that the composition is a mixture of
  5mL water
  1 mL xylene
0.5 mL by dry volume PVA 1500
0.2 mL by dry volume RTV.
In another aspect of the invention, an article, for example a thin, flexible sheet, useful as a laminate, is provided. More specifically, the present invention provides a biocompatible sheet suitable for use as a laminate on an implantable device or object, in order to enhance tissue adhesion or ingrowth when the implantable device or object is implanted in a patient. Thus, the manufacture of the materials in accordance with the invention is not limited to conventional dipping processes but may be made by other suitable means, for example, through the lamination of a sheet that is prepared by molding or casting. For example, it is contemplated by the inventors that a sheet or laminate can be prepared by casting the fluid material with all the components present in various ratios (DCM, PEG)+(Xylene, RTV), and in some instances, mixed and shaken with the particulate component, for example, salt crystals added to the liquid. The particulate and fluid mixture can be shaken or mixed and cast onto a substrate or into a mold cavity. In some embodiments, the particulate component comprises salt in a range of about 10% to about 99% of total dissolved solids. In a more specific embodiment, the salt is present at about 25% to about 60%. It can be appreciated that different amounts and different particle sizes/shapes of salt will produce laminates having different porosities. Once cured, the laminate can be laminated, by any conventional means known in the art, onto a medical device or implant or other object to be implanted in a body, for example, any object or device which would be improved by the addition of such a laminate on one or more surfaces of the object or device. For example, the sheet may be laminated to catheter cuffs for long term implantable catheters, dura-matter substitutes or the like.
EXAMPLE 5
A laminate for an implant is prepared as follows. A fluid composition made up of 10 mL xylene, 10 mL DCM, 5 mL by dry volume PEG 2000 and 5 mL by dry volume acetoxy RTV silicone elastomer is mixed with 3.5 mL by volume salt particles. This mixture is shaken together to ensure substantially uniform distribution of particles. The mixture is cast molded by applying the mixture to a mold surface to form a layer having a uniform thickness of between about 1 mm to about 5 mm. The layer is allowed stabilize and is cured at about 120° C. for a sufficient period of time. The cured sheet is removed from the mold surface and is then contacted with a gentle spray of pure water to remove all of the leachable components and salt particles. The resulting, thin, flexible, porous silicone foam sheet is then further processed and sterilized and packaged for sale or storage for later use as a laminate on a surface of an implantable device.
EXAMPLE 6
The process of Example 5 is performed with the additional steps of repeating, three times, the step of applying a fluid composition/particulate mixture to the stabilized layer prior to the step of curing. The final thin, flexible sheet is a multilayered sheet and, in this example, has a thickness of greater than about 5 mm.
EXAMPLE 7
The process of Example 5 is performed, however the cured stabilized sheet is not contacted with a spray of water to remove the leachable agents and particulates before being packaged for sale or storage. Instructions are provided with regard to: removing the leachable agents and particulates, sterilization, and bonding the sheet to a surface of a medical device.
EXAMPLE 8
The process of Example 5 is performed to make two square sheets of uncured foam, approximately 240 mm×240 mm. A layer of silicone adhesive in DCM is applied, by spraying or brushing, to one side of each of the sheets. The sheets are stretched uniformly and positioned one on top of the other, adhesive side facing each other, over a newly molded breast implant shell filled with silicone or air. The foam sheets are joined together at the edge of the implant and affixed by suitable clamps at the perimeter of the implant. Twenty four hours later, the clamps are removed. Excess foam is die-cut away from the implant by a press. The implant/foam is exposed to 140° C. for 2.5 hours for final post-curing.
While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the invention.

Claims (20)

What is claimed is:
1. A method of making a shell of an implantable breast prosthesis having a textured surface, the method comprising the steps of:
(a) providing an implantable shell;
(b) applying a curable fluid composition to the shell, the composition comprising a mixture containing an elastomer component, a leachable agent comprising a water soluble polymer in the form of droplets in the mixture, and a solvent component;
(c) applying a layer of particles to the composition;
(d) allowing the composition to stabilize; and
(e) removing the particles and the leachable agent from the stabilized composition, to form a composite material having an external surface at least a portion of which is an open-cell porous structure defined by relatively large pores left by the removed particles and relatively smaller pores, forming connections between the relatively large pores, left by the removed leachable agent.
2. The method ofclaim 1 wherein the solvent component includes a solvent selected from the group consisting of xylene, pentane, hexane, dichloromethane (DCM), dimethyl sulfoxide, dioxane, NMP, DMAc, and combinations thereof.
3. The method ofclaim 1 wherein the mixture is an emulsion.
4. The method ofclaim 1 wherein the particles comprise a material selected from the group of materials consisting of sodium chloride, barium sulfate, potassium nitrate, and sodium carbonate.
5. The method ofclaim 1 wherein the particles are substantially round.
6. The method ofclaim 1 wherein the leachable agent is in the form of droplets having diameters in a range of between about 50 microns to about 400 microns.
7. The method ofclaim 1 wherein the particles have an average particle size in a range of between about 100 microns to about 900 microns.
8. The method ofclaim 1 further comprising the step of repeating steps (b) and (c) prior to the step of removing, to form a layered structure.
9. The method ofclaim 1 wherein the particles are angular in shape such that the porous structure is defined by relatively large angular pores left by the removed particles and relatively smaller pores, forming connections between the relatively large angular pores, left by the removed droplets.
10. A method of making a shell of an implantable breast prosthesis having a textured surface, the method comprising the steps of:
(a) providing an implantable shell;
(b) applying a curable fluid composition to the shell, the composition comprising a mixture containing an elastomer component, a leachable agent in the form of droplets in the mixture, and a solvent component;
(c) applying a layer of particles to the composition;
(d) allowing the composition to stabilize; and
(e) removing the particles and the leachable agent from the stabilized composition, to form a composite material having an external surface at least a portion of which is an open-cell porous structure defined by relatively large pores left by the removed particles and relatively smaller pores, forming connections between the relatively large pores, left by the removed leachable agent;
wherein the leachable agent is an agent selected from the group of agents consisting of polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polymethacrylate, poly-lactide, polyglycolide, polycaprolactone, polydioxanone, derivatives thereof, blends thereof, copolymers thereof, terpolymers thereof, and combinations thereof.
11. The method ofclaim 10 wherein the leachable agent is in the form of droplets having diameters in a range of between about 50 microns to about 400 microns.
12. The method ofclaim 10 wherein the solvent component includes a solvent selected from the group consisting of xylene, pentane, hexane, dichloromethane (DCM), dimethyl sulfoxide, dioxane, NMP, DMAc, and combinations thereof.
13. The method ofclaim 10 wherein the mixture is an emulsion.
14. The method ofclaim 10 wherein the particles comprise a material selected from the group of materials consisting of sodium chloride, barium sulfate, potassium nitrate, and sodium carbonate.
15. The method ofclaim 10 further comprising the step of repeating steps (b) and (c) prior to the step of removing, to form a layered structure.
16. A method of making a shell of an implantable breast prosthesis having a textured surface, the method comprising the steps of:
(a) providing an implantable shell;
(b) applying a curable fluid composition to the shell, the composition comprising a mixture containing an elastomer component, a leachable agent in the form of droplets in the mixture, and a solvent component;
(c) applying a layer of particles to the composition;
(d) allowing the composition to stabilize; and
(e) removing the particles and the leachable agent from the stabilized composition, to form a composite material having an external surface at least a portion of which is an open-cell porous structure defined by relatively large pores left by the removed particles and relatively smaller pores, forming connections between the relatively large pores, left by the removed leachable agent, wherein the step of removing comprises contacting the stabilized composition with a solvent for the particles and the leachable agent.
17. The method ofclaim 16 wherein the particles are angular in shape such that the porous structure is defined by relatively large angular pores left by the removed particles and relatively smaller pores, forming connections between the relatively large angular pores, left by the removed droplets.
18. The method ofclaim 16 wherein the solvent component includes a solvent selected from the group consisting of xylene, pentane, hexane, dichloromethane (DCM), dimethyl sulfoxide, dioxane, NMP, DMAc, and combinations thereof.
19. The method ofclaim 16 wherein the mixture is an emulsion.
20. The method ofclaim 16 wherein the particles comprise a material selected from the group of materials consisting of sodium chloride, barium sulfate, potassium nitrate, and sodium carbonate.
US13/942,1042009-10-162013-07-15Implants and methods for manufacturing sameActiveUS8951596B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US13/942,104US8951596B2 (en)2009-10-162013-07-15Implants and methods for manufacturing same
US14/602,907US20150132469A1 (en)2009-10-162015-01-22Implants and methods for manufacturing same

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US25233009P2009-10-162009-10-16
US12/897,498US20110093069A1 (en)2009-10-162010-10-04Implants and methdos for manufacturing same
US13/942,104US8951596B2 (en)2009-10-162013-07-15Implants and methods for manufacturing same

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US12/897,498ContinuationUS20110093069A1 (en)2009-10-162010-10-04Implants and methdos for manufacturing same

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US14/602,907ContinuationUS20150132469A1 (en)2009-10-162015-01-22Implants and methods for manufacturing same

Publications (2)

Publication NumberPublication Date
US20130302511A1 US20130302511A1 (en)2013-11-14
US8951596B2true US8951596B2 (en)2015-02-10

Family

ID=43567536

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US12/897,498AbandonedUS20110093069A1 (en)2009-10-162010-10-04Implants and methdos for manufacturing same
US13/942,104ActiveUS8951596B2 (en)2009-10-162013-07-15Implants and methods for manufacturing same
US14/602,907AbandonedUS20150132469A1 (en)2009-10-162015-01-22Implants and methods for manufacturing same

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US12/897,498AbandonedUS20110093069A1 (en)2009-10-162010-10-04Implants and methdos for manufacturing same

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US14/602,907AbandonedUS20150132469A1 (en)2009-10-162015-01-22Implants and methods for manufacturing same

Country Status (10)

CountryLink
US (3)US20110093069A1 (en)
EP (1)EP2488224A1 (en)
JP (1)JP2013508024A (en)
KR (1)KR20120087152A (en)
CN (1)CN102665776A (en)
AU (1)AU2010307139A1 (en)
BR (1)BR112012008929A2 (en)
CA (1)CA2777771A1 (en)
RU (1)RU2012119244A (en)
WO (1)WO2011046806A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8313527B2 (en)2007-11-052012-11-20Allergan, Inc.Soft prosthesis shell texturing method
EP2641566A1 (en)*2008-06-302013-09-25Allergan, Inc.Fillable prosthetic implant with gel-like properties
US9050184B2 (en)2008-08-132015-06-09Allergan, Inc.Dual plane breast implant
US8506627B2 (en)2008-08-132013-08-13Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US20110093069A1 (en)2009-10-162011-04-21Allergan, Inc.Implants and methdos for manufacturing same
KR101067475B1 (en)*2009-11-192011-09-27유원석 Artificial breast implant with silicon open cell foam layer on its surface and method of manufacturing the same
US8877822B2 (en)2010-09-282014-11-04Allergan, Inc.Porogen compositions, methods of making and uses
US9138308B2 (en)2010-02-032015-09-22Apollo Endosurgery, Inc.Mucosal tissue adhesion via textured surface
US9072821B2 (en)*2010-02-052015-07-07Allergan, Inc.Biocompatible structures and compositions
US9044897B2 (en)2010-09-282015-06-02Allergan, Inc.Porous materials, methods of making and uses
US8889751B2 (en)2010-09-282014-11-18Allergan, Inc.Porous materials, methods of making and uses
US9205577B2 (en)2010-02-052015-12-08Allergan, Inc.Porogen compositions, methods of making and uses
US9138309B2 (en)2010-02-052015-09-22Allergan, Inc.Porous materials, methods of making and uses
CA2797691A1 (en)2010-04-272011-11-03Alexei GoraltchoukFoam-like materials and methods for producing same
US11202853B2 (en)2010-05-112021-12-21Allergan, Inc.Porogen compositions, methods of making and uses
AU2011252017B2 (en)2010-05-112015-07-16Allergan, Inc.Porogen compositions, methods of making and uses
IT1401757B1 (en)*2010-08-312013-08-02Torino Politecnico IMPLANTABLE PROSTHETIC DEVICE AND SOLVENT CASTING PROCEDURE FOR ITS MANUFACTURE.
US8679279B2 (en)2010-11-162014-03-25Allergan, Inc.Methods for creating foam-like texture
US8546458B2 (en)2010-12-072013-10-01Allergan, Inc.Process for texturing materials
EP2760491A1 (en)*2011-09-262014-08-06Allergan, Inc.Silicone implant with imprinted texture
US20130091805A1 (en)*2011-10-142013-04-18Applied Silicone CorporationSystem and method for curing, sterilization and aseptic packaging of medical devices
US8801782B2 (en)2011-12-152014-08-12Allergan, Inc.Surgical methods for breast reconstruction or augmentation
EP2896220B1 (en)2012-09-172016-12-28Sonova AGCic hearing aid seal and method of manufacturing the same
CA2895083A1 (en)2012-12-132014-06-19Allergan, Inc.Device and method for making a variable surface breast implant
US10092392B2 (en)2014-05-162018-10-09Allergan, Inc.Textured breast implant and methods of making same
US9539086B2 (en)2014-05-162017-01-10Allergan, Inc.Soft filled prosthesis shell with variable texture
US20170224869A1 (en)*2016-02-082017-08-10Lifecell CorporationBiologic breast implant
CN105997302A (en)*2016-07-182016-10-12青岛三帝生物科技有限公司3D printing-based capsule contracture-preventive breast prosthesis manufacturing method and breast prosthesis
EP3976127B1 (en)2019-05-302025-09-24LifeCell CorporationBiologic breast implant

Citations (255)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2324735A (en)1941-01-161943-07-20Abraham N SpanelComposite rubber article and method of producing same
US2805208A (en)1952-11-051957-09-03Du PontProcess for preparing resinous expanded solid
US3189921A (en)1962-04-111965-06-22William J PangmanCompound prosthesis
US3293663A (en)1963-08-121966-12-27Dow CorningSurgically implantable human breast prosthesis
US3366975A (en)1965-06-041968-02-06William J. PangmanCompound prosthesis
US3559214A (en)1968-10-171971-02-02William J PangmanCompound prosthesis
US3600718A (en)1969-12-291971-08-24Dow CorningInflatable prosthesis
US3665520A (en)1970-10-071972-05-30Medical Eng CorpSurgically implantable breast prosthesis
US3852832A (en)1972-10-241974-12-10Heyer Schulte CorpProsthesis with fixation means
US3934274A (en)1974-10-291976-01-27Hartley Jr John HDeflatable mammary augmentation prosthesis
US4034751A (en)1975-11-241977-07-12International Paper CompanyPolymeric sheets as synthetic medical dressings or coverings for wounds
US4157085A (en)1978-03-241979-06-05Dow Corning CorporationSurgically implantable tissue expanding device and the method of its use
US4231979A (en)1979-10-121980-11-04Research CorporationHigh surface area permeable material
US4237237A (en)1977-08-251980-12-02Basf AktiengesellschaftHydrophobic polyurethane foams, their manufacture and use
US4264990A (en)1979-01-241981-05-05Hamas Robert SMammary prosthesis
US4298998A (en)1980-12-081981-11-10Naficy Sadeque SBreast prosthesis with biologically absorbable outer container
US4298997A (en)1979-10-231981-11-10Rybka F JamesDevice for inhibiting the formation of fibrous capsular contractures in silicone breast implants and method
US4329385A (en)1980-12-191982-05-11The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationTexturing polymer surfaces by transfer casting
US4428082A (en)1980-12-081984-01-31Naficy Sadeque SBreast prosthesis with filling valve
US4433440A (en)1979-02-261984-02-28Cohen I KelmanProsthesis formed by inner and outer inflatable containers
US4470160A (en)1980-11-211984-09-11Cavon Joseph FCast gel implantable prosthesis
US4482577A (en)1980-12-161984-11-13Albert GoldsteinCoating process of elastomeric material
US4499211A (en)1981-07-281985-02-12Hoechst AktiengesellschaftOpen-cell/microporous molded article
US4531244A (en)1983-07-141985-07-30Hamas Robert SMammary prosthesis with multiple flow spaces
US4573999A (en)1983-10-141986-03-04Netto Daniel JHuman breast prosthesis
US4584324A (en)1984-10-261986-04-22Dow Corning CorporationSilicone foam, water-based, aerosol composition
US4592755A (en)1985-06-111986-06-03Ethyl CorporationMammary implant
US4608396A (en)1985-10-161986-08-26Dow Corning CorporationMethod of producing elastomeric silicone foam
US4610690A (en)1983-02-221986-09-09Mentor CorporationRupture resistant prosthesis with bonded surface layer and method of forming same
US4636213A (en)1985-01-241987-01-13Pakiam Anthony IImplantable prosthesis
US4643733A (en)1983-04-041987-02-17Hilton BeckerPermanent reconstruction implant and method of performing human tissue expansion
US4647618A (en)1985-05-241987-03-03Dow Corning CorporationMethod of producing a silicone water-based elastomer
US4648880A (en)1984-08-301987-03-10Daniel BraumanImplantable prosthetic devices
US4650487A (en)1980-10-271987-03-17Memorial Hospital For Cancer And Allied DiseasesMulti-lumen high profile mammary implant
US4651717A (en)1985-04-041987-03-24Dow Corning CorporationMultiple envelope tissue expander device
US4681587A (en)1983-04-181987-07-21Anita-Spezialmiederfabrik Dr. Helbig & Co.Mastoprosthesis
EP0230672A2 (en)1985-12-301987-08-05American Hospital Supply CorporationMethod for implantation of mammary prosthesis
US4740208A (en)1980-11-211988-04-26Cavon Joseph FCast gel implantable prosthesis
US4772285A (en)1984-05-091988-09-20The Board Of Trustees Of The Leland Stanford Junior UniversityCollagen coated soft tissue prostheses
US4773908A (en)1986-12-181988-09-27Hilton BeckerFilling tube and seal construction for inflatable implant
US4773909A (en)1981-10-061988-09-27Memorial Hospital For Cancer And Allied DiseasesMulti-lumen high profile mammary implant
US4790848A (en)1987-11-271988-12-13Dow Corning WrightBreast prosthesis with multiple lumens
US4795464A (en)1987-02-091989-01-03Tertulin EberlArtificial breast
US4803025A (en)1984-04-231989-02-07Swiss Aluminium Ltd.Ceramic foam
US4828560A (en)1988-02-171989-05-09Mcgman Medical CorporationSpring ring tissue expander
US4840628A (en)1980-11-211989-06-20Cavon Joseph FNon-enveloped gel prosthesis
US4841992A (en)1987-12-171989-06-27Dow Corning Wright CorporationTissue expander and method of making and using
US4859383A (en)1987-06-011989-08-22Bio Med Sciences, Inc.Process of producing a composite macrostructure of organic and inorganic materials
US4859712A (en)1988-10-121989-08-22Cox-Uphoff InternationalSilicone foam and method for making it
US4889744A (en)1986-11-041989-12-26Medical Products Development Inc.Method for making open-cell, silicone-elastomer medical implant
US4899764A (en)1987-12-171990-02-13Dow Corning WrightTissue expander and method of making and using
US4902294A (en)1986-12-031990-02-20Olivier GosserezImplantable mammary prosthesis adapted to combat the formation of a retractile shell
US4906423A (en)1987-10-231990-03-06Dow Corning WrightMethods for forming porous-surfaced polymeric bodies
US4936858A (en)1986-07-221990-06-26Keeffe Paul OImplantable fabric pouch for mammary prosthesis
US4944749A (en)1985-01-231990-07-31Hilton BeckerImplant and inflating construction
US4944750A (en)1988-10-121990-07-31Cox-Uphoff International ReelComposite shell material for prosthesis
US4950292A (en)1988-04-201990-08-21Dow Corning CorporationTissue expanders
US4955907A (en)1987-12-221990-09-11Ledergerber Walter JImplantable prosthetic device
US4955909A (en)1989-01-311990-09-11Bioplasty, Inc.Textured silicone implant prosthesis
US4960425A (en)1987-05-271990-10-02Mentor CorporationTextured surface frosthesis implants
US4965430A (en)1989-09-181990-10-23Dow Corning Wright Corp.Method of laser machining molds with microtextured surfaces
US4969899A (en)1989-03-081990-11-13Cox-Uphoff InternationalInflatable implant
US5002572A (en)1986-09-111991-03-26Picha George JBiological implant with textured surface
US5007940A (en)1989-06-091991-04-16American Medical Systems, Inc.Injectable polymeric bodies
US5007929A (en)1986-11-041991-04-16Medical Products Development, Inc.Open-cell, silicone-elastomer medical implant
US5011494A (en)1988-09-161991-04-30Clemson UniversitySoft tissue implant with micron-scale surface texture to optimize anchorage
US5022942A (en)1987-05-271991-06-11Mentor CorporationMethod of making textured surface prosthesis implants
US5026394A (en)1989-01-101991-06-25Baker James LMammary implant
US5034422A (en)1990-12-191991-07-23Foamex LpLow density, high temperature resistant polymeric bodies
US5035249A (en)1987-12-171991-07-30Dow Corning Wright CorporationMethod of making envelope for tissue expander
US5092348A (en)1989-01-171992-03-03Mcghan Medical CorporationTextured tissue expander
US5092882A (en)1990-05-041992-03-03Lynn Lawrence AMultiple compartment breast prosthesis
US5104409A (en)1989-01-101992-04-14Baker James LMammary implant
US5116387A (en)1989-06-091992-05-26American Medical Systems, Inc.Preparation of injectable polymeric bodies
US5128088A (en)1990-08-141992-07-07Hollister IncorporatedContinuous method for making adhesive-lined male external catheters
US5135959A (en)1991-05-201992-08-04Sorrento Engineering CorporationMethod of impregnating reticulated foam with polymide foam and products thereof
US5147398A (en)1990-05-041992-09-15Lynn Lawrence AMultiple compartment breast prosthesis
US5146933A (en)1991-09-201992-09-15Dow Corning Wright CorporationImplantable prosthetic device and tethered inflation valve for volume
US5158571A (en)1990-03-091992-10-27Picha George JTissue expander and method for expanding tissue
US5158573A (en)1989-06-091992-10-27American Medical Systems, Inc.Injectable polymeric bodies
US5171269A (en)1991-08-291992-12-15Medical Engineering CorporationMammary prosthesis
US5185297A (en)1986-09-161993-02-09Lanxide Technology Company, LpCeramic foams
US5207709A (en)1991-11-131993-05-04Picha George JImplant with textured surface
US5219361A (en)1988-09-161993-06-15Clemson UniversitySoft tissue implant with micron-scale surface texture to optimize anchorage
US5236457A (en)1992-02-271993-08-17Zimmer, Inc.Method of making an implant having a metallic porous surface
US5236454A (en)1991-11-041993-08-17Miller Archibald SStacked breast implant
US5236453A (en)1990-03-091993-08-17Picha George JMammary implant and method for reducing capsule contracture
US5246454A (en)1991-07-221993-09-21Peterson Robert LEncapsulated implant
US5282856A (en)1987-12-221994-02-01Ledergerber Walter JImplantable prosthetic device
US5296069A (en)1991-12-271994-03-22Silimed-Silicone E. Instrumental Medico Cirurgico E. Hosiptalar Ltda.Process for manufacturing implants having coated surfaces
US5348788A (en)1991-01-301994-09-20Interpore Orthopaedics, Inc.Mesh sheet with microscopic projections and holes
US5354338A (en)1991-02-221994-10-11Ledergerber Walter JTexturized covering for implants
US5358521A (en)1992-04-011994-10-25Fred ShaneMultiple-layer prosthesis implant with tissue tactility
US5376117A (en)1991-10-251994-12-27Corvita CorporationBreast prostheses
US5437824A (en)1993-12-231995-08-01Moghan Medical Corp.Method of forming a molded silicone foam implant having open-celled interstices
US5441919A (en)1986-09-161995-08-15Lanxide Technology Company, LpCeramic foams
US5447535A (en)1988-04-271995-09-05Muller; Guy-HenriMammary prosthesis
US5480430A (en)1993-06-041996-01-02Mcghan Medical CorporationShape-retaining shell for a fluid filled prosthesis
US5496367A (en)1993-01-131996-03-05Fisher; JackBreast implant with baffles
US5496370A (en)1992-03-131996-03-05Robert S. HamasGel-like prosthetic device
US5507808A (en)1994-10-261996-04-16Becker; HiltonFilling tube and seal construction
US5522896A (en)1989-02-151996-06-04Xomed, Inc.Biocompatible composite material
US5525275A (en)1993-07-271996-06-11Pmt CorporationMethod of manufacture of enhanced surface implant
US5534023A (en)1992-12-291996-07-09Henley; Julian L.Fluid filled prosthesis excluding gas-filled beads
US5545217A (en)1995-04-201996-08-13C.M. Offray & Son, Inc.Breast implant
US5545220A (en)1993-11-041996-08-13Lipomatrix IncorporatedImplantable prosthesis with open cell textured surface and method for forming same
US5549671A (en)1994-12-281996-08-27Mcghan Medical CorporationAdjunctive filler material for fluid-filled prosthesis
EP0522585B1 (en)1991-07-111996-10-02Lignyte Co., Ltd.Process of fabricating porous silicone product
US5571179A (en)1994-03-311996-11-05Manders; Ernest C.Dimensionally adjustable soft tissue expander and method
US5589176A (en)*1991-10-181996-12-31Seare, Jr.; William J.Methods of making doubly porous device
US5607473A (en)1994-06-201997-03-04Dr. Helbig GmbH & Co. Orthopadische Produkte KGBreast prosthesis
US5630844A (en)1995-06-071997-05-20Novamed Medical Products Manufacturing, Inc.Biocompatible hydrophobic laminate with thermoplastic elastomer layer
US5630843A (en)1994-06-301997-05-20Rosenberg; Paul H.Double chamber tissue expander
US5674285A (en)1986-11-041997-10-07Medical Products Development, Inc.Mammary implant having shell with unitary rough-textured outer layer
WO1998010803A1 (en)1996-09-131998-03-19Lipomatrix IncorporatedHydraulic foam tissue implant
US5798065A (en)1991-05-131998-08-25George J. PichaCollagen disruptive surface morphology for implants
US5843189A (en)1995-06-131998-12-01Laboratoire Perouse ImplantBreast prosthesis
US5855588A (en)1996-10-031999-01-05General Surgical Innovations, Inc.Combination dissector and expander
US5871497A (en)1996-10-031999-02-16General Surgical Innovations, Inc.Combination dissector and expander
US5895423A (en)1996-02-231999-04-20Coloplast CorporationAttachable two-chamber breast prosthesis
US5935164A (en)1997-02-251999-08-10Pmt CorporatonLaminated prosthesis and method of manufacture
US5964803A (en)1993-07-271999-10-12Pmt CorporationEnhanced surface implant and method of manufacture
US5965076A (en)1997-09-221999-10-12The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod for fabricating soft tissue implants with microscopic surface roughness
US5993716A (en)1990-10-191999-11-30Draenert; KlausMaterial and process for its preparation
WO2000024437A2 (en)1998-10-282000-05-04Ashby Scientific Ltd.Textured and porous silicone rubber
US6071309A (en)1995-03-222000-06-06Knowlton; Edward W.Segmental breast expander for use in breast reconstruction
US6074421A (en)1997-04-052000-06-13Medisyn Technology, Ltd.Seamless breast prosthesis
US6083262A (en)1994-06-162000-07-04Caravel; Jean-BaudoinSupple implantable prosthesis used in surgery for increasing the volume of or reconstructing soft tissue, notably a breast prosthesis, and its method of manufacture
US6099565A (en)1995-06-072000-08-08Sakura, Jr.; Chester Y.Prosthetic tissue implant and filler therefor
US6113634A (en)1996-04-232000-09-05F + E Gesellschaft fur Bekleidungsinnovation mbH & Co. KGBreast prosthesis and method for making the same
US6146418A (en)1997-02-282000-11-14Berman; MarkBody implant and method of implanting
US6183514B1 (en)1999-08-162001-02-06Hilton BeckerSelf positioning breast prosthesis
US6203570B1 (en)1999-11-242001-03-20John L. BaekeBreast implant with position lock
US6206930B1 (en)1998-08-102001-03-27Charlotte-Mecklenburg Hospital AuthorityAbsorbable tissue expander
US6214045B1 (en)1997-10-102001-04-10John D. Corbitt, Jr.Bioabsorbable breast implant
US6214926B1 (en)1999-04-012001-04-10Rhodia Inc.Silicone membranes formed without the use of 1-1-1 trichloroethane
US6315796B1 (en)1999-05-132001-11-13Board Of Trustees Of The University Of ArkansasFlexible seamless memory tissue expanding implant
US6340648B1 (en)1999-04-132002-01-22Toshiba Ceramics Co., Ltd.Calcium phosphate porous sintered body and production thereof
US20020038147A1 (en)1999-10-222002-03-28Miller Archibald S.Breast implant
US6387133B1 (en)1998-07-162002-05-14Laboratoire Perouse ImplantReconstruction implant
US6432138B1 (en)2000-03-072002-08-13Promatrx, Inc.Controlled porosity 3-D fabric breast prosthesis
US6464726B1 (en)2000-07-132002-10-15Jenna HeljenekBreast implant system and method of augmentation
US20020193885A1 (en)2001-03-232002-12-19Assoc. Pour Les Transferts De Technologies Du MansProstheses for plastic reconstruction with improved hydrophilicity properties, and method for obtaining them
US6520989B1 (en)2000-01-182003-02-18Board Of Trustees Of The University Of ArkansasExtreme volume flexible integrity prosthesis
US20030036803A1 (en)2001-08-142003-02-20Mcghan Jim J.Medical implant having bioabsorbable textured surface
JP2003062062A (en)2001-07-132003-03-04Jotec GmbhImplant and method for producing
US6531523B1 (en)2000-10-102003-03-11Renal Tech International, LlcMethod of making biocompatible polymeric adsorbing material for purification of physiological fluids of organism
US6544287B1 (en)1998-12-112003-04-08Gerald W. JohnsonSolid filled implants
US20030093151A1 (en)2000-12-222003-05-15Guangzhou Wanhe Material Co. Ltd.Implantable mammary prosthesis with flexible sheet
US20030105469A1 (en)2001-05-092003-06-05Regene Ex Ltd.Bioresorbable inflatable devices, incision tool and methods for tissue expansion and tissue regeneration
US6602452B2 (en)2001-07-182003-08-05Mcghan Medical CorporationRotational molding of medical articles
US6605116B2 (en)2001-04-032003-08-12Mentor CorporationReinforced radius mammary prostheses and soft tissue expanders
US6638308B2 (en)1997-10-102003-10-28John D. Corbitt, Jr.Bioabsorbable breast implant
US20030208269A1 (en)2002-05-032003-11-06Eaton L. DanielMethods of forming prostheses
US20030205846A1 (en)1999-12-012003-11-06Howard T. BellinNon-rotating breast implant
US6673285B2 (en)2000-05-122004-01-06The Regents Of The University Of MichiganReverse fabrication of porous materials
US20040115241A1 (en)2002-07-312004-06-17Calhoun Christopher J.Apparatus and method for preventing adhesions between an implant and surrounding tissues
US6755861B2 (en)2001-10-162004-06-29Granit Medical Innovation, Inc.Device for providing a portion of an organism with a desired shape
US20040143327A1 (en)2003-01-172004-07-22Ku David N.Solid implant
WO2004062531A1 (en)2003-01-032004-07-29Biomerix CorporationReticulated elastomeric matrices, their manufacture and use in implantable devices
US20040148024A1 (en)2000-12-152004-07-29Williams David F.Soft tissue implant
US20040153151A1 (en)2001-05-072004-08-05Gonzales De Vicente RicardoBreast prosthesis
WO2004037318A3 (en)2002-10-222004-08-26Biomerix CorpMethod and system for intravesicular delivery of therapeutic agents
US20040176493A1 (en)2001-08-242004-09-09Ferguson Terrell W.Silicone foam
FR2840617B1 (en)2002-06-102004-09-10Rhodia Chimie Sa PROCESS FOR PRODUCING POROUS SILICONE MATERIALS
US6802861B1 (en)2003-08-262004-10-12Rsh-Gs TrustStructured breast implant
US20040213986A1 (en)2003-04-222004-10-28Kim Ho-CheolPatterned, high surface area substrate with hydrophilic/hydrophobic contrast, and method of use
US6811570B1 (en)1997-10-212004-11-02Augmentec AgImplant made of a reabsorbable ceramic material
US6818673B2 (en)2001-08-242004-11-16Radiant Holdings, LlcMethod for producing silicone foam utilizing a mechanical foaming agent
US20050055093A1 (en)2003-09-032005-03-10Brennan William A.System and method for breast augmentation
US20050070124A1 (en)2003-09-302005-03-31International Business Machines CorporationDirect photo-patterning of nanoporous organosilicates, and method of use
US6875233B1 (en)2003-06-102005-04-05Hinging breast implant
US20050122169A1 (en)2003-12-012005-06-09Shinichi WatanabeClass D amplifier
US20050143480A1 (en)*2003-12-252005-06-30Nitto Kogyo Co., LtdSilicone elastomer porous body
US6916339B1 (en)1999-06-022005-07-12Marie-Christine MissanaBreast prosthesis
US6921418B2 (en)1987-12-222005-07-26Walter J. LedergerberDual-sided, texturized biocompatible structure
US6932840B1 (en)2004-09-082005-08-23Absolute Breast SolutionsImplant device
US20050196452A1 (en)2004-02-062005-09-08Boyan Barbara D.Surface directed cellular attachment
US20050216094A1 (en)2004-03-032005-09-29Prewett Donovan DDevices having a textured surface
US20050251083A1 (en)2004-02-122005-11-10Victoria Carr-BrendelBiointerface with macro-and micro-architecture
US20060002810A1 (en)2004-07-022006-01-05Grohowski Joseph A JrPorous metal articles having a predetermined pore character
US20060036320A1 (en)2004-08-132006-02-16Keith JobSpray method for forming shells for prostheses
US20060036266A1 (en)2002-07-102006-02-16Sulamanidze Marlen AEndoprosthesis for reparative anaplastic surgery
US20060136056A1 (en)2004-12-212006-06-22Ishay WohlImplant device and method
US7081135B2 (en)2003-06-092006-07-25Lane Fielding SmithMastopexy stabilization apparatus and method
US7081136B1 (en)2005-04-182006-07-25Techno Investments LlcAdjustable gel filled mammary prosthesis and method
US20060224239A1 (en)2005-04-042006-10-05Tiahrt Leif KBreast implant
US20060235094A1 (en)*2005-04-192006-10-19Sasan Habibi-NainiUses of a method for the manufacture of foamed shaped polymer parts of liquid silicone rubber
US20060246121A1 (en)2005-04-272006-11-02Ma Peter XParticle-containing complex porous materials
WO2006133366A1 (en)2005-06-082006-12-14Joann SeastromImplant shell and filler apparatus
JP2007029717A (en)2005-06-232007-02-08Depuy Products IncImplant with textured surface and method for producing the same
US7192450B2 (en)2003-05-212007-03-20Dexcom, Inc.Porous membranes for use with implantable devices
US20070093911A1 (en)2003-04-282007-04-26Helmut FrickeSoft tissue implant such as breast implant, calf muscle implant or the like
US20070104693A1 (en)2005-11-072007-05-10Quijano Rodolfo CBreast augmentation system
US20070104695A1 (en)2005-11-072007-05-10Quijano Rodolfo CBreast augmentation and reconstruction system
US20070135916A1 (en)2005-10-262007-06-14Allergan, Inc.Variable cohesive gel form-stable breast implant
US20070154525A1 (en)2002-07-312007-07-05Calhoun Christopher JApparatus and method for preventing adhesions between an implant and surrounding tissues
US7244270B2 (en)2004-09-162007-07-17Evera MedicalSystems and devices for soft tissue augmentation
US20070190108A1 (en)2004-05-172007-08-16Arindam DattaHigh performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
US20070198085A1 (en)2004-10-282007-08-23Fahd BenslimaneBreast implant, use of an associated pouch, and method for determination of a breast implant
US20080009830A1 (en)2006-06-272008-01-10Fujimoto Kazuro LBiodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US7323208B2 (en)2004-11-302008-01-29The Regents Of The University Of MichiganModified porous materials and method of forming the same
US20080071371A1 (en)2006-09-202008-03-20Robert ElshoutTexturizing surfaces
US20080075752A1 (en)2003-10-012008-03-27University Of WashingtonNovel Porous Biomaterials
US20080154366A1 (en)2006-12-212008-06-26Frank Robert EImplantable prosthesis for periareolar mastopexy
US20080241212A1 (en)2007-03-292008-10-02Tyrx Pharma, Inc.Biodegradable, Polymer Coverings for Breast Implants
US20080268019A1 (en)2006-07-072008-10-30Badylak Stephen FBiohybrid elastomeric scaffolds and methods of use thereof
US20080312739A1 (en)2007-06-152008-12-18Q-Med AbBiocompatible implant system and method
US7476249B2 (en)2004-08-062009-01-13Frank Robert EImplantable prosthesis for positioning and supporting a breast implant
US20090045166A1 (en)2005-11-112009-02-19Yangyang LiMethod of enhancing biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
US20090082864A1 (en)2007-09-192009-03-26Gaoyuan Gavin ChenNaturally contoured, preformed, three dimensional mesh device for breast implant support
US20090087641A1 (en)2005-11-142009-04-02Favis Basil DPorous nanosheath networks, method of making and uses thereof
US20090093878A1 (en)2005-06-282009-04-09Ami GlicksmanHuman implantable tissue expander
US20090118829A1 (en)*2007-11-052009-05-07Allergan, Inc.Soft prosthesis shell texturing method
US20090125107A1 (en)2007-11-142009-05-14Maxwell G PatrickInterfaced Medical Implant Assembly
US7547393B2 (en)2005-12-072009-06-16General Electric CompanyMembrane structure and method of making
US20090169716A1 (en)2007-12-272009-07-02Linhardt Jeffrey GCoating solutions comprising surface active segmented block copolymers
US20090198333A1 (en)2008-02-052009-08-06Hilton BeckerMethod for texturing the surface of a synthetic implant
US20090198331A1 (en)2008-02-012009-08-06Kesten Randy JImplantable prosthesis with open cell flow regulation
US20090198332A1 (en)2008-02-052009-08-06Hilton BeckerMethod for texturing the surface of a synthetic implant
WO2009110917A1 (en)2007-06-072009-09-11Osteotherapeutics, L.L.C.Bone cement compositions for use as growth factor carriers and methods of making same
US7625405B2 (en)2006-02-082009-12-01Neosthetic, LlcBreast implant and method of manufacture
US7632291B2 (en)2003-06-132009-12-15Trivascular2, Inc.Inflatable implant
US7632228B2 (en)2001-07-272009-12-15Dexcom, Inc.Membrane for use with implantable devices
US7641688B2 (en)2004-09-162010-01-05Evera Medical, Inc.Tissue augmentation device
US20100042211A1 (en)*2008-08-132010-02-18Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US20100292790A1 (en)*2009-05-132010-11-18Allergan, Inc.Implants and methods for manufacturing same
US20110035004A1 (en)2007-11-142011-02-10Maxwell GInterfaced medical implant
US20110054605A1 (en)2009-09-022011-03-03Hilton BeckerSelf supporting implant in a human body and method for making the same without capsular contracture
US20110093069A1 (en)2009-10-162011-04-21Allergan, Inc.Implants and methdos for manufacturing same
US20110106249A1 (en)2009-09-022011-05-05Hilton BeckerSelf supporting and forming breast implant and method for forming and supporting an implant in a human body
WO2011094155A2 (en)2010-01-282011-08-04Allergan, Inc.Open celled foams, implants including them and processes for making same
US20110196488A1 (en)2010-02-032011-08-11Allergan, Inc.Degradation resistant implantable materials and methods
US20110196489A1 (en)2010-02-052011-08-11Allergan, Inc.Biocompatible structures and compositions
US20110276134A1 (en)2010-05-102011-11-10Allergan, Inc.Silicone implant with imprinted texture
US20110276133A1 (en)2010-05-102011-11-10Allergan, Inc.Porous materials, methods of making and uses
US20110282444A1 (en)2010-05-112011-11-17Allergan, Inc.Porous materials, methods of making and uses
US20110278755A1 (en)2010-05-112011-11-17Allergan, Inc.Porogen compositions, method of making and uses
US20110309541A1 (en)2010-06-162011-12-22Allergan, Inc.Open-cell surface foam materials
US20110313073A1 (en)2010-04-272011-12-22Allergan, Inc.Foam-like materials and methods for producing same
US20120004722A1 (en)2010-02-032012-01-05Allergan, Inc.Degradation resistant implantable materials and methods
US20120041555A1 (en)2010-05-102012-02-16Allergan, Inc.Silicone implant with imprinted texture
US20120077010A1 (en)2010-09-282012-03-29Allergan, Inc.Porous materials, methods of making and uses
US20120077012A1 (en)2010-09-282012-03-29Allergan, Inc.Porous materials, methods of making and uses
US20120077891A1 (en)2010-09-282012-03-29Allergan, Inc.Porogen compositions, methods of making and uses
US20120101574A1 (en)2010-08-202012-04-26Allergan, Inc.Implantable materials
US8202317B2 (en)2009-09-022012-06-19Hilton BeckerSelf supporting and forming breast implant and method for forming and supporting an implant in a human body
US20120245685A1 (en)2009-11-192012-09-27Won Seok YuArtificial breast implant provided on the surface threof with silicon open cell foam layer, and method for producing the same
US20130013062A1 (en)2010-11-162013-01-10Allergan, Inc.Methods for creating foam-like texture
US20130023987A1 (en)2010-02-052013-01-24Allergan, Inc.Porous materials, methods of making and uses
US20130032962A1 (en)2010-02-052013-02-07Allergan, Inc.Porogen compositions, methods of making and uses
US8377127B2 (en)*2008-08-202013-02-19Allergan, Inc.Self-sealing shell for inflatable prostheses
US20130158657A1 (en)2011-12-152013-06-20Allergan, Inc.Surgical methods for breast reconstruction or augmentation
US8506627B2 (en)2008-08-132013-08-13Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US20130245148A1 (en)2010-12-072013-09-19Allergan, Inc.Process for texturing materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3186921A (en)*1962-10-241965-06-01Miles LabProcess for preparing galactose oxidase by fermentation
US5605696A (en)*1995-03-301997-02-25Advanced Cardiovascular Systems, Inc.Drug loaded polymeric material and method of manufacture
US8357628B2 (en)*2008-08-292013-01-22Agilent Technologies, Inc.Inorganic/organic hybrid totally porous metal oxide particles, methods for making them and separation devices using them
US8182872B2 (en)*2008-09-252012-05-22ImecMethod of fabricating a porous elastomer

Patent Citations (295)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2324735A (en)1941-01-161943-07-20Abraham N SpanelComposite rubber article and method of producing same
US2805208A (en)1952-11-051957-09-03Du PontProcess for preparing resinous expanded solid
US3189921A (en)1962-04-111965-06-22William J PangmanCompound prosthesis
US3293663A (en)1963-08-121966-12-27Dow CorningSurgically implantable human breast prosthesis
US3366975A (en)1965-06-041968-02-06William J. PangmanCompound prosthesis
US3559214A (en)1968-10-171971-02-02William J PangmanCompound prosthesis
US3600718A (en)1969-12-291971-08-24Dow CorningInflatable prosthesis
US3665520A (en)1970-10-071972-05-30Medical Eng CorpSurgically implantable breast prosthesis
US3852832A (en)1972-10-241974-12-10Heyer Schulte CorpProsthesis with fixation means
US3934274A (en)1974-10-291976-01-27Hartley Jr John HDeflatable mammary augmentation prosthesis
US4034751A (en)1975-11-241977-07-12International Paper CompanyPolymeric sheets as synthetic medical dressings or coverings for wounds
US4237237A (en)1977-08-251980-12-02Basf AktiengesellschaftHydrophobic polyurethane foams, their manufacture and use
US4157085A (en)1978-03-241979-06-05Dow Corning CorporationSurgically implantable tissue expanding device and the method of its use
US4264990A (en)1979-01-241981-05-05Hamas Robert SMammary prosthesis
US4433440A (en)1979-02-261984-02-28Cohen I KelmanProsthesis formed by inner and outer inflatable containers
US4231979A (en)1979-10-121980-11-04Research CorporationHigh surface area permeable material
US4298997A (en)1979-10-231981-11-10Rybka F JamesDevice for inhibiting the formation of fibrous capsular contractures in silicone breast implants and method
US4650487A (en)1980-10-271987-03-17Memorial Hospital For Cancer And Allied DiseasesMulti-lumen high profile mammary implant
US4840628A (en)1980-11-211989-06-20Cavon Joseph FNon-enveloped gel prosthesis
US4470160A (en)1980-11-211984-09-11Cavon Joseph FCast gel implantable prosthesis
US4740208A (en)1980-11-211988-04-26Cavon Joseph FCast gel implantable prosthesis
US4298998A (en)1980-12-081981-11-10Naficy Sadeque SBreast prosthesis with biologically absorbable outer container
US4428082A (en)1980-12-081984-01-31Naficy Sadeque SBreast prosthesis with filling valve
US4482577A (en)1980-12-161984-11-13Albert GoldsteinCoating process of elastomeric material
US4329385A (en)1980-12-191982-05-11The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationTexturing polymer surfaces by transfer casting
US4499211A (en)1981-07-281985-02-12Hoechst AktiengesellschaftOpen-cell/microporous molded article
US4773909A (en)1981-10-061988-09-27Memorial Hospital For Cancer And Allied DiseasesMulti-lumen high profile mammary implant
US4610690A (en)1983-02-221986-09-09Mentor CorporationRupture resistant prosthesis with bonded surface layer and method of forming same
US4643733A (en)1983-04-041987-02-17Hilton BeckerPermanent reconstruction implant and method of performing human tissue expansion
US4681587A (en)1983-04-181987-07-21Anita-Spezialmiederfabrik Dr. Helbig & Co.Mastoprosthesis
US4531244A (en)1983-07-141985-07-30Hamas Robert SMammary prosthesis with multiple flow spaces
US4573999A (en)1983-10-141986-03-04Netto Daniel JHuman breast prosthesis
US4803025A (en)1984-04-231989-02-07Swiss Aluminium Ltd.Ceramic foam
US4772285A (en)1984-05-091988-09-20The Board Of Trustees Of The Leland Stanford Junior UniversityCollagen coated soft tissue prostheses
USRE35391E (en)1984-08-301996-12-03Brauman; DanielImplantable prosthetic devices
US4648880A (en)1984-08-301987-03-10Daniel BraumanImplantable prosthetic devices
US4584324A (en)1984-10-261986-04-22Dow Corning CorporationSilicone foam, water-based, aerosol composition
US4944749A (en)1985-01-231990-07-31Hilton BeckerImplant and inflating construction
US4636213A (en)1985-01-241987-01-13Pakiam Anthony IImplantable prosthesis
US4651717A (en)1985-04-041987-03-24Dow Corning CorporationMultiple envelope tissue expander device
US4647618A (en)1985-05-241987-03-03Dow Corning CorporationMethod of producing a silicone water-based elastomer
US4592755A (en)1985-06-111986-06-03Ethyl CorporationMammary implant
US4608396A (en)1985-10-161986-08-26Dow Corning CorporationMethod of producing elastomeric silicone foam
EP0230672A2 (en)1985-12-301987-08-05American Hospital Supply CorporationMethod for implantation of mammary prosthesis
US4936858A (en)1986-07-221990-06-26Keeffe Paul OImplantable fabric pouch for mammary prosthesis
US5002572A (en)1986-09-111991-03-26Picha George JBiological implant with textured surface
US5441919A (en)1986-09-161995-08-15Lanxide Technology Company, LpCeramic foams
US5185297A (en)1986-09-161993-02-09Lanxide Technology Company, LpCeramic foams
US5674285A (en)1986-11-041997-10-07Medical Products Development, Inc.Mammary implant having shell with unitary rough-textured outer layer
US5007929A (en)1986-11-041991-04-16Medical Products Development, Inc.Open-cell, silicone-elastomer medical implant
US4889744A (en)1986-11-041989-12-26Medical Products Development Inc.Method for making open-cell, silicone-elastomer medical implant
US5007929B1 (en)1986-11-041994-08-30Medical Products DevOpen-cell silicone-elastomer medical implant
US4889744B1 (en)1986-11-041993-03-09Method for making open-cell,silicone-elastomer medical implant
US4902294A (en)1986-12-031990-02-20Olivier GosserezImplantable mammary prosthesis adapted to combat the formation of a retractile shell
US4773908A (en)1986-12-181988-09-27Hilton BeckerFilling tube and seal construction for inflatable implant
US4795464A (en)1987-02-091989-01-03Tertulin EberlArtificial breast
US4960425A (en)1987-05-271990-10-02Mentor CorporationTextured surface frosthesis implants
US5022942A (en)1987-05-271991-06-11Mentor CorporationMethod of making textured surface prosthesis implants
US4859383A (en)1987-06-011989-08-22Bio Med Sciences, Inc.Process of producing a composite macrostructure of organic and inorganic materials
US4906423A (en)1987-10-231990-03-06Dow Corning WrightMethods for forming porous-surfaced polymeric bodies
EP0315814A3 (en)1987-10-231990-09-12Dow Corning CorporationMethods for forming porous-surfaced polymeric bodies
US4790848A (en)1987-11-271988-12-13Dow Corning WrightBreast prosthesis with multiple lumens
US4841992A (en)1987-12-171989-06-27Dow Corning Wright CorporationTissue expander and method of making and using
US4899764A (en)1987-12-171990-02-13Dow Corning WrightTissue expander and method of making and using
US5035249A (en)1987-12-171991-07-30Dow Corning Wright CorporationMethod of making envelope for tissue expander
US5779734A (en)1987-12-221998-07-14Ledergerber; Walter J.Covering for an implantable prosthetic device
US5653755A (en)1987-12-221997-08-05Ledergerber; Walter J.Covering for an implantable prosthetic device
US5282856A (en)1987-12-221994-02-01Ledergerber Walter JImplantable prosthetic device
US5383929A (en)1987-12-221995-01-24Ledergerber; Walter J.Implantable prosthetic device
US6921418B2 (en)1987-12-222005-07-26Walter J. LedergerberDual-sided, texturized biocompatible structure
US4955907A (en)1987-12-221990-09-11Ledergerber Walter JImplantable prosthetic device
US6187043B1 (en)1987-12-222001-02-13Walter J. LedergerberImplantable prosthetic device
US4828560A (en)1988-02-171989-05-09Mcgman Medical CorporationSpring ring tissue expander
US4950292A (en)1988-04-201990-08-21Dow Corning CorporationTissue expanders
US5447535A (en)1988-04-271995-09-05Muller; Guy-HenriMammary prosthesis
US5011494A (en)1988-09-161991-04-30Clemson UniversitySoft tissue implant with micron-scale surface texture to optimize anchorage
US5219361A (en)1988-09-161993-06-15Clemson UniversitySoft tissue implant with micron-scale surface texture to optimize anchorage
US4859712A (en)1988-10-121989-08-22Cox-Uphoff InternationalSilicone foam and method for making it
US4944750A (en)1988-10-121990-07-31Cox-Uphoff International ReelComposite shell material for prosthesis
US5104409A (en)1989-01-101992-04-14Baker James LMammary implant
US5026394A (en)1989-01-101991-06-25Baker James LMammary implant
US5092348A (en)1989-01-171992-03-03Mcghan Medical CorporationTextured tissue expander
US4955909A (en)1989-01-311990-09-11Bioplasty, Inc.Textured silicone implant prosthesis
US5522896A (en)1989-02-151996-06-04Xomed, Inc.Biocompatible composite material
US4969899A (en)1989-03-081990-11-13Cox-Uphoff InternationalInflatable implant
US5158573A (en)1989-06-091992-10-27American Medical Systems, Inc.Injectable polymeric bodies
US5116387A (en)1989-06-091992-05-26American Medical Systems, Inc.Preparation of injectable polymeric bodies
US5007940A (en)1989-06-091991-04-16American Medical Systems, Inc.Injectable polymeric bodies
US4965430A (en)1989-09-181990-10-23Dow Corning Wright Corp.Method of laser machining molds with microtextured surfaces
US5158571A (en)1990-03-091992-10-27Picha George JTissue expander and method for expanding tissue
US5236453A (en)1990-03-091993-08-17Picha George JMammary implant and method for reducing capsule contracture
US5147398A (en)1990-05-041992-09-15Lynn Lawrence AMultiple compartment breast prosthesis
US5092882A (en)1990-05-041992-03-03Lynn Lawrence AMultiple compartment breast prosthesis
US5128088A (en)1990-08-141992-07-07Hollister IncorporatedContinuous method for making adhesive-lined male external catheters
US5993716A (en)1990-10-191999-11-30Draenert; KlausMaterial and process for its preparation
US5034422A (en)1990-12-191991-07-23Foamex LpLow density, high temperature resistant polymeric bodies
US5455100A (en)1991-01-301995-10-03Interpore InternationalPorous articles and methods for producing same
US5348788A (en)1991-01-301994-09-20Interpore Orthopaedics, Inc.Mesh sheet with microscopic projections and holes
US5354338A (en)1991-02-221994-10-11Ledergerber Walter JTexturized covering for implants
US5798065A (en)1991-05-131998-08-25George J. PichaCollagen disruptive surface morphology for implants
US5135959A (en)1991-05-201992-08-04Sorrento Engineering CorporationMethod of impregnating reticulated foam with polymide foam and products thereof
EP0522585B1 (en)1991-07-111996-10-02Lignyte Co., Ltd.Process of fabricating porous silicone product
US5246454A (en)1991-07-221993-09-21Peterson Robert LEncapsulated implant
US5171269A (en)1991-08-291992-12-15Medical Engineering CorporationMammary prosthesis
US5146933A (en)1991-09-201992-09-15Dow Corning Wright CorporationImplantable prosthetic device and tethered inflation valve for volume
US5681572A (en)1991-10-181997-10-28Seare, Jr.; William J.Porous material product and process
US5624674A (en)1991-10-181997-04-29Seare, Jr.; William J.Porous product mold form
US5605693A (en)1991-10-181997-02-25Seare, Jr.; William J.Methods of making a porous device
US5589176A (en)*1991-10-181996-12-31Seare, Jr.; William J.Methods of making doubly porous device
US5376117A (en)1991-10-251994-12-27Corvita CorporationBreast prostheses
US5236454A (en)1991-11-041993-08-17Miller Archibald SStacked breast implant
US5207709A (en)1991-11-131993-05-04Picha George JImplant with textured surface
US5296069A (en)1991-12-271994-03-22Silimed-Silicone E. Instrumental Medico Cirurgico E. Hosiptalar Ltda.Process for manufacturing implants having coated surfaces
US5236457A (en)1992-02-271993-08-17Zimmer, Inc.Method of making an implant having a metallic porous surface
US5496370A (en)1992-03-131996-03-05Robert S. HamasGel-like prosthetic device
US5358521A (en)1992-04-011994-10-25Fred ShaneMultiple-layer prosthesis implant with tissue tactility
US5534023A (en)1992-12-291996-07-09Henley; Julian L.Fluid filled prosthesis excluding gas-filled beads
US5496367A (en)1993-01-131996-03-05Fisher; JackBreast implant with baffles
US5480430A (en)1993-06-041996-01-02Mcghan Medical CorporationShape-retaining shell for a fluid filled prosthesis
US5964803A (en)1993-07-271999-10-12Pmt CorporationEnhanced surface implant and method of manufacture
US5525275A (en)1993-07-271996-06-11Pmt CorporationMethod of manufacture of enhanced surface implant
US5545220A (en)1993-11-041996-08-13Lipomatrix IncorporatedImplantable prosthesis with open cell textured surface and method for forming same
US5658330A (en)1993-12-231997-08-19Mcghan Medical Corp.Molded silicone foam implant and method for making
US5437824A (en)1993-12-231995-08-01Moghan Medical Corp.Method of forming a molded silicone foam implant having open-celled interstices
US5571179A (en)1994-03-311996-11-05Manders; Ernest C.Dimensionally adjustable soft tissue expander and method
US6083262A (en)1994-06-162000-07-04Caravel; Jean-BaudoinSupple implantable prosthesis used in surgery for increasing the volume of or reconstructing soft tissue, notably a breast prosthesis, and its method of manufacture
US5607473A (en)1994-06-201997-03-04Dr. Helbig GmbH & Co. Orthopadische Produkte KGBreast prosthesis
US5630843A (en)1994-06-301997-05-20Rosenberg; Paul H.Double chamber tissue expander
US5507808A (en)1994-10-261996-04-16Becker; HiltonFilling tube and seal construction
US5549671A (en)1994-12-281996-08-27Mcghan Medical CorporationAdjunctive filler material for fluid-filled prosthesis
US6071309A (en)1995-03-222000-06-06Knowlton; Edward W.Segmental breast expander for use in breast reconstruction
US5545217A (en)1995-04-201996-08-13C.M. Offray & Son, Inc.Breast implant
US5630844A (en)1995-06-071997-05-20Novamed Medical Products Manufacturing, Inc.Biocompatible hydrophobic laminate with thermoplastic elastomer layer
US6099565A (en)1995-06-072000-08-08Sakura, Jr.; Chester Y.Prosthetic tissue implant and filler therefor
US5843189A (en)1995-06-131998-12-01Laboratoire Perouse ImplantBreast prosthesis
US5895423A (en)1996-02-231999-04-20Coloplast CorporationAttachable two-chamber breast prosthesis
US6113634A (en)1996-04-232000-09-05F + E Gesellschaft fur Bekleidungsinnovation mbH & Co. KGBreast prosthesis and method for making the same
WO1998010803A1 (en)1996-09-131998-03-19Lipomatrix IncorporatedHydraulic foam tissue implant
US5824081A (en)1996-09-131998-10-20Lipomatrix IncorporatedHydraulic foam tissue implant
US5855588A (en)1996-10-031999-01-05General Surgical Innovations, Inc.Combination dissector and expander
US5871497A (en)1996-10-031999-02-16General Surgical Innovations, Inc.Combination dissector and expander
US5984943A (en)1996-10-031999-11-16General Surgical Innovations, Inc.Combination dissector and expander
US5935164A (en)1997-02-251999-08-10Pmt CorporatonLaminated prosthesis and method of manufacture
US6146418A (en)1997-02-282000-11-14Berman; MarkBody implant and method of implanting
US6074421A (en)1997-04-052000-06-13Medisyn Technology, Ltd.Seamless breast prosthesis
US5965076A (en)1997-09-221999-10-12The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod for fabricating soft tissue implants with microscopic surface roughness
US6214045B1 (en)1997-10-102001-04-10John D. Corbitt, Jr.Bioabsorbable breast implant
US6638308B2 (en)1997-10-102003-10-28John D. Corbitt, Jr.Bioabsorbable breast implant
US6881226B2 (en)1997-10-102005-04-19John D. Corbitt, Jr.Bioabsorbable breast implant
US6811570B1 (en)1997-10-212004-11-02Augmentec AgImplant made of a reabsorbable ceramic material
US6387133B1 (en)1998-07-162002-05-14Laboratoire Perouse ImplantReconstruction implant
US6206930B1 (en)1998-08-102001-03-27Charlotte-Mecklenburg Hospital AuthorityAbsorbable tissue expander
WO2000024437A2 (en)1998-10-282000-05-04Ashby Scientific Ltd.Textured and porous silicone rubber
US6900055B1 (en)1998-10-282005-05-31Cellon S.A.Preparation of porous silicone rubber for growing cells or living tissue
US6544287B1 (en)1998-12-112003-04-08Gerald W. JohnsonSolid filled implants
US6214926B1 (en)1999-04-012001-04-10Rhodia Inc.Silicone membranes formed without the use of 1-1-1 trichloroethane
US6340648B1 (en)1999-04-132002-01-22Toshiba Ceramics Co., Ltd.Calcium phosphate porous sintered body and production thereof
US6315796B1 (en)1999-05-132001-11-13Board Of Trustees Of The University Of ArkansasFlexible seamless memory tissue expanding implant
US6916339B1 (en)1999-06-022005-07-12Marie-Christine MissanaBreast prosthesis
US6183514B1 (en)1999-08-162001-02-06Hilton BeckerSelf positioning breast prosthesis
US20020038147A1 (en)1999-10-222002-03-28Miller Archibald S.Breast implant
US6203570B1 (en)1999-11-242001-03-20John L. BaekeBreast implant with position lock
US6692527B1 (en)1999-12-012004-02-17Howard T. BellinNon-rotating breast implant
US20040127985A1 (en)1999-12-012004-07-01Howard T. BellinNon-rotating breast implant
US7105116B2 (en)1999-12-012006-09-12Howard T. BellinNon-rotating breast implant
US20030205846A1 (en)1999-12-012003-11-06Howard T. BellinNon-rotating breast implant
US6520989B1 (en)2000-01-182003-02-18Board Of Trustees Of The University Of ArkansasExtreme volume flexible integrity prosthesis
US6432138B1 (en)2000-03-072002-08-13Promatrx, Inc.Controlled porosity 3-D fabric breast prosthesis
US6673285B2 (en)2000-05-122004-01-06The Regents Of The University Of MichiganReverse fabrication of porous materials
US6464726B1 (en)2000-07-132002-10-15Jenna HeljenekBreast implant system and method of augmentation
US6531523B1 (en)2000-10-102003-03-11Renal Tech International, LlcMethod of making biocompatible polymeric adsorbing material for purification of physiological fluids of organism
US20040148024A1 (en)2000-12-152004-07-29Williams David F.Soft tissue implant
US20030093151A1 (en)2000-12-222003-05-15Guangzhou Wanhe Material Co. Ltd.Implantable mammary prosthesis with flexible sheet
US20020193885A1 (en)2001-03-232002-12-19Assoc. Pour Les Transferts De Technologies Du MansProstheses for plastic reconstruction with improved hydrophilicity properties, and method for obtaining them
US6605116B2 (en)2001-04-032003-08-12Mentor CorporationReinforced radius mammary prostheses and soft tissue expanders
US20040153151A1 (en)2001-05-072004-08-05Gonzales De Vicente RicardoBreast prosthesis
US20030105469A1 (en)2001-05-092003-06-05Regene Ex Ltd.Bioresorbable inflatable devices, incision tool and methods for tissue expansion and tissue regeneration
JP2003062062A (en)2001-07-132003-03-04Jotec GmbhImplant and method for producing
US20040010225A1 (en)2001-07-182004-01-15Schuessler David J.Rotationally molded medical articles
US6602452B2 (en)2001-07-182003-08-05Mcghan Medical CorporationRotational molding of medical articles
US7632228B2 (en)2001-07-272009-12-15Dexcom, Inc.Membrane for use with implantable devices
US6913626B2 (en)2001-08-142005-07-05Mcghan Jim J.Medical implant having bioabsorbable textured surface
US20030036803A1 (en)2001-08-142003-02-20Mcghan Jim J.Medical implant having bioabsorbable textured surface
US20040176493A1 (en)2001-08-242004-09-09Ferguson Terrell W.Silicone foam
US6818673B2 (en)2001-08-242004-11-16Radiant Holdings, LlcMethod for producing silicone foam utilizing a mechanical foaming agent
US6755861B2 (en)2001-10-162004-06-29Granit Medical Innovation, Inc.Device for providing a portion of an organism with a desired shape
US20030208269A1 (en)2002-05-032003-11-06Eaton L. DanielMethods of forming prostheses
FR2840617B1 (en)2002-06-102004-09-10Rhodia Chimie Sa PROCESS FOR PRODUCING POROUS SILICONE MATERIALS
US20060036266A1 (en)2002-07-102006-02-16Sulamanidze Marlen AEndoprosthesis for reparative anaplastic surgery
EP1532942A4 (en)2002-07-102006-08-02Marlen Andreevich SulamanidzeEndoprosthesis for reparative anaplastic surgery
US20070154525A1 (en)2002-07-312007-07-05Calhoun Christopher JApparatus and method for preventing adhesions between an implant and surrounding tissues
US20040115241A1 (en)2002-07-312004-06-17Calhoun Christopher J.Apparatus and method for preventing adhesions between an implant and surrounding tissues
US20070116735A1 (en)2002-07-312007-05-24Macropore Biosurgery, Inc.Apparatus and method for preventing adhesions between an implant and surrounding tissues
WO2004037318A3 (en)2002-10-222004-08-26Biomerix CorpMethod and system for intravesicular delivery of therapeutic agents
WO2004062531A1 (en)2003-01-032004-07-29Biomerix CorporationReticulated elastomeric matrices, their manufacture and use in implantable devices
US20040143327A1 (en)2003-01-172004-07-22Ku David N.Solid implant
US20060229721A1 (en)2003-01-172006-10-12Ku David NSolid implant
US20040213986A1 (en)2003-04-222004-10-28Kim Ho-CheolPatterned, high surface area substrate with hydrophilic/hydrophobic contrast, and method of use
US20070093911A1 (en)2003-04-282007-04-26Helmut FrickeSoft tissue implant such as breast implant, calf muscle implant or the like
US7192450B2 (en)2003-05-212007-03-20Dexcom, Inc.Porous membranes for use with implantable devices
US7081135B2 (en)2003-06-092006-07-25Lane Fielding SmithMastopexy stabilization apparatus and method
US6875233B1 (en)2003-06-102005-04-05Hinging breast implant
US7632291B2 (en)2003-06-132009-12-15Trivascular2, Inc.Inflatable implant
US6802861B1 (en)2003-08-262004-10-12Rsh-Gs TrustStructured breast implant
US7169180B2 (en)2003-09-032007-01-30Brennan William ASystem and method for breast augmentation
US20050055093A1 (en)2003-09-032005-03-10Brennan William A.System and method for breast augmentation
US20050070124A1 (en)2003-09-302005-03-31International Business Machines CorporationDirect photo-patterning of nanoporous organosilicates, and method of use
US20080075752A1 (en)2003-10-012008-03-27University Of WashingtonNovel Porous Biomaterials
US20050122169A1 (en)2003-12-012005-06-09Shinichi WatanabeClass D amplifier
US20050143480A1 (en)*2003-12-252005-06-30Nitto Kogyo Co., LtdSilicone elastomer porous body
US7268169B2 (en)2003-12-252007-09-11Nitto Kogyo Co., Ltd.Silicone elastomer porous body
US20050196452A1 (en)2004-02-062005-09-08Boyan Barbara D.Surface directed cellular attachment
US20050251083A1 (en)2004-02-122005-11-10Victoria Carr-BrendelBiointerface with macro-and micro-architecture
US7645475B2 (en)2004-03-032010-01-12Mentor CorporationDevices having a textured surface
US20050216094A1 (en)2004-03-032005-09-29Prewett Donovan DDevices having a textured surface
US20070190108A1 (en)2004-05-172007-08-16Arindam DattaHigh performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
US20060002810A1 (en)2004-07-022006-01-05Grohowski Joseph A JrPorous metal articles having a predetermined pore character
US7476249B2 (en)2004-08-062009-01-13Frank Robert EImplantable prosthesis for positioning and supporting a breast implant
US20060036320A1 (en)2004-08-132006-02-16Keith JobSpray method for forming shells for prostheses
US6932840B1 (en)2004-09-082005-08-23Absolute Breast SolutionsImplant device
US7641688B2 (en)2004-09-162010-01-05Evera Medical, Inc.Tissue augmentation device
US7244270B2 (en)2004-09-162007-07-17Evera MedicalSystems and devices for soft tissue augmentation
US20070198085A1 (en)2004-10-282007-08-23Fahd BenslimaneBreast implant, use of an associated pouch, and method for determination of a breast implant
US7520896B2 (en)2004-10-282009-04-21Fahd BenslimaneBreast implant, use of an associated pouch, and method for determination of a breast implant
US7323208B2 (en)2004-11-302008-01-29The Regents Of The University Of MichiganModified porous materials and method of forming the same
US20060136056A1 (en)2004-12-212006-06-22Ishay WohlImplant device and method
US20060224239A1 (en)2005-04-042006-10-05Tiahrt Leif KBreast implant
US7081136B1 (en)2005-04-182006-07-25Techno Investments LlcAdjustable gel filled mammary prosthesis and method
US20060235094A1 (en)*2005-04-192006-10-19Sasan Habibi-NainiUses of a method for the manufacture of foamed shaped polymer parts of liquid silicone rubber
US20060246121A1 (en)2005-04-272006-11-02Ma Peter XParticle-containing complex porous materials
WO2006133366A1 (en)2005-06-082006-12-14Joann SeastromImplant shell and filler apparatus
JP2007029717A (en)2005-06-232007-02-08Depuy Products IncImplant with textured surface and method for producing the same
US20090093878A1 (en)2005-06-282009-04-09Ami GlicksmanHuman implantable tissue expander
US20070135916A1 (en)2005-10-262007-06-14Allergan, Inc.Variable cohesive gel form-stable breast implant
US20070104693A1 (en)2005-11-072007-05-10Quijano Rodolfo CBreast augmentation system
US20070104695A1 (en)2005-11-072007-05-10Quijano Rodolfo CBreast augmentation and reconstruction system
US20090045166A1 (en)2005-11-112009-02-19Yangyang LiMethod of enhancing biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
US20090087641A1 (en)2005-11-142009-04-02Favis Basil DPorous nanosheath networks, method of making and uses thereof
US7547393B2 (en)2005-12-072009-06-16General Electric CompanyMembrane structure and method of making
US7625405B2 (en)2006-02-082009-12-01Neosthetic, LlcBreast implant and method of manufacture
US20080009830A1 (en)2006-06-272008-01-10Fujimoto Kazuro LBiodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US20080268019A1 (en)2006-07-072008-10-30Badylak Stephen FBiohybrid elastomeric scaffolds and methods of use thereof
US20080071371A1 (en)2006-09-202008-03-20Robert ElshoutTexturizing surfaces
US20080154366A1 (en)2006-12-212008-06-26Frank Robert EImplantable prosthesis for periareolar mastopexy
US20080241212A1 (en)2007-03-292008-10-02Tyrx Pharma, Inc.Biodegradable, Polymer Coverings for Breast Implants
WO2009110917A1 (en)2007-06-072009-09-11Osteotherapeutics, L.L.C.Bone cement compositions for use as growth factor carriers and methods of making same
US20080312739A1 (en)2007-06-152008-12-18Q-Med AbBiocompatible implant system and method
US20090082864A1 (en)2007-09-192009-03-26Gaoyuan Gavin ChenNaturally contoured, preformed, three dimensional mesh device for breast implant support
WO2009061672A1 (en)2007-11-052009-05-14Allergan, Inc.Soft prosthesis shell texturing method
US20090118829A1 (en)*2007-11-052009-05-07Allergan, Inc.Soft prosthesis shell texturing method
US20130053956A1 (en)2007-11-052013-02-28Allergan, Inc.Soft prosthesis shell texturing method
US20110117267A1 (en)2007-11-052011-05-19Allergan, Inc.Soft Prosthesis Shell Texturing Method
US8313527B2 (en)2007-11-052012-11-20Allergan, Inc.Soft prosthesis shell texturing method
US20110035004A1 (en)2007-11-142011-02-10Maxwell GInterfaced medical implant
US20090125107A1 (en)2007-11-142009-05-14Maxwell G PatrickInterfaced Medical Implant Assembly
US20090169716A1 (en)2007-12-272009-07-02Linhardt Jeffrey GCoating solutions comprising surface active segmented block copolymers
US20090198331A1 (en)2008-02-012009-08-06Kesten Randy JImplantable prosthesis with open cell flow regulation
US20090198332A1 (en)2008-02-052009-08-06Hilton BeckerMethod for texturing the surface of a synthetic implant
US20090198333A1 (en)2008-02-052009-08-06Hilton BeckerMethod for texturing the surface of a synthetic implant
US20100042211A1 (en)*2008-08-132010-02-18Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US20130310934A1 (en)2008-08-132013-11-21Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US8506627B2 (en)2008-08-132013-08-13Allergan, Inc.Soft filled prosthesis shell with discrete fixation surfaces
US8377127B2 (en)*2008-08-202013-02-19Allergan, Inc.Self-sealing shell for inflatable prostheses
US20100292790A1 (en)*2009-05-132010-11-18Allergan, Inc.Implants and methods for manufacturing same
US20120321777A1 (en)2009-05-132012-12-20Allergan, Inc.Iimplants and methods for manufacturing same
US20110106249A1 (en)2009-09-022011-05-05Hilton BeckerSelf supporting and forming breast implant and method for forming and supporting an implant in a human body
US20110054605A1 (en)2009-09-022011-03-03Hilton BeckerSelf supporting implant in a human body and method for making the same without capsular contracture
US8202317B2 (en)2009-09-022012-06-19Hilton BeckerSelf supporting and forming breast implant and method for forming and supporting an implant in a human body
US20110093069A1 (en)2009-10-162011-04-21Allergan, Inc.Implants and methdos for manufacturing same
US20120245685A1 (en)2009-11-192012-09-27Won Seok YuArtificial breast implant provided on the surface threof with silicon open cell foam layer, and method for producing the same
WO2011094155A2 (en)2010-01-282011-08-04Allergan, Inc.Open celled foams, implants including them and processes for making same
US20130295379A1 (en)2010-01-282013-11-07Allergan, Inc.Open celled foams, implants including them and processes for making same
US20130209661A1 (en)2010-01-282013-08-15Allergan, Inc.Processes for making porous implantable materials
US8487012B2 (en)2010-01-282013-07-16Allergan, Inc.Open celled foams, implants including them and processes for making same
US20120004722A1 (en)2010-02-032012-01-05Allergan, Inc.Degradation resistant implantable materials and methods
US20110196488A1 (en)2010-02-032011-08-11Allergan, Inc.Degradation resistant implantable materials and methods
US20130032962A1 (en)2010-02-052013-02-07Allergan, Inc.Porogen compositions, methods of making and uses
US20130023987A1 (en)2010-02-052013-01-24Allergan, Inc.Porous materials, methods of making and uses
US20110196489A1 (en)2010-02-052011-08-11Allergan, Inc.Biocompatible structures and compositions
WO2011097499A1 (en)2010-02-052011-08-11Allergan, Inc.Biocompatible structures and compositions
US20110313073A1 (en)2010-04-272011-12-22Allergan, Inc.Foam-like materials and methods for producing same
US20120041555A1 (en)2010-05-102012-02-16Allergan, Inc.Silicone implant with imprinted texture
US20110276134A1 (en)2010-05-102011-11-10Allergan, Inc.Silicone implant with imprinted texture
US20110276133A1 (en)2010-05-102011-11-10Allergan, Inc.Porous materials, methods of making and uses
US20110282444A1 (en)2010-05-112011-11-17Allergan, Inc.Porous materials, methods of making and uses
US20110278755A1 (en)2010-05-112011-11-17Allergan, Inc.Porogen compositions, method of making and uses
US20110309541A1 (en)2010-06-162011-12-22Allergan, Inc.Open-cell surface foam materials
US20120101574A1 (en)2010-08-202012-04-26Allergan, Inc.Implantable materials
US20120077012A1 (en)2010-09-282012-03-29Allergan, Inc.Porous materials, methods of making and uses
US20120077010A1 (en)2010-09-282012-03-29Allergan, Inc.Porous materials, methods of making and uses
US20120077891A1 (en)2010-09-282012-03-29Allergan, Inc.Porogen compositions, methods of making and uses
US20130013062A1 (en)2010-11-162013-01-10Allergan, Inc.Methods for creating foam-like texture
US20130245148A1 (en)2010-12-072013-09-19Allergan, Inc.Process for texturing materials
US8546458B2 (en)2010-12-072013-10-01Allergan, Inc.Process for texturing materials
US20130158657A1 (en)2011-12-152013-06-20Allergan, Inc.Surgical methods for breast reconstruction or augmentation

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Alvarez et al, "Synthesis of Macro/Mesoporous Silica and Carbon Monoliths by Using a Commercial Polyurethane Foam as Sacrificial Template", Materials Letters, 61, 2378-2381 (2007).
Barnsley et al., "Textured Surface Breast Implants in the Prevention of Capsular Contracture Among Breast Augmentation Patients: A Meta-Analysis of Randomized Controlled Trials", Plastic and Reconstructuve Surgery, 2006, 117(7), 2182-2190.
Barr et al., "Current Implant Surface Technoogy: An Examination of Their Nanostructure and Their Influence on Fibroblas Alignment and Biocompatibility", Elastic, 2008, 9, 198-217.
Brauker et al., "Neovascularization of synthetic membranes directed by membrane microarchitecture", Journal of Biomedical Materials Research, 1995, pp. 1517-1524, vol. 29, John Wiley & Sons, Inc.
Brohim et al., "Early Tissue Reaction to Textured Breast Implant Surfaces", Anals of Plastic Surgery, 28(4): 354-362.
Inamaned Aesthetics Brochure, Directions for Use Style 410 Silicone-Filled Breast Implants (2003).
Ma, "Scaffolds for tissue fabrications", Materials Today, 2004, 7, 30-40.
Mikos et al., "Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineeing", Electronic Journal of Biotechnology, 2000, 3(2), 114-119.
Minami et al., "The composition and behavior of capsules around smooth and textured breast implants in pigs", Plastic and Reconstructive Surgery, 2006, 874-884.
Murphy et al. "Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds", Tissue Engineering, vol. 8, No. 1, 2002, pp. 43-52 (XP-002588127).
Sharkawy et al. "Engineering the tissue which encapsulates subcutaneous implants", II Plasma-tissue exchange properties, 1998, pp. 586-597, John Wiley & Sons, Inc.
Wei et al., "Macroporous and Nanofibers Polymer Scaffolds and Polymer/Bone-Like Apatite Composite Scaffolds Generated by Sugar Spheres", Journal of Biomedical Materials Research Part A, 2006, 306-315.
Zhang et al., "Macroporous Alumina Monoliths Prepared by Filling Polymer Foams with Alumina Hydrosols", J. Mater Sci., 44, 931-938 (2009).

Also Published As

Publication numberPublication date
US20130302511A1 (en)2013-11-14
RU2012119244A (en)2013-11-27
AU2010307139A1 (en)2012-05-17
CN102665776A (en)2012-09-12
CA2777771A1 (en)2011-04-21
KR20120087152A (en)2012-08-06
US20110093069A1 (en)2011-04-21
EP2488224A1 (en)2012-08-22
BR112012008929A2 (en)2019-09-24
WO2011046806A1 (en)2011-04-21
US20150132469A1 (en)2015-05-14
JP2013508024A (en)2013-03-07

Similar Documents

PublicationPublication DateTitle
US8951596B2 (en)Implants and methods for manufacturing same
US8487012B2 (en)Open celled foams, implants including them and processes for making same
US9072821B2 (en)Biocompatible structures and compositions
EP2429446B1 (en)Implants and methods for manufacturing same
EP2569473B1 (en)Porous materials, methods of making and uses
ES2623475T3 (en) Porogen compositions, methods for making them and uses
JP2001505114A (en) Biodegradable polymer membrane
CA2808857A1 (en)Textured breast implant materials and methods of making
EP0478279A2 (en)Biocompatible body implant having a textured surface
KR101288115B1 (en) Biodegradable polymer-coated silicon implant material and its manufacturing method
HK1168747B (en)Implants and methods for manufacturing same
HK1168747A (en)Implants and methods for manufacturing same
HK1180620A (en)Porous materials, methods of making and uses

Legal Events

DateCodeTitleDescription
STCFInformation on status: patent grant

Free format text:PATENTED CASE

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment:4

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:8

ASAssignment

Owner name:ALLERGAN, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUDGE, FEARGAL D.;DEMPSEY, KEVIN J.;SIGNING DATES FROM 20100121 TO 20100126;REEL/FRAME:063156/0600

ASAssignment

Owner name:ALLERGAN, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GORALTCHOUK, ALEXEI;VAN EPPS, DENNIS E.;POWELL, THOMAS E.;SIGNING DATES FROM 20101011 TO 20101023;REEL/FRAME:066605/0029


[8]ページ先頭

©2009-2025 Movatter.jp