Movatterモバイル変換


[0]ホーム

URL:


US8834587B2 - Method of producing gaseous products using a downflow reactor - Google Patents

Method of producing gaseous products using a downflow reactor
Download PDF

Info

Publication number
US8834587B2
US8834587B2US13/539,861US201213539861AUS8834587B2US 8834587 B2US8834587 B2US 8834587B2US 201213539861 AUS201213539861 AUS 201213539861AUS 8834587 B2US8834587 B2US 8834587B2
Authority
US
United States
Prior art keywords
group
metals
reactor
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/539,861
Other versions
US20120282163A1 (en
Inventor
Randy D. Cortright
Robert T. Rozmiarek
Charles C. Hornemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virent Energy Systems Inc
Virent Inc
Original Assignee
Virent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virent IncfiledCriticalVirent Inc
Priority to US13/539,861priorityCriticalpatent/US8834587B2/en
Assigned to VIRENT ENERGY SYSTEMS, INC.reassignmentVIRENT ENERGY SYSTEMS, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HORNEMANN, CHARLES C., ROZMIAREK, ROBERT T., CORTRIGHT, RANDY D.
Assigned to VIRENT, INC.reassignmentVIRENT, INC.CHANGE OF NAME (SEE DOCUMENT FOR DETAILS).Assignors: VIRENT ENERGY SYSTEMS, INC.
Publication of US20120282163A1publicationCriticalpatent/US20120282163A1/en
Application grantedgrantedCritical
Publication of US8834587B2publicationCriticalpatent/US8834587B2/en
Assigned to ENERGY, UNITED STATES DEPARTMENT OFreassignmentENERGY, UNITED STATES DEPARTMENT OFCONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS).Assignors: VIRENT ENERGY SYSTEMS, INC.
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a divisional patent application of U.S. non-provisional patent application Ser. No. 11/961,280 filed Dec. 20, 2007 now abandoned which claims the benefit of U.S. provisional patent application No. 60/876,015 filed Dec. 20, 2006. The full contents of these applications are incorporated by reference as if set forth in its entirety herein for all purposes.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with United States Government support awarded by the U.S. Department of Energy under DE-FG36-05GO15046. The United States has certain rights in this invention.
BACKGROUND OF THE INVENTION
Many technologies and processes exist for converting feedstocks into liquid or gaseous products using heterogeneous catalyst systems. Such processes are typically categorized based upon whether the feedstock (reactant) and/or product are in a single phase (solid, gas or liquid) or a multi-phase involving two or more of the foregoing. The processes are also categorized based upon the flow pattern in which the feedstock and product flow through the catalyst; namely, either a concurrent configuration where both the feedstock and product flow in the same direction or a countercurrent configuration where the feedstock and product flow across each other in opposite directions. The processes are also typically classified as downflow when the feedstock and product flow down with gravity through the catalyst bed and upflow when the feedstock and product flow up against gravity through the catalyst bed.
The type of reactor system utilized for any given process depends on the nature of the feedstock and its resulting products. For example, concurrent downflow reactors are often used in reactions involving the catalytic conversion of gaseous reactants to gaseous products, or liquid reactants to liquid products, or in trickle bed reactors involving the concurrent flow of both a gas and liquid reactant that react together to produce the desirable product. Concurrent downflow reactors are generally not used for reactions involving the conversion of liquid feedstocks to gas products as the hydrodynamic flow patterns usually become irregular and unpredictable due to the variance between the density and buoyancy of the liquid reactant and the gas phase products. The flow pattern is critical as an irregular or unpredictable flow pattern can lead to vapor-lock and other hydrodynamic problems. In multi-tubular reactor systems, this is significant as vapor-lock and other hydrodynamic problems can lead to mal-distribution of the liquid feedstock or other negative effects (e.g., hot spots, selectivity issues, reactor performance, etc.). Expeditious removal of the gas products from the reactor system is also desirable in order to prevent subsequent, undesired reactions from taking place. As a result, concurrent upflow systems are used in reactions involving the catalytic conversion of a liquid reactant to gaseous products, a process termed flooded flow.
One process which differs from conventional systems is disclosed in European Patent Application No. 88202871.5 (Publication No. 0323663A2) to Terlouw et al. The disclosed process generally relates to controlling the exothermic nature of catalytic reactions between two or more reactants by causing the reactions to occur under substantially isothermic conditions. The reaction mixture includes at least one compound having a boiling point lower than the other compounds in the mixture, and that the one compound is present in an amount sufficient to consume, by vaporization thereof, the heat generated by the exothermic reaction of the mixture. To achieve an isothermic state, the reactor is operated at the boiling pressure of the one compound and in a manner as to provide a concurrent downflow of a liquid and gas phase, wherein the gas phase is the vaporized form of the one compound having the lowest boiling point. The process differs from conventional fixed-bed reactors in that the gas or vapor phase comprises a vaporized component from the liquid phase. The fact that the vapor phase is substantially a vaporized component of the liquid phase is critical to the functionality of the system. Here, vapor-lock and hydrodynamic concerns are limited due to the ability of any vapor trapped within the system to recondense into its liquid form for either continued use or removal from the system.
SUMMARY OF THE INVENTION
The present invention provides a reactor system for converting a liquid feedstock to a noncondensable gas product. The reactor system includes a reaction chamber having at least one reaction tube, with a catalyst packed therein, an inlet disposed above the reaction chamber for introducing the liquid feedstock, and an outlet disposed below the reaction chamber for discharging the noncondensable gas product and an effluent stream. The pressure at the inlet is greater than the pressure at the outlet, thereby causing the liquid feedstock, the noncondensable gas product and the effluent to concurrently flow in a downflow direction. In one embodiment, the system includes a multi-tube reactor containing a plurality of reaction tubes, an outer shell enclosing the reaction tubes, and a heating medium system for introducing a heating medium into the shell. The catalyst is preferably a heterogeneous catalyst having one or more materials capable of producing noncondensable gases under aqueous phase reforming conditions, such as Group VIIIB metals, whether alone or in combination with Group VIIB metals, Group VIB metals, Group VB metals, Group IVB metals, Group IIB metals, Group IB metals, Group IVA metals, or Group VA metals.
The present invention also involves methods for producing synthesis gases, such as hydrogen and light hydrocarbons, and other noncondensable gases from liquid feedstocks. The method includes the steps of (a) introducing at a first pressure a liquid feedstock through an inlet into a reaction chamber; (b) reacting the liquid feedstock over a heterogeneous catalyst at a temperature and pressure effective to produce noncondensable gas and an effluent stream; and (c) removing the noncondensable gas and effluent from the reaction chamber at a second pressure less than the first pressure and in a manner that provides a concurrent downflow of the liquid feedstock, gas and effluent. The liquid feedstock preferably includes water and an oxygenated hydrocarbon having at least two carbon atoms, such as any one of a number of polyols, sugars, sugar alcohols, alcohols, starches, lignins, cellulosics and water soluble saccharides. The catalyst is preferably a heterogeneous catalyst having one or more materials capable of producing noncondensable gases under aqueous phase reforming conditions, such as Group VIIIB metals, whether alone or in combination with Group VIIB metals, Group VIB metals, Group VB metals, Group IVB metals, Group IIB metals, Group IB metals, Group IVA metals, or Group VA metals.
The resulting gases may be used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be purified, collected for later use or distributed.
One aspect of the invention is a concurrent downflow reactor for converting a liquid feedstock to a noncondensable gas product using a heterogenous catalyst, the reactor comprising a reaction chamber comprising at least one reaction tube containing a heterogenous catalyst therein; an inlet having a pressure Piand adapted to feed the liquid feedstock to an upper portion of the reaction chamber; an outlet having a pressure Poand adapted to discharge the noncondensable gas product and an effluent stream from a lower portion of the reaction chamber, wherein Piis greater than Po.
In an exemplary embodiment of the reactor, the reaction chamber comprises a plurality of reaction tubes each containing a catalyst therein, an outer shell adapted to enclose at least a portion of the reaction tubes, and a heating system adapted to introduce a heating medium into the shell to provide heat to the reaction tubes.
In another exemplary embodiment of the reactor, the catalyst comprises at least one Group VIIIB metal and wherein the feedstock comprises water and at least one C2+ water soluble oxygenated hydrocarbon.
In another exemplary embodiment of the reactor, the Group VIIIB metal is platinum, nickel, palladium, ruthenium, rhodium, iridium, iron, an alloys thereof, or a mixtures thereof, and wherein the oxygenated hydrocarbon is a C2-6oxygenated hydrocarbon.
In another exemplary embodiment of the reactor, the catalyst further comprises a second catalytic material being Group VIIIB metals, Group VIIB metals, Group VIB metals, Group VB metals, Group IVB metals, Group IIB metals, Group IB metals, Group IVA metals, Group VA metals, alloys thereof, or mixtures thereof.
In another exemplary embodiment of the reactor, the second catalytic material is rhenium and the Group VIIIB transition metal is iron, nickel, palladium, platinum, ruthenium, rhodium, alloys thereof, or mixtures thereof.
In another exemplary embodiment of the reactor, the catalyst is adhered to a support constructed from one or more materials being carbon, silica, silica-alumina, alumina, zirconia, titania, ceria, vanadia or mixtures thereof.
In another exemplary embodiment of the reactor, the noncondensable gas product comprises one or more gases being hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, propane, propylene, butane, butane, pentane and pentene.
Another aspect of the invention is an energy generation system comprising any one of the inventive reactors set forth herein and an energy generation device adapted to use the noncondensable gas product as a fuel.
In an exemplary embodiment of the energy generation system, the energy generation device is an internal combustion engine, PEM fuel cell, solid-oxide fuel cell, or a gas turbine genset.
Another aspect of the invention is a method for manufacture of noncondensable gas using any one of the inventive reactors set forth herein, the method comprising the acts or steps of reacting a liquid feedstock comprising water and at least one C2+ water soluble oxygenated hydrocarbon using a heterogeneous catalyst comprising one or more Group VIIIB metals, at a temperature between about 80° C. to 300° C. and a reaction pressure suitable to produce the noncondensable gas and an effluent, wherein a pressure gradient provides concurrent downflow of the liquid feedstock, effluent and noncondensable gas.
In an exemplary embodiment of the method of manufacture, the Group VIIIB metal is platinum, nickel, palladium, ruthenium, rhodium, iridium, iron, alloys thereof, or mixtures thereof.
In another exemplary embodiment of the method of manufacture, the catalyst further comprises a second catalytic material being Group VIIB metals, Group VIB metals, Group VB metals, Group IVB metals, Group IIB metals, Group IB metals, Group IVA metals, Group VA metals, alloys thereof, or mixtures thereof.
In another exemplary embodiment of the method of manufacture, the second catalytic material is rhenium and the Group VIIIB metal is iron, nickel, palladium, platinum, ruthenium, rhodium, alloys thereof, or mixtures thereof.
In another exemplary embodiment of the method of manufacture, the catalyst is adhered to a support constructed from one or more materials being carbon, silica, silica-alumina, alumina, zirconia, titania, ceria, vanadia or mixtures thereof.
In another exemplary embodiment of the method of manufacture, the oxygenated hydrocarbon is a C1-6oxygenated hydrocarbon.
In another exemplary embodiment of the method of manufacture, the oxygenated hydrocarbon is a sugar or a sugar alcohol.
In another exemplary embodiment of the method of manufacture, the reaction temperature is between about 150° C. and about 270° C. and the reaction pressure is between about 72 psig and about 1300 psig.
In another exemplary embodiment of the method of manufacture, the noncondensable gas comprises one or more gases being hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, propane, propylene, butane, butane, pentane and pentene.
In another exemplary embodiment of the method of manufacture, the pressure gradient is in the range of 0.5-3 psig.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an illustration of a single chamber reactor system.
FIG. 2 is a schematic of an exemplary multi-tube reactor system.
FIG. 3 is a top view of an exemplary multi-tube reactor system.
FIG. 4 is a basic system schematic of an exemplary embodiment of a single chamber reactor system in combination with an energy generation apparatus or machine.
FIG. 5 is a block diagram illustrating a reactor system according to one exemplary embodiment integrated.
FIG. 6 is an illustration of the single tube reactor system used in Example 1.
FIG. 7 illustrates the catalyst bed temperature along the length of a single tube reactor during the production of synthesis gas from glycerol.
FIG. 8 illustrates the multiphase transition along the length of a reactor.
FIG. 9 illustrates the gas concentration gradient for an exemplary embodiment of the present invention as compared to trickle-bed reactor systems, such as that disclosed in EP Application 0323663.
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
The present invention is directed to reactor systems and their use in converting liquid feedstocks to noncondensable gases, such as hydrogen and light hydrocarbons. The reactor systems differ from conventional systems in that the reactor is designed so that the feedstock solution, resulting gas products and any effluent flow in a concurrent downflow direction. The generated gases are useful as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be purified and collected for later use or distribution.
Referring toFIG. 1, an aqueous feedstock solution is introduced intoreaction chamber2 throughinlet4 where it is reacted over aheterogeneous catalyst6 at a pressure and temperature effective to produce the desirable noncondensable gases and an effluent stream. The noncondensable gases and effluent flow in a concurrent downflow direction tooutlet8 where they are collected and/or transferred for downstream processing or use. The concurrent downflow is achieved by maintaining the pressure (Pi) atinlet4 at a level greater than the pressure (Po) atoutlet8 so as to provide a pressure gradient along the length of thereaction chamber2. To maximize performance, it is also desirable to maintain a substantially similar pressure across the horizontal plane of thereaction chamber2 so as to cause equal distribution of the feedstock, gas product and effluent across the reactor and the continuous flow of the gas product throughoutlet8.
The reactor system is particularly useful for producing light hydrocarbons (e.g., C1-4parrafins and olefins) and hydrogen from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. Aqueous-Phase Reforming (APR) is a catalytic reforming process that generates light hydrocarbons (e.g. methane, ethane, ethylene, propane, propylene, butane, 1-butene, pentane, 1-pentene, 2-pentene, hexane, etc.), carbon monoxide, carbon dioxide and/or hydrogen by the reaction of oxygenated compounds with liquid water at low temperatures. The key breakthrough of the APR process is that the reforming can be done in the liquid phase and at temperatures (e.g., 150° C. to 270° C.) where the water-gas shift reaction is favorable, thereby making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. In the case of hydrogen production, the reaction also tends to be endothermic, thereby avoiding the concerns associated with exothermic reactions. Various methods and techniques for practicing APR are described in U.S. Pat. Nos. 6,699,457; 6,964,757 and 6,964,758; and U.S. patent application Ser. No. 11/234,727 (all to Cortright et al., entitled “Low-Temperature Hydrogen Production from Oxygenated Hydrocarbons”); and U.S. Pat. No. 6,953,873 (to Cortright et al., and entitled “Low Temperature Hydrocarbon Production from Oxygenated Hydrocarbons”); and commonly owned co-pending International Patent Application No. PCT/US2006/048030 (to Cortright et al., and entitled “Catalyst and Methods for Reforming Oxygenated Compounds”), all of which are incorporated herein by reference.
In addition to aqueous phase reforming, the present invention is also useful in other systems that generate noncondensable gases from liquid feedstocks. Noncondensable gases are generally classified as those gases that exist in the gas phase at standard temperature and pressure. Illustrated examples of various noncondensable gases and their boiling points, critical pressures and critical temperatures are set forth in Table 1 below.
TABLE 1
Boiling PointCritical PressureCritical Temp
Gas(° C.)(psia)(° C.)
Hydrogen−252.8188.1−239.9
Carbon Monoxide−191.5507.4−140.02
Carbon Dioxide−78.41070.631
Methane−161.5673.1−82.1
Ethane−88.6712.832.4
Propane−42.1618.796.8
n-Butane−0.5550.7152
Ethylene−103.7742.19.9
Propylene−47.7667.191.8
1-Butene−6.3583.4146.4
Nitrogen−195.8492.2−149.9
Oxygen−183731.4118.6
Helium−268.933.2−268
In its operation, the liquid feedstock enters the reaction chamber where it is contacted with the catalyst. As the liquid feedstock continues down the reaction chamber it is catalytically reacted to produce gaseous product and an effluent containing water, unreacted feedstock and any other byproducts. The result is a liquid phase zone in the early portions of the reactor, followed by a two-phase zone containing both gaseous product and effluent, and then, in some applications, a complete conversion to a gas phase as the effluent is vaporized (FIG. 8). The production of the gaseous products results in an increase in the catalyst bed temperature (FIG. 7) and a continued increase in the concentration of gaseous products (FIG. 9) as the reaction commences down the length of the reactor. Contrast that with trickle-bed reactors where the gas reactant is consumed along the length of the reactor such that the gas concentration decreases, or is passed directly through the system as a diluent (FIG. 9).
The present invention differs from conventional technologies in that it makes use of a downflow configuration. A downflow configuration is a non-desirable flow scheme due to the problems of gas removal, vapor lock and mal-distribution of flow, especially as the concentrations of gaseous products increased. If liquid flow diminished or ceased, and a subsequent stall of reaction activity occurred, a heat sink would no longer exist, leading to stagnation and overheating in the system. As such, the downflow configuration is a non-desirable system for producing gaseous products from liquid feedstocks.
The present invention overcomes the vapor lock, flow mal-distribution and gas removal problems by maintaining a substantially similar pressure gradient across the reactor, especially in multi-tube reactors, thereby imparting enough force on the gaseous products to overcome buoyancy. By maintaining a pressure gradient along the length of the reactor, the resulting flow further assists in overcoming stagnation and gas removal issues. The pressure gradient may be of any range so long as the pressure at the inlet is greater than the pressure at the outlet, and may be achieved by considering the throughput of the reactor in conjunction with the main variables of catalyst particle size and length to diameter (L/D) ratio of the reactor.
Unlike reactors systems in which gaseous feedstocks are converted to synthesis gases, and other noncondensable gas products, the present invention involves the conversion of the liquid feedstock directly to the desirable gas product. The conversion in this manner has several benefits as compared to the gas-to-gas systems. Specifically, the present invention does not require the extreme temperatures or system pressures required of gas-based systems. The ability to perform the conversion reactions at lower pressures (typically 15 to 50 bar) also allows for the gas product stream to be more effectively purified and reduces the need for energy consuming pressure systems. The low temperatures also minimize the occurrence of undesirable decomposition reactions typically encountered when carbohydrates are heated to elevated temperatures, thereby allowing for the use of biomass derived feedstocks. The down-flow configuration may also improve the selectivity, stability and efficiency of the process, and advantageously improves the overall conversion of the liquid feedstock to the desirable noncondensable gas products. In terms of scaled-up production, after start-up, the reactor systems could be process controlled, and the reactions would proceed at steady-state.
The use of a liquid feedstock also assists in overcoming the vapor lock, flow mal-distribution and gas removal concerns. For instance, the liquid feedstock simplifies the equal distribution across the reactor system, especially in multi-tube systems, and removes the need for complex elements required in two-phase systems, such as the liquid and gas mixers used in trickle-bed reactors. The single liquid phase at the inlet also serves as a cap or barrier that impedes the buoyant gaseous products produced in the later two-phase portion of the reactor from percolating up to the inlet and disturbing the incoming feedstock distribution.
In one application of the invention, the noncondensable gases are generated from an aqueous feedstock solution containing oxygenated hydrocarbons. The oxygenated hydrocarbons can be any water-soluble oxygenated hydrocarbon having two or more carbon atoms and at least one oxygen atom. Preferably, the oxygenated hydrocarbon has 2 to 12 carbon atoms, and more preferably 2 to 6 carbon atoms. The oxygenated hydrocarbon may also have an oxygen-to-carbon ratio ranging from 0.5:1 to 1.5:1, including ratios of 0.75:1.0, 1.0:1.0, 1.25:1.0, 1.5:1.0, and other ratios there-between. In exemplary embodiments, the oxygenated hydrocarbon has an oxygen-to-carbon ratio of 1:1. Nonlimiting examples of water-soluble oxygenated hydrocarbons include ethanediol, ethanedione, acetic acid, propanol, propanediol, propionic acid, glycerol, glyceraldehyde, dihydroxyacetone, lactic acid, pyruvic acid, malonic acid, butanediols, butanoic acid, aldotetroses, tautaric acid, aldopentoses, aldohexoses, ketotetroses, ketopentoses, ketohexoses, alditols, sugars, sugar alcohols, cellulosic derivatives, lignocellulosic derivatives, saccharides, starches, polyols and the like. In one exemplary embodiment, the oxygenated hydrocarbon includes sugar, sugar alcohol, saccharides and glycerol. More particularly, the oxygenated hydrocarbon is a sugar, such as glucose, fructose, sucrose, maltose, lactose, mannose or xylose, or a sugar alcohol, such as arabitol, erythritol, glycerol, isomalt, lactitol, malitol, mannitol, sorbitol or xylitol.
The oxygenated hydrocarbon is combined with water to provide an aqueous feedstock solution having a concentration effective for conversion to the desirable gaseous products. The water-to-carbon ratio on a molar basis should be from about 0.5:1 to about 20:1, including ratios such as 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 15:1, and any ratios there-between. The feedstock solution may also be characterized as a solution having at least 20 weight percent (wt %) of the total solution as an oxygenated hydrocarbon. For example, the solution may include one or more oxygenated hydrocarbons, with the total concentration of the oxygenated hydrocarbons in the solution being at least about 10%, 20%, 30%, 40%, 50%, 60%, or greater by weight, including any percentages between, and depending on the oxygenated hydrocarbons used. In one exemplary embodiment, the feedstock solution includes at least about 20%, 30%, 40%, 50%, or 60% of a sugar, such as glucose, fructose, sucrose or xylose, or a sugar alcohol, such as sorbitol, mannitol, glycerol or xylitol, by weight.
The temperature and pressure conditions are such that at least a portion of the feedstock is maintained in the liquid phase at the reactor inlet. The temperature and pressure conditions may also be selected to more favorably produce the desirable gaseous products in the vapor-phase. In general, the reaction should be conducted at a temperature where the thermodynamics are favorable. For instance, the minimum pressure required to maintain a portion of the feedstock in the liquid phase will vary with the reaction temperature. As temperatures increase, higher pressures will generally be required to maintain the feedstock in the liquid phase. In terms of scaled-up production, after start-up, the reactor systems could be process controlled, and the reactions would proceed at steady-state equilibrium.
The reaction temperature may be from about 80° C. to about 300° C., and the reaction pressure from about 72 psig to about 1300 psig. In one exemplary embodiment, the reaction temperature is between about 120° C. and about 300° C., or between about 150° C. and about 270° C. The reaction pressure is between about 72 and 1200 psig, or between about 145 and 1200 psig, or between about 200 and 725 psig, or between about 365 and 675 psig.
In general, the reaction should be conducted under conditions where the residence time (tr) of the feedstock solution over the catalyst is appropriate to generate the desirable gaseous products. For example, the WHSV for the reaction may be at least about 0.25 gram of oxygenated hydrocarbon per gram of catalyst per hour, or at least 0.5 grams, or at least 5.0 grams, or at least 10.0 grams, or at least 100.0 grams, or at least 1000.0 grams of oxygenated hydrocarbon per gram of catalyst per hour.
Alkali or alkali earth salts may also be added to the feedstock solution to optimize the proportion of hydrogen in the reaction products. Examples of suitable water-soluble salts include one or more selected from the group consisting of an alkali or an alkali earth metal hydroxide, carbonate, nitrate, or chloride salt. For example, adding alkali (basic) salts to provide a pH of about pH 4.0 to about pH 10.0 can improve hydrogen selectivity.
The heterogeneous catalyst is capable of catalyzing the reaction of water and oxygenated hydrocarbons to form hydrogen and/or hydrocarbons under the conditions described above. The exemplary catalyst includes a nitride, or a carbide or at least one Group VIIIB metal, and any alloy or mixtures thereof. The catalyst may also include a nitride, or a carbide, or at least one Group VIIIB metal, in combination with at least one second metal selected from Group VIIIB, Group VIIB, Group VIB, Group VB, Group IVB, Group IIB, Group IB, Group IVA or Group VA metals. The exemplary Group VIIB metals include rhenium, manganese, or combinations thereof. The exemplary Group VIB metals include chromium, molybdenum, tungsten, or a combination thereof. The exemplary Group VIIIB metals include platinum, rhodium, ruthenium, palladium, nickel, or combinations thereof. Specific illustrative examples include Ni:Pd and Pt:Re.
Preferred loading of the primary Group VIIIB metal is in the range of 0.25 wt % to 25 wt % on carbon, with weight percentages of 0.10% and 0.05% increments between, such as 1.00%, 1.10%, 1.15%, 2.00%, 2.50%, 5.00%, 10.00%, 12.50%, 15.00% and 20.00%. The preferred atomic ratio of the second metal is in the range of 0.25-to-1 to 10-to-1, including ratios between, such as 0.50, 1.00, 2.50, 5.00, and 7.50-to-1.
One exemplary catalyst composition is achieved by the addition of oxides of Group IIIB, and associated rare earth oxides. In such event, the components include oxides of either lanthanum or cerium. The atomic ratio of the Group IIIB compounds to the primary Group VIIIB metal may be in the range of 0.25-to-1 to 10-to-1, including ratios between, such as 0.50, 1.00, 2.50, 5.00, and 7.50-to-1.
Another exemplary catalyst composition is one containing platinum and rhenium. The atomic ratio of platinum to rhenium may be in the range of 0.25:1 to 10:1 including ratios there-between, such as 0.50:1, 1.00:1, 2.50:1, 5.00:1, and 7.00:1. The loading of the platinum may be in the range of 0.25 wt % to 5.0 wt %, with weight percentages of 0.10% and 0.05% increments between, such as 0.35%, 0.45%, 0.75%, 1.10%, 1.15%, 2.00%, 2.50%, 3.0%, and 4.0%.
The catalyst systems may also include a support suitable for suspending the catalyst in the feedstock solution. The support should be one that provides a stable platform for the chosen catalyst and the reaction conditions. The support may take any form which is stable at the chosen reaction conditions to function at the desirable levels, and specifically stable in aqueous feedstock solutions. Such supports include, without limitation, carbon, silica, silica-alumina, alumina, zirconia, titania, ceria, vanadia and mixtures thereof. Nanoporous supports such as zeolites, carbon nanotubes, or carbon fullerene may also be used.
One exemplary catalyst support is carbon, especially carbon supports having relatively high surface areas (greater than 100 square meters per gram). Such carbons include activated carbon (granulated, powdered, or pelletized), activated carbon cloth, felts, or fibers, carbon nanotubes or nanohoms, carbon fullerene, high surface area carbon honeycombs, carbon foams (reticulated carbon foams), and carbon blocks. The carbon may be produced via either chemical or steam activation of peat, wood, lignite, coal, coconut shells, olive pits, and oil based carbon. Another support is granulated activated carbon produced from coconuts. In one embodiment, the catalyst system consists of platinum on carbon, with the platinum being further alloyed or admixed with nickel, ruthenium, copper, iron, or rhenium.
Another exemplary catalyst support is zirconia. The zirconia may be produced via precipitation of zirconium hydroxide from zirconium salts, through sol-gel processing, or any other method. The zirconia may be present in a crystalline form achieved through calcination of the precursor material at temperatures exceeding 400° C. and may include both tetragonal and monoclinic crystalline phases. A modifying agent may also be added to improve the textural or catalytic properties of the zirconia. Modifying agents include, without limitation, sulfate, tungstenate, phosphate, titania, silica, and oxides of Group IIIB metals, especially cerium, lanthanum, or yttrium. In one embodiment, the catalyst system consists of platinum on a primarily tetragonal phase silica modified zirconia, with the platinum being further alloyed or admixed with nickel, ruthenium, copper, iron, or rhenium.
Another exemplary catalyst support is titania. The titania may be produced via precipitation from titanium salts, through sol-gel processing, or any other method. The titania may be present in a crystalline form and include both anatase and rutile crystalline phases. A modifying agent may also be added to improve the textural or catalytic properties of the titania. Such modifying agents include, without limitation, sulfate, silica, and oxides of Group IIIB metals, especially cerium, lanthanum, or yttrium.
Another exemplary catalyst support is silica. The silica may be optionally combined with alumina to form a silica-alumina material. In one embodiment, the catalyst system is platinum on silica-alumina or silica, with the platinum being further alloyed or admixed with nickel, ruthenium, copper, iron or rhenium. In another embodiment, the catalyst system is nickel on silica-alumina or silica, with the nickel being further alloyed or admixed with copper, rhenium, ruthenium or iron.
The support may also be treated or modified to enhance its properties. For example, the support may be treated, as by surface-modification, to modify surface moieties, such as hydrogen and hydroxyl. Surface hydrogen and hydroxyl groups can cause local pH variations that affect catalytic efficiency. The support may also be modified, for example, by treating it with sulfates, phosphates, tungstenates, and silanes. For carbon supports, the carbon may be pretreated with steam, oxygen (from air), inorganic acids or hydrogen peroxide to provide more surface oxygen sites. The pretreated carbon may also be modified by the addition of oxides of Group IVB and Group VB, such as the oxides of titanium, vanadium, zirconium and mixtures thereof.
The catalyst systems, whether alone or mixed together, may be prepared using conventional methods known to those skilled in the art. Such methods include incipient wetting, evaporative impregnation, chemical vapor deposition, wash-coating, magnetron sputtering techniques, and the like. The method chosen to fabricate the catalyst is not particularly critical to the function of the invention, with the proviso that different catalysts will yield different results, depending upon considerations such as overall surface area, porosity, etc.
FIGS. 2 and 3 provide a detailed schematic of one reactor system useful in practicing the present invention. Although a multi-tube reactor system is illustrated, it is recognized that the present invention may also be practiced in reactor systems having a single reaction vessel or in other configurations utilizing other multiple reaction vessels.
Referring toFIG. 2, a liquid feedstock is introduced at theinlet4 to areactor2 containingreaction tubes16 packed with catalyst and having an outer shell region defined by anexterior housing18. The liquid feedstock enters an open plenum (not shown) where adistribution plate14 resides to distribute the liquid feedstock into themultiple reactor tubes16. As illustrated inFIG. 3, the liquid feedstock is isolated to flow only to thereactor tubes16 as a result of a gasket on theseal surface28, which is compressed by bolts through bolt holes30. The sealed environment has the additional benefit of facilitating the equal distribution of the liquid feedstock across all of the reactor tubes, thereby assisting in maintaining an equal pressure distribution across the reactor system. Once in thereactor tubes16, the liquid feedstock flows through the catalyst where it reacts to form the noncondensable gas and effluent stream. The gas product and effluent collect in the hemi-spherical collection area26 prior to exiting through theoutlet port8.
A heating medium is introduced into theexternal shell18 to provide process heat to the reactor system. The heating medium can be of any kind typically used in heat exchange reactors, and may vary based on the specific aspects of the desirable reaction and the heat exchange mechanism employed. The medium may be either gas, liquid or solid, and may include, without limitation, exhaust from the system, air, steam, heating oil, molten salt, sand, water, etc.
In this illustration, theshell18 containsinternal features20 to enhance the flow characteristics of the heating medium. The heating media enters at22 and exits the system at24, but may flow through theshell region18 in a co-current or counter current direction as each flow pattern has its advantage depending upon the feedstock, catalysts and general energy requirements of the system as a whole. The shell may also haveside ports54, whereby exhaust gases from an energy generation apparatus flow at cross-current to the reaction mixture in thereactor tubes16. The shell may also be vertically segmented and a plurality of inlet and outlet ports provided, whereby more precise temperature control may be achieved by introducing heating mediums of various temperatures through the segments.
The noncondensable gas product may be purified and separate for its intended purpose or feed directly into an associated downstream process. For instance, the gas product may be feed directly into a combustion engine. The presence of H2and CO2in fuel gases has shown to have a beneficial effect on combustion in internal combustion engines. Hydrogen is a particular beneficial additive as it has a wide flammability range with fast flame speeds respective to other hydrocarbon fuels. The addition of H2to traditional hydrocarbon fuels has also shown an extension to the lean-burn of combustion, which provides a higher air to fuel ratio, lower combustion temperatures and a decrease in nitrogen oxide (NOx) emissions. Carbon dioxide, which is present in APR gas, has also been used in exhaust gas recycle (EGR) to reduce the combustion temperature which, in turn, can lower nitrogen oxides (NOx) emissions.
For certain applications, it may also be desirable to first purify the product stream to isolate the noncondensable gas product. The elevated pressure at which the reactor operates also provides a synergistic result when used in conjunction with a gas purification device, such as a PSA or a membrane. Purifications systems are well known in the art and include various phase separators, membranes and gas distillation columns. For example, a phase separator may be employed to collect the hydrogen for further use in downstream processes, such as various chemical reactions that make use of hydrogen as a reactant. In other embodiments, a separation membrane may be employed to purify the gas stream to capture the hydrogen for use directly in hydrogen applications, such as for use in hydrogen fuel cells.
The elevated pressure at which the reactor operates also provides a synergistic result when used in conjunction with an energy generation device, such as an internal combustion engine or fuel cell. With a high level of gaseous or high boiling hydrocarbons in the hydrocarbon mix, the entry pressure for the device should be between about 2 and 120 psig. If the reactor system pressure is higher than the desirable feed pressure, the pressure can be reduced to the desirable, but still elevated, pressure.
Referring toFIG. 4 and particularly toFIG. 5, afeed tank101 storing a mixture of oxygenated compounds and water feeds acharge pump103 through afeed line102. Thecharge pump103 increases the pressure of the liquid feedstock solution to the desirable reaction pressure in thereactor system107. Thedischarge104 of thecharge pump103 feeds into apre-heat exchanger105 that extracts heat from the reactor effluent to heat the liquid feed that is fed throughline106 toreactor107 having reactor tube(s)107aand shell107b. The reactor tubes107aare packed with the desirable catalysts, which may be homogenously mixed or sequentially packed.
Hot effluent gas135 from thecatalytic burner134 is directed to the shell region107bof thereactor107 to heat the reactor tubes107ato the desirable temperature. The reactor effluent containing the reaction products passes throughline108 and into thereactor pre-heat exchanger105 and is then sent throughline109 to aheat recuperator110 that heats theexcess combustion air113 to theburner134. Ablower111 provides the necessary combustion air to the recuperator throughline112. The cooled reactor effluent (line114) is then further cooled utilizing a liquid cooledheat exchanger115. The cooling liquid for this system is provided via arecirculation pump116 that feeds cooling liquid to theheat exchanger117. The resulting heated liquid leaves theheat exchanger117 throughline118.
The cooledreactor effluent119 containing the noncondensable gas product and liquid water are sent to a water-vapor separator120. The water level in this separator is monitored utilizing a level sensor (not shown) that sends a signal to a level controller that controls a valve on theseparator effluent line121. The vapor-phase product exits the water-vapor separator vialine122. The pressure of theseparator120 and upstream of thereactor107 is controlled via a mechanicalback pressure regulator123 online122. The gas is then sent to a set ofsurge tanks124 which allow for storage of the gaseous reactor products and to allow for buffering in the event of system changes.
In the case illustrated inFIG. 5, an internal combustion engine (ICE)129 is employed to use the gas products as a fuel for generating energy. The noncondensable gas travels throughline125 to aforward pressure regulator126 that reduces the pressure to that required to supply theICE129. The gas is mixed with ambient air fromline128 and combusted to cause the engine to turn anelectrical generator130 which produces electricity. In another embodiment, theICE129 may also be connected to a drive shaft that directly runs associated machinery.
In the illustrated embodiment, the combustion exhaust product from theengine129 travels throughline131 and is diverted around the system by way ofline137 and138 to the outside atmosphere. Alternatively, the exhaust gas may also be diverted intoline132 where it mixes with preheated blower air inline113. The exhaust and air gas mixture then passes over thecatalytic burner134. If additional heat is required for thereactor107, additional gas can be sent to thecatalytic burner134 from thesurge tanks124 via thecontrol valve140.
EXAMPLES
The following examples are to be considered illustrative of various aspects of the invention and should not be construed to limit the scope of the invention, which are defined by the appended claims.
Example 1
A single reactor system was used to compare the effect of flow patterns (upflow versus downflow) on the efficiency and conversion of a feedstock to a gas product. A single reactor system (as illustrated inFIG. 6) was loaded with approximately 140 grams of a 5% Pt Pt:Re 0.25 catalyst on a Calgon 206 CAT P 80×120 (1031-023-1) support. The reactor tube had an outside diameter of 1 inch and a total length of approximately 24 inches. An aqueous feedstock solution of glycerol (32.6 wt % glycerol to water) was fed into the reactor at a weight hourly space velocity (WHSV) of 1.0 gram of glycerol per gram of catalyst per hour. The reaction conditions were set at 625 psig and 250° C. (preheater) with a co-current heating medium air flow of 400° C. The pressure gradient from the inlet to the outlet ranged from 1 psig to 2.5 psig.FIG. 7 illustrates the catalyst bed temperature along the length of the reactor for a single downflow condition.
TABLE 2
Performance improvement due to downflow reactor configuration
Reactor OperatingConversion
Temperatureto GaseousEfficiency
Experiment(° C.)Products (%)(%)
Downflow2606040
Upflow2605220
Downflow2709060
Upflow2708552
As shown in Table 2, the downflow configuration shows higher conversion to gaseous products and higher efficiencies, especially at the lower temperature. As illustrated in Table 3, the downflow configuration also shows stability enhancement on the conversion to gaseous products and efficiency over time. The conversion to gaseous products is defined as the molar ratio of carbon in the gaseous product stream to carbon fed to the system over the same time period. Process efficiency is defined as a ratio of the product of the flow rate and lower heating value of the gaseous product stream to the rate of heat imparted to the catalytic reactor.
The data in Table 3 shows the reactor performance after a month of operation. As can be seen, a marked enhancement in stability is evident during downflow operation with respect to the conversion to gaseous products and efficiency.
TABLE 3
Performance of upflow and downflow configurations over time
Conversion
Flowto gaseousEfficiency
Dayorientationproducts (%)(%)
27Upflow6048
34Upflow5018
36Upflow4528
37Downflow5960
38Downflow5760
39Downflow5758
Example 2
A downflow multi-tube reactor system as illustrated inFIGS. 2 and 3 was used to generate synthesis gas from glycerol. The reactor system included 47 reactor tubes loaded with a combined total of approximately 6,460 grams of a 5% Pt Pt:Re 0.50 catalyst on a Calgon 206 CAT P 80×120 support. The reactor tubes had an outside diameter of 1 inch and a total catalyst filled length of approximately 24 inches. An aqueous feedstock solution of glycerol (36.2 wt % glycerol to water) was fed into the reactor at a WHSV of 0.5 to 1.0 gram of glycerol per gram of catalyst per hour. The reaction conditions were set at 600 psig and 250° C. (preheater). A co-current heating medium air flow was supplied at an airflow rate of 90 SCFM and a temperature varying from approximately 350° C. to 415° C. depending on conditions. The pressure gradient from the inlet to the outlet across the reactor ranged from approximately 0.5 to 3 psig.
Performance of the system and comparative data from a similarly operated single tube reactor are shown below in Table 4. The performance of the multi-tube reactor is indistinguishable from that of the single tube reactor used in Example 1, loaded with the same 5% Pt Pt:Re 0.5 catalyst and operated at similar conditions, with respect to the conversion to hydrogen and light hydrocarbons and hydrogen yield in the downflow configuration, indicating that the downflow configuration has little or no adverse effect on flow distribution in a multi-tubular reactor. Hydrogen yield is defined as a ratio of the amount of hydrogen in the product stream to the amount that would be present if the reaction had proceeded with stoichiometric selectivity to hydrogen.
TABLE 4
Single tube and multi-tube reactor performance comparison
HydrogenHydrogen
ConversionConversionConversionHydrogenyield (%),yield (%),
to gas (%),to gas (%),to gas (%),yield (%),WHSVWHSV
ReactorWHSV
1WHSV 0.8WHSV 0.5WHSV 10.80.5
Single tube93 to 9485 to 9194 to 9843 to 4744 to 5045 to 48
Multi-tube94 to 9687 to 9193 to 9643 to 4539 to 4646 to 48

Claims (19)

We claim:
1. A method for the manufacture of noncondensable gas, the method comprising:
reacting a liquid feedstock comprising water and at least one C2+ water soluble oxygenated hydrocarbon using a heterogeneous catalyst comprising one or more Group VIIIB metals, at a temperature between about 80° C. to 300° C. and a reaction pressure suitable to produce the noncondensable gas and an effluent, wherein a pressure gradient provides concurrent downflow of the liquid feedstock, effluent and noncondensable gas.
2. The method ofclaim 1, wherein the Group VIIIB metal is selected from the group consisting of platinum, nickel, palladium, ruthenium, rhodium, iridium, iron, alloys thereof, and mixtures thereof.
3. The method ofclaim 1, wherein the catalyst further comprises a second catalytic material selected from the group consisting of Group VIIB metals, Group VIB metals, Group VB metals, Group IVB metals, Group IIB metals, Group IB metals, Group IVA metals, Group VA metals, alloys thereof, and mixtures thereof.
4. The method ofclaim 3 wherein the second catalytic material is rhenium and the Group VIIIB metal is selected from the group consisting of iron, nickel, palladium, platinum, ruthenium, rhodium, alloys thereof, and mixtures thereof.
5. The method ofclaim 1 wherein the catalyst is adhered to a support constructed from one or more materials selected from the group consisting of carbon, silica, silica-alumina, alumina, zirconia, titania, ceria, vanadia and mixtures thereof.
6. The method ofclaim 1, wherein the oxygenated hydrocarbon is a C2-6oxygenated hydrocarbon.
7. The method ofclaim 6, wherein the oxygenated hydrocarbon is a member selected from the group consisting of sugar and sugar alcohol.
8. The method ofclaim 1, wherein the reaction temperature is between about 150° C. and about 270° C. and the reaction pressure is between about 72 psig and about 1300 psig.
9. The method ofclaim 1, wherein the noncondensable gas comprises one or more gases selected from the group consisting of hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, propane, propylene, butane, butane, pentane and pentene.
10. The method ofclaim 1, wherein the pressure gradient is in the range of 0.5-3 psig.
11. The method ofclaim 1, wherein reacting the liquid feedstock to produce the noncondensable gas and an effluent occurs in a concurrent downflow reactor having a reaction chamber.
12. The method ofclaim 11, further comprising the steps of:
feeding the liquid feedstock at an inlet disposed at an upper portion of the reaction chamber; and
discharging the noncondensable gas product and an effluent stream at an outlet at a lower portion of the reaction chamber.
13. The method ofclaim 12, wherein the pressure at the inlet is greater than the pressure at the outlet.
14. The method ofclaim 11, wherein the reaction chamber includes a reaction tube and the reaction tube contains the heterogeneous catalyst therein.
15. The method ofclaim 14, wherein the reaction tube includes an outer shell that encloses at least a portion of the reaction tube and the reaction chamber further comprises a heating system that introduces a heating medium into the outer shell that heats the reaction tube.
16. A method for the manufacture of noncondensable gas, the method comprising:
reacting a liquid feedstock comprising water and at least one C2+ water soluble oxygenated hydrocarbon, at a temperature and a reaction pressure suitable to produce the noncondensable gas and an effluent, wherein a pressure gradient provides concurrent downflow of the liquid feedstock, effluent and noncondensable gas.
17. The method ofclaim 16, wherein the catalyst is a heterogeneous catalyst comprising one or more Group VIIIB metals selected from the group consisting of platinum, nickel, palladium, ruthenium, rhodium, iridium, iron, alloys thereof, and mixtures thereof.
18. The method ofclaim 16, wherein, during reacting, the temperature is between about 80° C. to 300° C.
19. The method ofclaim 16, wherein the reacting of the liquid feedstock to produce the noncondensable gas and the effluent occurs in a concurrent downflow reactor and, during the step of reacting the method further comprises the step of transporting the liquid feedstock and noncondensable gas product concurrently downward through the concurrent downflow reactor.
US13/539,8612006-12-202012-07-02Method of producing gaseous products using a downflow reactorActiveUS8834587B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US13/539,861US8834587B2 (en)2006-12-202012-07-02Method of producing gaseous products using a downflow reactor

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US87601506P2006-12-202006-12-20
US11/961,280US20100288975A1 (en)2006-12-202007-12-20Reactor system for producing gaseous products
US13/539,861US8834587B2 (en)2006-12-202012-07-02Method of producing gaseous products using a downflow reactor

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US11/961,280DivisionUS20100288975A1 (en)2006-12-202007-12-20Reactor system for producing gaseous products

Publications (2)

Publication NumberPublication Date
US20120282163A1 US20120282163A1 (en)2012-11-08
US8834587B2true US8834587B2 (en)2014-09-16

Family

ID=39951430

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US11/961,280AbandonedUS20100288975A1 (en)2006-12-202007-12-20Reactor system for producing gaseous products
US13/539,861ActiveUS8834587B2 (en)2006-12-202012-07-02Method of producing gaseous products using a downflow reactor

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US11/961,280AbandonedUS20100288975A1 (en)2006-12-202007-12-20Reactor system for producing gaseous products

Country Status (14)

CountryLink
US (2)US20100288975A1 (en)
EP (1)EP2111291A2 (en)
JP (1)JP2010514548A (en)
KR (1)KR20090101260A (en)
CN (1)CN101568377A (en)
AU (1)AU2007353527B2 (en)
BR (1)BRPI0719504A2 (en)
CA (1)CA2671730A1 (en)
CO (1)CO6210746A2 (en)
MX (1)MX2009006509A (en)
NZ (1)NZ577547A (en)
RU (1)RU2009121628A (en)
WO (1)WO2008140617A2 (en)
ZA (1)ZA200904056B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020023452A1 (en)*2018-07-232020-01-30The Trustees Of Columbia University In The City Of New YorkMethods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes
US11702601B2 (en)2020-10-292023-07-18Marathon Petroleum Company LpSystems and methods for separating water and removing solids from pre-treated and unfiltered feedstock
US11788023B2 (en)2021-10-122023-10-17Marathon Petroleum Company LpSystems and methods of converting renewable feedstocks into intermediate hydrocarbon blend stocks and transportation fuels

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
RU2472840C2 (en)2007-03-082013-01-20Вайрент, Инк.Synthesis of liquid fuel and chemical agents from oxygen-containing hydrocarbons
US8268028B2 (en)2007-03-262012-09-18Protonex Technology CorporationCompositions, devices and methods for hydrogen generation
JP5330808B2 (en)*2008-11-142013-10-30花王株式会社 Raw material for water gas
ES2350076B1 (en)*2009-05-262011-11-15Fundacion Investigacion E Innovacion Para El Desarrollo Social GLYCERINE CONVERSION IN METHANOL
FR2960231B1 (en)*2010-05-192012-07-20Rhodia Operations COMPOSITION BASED ON CERIUM, ZIRCONIUM AND TUNGSTEN, PROCESS FOR THE PREPARATION AND USE IN CATALYSIS, IN PARTICULAR FOR THE TREATMENT OF EXHAUST GASES
US9410216B2 (en)2010-06-262016-08-09Virdia, Inc.Sugar mixtures and methods for production and use thereof
IL206678A0 (en)2010-06-282010-12-30Hcl Cleantech LtdA method for the production of fermentable sugars
IL207329A0 (en)2010-08-012010-12-30Robert JansenA method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
GB2524906B8 (en)2011-04-072016-12-07Virdia LtdLignocellulose conversion processes and products
JP5821119B2 (en)*2011-10-052015-11-24昭和シェル石油株式会社 Biomass gasification catalyst
DE102012222560A1 (en)*2012-12-072014-06-12Bayerische Motoren Werke Aktiengesellschaft Reactor for the release of hydrogen
BR112019006741B1 (en)*2016-10-052023-12-05Monsanto Technology Llc PROCESS FOR CATALYST REGENERATION
WO2018164193A1 (en)2017-03-082018-09-13三菱ケミカル株式会社Hydrogenation catalyst for carbonyl compound and alcohol production method

Citations (135)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2965679A (en)1960-12-20Process for the production of glycerol
US3894107A (en)1973-08-091975-07-08Mobil Oil CorpConversion of alcohols, mercaptans, sulfides, halides and/or amines
US4013734A (en)1973-12-141977-03-22Exxon Research And Engineering CompanyNovel catalyst and its use for steam hydroconversion and dealkylation processes
US4223001A (en)1978-06-201980-09-16Allied Chemical CorporationProduction of hydrogen from carbon monoxide and water
GB2097390A (en)1981-04-271982-11-03Hydrocarbon Research IncMulti-stage catalytic conversion of aldoses to alditols
US4380679A (en)1982-04-121983-04-19Uop Inc.Hydrogenation of saccharides
US4380680A (en)1982-05-211983-04-19Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4382150A (en)1982-01-191983-05-03Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4401823A (en)1981-05-181983-08-30Uop Inc.Hydrogenolysis of polyhydroxylated compounds
US4456779A (en)1983-04-261984-06-26Mobil Oil CorporationCatalytic conversion of olefins to higher hydrocarbons
US4476331A (en)1982-02-111984-10-09Ethyl CorporationTwo stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
US4487980A (en)1982-01-191984-12-11Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4496780A (en)1983-06-221985-01-29Uop Inc.Hydrocracking of polyols
US4503274A (en)1983-08-081985-03-05Uop Inc.Ruthenium hydrogenation catalyst with increased activity
US4541836A (en)1982-12-091985-09-17Union Carbide CorporationFuel compositions
US4543435A (en)1985-01-171985-09-24Mobil Oil CorporationMultistage process for converting oxygenates to liquid hydrocarbons with ethene recycle
US4554260A (en)1984-07-131985-11-19Exxon Research & Engineering Co.Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
CA1201080A (en)1983-12-131986-02-25Le H. DaoProcess for converting biomass into hydrocarbons
EP0204354A1 (en)1985-05-081986-12-10Shell Internationale Researchmaatschappij B.V.Process for producing hydrocarbon-containing liquids from biomass
US4642394A (en)1985-07-161987-02-10Celanese CorporationProduction of propanediols
US4717465A (en)1984-12-311988-01-05Mobil Oil CorporationProcess for producing jet fuel with ZSM-22 containing catalist
US4828812A (en)1987-12-291989-05-09Mobil Oil CorporationTitanosilicates of enhanced ion exchange capacity and their preparation
US4885421A (en)1987-12-081989-12-05Harandi Mohsen NMultistage reactor system for production of fuels
US4919896A (en)1987-12-281990-04-24Mobil Oil CorporationMultistage catalytic reactor system for production of heavy hydrocarbons
US4935568A (en)1988-12-051990-06-19Mobil Oil CorporationMultistage process for oxygenate conversion to hydrocarbons
US5001292A (en)1987-12-081991-03-19Mobil Oil CorporationEther and hydrocarbon production
US5006131A (en)1985-06-271991-04-09Stone & Webster Engineering CorporationApparatus for production of synthesis gas using convective reforming
US5019135A (en)1987-10-131991-05-28Battelle Memorial InstituteMethod for the catalytic conversion of lignocellulosic materials
US5026927A (en)1989-11-161991-06-25The United States Of America As Represented By The United States Department Of EnergyHydrocracking of carbohydrates making glycerol, glycols and other polyols
US5095159A (en)1990-11-211992-03-10Mobil Oil CorporationEther and hydrocarbon production
US5105044A (en)1989-12-291992-04-14Mobil Oil Corp.Catalyst and process for upgrading methane to higher hydrocarbons
US5130101A (en)1989-04-281992-07-14Mobil Oil CorporationReactor system for conversion of alcohols to ether-rich gasoline
US5139002A (en)1990-10-301992-08-18Hydrogen Consultants, Inc.Special purpose blends of hydrogen and natural gas
US5149884A (en)1986-04-111992-09-22Basf AktiengesellschaftTube bundle reactor, use thereof in exothermic organic reactions, and preparation of ketones and aldehydes using same
US5177279A (en)1990-10-231993-01-05Mobil Oil CorporationIntegrated process for converting methanol to gasoline and distillates
US5214219A (en)1991-07-101993-05-25Novamont S.P.A.Method of hydrogenating glycerol
US5238898A (en)1989-12-291993-08-24Mobil Oil Corp.Catalyst and process for upgrading methane to higher hydrocarbons
US5306847A (en)1991-11-261994-04-26Basf AktiengesellschaftManufacture of 1,2-propylene glycol
US5326912A (en)1992-01-311994-07-05Montecatini Technologie S.R.L.Hydrogenation catalyst, and a method for its preparation and use, in particular for hydrogenation and/or hydrogenolysis of carbohydrates and polyhydric alcohols
US5344849A (en)1990-10-311994-09-06Canada Chemical CorporationCatalytic process for the production of hydrocarbons
EP0323663B2 (en)1987-12-181994-09-14Shell Internationale Researchmaatschappij B.V.Exothermic reaction process in a fixed-bed catalytic reactor
US5354914A (en)1992-01-311994-10-11Montecatini Tecnologie S.R.L.Method for producing lower polyhydric alcohols by hydrogenolysis of higher polyhydric alcohols
WO1994029013A1 (en)1993-06-161994-12-22The Standard Oil CompanyEndothermic reaction apparatus and method
US5504259A (en)1992-10-291996-04-02Midwest Research InstituteProcess to convert biomass and refuse derived fuel to ethers and/or alcohols
US5578647A (en)1994-12-201996-11-26Board Of Regents, The University Of Texas SystemMethod of producing off-gas having a selected ratio of carbon monoxide to hydrogen
US5600028A (en)1992-01-311997-02-04Montecatini Technologie S.R.L.Method for producing lower polyhydric alcohols and a new ruthenium-based catalyst used in this method
US5616154A (en)1992-06-051997-04-01Battelle Memorial InstituteMethod for the catalytic conversion of organic materials into a product gas
US5616817A (en)1994-11-261997-04-01Basf AktiengesellschaftPreparation of 1,2-propanediol
US5635145A (en)1994-08-231997-06-03Shell Oil CompanyMulti-bed downflow reactor
US5651953A (en)1994-08-251997-07-29Director-General Of Agency Of Industrial Science And TechnologyMethod of producing hydrogen from biomass
US5660602A (en)1994-05-041997-08-26University Of Central FloridaHydrogen enriched natural gas as a clean motor fuel
US5666923A (en)1994-05-041997-09-16University Of Central FloridaHydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
US5787864A (en)1995-04-251998-08-04University Of Central FloridaHydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
US5817589A (en)1996-04-021998-10-06Intevep, S.A.Regeneration of catalyst comprising flushing with inert gas followed by flushing with hydrogen
US5861137A (en)1996-10-301999-01-19Edlund; David J.Steam reformer with internal hydrogen purification
WO1999010450A1 (en)1997-08-251999-03-04The University Of Utah Research FoundationProcess for conversion of lignin to reformulated hydrocarbon gasoline
WO1999061369A1 (en)1998-05-221999-12-02Kadmos Ae Ependytikon ProtovoulionProcess for the production of hydrogen and electrical energy from reforming of bio-ethanol
US6054041A (en)1998-05-062000-04-25Exxon Research And Engineering Co.Three stage cocurrent liquid and vapor hydroprocessing
US6059995A (en)1998-01-212000-05-09Haldor Topsoe A/SProcess and preparation of hydrogen-rich gas
US6152975A (en)1996-12-192000-11-28Battelle Memorial InstituteMethod for aqueous phase reactions
US6171992B1 (en)1997-06-132001-01-09Xcellsis GmbhTreatment process for a methanol reforming catalyst therefor
US6172272B1 (en)1998-08-212001-01-09The University Of UtahProcess for conversion of lignin to reformulated, partially oxygenated gasoline
US6207132B1 (en)1998-12-042001-03-27Chinese Petroleum CorporationProcess for producing high purity hydrogen
US6235797B1 (en)1999-09-032001-05-22Battelle Memorial InstituteRuthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
US6280701B1 (en)1997-06-132001-08-28Xcellsis GmbhMethod for the treatment of a methanol reforming catalyst
US6291725B1 (en)2000-03-032001-09-18Board Of Trustees Operating Michigan State UniversityCatalysts and process for hydrogenolysis of sugar alcohols to polyols
US6323383B1 (en)1998-01-302001-11-27Kabushiki Kaisha SangiSynthesis method of chemical industrial raw material and high-octane fuel, and high-octane fuel composition
WO2002000341A2 (en)2000-06-232002-01-03Chevron U.S.A. Inc.Catalyst regeneration via reduction with hydrogen
US6361757B1 (en)1997-10-072002-03-26Nkk CorporationCatalyst for manufacturing hydrogen or synthesis gas and manufacturing method of hydrogen or synthesis gas
US6372680B1 (en)1999-07-272002-04-16Phillips Petroleum CompanyCatalyst system for converting oxygenated hydrocarbons to aromatics
US6373680B1 (en)1996-11-142002-04-16Ionics-Ionic Systems Ltd.Method and device for ion generation
US6397790B1 (en)2000-04-032002-06-04R. Kirk Collier, Jr.Octane enhanced natural gas for internal combustion engine
US6413449B1 (en)1999-05-222002-07-02Degussa-Huls AktiengesellschaftMethod of using catalyst for steam reforming of alcohols
US6429167B1 (en)1997-11-272002-08-06Idemitsu Kosan Co., Ltd.Alumina-supported ruthenium catalyst
JP2002220202A (en)2001-01-232002-08-09Kansai Coke & Chem Co Ltd Hydrogen production method
US6440895B1 (en)1998-07-272002-08-27Battelle Memorial InstituteCatalyst, method of making, and reactions using the catalyst
US6479713B1 (en)2001-10-232002-11-12Battelle Memorial InstituteHydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen
US6479428B1 (en)1998-07-272002-11-12Battelle Memorial InstituteLong life hydrocarbon conversion catalyst and method of making
US20020172632A1 (en)2001-04-022002-11-21Tai-Sheng ChouQuench box for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor
US6486366B1 (en)2000-12-232002-11-26Degussa AgMethod for producing alcohols by hydrogenation of carbonyl compounds
US6497856B1 (en)2000-08-212002-12-24H2Gen Innovations, Inc.System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US6508209B1 (en)2000-04-032003-01-21R. Kirk Collier, Jr.Reformed natural gas for powering an internal combustion engine
US6570043B2 (en)1999-09-032003-05-27Battelle Memorial InstituteConverting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
US20030100807A1 (en)2001-10-052003-05-29Shabtai Joseph SProcess for converting lignins into a high octane additive
WO2003045841A1 (en)2001-11-292003-06-05Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
US6582667B1 (en)1998-09-182003-06-24Nippon Shokubai Co., Ltd.Shell-and-tube reactor
US20030115792A1 (en)2001-10-052003-06-26Shabtai Joseph SProcess for converting lignins into a high octane blending component
US6607707B2 (en)2001-08-152003-08-19Ovonic Battery Company, Inc.Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
US20030175561A1 (en)2002-03-182003-09-18Lightner Gene E.Production of electricity from fuel cells achieved by biomass gasification
US6670300B2 (en)2001-06-182003-12-30Battelle Memorial InstituteTextured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
US6699457B2 (en)2001-11-292004-03-02Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
WO2004039918A2 (en)2002-05-102004-05-13Wisconsin Alumni Research FoundationLow-temperature hydrocarbon production from oxygenated hydrocarbons
US6739125B1 (en)2002-11-132004-05-25Collier Technologies, Inc.Internal combustion engine with SCR and integrated ammonia production
US6749828B1 (en)1998-06-092004-06-15Idemitsu Kosan Corp Ltd.Process for reforming hydrocarbon
WO2004052813A1 (en)2002-12-112004-06-24Basf AktiengesellschaftContinuous method for the production of sugar alcohols
US6765101B1 (en)2001-05-012004-07-20Union Carbide Chemicals & Plastics Technology CorporationSynthesis of lower alkylene oxides and lower alkylene glycols from lower alkanes and/or lower alkenes
EP1454671A1 (en)2003-03-072004-09-08Karsten PedersenA catalyst for use in production of hydrogen by conversion of organic matter in water
JP2004344721A (en)2003-05-202004-12-09Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
FR2857003A1 (en)2003-07-022005-01-07Inst Francais Du PetroleCatalyst and process for the reforming of ethanol and other heavier alcohols, useful for the production of hydrogen
US6841085B2 (en)2001-10-232005-01-11Battelle Memorial InstituteHydrogenolysis of 6-carbon sugars and other organic compounds
US20050014635A1 (en)2003-07-142005-01-20Bing ZhouSupported catalysts having a controlled coordination structure and methods for preparing such catalysts
US20050064560A1 (en)2003-03-032005-03-24Werpy Todd A.Methods of producing compounds from plant material
WO2005037423A1 (en)2003-10-142005-04-28Bristol-Myers Squibb CompanyMethod and apparatus for optimizing throughput in a trickle bed reactor
US20050203195A1 (en)2003-08-052005-09-15Yong WangTailored Fischer-Tropsch synthesis product distribution
US20050244329A1 (en)2004-03-102005-11-03Dominique CasanaveProcess for the production of hydrogen with very high purity from alcohols that comprise at least two carbon atoms
US6969506B2 (en)1999-08-172005-11-29Battelle Memorial InstituteMethods of conducting simultaneous exothermic and endothermic reactions
US20060013759A1 (en)2004-07-132006-01-19Conocophillips CompanySystems and methods for hydrogen production
US20060024539A1 (en)2004-07-292006-02-02Dumesic James ACatalytic method to remove CO and utilize its energy content in CO-containing streams
US7022824B2 (en)2001-06-112006-04-04Basf AktiengesellschaftMethod for the production of sorbit
US7070745B2 (en)2000-12-112006-07-04Shell Oil CompanyMultiple bed downflow reactor
WO2006100584A2 (en)2005-03-212006-09-28Ben-Gurion University Of The Negev Research & Development AuthorityProduction of diesel fuel from vegetable and animal oils
WO2006119357A2 (en)2005-05-022006-11-09University Of Utah Research FoundationProcesses for catalytic conversion of lignin to liquid bio-fuels
EP1724325A1 (en)2005-05-182006-11-22Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Process for continuous or partly continuous conversion of fat- or oil-containing raw and waste materials into mixtures having a high hydrocarbon content, products obtained by this process and their use
WO2007027832A2 (en)2005-08-302007-03-08Cargill, IncorporatedA method for the production of propylene glycol
US7199250B2 (en)2002-12-202007-04-03Battelle Memorial InstituteProcess for producing cyclic compounds
WO2007053705A2 (en)2005-10-312007-05-10University Of Missouri Board Of CuratorsMethod of producing lower alcohols from glycerol
US20070123739A1 (en)2003-10-302007-05-31Davy Process Technology LimitedHydrogenolysis of sugar feedstock
US20070135301A1 (en)2005-12-082007-06-14Sud-Chemie Inc.Catalyst for the production of polyols by hydrogenolysis of carbohydrates
US7232935B2 (en)2002-09-062007-06-19Fortum OyjProcess for producing a hydrocarbon component of biological origin
WO2007075476A2 (en)2005-12-212007-07-05Virent Energy Systems Inc.Catalysts and methods for reforming oxygenated compounds
WO2007099161A1 (en)2006-03-032007-09-07Basf SeProcess for the preparation of 1,2-propanediol
US7273957B2 (en)1999-05-042007-09-25Catalytic Distillation TechnologiesProcess for the production of gasoline stocks
US7288685B2 (en)2005-05-192007-10-30Uop LlcProduction of olefins from biorenewable feedstocks
US7297814B2 (en)2002-01-112007-11-20Mitsubishi Chemical CorporationMultitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
US7355083B2 (en)2005-07-152008-04-08Davy Process Technology LimitedProcess
US20080216391A1 (en)2007-03-082008-09-11Cortright Randy DSynthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2008109877A1 (en)2007-03-082008-09-12Virent Energy Systems, Inc.Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US7520909B2 (en)2004-06-032009-04-21Rogers Family Revocable Living TrustLow temperature methods for hydrogen production
US7578927B2 (en)2006-08-312009-08-25Uop LlcGasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
US7615652B2 (en)2006-01-262009-11-10Battelle Memorial InstituteTwo-stage dehydration of sugars
US20100008840A1 (en)2005-11-142010-01-14Agency For Science, Technology And ResearchHighly Dispersed Metal Catalysts
US7649099B2 (en)2006-01-262010-01-19Battelle Memorial InstituteMethod of forming a dianhydrosugar alcohol
US7663004B2 (en)2002-04-222010-02-16The Curators Of The University Of MissouriMethod of producing lower alcohols from glycerol
US20100076233A1 (en)2008-08-272010-03-25Cortright Randy DSynthesis of liquid fuels from biomass
US7767867B2 (en)2006-05-082010-08-03Virent Energy Systems, Inc.Methods and systems for generating polyols

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB2159431B (en)*1984-05-291988-04-27Shell Int ResearchReactor for non-isothermic reactions and process for the preparation of hydrocarbons using such a reactor
JP3589309B2 (en)*1994-07-052004-11-17智行 乾 Hydrogen production by methane reforming.
CA2428180A1 (en)*2000-11-082002-05-16Idemitsu Kosan Co., Ltd.Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP4464230B2 (en)*2004-09-102010-05-19新日本石油株式会社 Reforming apparatus and method, and fuel cell system

Patent Citations (157)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2965679A (en)1960-12-20Process for the production of glycerol
US3894107A (en)1973-08-091975-07-08Mobil Oil CorpConversion of alcohols, mercaptans, sulfides, halides and/or amines
US4013734A (en)1973-12-141977-03-22Exxon Research And Engineering CompanyNovel catalyst and its use for steam hydroconversion and dealkylation processes
US4223001A (en)1978-06-201980-09-16Allied Chemical CorporationProduction of hydrogen from carbon monoxide and water
GB2097390A (en)1981-04-271982-11-03Hydrocarbon Research IncMulti-stage catalytic conversion of aldoses to alditols
US4401823A (en)1981-05-181983-08-30Uop Inc.Hydrogenolysis of polyhydroxylated compounds
US4382150A (en)1982-01-191983-05-03Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4487980A (en)1982-01-191984-12-11Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4476331A (en)1982-02-111984-10-09Ethyl CorporationTwo stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
US4380679A (en)1982-04-121983-04-19Uop Inc.Hydrogenation of saccharides
US4380680A (en)1982-05-211983-04-19Uop Inc.Method for hydrogenating aqueous solutions of carbohydrates
US4541836A (en)1982-12-091985-09-17Union Carbide CorporationFuel compositions
US4456779A (en)1983-04-261984-06-26Mobil Oil CorporationCatalytic conversion of olefins to higher hydrocarbons
US4496780A (en)1983-06-221985-01-29Uop Inc.Hydrocracking of polyols
US4503274A (en)1983-08-081985-03-05Uop Inc.Ruthenium hydrogenation catalyst with increased activity
CA1201080A (en)1983-12-131986-02-25Le H. DaoProcess for converting biomass into hydrocarbons
US4554260A (en)1984-07-131985-11-19Exxon Research & Engineering Co.Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
US4717465A (en)1984-12-311988-01-05Mobil Oil CorporationProcess for producing jet fuel with ZSM-22 containing catalist
US4543435A (en)1985-01-171985-09-24Mobil Oil CorporationMultistage process for converting oxygenates to liquid hydrocarbons with ethene recycle
EP0204354A1 (en)1985-05-081986-12-10Shell Internationale Researchmaatschappij B.V.Process for producing hydrocarbon-containing liquids from biomass
US5006131A (en)1985-06-271991-04-09Stone & Webster Engineering CorporationApparatus for production of synthesis gas using convective reforming
US4642394A (en)1985-07-161987-02-10Celanese CorporationProduction of propanediols
US5149884A (en)1986-04-111992-09-22Basf AktiengesellschaftTube bundle reactor, use thereof in exothermic organic reactions, and preparation of ketones and aldehydes using same
US5019135A (en)1987-10-131991-05-28Battelle Memorial InstituteMethod for the catalytic conversion of lignocellulosic materials
US4885421A (en)1987-12-081989-12-05Harandi Mohsen NMultistage reactor system for production of fuels
US5001292A (en)1987-12-081991-03-19Mobil Oil CorporationEther and hydrocarbon production
EP0323663B2 (en)1987-12-181994-09-14Shell Internationale Researchmaatschappij B.V.Exothermic reaction process in a fixed-bed catalytic reactor
US4919896A (en)1987-12-281990-04-24Mobil Oil CorporationMultistage catalytic reactor system for production of heavy hydrocarbons
US4828812A (en)1987-12-291989-05-09Mobil Oil CorporationTitanosilicates of enhanced ion exchange capacity and their preparation
US4935568A (en)1988-12-051990-06-19Mobil Oil CorporationMultistage process for oxygenate conversion to hydrocarbons
US5130101A (en)1989-04-281992-07-14Mobil Oil CorporationReactor system for conversion of alcohols to ether-rich gasoline
US5026927A (en)1989-11-161991-06-25The United States Of America As Represented By The United States Department Of EnergyHydrocracking of carbohydrates making glycerol, glycols and other polyols
US5105044A (en)1989-12-291992-04-14Mobil Oil Corp.Catalyst and process for upgrading methane to higher hydrocarbons
US5238898A (en)1989-12-291993-08-24Mobil Oil Corp.Catalyst and process for upgrading methane to higher hydrocarbons
US5177279A (en)1990-10-231993-01-05Mobil Oil CorporationIntegrated process for converting methanol to gasoline and distillates
US5139002A (en)1990-10-301992-08-18Hydrogen Consultants, Inc.Special purpose blends of hydrogen and natural gas
US5344849A (en)1990-10-311994-09-06Canada Chemical CorporationCatalytic process for the production of hydrocarbons
US5095159A (en)1990-11-211992-03-10Mobil Oil CorporationEther and hydrocarbon production
US5214219A (en)1991-07-101993-05-25Novamont S.P.A.Method of hydrogenating glycerol
US5306847A (en)1991-11-261994-04-26Basf AktiengesellschaftManufacture of 1,2-propylene glycol
USRE37329E1 (en)1992-01-312001-08-14Giuseppe GubitosaRuthenium-based catalyst for producing lower polyhydric alcohols
US5354914A (en)1992-01-311994-10-11Montecatini Tecnologie S.R.L.Method for producing lower polyhydric alcohols by hydrogenolysis of higher polyhydric alcohols
US5496786A (en)1992-01-311996-03-05Novaol S.R.L.Catalyst for reducing lower polyhydric alcohols by hydrogenolysisal higher polyhydric alcohols and method for preparing catalyst
US5543379A (en)1992-01-311996-08-06Montecatini Technologie S.R.L.Hydrogenation catalyst, and a method for its preparation and use, in particular for hydrogenation and/or hydrogenolysis of carbohydrates and polyhydric alcohols
US5600028A (en)1992-01-311997-02-04Montecatini Technologie S.R.L.Method for producing lower polyhydric alcohols and a new ruthenium-based catalyst used in this method
US5326912A (en)1992-01-311994-07-05Montecatini Technologie S.R.L.Hydrogenation catalyst, and a method for its preparation and use, in particular for hydrogenation and/or hydrogenolysis of carbohydrates and polyhydric alcohols
US5616154A (en)1992-06-051997-04-01Battelle Memorial InstituteMethod for the catalytic conversion of organic materials into a product gas
US5504259A (en)1992-10-291996-04-02Midwest Research InstituteProcess to convert biomass and refuse derived fuel to ethers and/or alcohols
WO1994029013A1 (en)1993-06-161994-12-22The Standard Oil CompanyEndothermic reaction apparatus and method
US5666923A (en)1994-05-041997-09-16University Of Central FloridaHydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
US5660602A (en)1994-05-041997-08-26University Of Central FloridaHydrogen enriched natural gas as a clean motor fuel
US5635145A (en)1994-08-231997-06-03Shell Oil CompanyMulti-bed downflow reactor
US5651953A (en)1994-08-251997-07-29Director-General Of Agency Of Industrial Science And TechnologyMethod of producing hydrogen from biomass
US5616817A (en)1994-11-261997-04-01Basf AktiengesellschaftPreparation of 1,2-propanediol
US5578647A (en)1994-12-201996-11-26Board Of Regents, The University Of Texas SystemMethod of producing off-gas having a selected ratio of carbon monoxide to hydrogen
US5787864A (en)1995-04-251998-08-04University Of Central FloridaHydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
US5817589A (en)1996-04-021998-10-06Intevep, S.A.Regeneration of catalyst comprising flushing with inert gas followed by flushing with hydrogen
US5861137A (en)1996-10-301999-01-19Edlund; David J.Steam reformer with internal hydrogen purification
US6373680B1 (en)1996-11-142002-04-16Ionics-Ionic Systems Ltd.Method and device for ion generation
US6152975A (en)1996-12-192000-11-28Battelle Memorial InstituteMethod for aqueous phase reactions
US6171992B1 (en)1997-06-132001-01-09Xcellsis GmbhTreatment process for a methanol reforming catalyst therefor
US6280701B1 (en)1997-06-132001-08-28Xcellsis GmbhMethod for the treatment of a methanol reforming catalyst
US5959167A (en)1997-08-251999-09-28The University Of Utah Research FoundationProcess for conversion of lignin to reformulated hydrocarbon gasoline
WO1999010450A1 (en)1997-08-251999-03-04The University Of Utah Research FoundationProcess for conversion of lignin to reformulated hydrocarbon gasoline
US6361757B1 (en)1997-10-072002-03-26Nkk CorporationCatalyst for manufacturing hydrogen or synthesis gas and manufacturing method of hydrogen or synthesis gas
US6429167B1 (en)1997-11-272002-08-06Idemitsu Kosan Co., Ltd.Alumina-supported ruthenium catalyst
US6059995A (en)1998-01-212000-05-09Haldor Topsoe A/SProcess and preparation of hydrogen-rich gas
US6323383B1 (en)1998-01-302001-11-27Kabushiki Kaisha SangiSynthesis method of chemical industrial raw material and high-octane fuel, and high-octane fuel composition
US6054041A (en)1998-05-062000-04-25Exxon Research And Engineering Co.Three stage cocurrent liquid and vapor hydroprocessing
US6387554B1 (en)1998-05-222002-05-14Xenophon VerykiosProcess for the production of hydrogen and electrical energy from reforming of bio-ethanol with the use of fuel cells and with zero emission of pollutants
WO1999061369A1 (en)1998-05-221999-12-02Kadmos Ae Ependytikon ProtovoulionProcess for the production of hydrogen and electrical energy from reforming of bio-ethanol
US6749828B1 (en)1998-06-092004-06-15Idemitsu Kosan Corp Ltd.Process for reforming hydrocarbon
US6762149B2 (en)1998-07-272004-07-13Battelle Memorial InstituteCatalyst, method of making, and reactions using the catalyst
US6479428B1 (en)1998-07-272002-11-12Battelle Memorial InstituteLong life hydrocarbon conversion catalyst and method of making
US6440895B1 (en)1998-07-272002-08-27Battelle Memorial InstituteCatalyst, method of making, and reactions using the catalyst
US6172272B1 (en)1998-08-212001-01-09The University Of UtahProcess for conversion of lignin to reformulated, partially oxygenated gasoline
US6582667B1 (en)1998-09-182003-06-24Nippon Shokubai Co., Ltd.Shell-and-tube reactor
US6207132B1 (en)1998-12-042001-03-27Chinese Petroleum CorporationProcess for producing high purity hydrogen
US7273957B2 (en)1999-05-042007-09-25Catalytic Distillation TechnologiesProcess for the production of gasoline stocks
US6413449B1 (en)1999-05-222002-07-02Degussa-Huls AktiengesellschaftMethod of using catalyst for steam reforming of alcohols
US6372680B1 (en)1999-07-272002-04-16Phillips Petroleum CompanyCatalyst system for converting oxygenated hydrocarbons to aromatics
US6969506B2 (en)1999-08-172005-11-29Battelle Memorial InstituteMethods of conducting simultaneous exothermic and endothermic reactions
US6570043B2 (en)1999-09-032003-05-27Battelle Memorial InstituteConverting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
US6235797B1 (en)1999-09-032001-05-22Battelle Memorial InstituteRuthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
US6291725B1 (en)2000-03-032001-09-18Board Of Trustees Operating Michigan State UniversityCatalysts and process for hydrogenolysis of sugar alcohols to polyols
US6397790B1 (en)2000-04-032002-06-04R. Kirk Collier, Jr.Octane enhanced natural gas for internal combustion engine
US6508209B1 (en)2000-04-032003-01-21R. Kirk Collier, Jr.Reformed natural gas for powering an internal combustion engine
WO2002000341A2 (en)2000-06-232002-01-03Chevron U.S.A. Inc.Catalyst regeneration via reduction with hydrogen
US6497856B1 (en)2000-08-212002-12-24H2Gen Innovations, Inc.System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US7070745B2 (en)2000-12-112006-07-04Shell Oil CompanyMultiple bed downflow reactor
US6486366B1 (en)2000-12-232002-11-26Degussa AgMethod for producing alcohols by hydrogenation of carbonyl compounds
JP2002220202A (en)2001-01-232002-08-09Kansai Coke & Chem Co Ltd Hydrogen production method
US20020172632A1 (en)2001-04-022002-11-21Tai-Sheng ChouQuench box for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor
US6765101B1 (en)2001-05-012004-07-20Union Carbide Chemicals & Plastics Technology CorporationSynthesis of lower alkylene oxides and lower alkylene glycols from lower alkanes and/or lower alkenes
US7022824B2 (en)2001-06-112006-04-04Basf AktiengesellschaftMethod for the production of sorbit
US6670300B2 (en)2001-06-182003-12-30Battelle Memorial InstituteTextured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
US7186668B2 (en)2001-06-182007-03-06Battele Memorial InstituteTextured catalysts and methods of making textured catalysts
US6607707B2 (en)2001-08-152003-08-19Ovonic Battery Company, Inc.Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
US20030115792A1 (en)2001-10-052003-06-26Shabtai Joseph SProcess for converting lignins into a high octane blending component
US20030100807A1 (en)2001-10-052003-05-29Shabtai Joseph SProcess for converting lignins into a high octane additive
US6677385B2 (en)2001-10-232004-01-13Battelle Memorial InstituteHydrogenolysis of 5-carbon sugars, sugar alcohols and compositions for reactions involving hydrogen
US7038094B2 (en)2001-10-232006-05-02Battelle Memorial InstituteHydrogenolysis of 5-carbon sugars, sugar alcohols, and methods of making propylene glycol
US6479713B1 (en)2001-10-232002-11-12Battelle Memorial InstituteHydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen
US6841085B2 (en)2001-10-232005-01-11Battelle Memorial InstituteHydrogenolysis of 6-carbon sugars and other organic compounds
WO2003045841A1 (en)2001-11-292003-06-05Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
US7618612B2 (en)2001-11-292009-11-17Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
JP2005510437A (en)2001-11-292005-04-21ウィスコンシン アルムニ リサーチ ファウンデイション Low temperature hydrogen production from oxidized hydrocarbons.
US6699457B2 (en)2001-11-292004-03-02Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
US20050207971A1 (en)*2001-11-292005-09-22Cortright Randy DLow-temperature hydrogen production from oxygenated hydrocarbons
US6964757B2 (en)2001-11-292005-11-15Wisconsin Alumni ResearchLow-temperature hydrogen production from oxygenated hydrocarbons
US6964758B2 (en)2001-11-292005-11-15Wisconsin Alumni Research FoundationLow-temperature hydrogen production from oxygenated hydrocarbons
US7297814B2 (en)2002-01-112007-11-20Mitsubishi Chemical CorporationMultitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
US20030175561A1 (en)2002-03-182003-09-18Lightner Gene E.Production of electricity from fuel cells achieved by biomass gasification
US7663004B2 (en)2002-04-222010-02-16The Curators Of The University Of MissouriMethod of producing lower alcohols from glycerol
WO2004039918A2 (en)2002-05-102004-05-13Wisconsin Alumni Research FoundationLow-temperature hydrocarbon production from oxygenated hydrocarbons
US6953873B2 (en)2002-05-102005-10-11Wisconsin Alumni Research FoundationLow-temperature hydrocarbon production from oxygenated hydrocarbons
US7232935B2 (en)2002-09-062007-06-19Fortum OyjProcess for producing a hydrocarbon component of biological origin
US6739125B1 (en)2002-11-132004-05-25Collier Technologies, Inc.Internal combustion engine with SCR and integrated ammonia production
WO2004052813A1 (en)2002-12-112004-06-24Basf AktiengesellschaftContinuous method for the production of sugar alcohols
US7674916B2 (en)2002-12-202010-03-09Battelle Memorial InstituteProcess for producing cyclic compounds
US7199250B2 (en)2002-12-202007-04-03Battelle Memorial InstituteProcess for producing cyclic compounds
US20050064560A1 (en)2003-03-032005-03-24Werpy Todd A.Methods of producing compounds from plant material
US7652131B2 (en)2003-03-032010-01-26Battelle Memorial InstituteMethods of producing compounds from plant materials
US6982328B2 (en)2003-03-032006-01-03Archer Daniels Midland CompanyMethods of producing compounds from plant material
EP1454671A1 (en)2003-03-072004-09-08Karsten PedersenA catalyst for use in production of hydrogen by conversion of organic matter in water
JP2004344721A (en)2003-05-202004-12-09Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
FR2857003A1 (en)2003-07-022005-01-07Inst Francais Du PetroleCatalyst and process for the reforming of ethanol and other heavier alcohols, useful for the production of hydrogen
US20050014635A1 (en)2003-07-142005-01-20Bing ZhouSupported catalysts having a controlled coordination structure and methods for preparing such catalysts
US20050203195A1 (en)2003-08-052005-09-15Yong WangTailored Fischer-Tropsch synthesis product distribution
WO2005037423A1 (en)2003-10-142005-04-28Bristol-Myers Squibb CompanyMethod and apparatus for optimizing throughput in a trickle bed reactor
US20070123739A1 (en)2003-10-302007-05-31Davy Process Technology LimitedHydrogenolysis of sugar feedstock
US20050244329A1 (en)2004-03-102005-11-03Dominique CasanaveProcess for the production of hydrogen with very high purity from alcohols that comprise at least two carbon atoms
US7520909B2 (en)2004-06-032009-04-21Rogers Family Revocable Living TrustLow temperature methods for hydrogen production
US20060013759A1 (en)2004-07-132006-01-19Conocophillips CompanySystems and methods for hydrogen production
US20060024539A1 (en)2004-07-292006-02-02Dumesic James ACatalytic method to remove CO and utilize its energy content in CO-containing streams
WO2006100584A2 (en)2005-03-212006-09-28Ben-Gurion University Of The Negev Research & Development AuthorityProduction of diesel fuel from vegetable and animal oils
WO2006119357A2 (en)2005-05-022006-11-09University Of Utah Research FoundationProcesses for catalytic conversion of lignin to liquid bio-fuels
EP1724325A1 (en)2005-05-182006-11-22Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Process for continuous or partly continuous conversion of fat- or oil-containing raw and waste materials into mixtures having a high hydrocarbon content, products obtained by this process and their use
US7288685B2 (en)2005-05-192007-10-30Uop LlcProduction of olefins from biorenewable feedstocks
US7355083B2 (en)2005-07-152008-04-08Davy Process Technology LimitedProcess
WO2007027832A2 (en)2005-08-302007-03-08Cargill, IncorporatedA method for the production of propylene glycol
WO2007053705A2 (en)2005-10-312007-05-10University Of Missouri Board Of CuratorsMethod of producing lower alcohols from glycerol
US20100008840A1 (en)2005-11-142010-01-14Agency For Science, Technology And ResearchHighly Dispersed Metal Catalysts
US7692001B2 (en)2005-12-082010-04-06Sud-Chemie Inc.Catalyst and method for production of polyols by hydrogenolysis of carbohydrates
US20070135301A1 (en)2005-12-082007-06-14Sud-Chemie Inc.Catalyst for the production of polyols by hydrogenolysis of carbohydrates
WO2007075476A2 (en)2005-12-212007-07-05Virent Energy Systems Inc.Catalysts and methods for reforming oxygenated compounds
US20090211942A1 (en)2005-12-212009-08-27Cortright Randy DCatalysts and methods for reforming oxygenated compounds
US7615652B2 (en)2006-01-262009-11-10Battelle Memorial InstituteTwo-stage dehydration of sugars
US7649099B2 (en)2006-01-262010-01-19Battelle Memorial InstituteMethod of forming a dianhydrosugar alcohol
WO2007099161A1 (en)2006-03-032007-09-07Basf SeProcess for the preparation of 1,2-propanediol
US7767867B2 (en)2006-05-082010-08-03Virent Energy Systems, Inc.Methods and systems for generating polyols
US7578927B2 (en)2006-08-312009-08-25Uop LlcGasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
US20080300434A1 (en)2007-03-082008-12-04Cortright Randy DSynthesis of liqiud fuels and chemicals from oxygenated hydrocarbons
US20080300435A1 (en)2007-03-082008-12-04Cortright Randy DSynthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2008109877A1 (en)2007-03-082008-09-12Virent Energy Systems, Inc.Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US20080216391A1 (en)2007-03-082008-09-11Cortright Randy DSynthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US20100076233A1 (en)2008-08-272010-03-25Cortright Randy DSynthesis of liquid fuels from biomass

Non-Patent Citations (100)

* Cited by examiner, † Cited by third party
Title
Agar, Abstract 2254-Influence of the Liquid Phase Physical Properties on Unsteady-State Hydrodynamics in Periodically Operated Trickle-Bed Reactors, European Congress of Chemical Engineering-6, Copenhagen, Sep. 16-21, 2007.
Applicant, Response to European Patent Office Apr. 2, 2009 Communication, Application No. 08731758.2, May 1, 2009.
Applicant, Response to European Patent Office Mar. 25, 2010, Communication, Application No. 08731758.2, Oct. 1, 2010.
Applicant, Response to Non-Final Office Action, U.S. Appl. No. 11/800,671, Aug. 10, 2009.
Applicant, Response to Non-Final Office Action, U.S. Appl. No. 12/044,837, Nov. 12, 2010.
Applicant, Response to Non-Final Office Action, U.S. Appl. No. 12/044,876, Nov. 12, 2010.
Applicant, Response to Non-Final Office Action, U.S. Appl. No. 12/044,908 , Nov. 12, 2010.
Applicant, Response to Non-Final Office Action, U.S. Appl. No. 12/834,306, Dec. 15, 2010.
Applicant, Response to Restriction Requirement, U.S. Appl. No. 11/800,671, Jan. 26, 2009.
Applicant, Response to State Intellectual Property Office of the People's Republic of China First Office Action, Application No. 200680048598.5, Oct. 21, 2010 [includes AFD China Intellectual Property Law Office Oct. 22, 2010 letter; Quarles & Brady Oct. 13, 2010 letter; English version of Amended Claims].
Applicant, Response to Ukraine Patent Office Office Action, Application No. a 2008 09306, Dec. 2010 [includes Papula-Nevinpat Dec. 8, 2010 letter].
Applicant, Supplemental Response to Non-Final Office Action, U.S. Appl. No. 12/044,837, Jan. 5, 2011.
Applicant, Supplemental Response to Non-Final Office Action, U.S. Appl. No. 12/044,876, Jan. 5, 2011.
Applicant, Supplemental Response to Non-Final Office Action, U.S. Appl. No. 12/044,908, Jan. 5, 2011.
Badger, "Ethanol From Cellulose: A General Review," 2002 J. Janick and A. Whipkey (eds.), Trends in New Crops and New Uses, ASHA Press, Alexandria, VA, pp. 17-21.
Bardin, et al., "Acidity of Keggin-Type Heteropolycompounds Evaluated by Catalytic Probe Reactions, Sorption Microcalorimetry, and Density Functional Quantum Chemical Calculations" 1998 J. Phys. Chem. B 102:10817-10825.
Barrett, et al., "Single-Reactor Process for Sequential Aldol-Condensation and Hydrogenation of Biomass-Derived Compounds in Water," 2006 Applied Catalysis B: Environmental 66:111-118.
Brown, et al., "Carbon-Halogen Bond Scission and Rearrangement of Beta-Halohydrins on the Rh(111) Surface" 1994 J. Phys. Chem. 98:12737-12745.
Chaminand, et al., "Glycerol Hydrogenolysis on Heterogeneous Catalysts", 2004 Green Chemistry 6:359-361.
Chen, et al., "Liquid Fuel From Carbohydrates," Aug. 1986 Chemtech pp. 506-509.
Chiu, et al., "Distribution of Methanol and Catalysts Between Biodiesel and Glycerin Phases" 2005 AIChE Journal 51:1274-1278.
Chiu, et al., "Removal of Residual Catalyst from Simulated Biodiesel's Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol" 2006 Ind. Eng. Chem. Res. 45:791-795.
Corma, et al., "Processing Biomass-Derived Oxygenates in the Oil Refinery: Catalytic Cracking (FCC) Reaction Pathways and Role of Catalyst," 2007 Journal of Catalysis 247:307-327.
Cortright, et al., "Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water" 2002 Nature 418:964-967.
Crabtree, et. al., "Novel Catalysis for Glycol Manufacture", 2001.
Dasari, et al., "Low-Pressure Hydrogenolysis of Glycerol to Propylene Glycol" 2005 Applied Catalysis A: General 281:225-231.
Dass, et al., "A Comparative Study of the Conversion of Ethanol and of Ethylene Over the 'Mobil' Zeolite Catalyst, H-ZSM-5. An application of the Benzene Sequestration Test," 1989 Can. J. Chem. 67:1732-1734.
Davda, et al., "A Review of Catalytic Issues and Process Conditions for Renewable Hydrogen and Alkanes by Aqueous-Phase Reforming of Oxygenated Hydrocarbons Over Supported Metal Catalysts" 2005 Applied Catalysis B: Environmental 56:171-186.
Davda, et al., "Aqueous-Phase Reforming of Ethylene Glycol on Silica-Supported Metal Catalysts" 2003 Applied Catalysis B: Environmental 43:13-26.
Davda, et al., "Catalytic Reforming of Oxygenated Hydrocarbons for Hydrogen with Low Levels of Carbon Monoxide" 2003 Angew. Chem. Int. Ed., 42:4068-4071.
Davda, et al., "Renewable Hydrogen by Aqueous-Phase Reforming of Glucose" 2004 Chem. Commun., pp. 36-37.
Dos Santos, et al., "Performance of RuSn Catalysts Supported on Different Oxides in the Selective Hydrogenation of Dimethyl Adipate," 2005 Catalysis Today 107-108:250-257.
Elliott, et al., "Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks" 2004 Ind. Eng. Chem. Res. 43:1999-2004.
Elliott, et al., "Liquid Fuels by Low-Severity Hydrotreating of Biocrude," 1996 Developments in Thermochemical Biomass Conversion 1:611-621.
Elliott, et al.. "Chemical Processing in High-Pressure Aqueous Environments. 6. Demonstration of Catalytic Gasification for Chemical Manufacturing Wastewater Cleanup in Industrial Plants" 1999 Ind. Eng. Chem. Res. 38:879-883.
European Patent Office, Communication, Application No. 08731758.2, Apr. 2, 2009.
European Patent Office, Communication, Application No. 08731758.2, Mar. 25, 2010.
European Patent Office, Examination Report, Application No. 07870663.7, Oct. 22, 2010.
Fraser, "Roadmap for Cellulosic Ethanol Production," U.S. Department of Energy, Jun. 2006.
Fukuoka, et al., "Catalytic Conversion of Cellulose into Sugar Alcohols," 2006 Angew. Chem. Int. Ed. 45:5161-5163.
Gayubo, et al., Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. I. Alcohols and Phenols, Ind. Eng. Chem. Res., 2004, 43(11):2610-2618.
Gayubo, et al., Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids, Ind. Eng. Chem. Res., 2004, 43(11):2619-2626.
Greer, "Creating Cellulosic Ethanol: Spinning Straw into Fuel," May 2005 eNews Bulletin.
Huber, et al., "Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates" 2005 Science 308:1446-1450.
Huber, et al., "Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons," 2003 Science 300:2075-2077.
Huber, et al., "Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates" 2004 Angew. Chem. Int. Ed., 43:1549-1551.
Huber, et al., "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering" 2006 Chem. Rev. 106:4044-4098.
Intellectual Property Office of New Zealand, Examination Report, Application No. 569246, Mar. 2, 2010.
Intellectual Property Office of New Zealand, Examination Report, Application No. 572113, Jun. 4, 2010.
Intellectual Property Office of New Zealand, Examination Report, Application No. 577547, Sep. 17, 2010.
Intellectual Property Office of New Zealand, Examination Report, Application No. 579525, Sep. 29, 2010.
Kawai, et al., "Production of Hydrogen and Hydrocarbon From Cellulose and Water" 1981 Chemistry Letters pp. 1185-1188.
Kluson, et al. "Selective Hydrogenation over Ruthenium Catalysts" 1995 Applied Catalysis A: General 128:13-31.
Makarova, et al., "Dehydration of n-Butanol on Zeolite H-ZSM-5 and Amorphous Aluminosilicate: Detailed Mechanistic Study and the Effect of Pore Confinement" 1994 Journal of Catalysis 149:36-51.
Minowa, et al., "Hydrogen Production from Cellulose in Hot Compressed Water Using Reduced Nickel Catalyst: Product Distribution at Different Reaction Temperatures" 1998 J. of Chem. Eng. of Japan 31:488-491.
Minowa, et al., "Hydrogen Production from Wet Cellulose by Low Temperature Gasification Using a Reduced Nickel Catalyst" 1995 Chemistry Letters pp. 937-938.
Miyazawa, et al., "Glycerol Conversion in the Aqueous Solution under Hydrogen over Ru/C + an Ion-Exchange Resin and Its Reaction Mechanism" 2006 J. of Catalysis 240:213-221.
Nelson, et al., "Application of Direct Thermal Liquefaction for the Conversion of Cellulosic Biomass" 1984 Ind. Eng. Chem. Prod. Res. Dev. 23:471-475.
Oregon Cellulose-Ethanol Study, Appendix B Overview of Cellulose-Ethanol Production Technology 1998 pp. 57-60.
Patent Office of the Russian Federation, Office Action (Inquiry) of the State Examination, Applicaiton No. 2008127066, Nov. 15, 2010.
PCT International Preliminary Report on Patentability, Application No. PCT/US2007/011062, Nov. 11, 2008.
PCT International Preliminary Report on Patentability, Application No. PCT/US2007/088417, Jun. 24, 2009.
PCT International Preliminary Report on Patentability, PCT/US2008/056330, Sep. 8, 2009.
PCT International Search Report and Written Opinion, Application No. PCT/US2007/088417, Dec. 2, 2008.
PCT International Search Report and Written Opinion, Application No. PCT/US2010/040644, Feb. 4, 2011.
PCT International Search Report, Application No. PCT/US2006/048030, Dec. 27, 2007.
PCT International Search Report, Application No. PCT/US2007/011062, Sep. 16, 2008.
PCT International Search Report, Application No. PCT/US2008/056330, Jul. 10, 2008.
PCT Written Opinion, Application No. PCT/US2006/048030, Jun. 21, 2008.
Republic of South Africa, Letters Patent, Patent No. 2008/09194, Dec. 30, 2009.
Republic of South Africa, Letters Patent, Patent No. 2009/04056, Apr. 28, 2010.
Republic of South Africa, Letters Patent, Patent No. 2009/05916, Apr. 28, 2010.
Roman-Leshkov, et al., "Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates" 2007 Nature 447:982-986.
Rostrup-Nielsen, "Conversion of Hydrocarbons and Alcohols for Fuel Cells" 2001 Phys. Chern. Chern. Phys. 3:283-288.
Shabaker, et al., "Aqueous-Phase Reforming of Ethylene Glycol over Supported Platinum Catalysts" 2003 Catal. Lett., vol. 88, Nos. 1-2.
Shabaker, et al., "Aqueous-Phase Reforming of Methanol and Ethylene Glycol Over Alumina-Supported Platinum Catalysts" 2003 Journal of Catalysis 215:344-352.
Shabaker, et al., "Aqueous-Phase Reforming of Oxygenated Hydrocarbons Over Sn-Modified Ni Catalysts" 2004 Journal of Catalysis 222:180-191.
Shabaker, et al., "Kinetics of Aqueous-Phase Reforming of Oxygenated Hydrocarbons: Pt/Al2O3 and Sn-Modified Ni Catalysts" 2004 Ind. Eng, Chem. Res., 43:3105-3112.
Shabaker, et al., "Sn-modified Ni Catalysts for Aqueous-Phase Reforming: Characterization and Deactivation Studies" 2005 Journal of Catalysis 231:67-76.
Silva, et al., "Role of Catalyst Preparation on Determining Selective Sites for Hydrogenation of Dimethyl Adipate Over RuSn/Al2O3," 2006 J. of Molecular Catalysis A: Chemical 253:62-69.
State Intellectual Property Office of the People'S Republic of China, First Office Action (Translation), Application No. 200680048598.5, Jun. 11, 2010.
State Intellectual Property Office of the People's Republic of China, Second Office Action (Translation), Application No. 200680048598.5, Jan. 10, 2011.
Tsuchida, et al., "Direct Synthesis of n-Butanol from Ethanol over Nonstoichiometric Hydroxyapatite" 2006 Ind. Eng. Chern. Res. 45:8634-8642.
Ukraine Patent Office, Office Action, Application No. a 2008 09306, 2010.
Ukraine Patent Office, Office Action, Application No. a 2008 09306, Jan. 2011.
Ukraine Patent Office, Office Action, Application No. a 2008 12327, 2010.
United States Patent and Trademark Office, Interview Summary, U.S. Appl. No. 12/044,837, Oct. 28, 2010.
United States Patent and Trademark Office, Interview Summary, U.S. Appl. No. 12/044,876, Oct. 28, 2010.
United States Patent and Trademark Office, Interview Summary, U.S. Appl. No. 12/044,908, Oct. 29, 2010.
United States Patent and Trademark Office, Issue Notification, U.S. Appl. No. 11/800,671, Aug. 3, 2010.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. App. No. 11/800,671, Apr. 8, 2009.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 11/800,671, Dec. 26, 2008.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 12/044,837, Aug. 12, 2010.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 12/044,876, Aug. 16, 2010.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 12/044,908, Aug. 12, 2010.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 12/158,635, Jan. 4, 2011.
United States Patent and Trademark Office, Office Action Summary and Detailed Action, U.S. Appl. No. 12/834,306, Sep. 17, 2010.
Wang, et al., "Catalytic Steam Reforming of Biomass-Derived Oxygenates: Acetic Acid and Hydroxyacetaldehyde" 1996 Applied Catalysis A: General 143:245-270.
Werpy, et al., "Top Value Added Chemicals from Biomass, vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas," 2004 National Renewable Energy Laboratory, Pacific Northwest National Laboratory.
Yoshida et al., "Gasification of Cellulose, Xylan, and Lignin Mixtures in Supercritical Water" 2001 Ind. Eng. Chern. Res. 40:5469-5474.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020023452A1 (en)*2018-07-232020-01-30The Trustees Of Columbia University In The City Of New YorkMethods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes
US11702601B2 (en)2020-10-292023-07-18Marathon Petroleum Company LpSystems and methods for separating water and removing solids from pre-treated and unfiltered feedstock
US11725151B2 (en)2020-10-292023-08-15Marathon Petroleum Company LpSystems and methods for enhanced inorganic contaminant removal from hydrocarbon feedstock
US12098330B2 (en)2020-10-292024-09-24Marathon Petroleum Company LpSystems and methods for enhanced inorganic contaminant removal from hydrocarbon feedstock
US11788023B2 (en)2021-10-122023-10-17Marathon Petroleum Company LpSystems and methods of converting renewable feedstocks into intermediate hydrocarbon blend stocks and transportation fuels
US11993754B2 (en)2021-10-122024-05-28Marathon Petroleum Company LpSystems and methods of converting renewable feedstocks into intermediate hydrocarbon blend stocks and transportation fuels

Also Published As

Publication numberPublication date
WO2008140617A3 (en)2009-01-15
JP2010514548A (en)2010-05-06
CA2671730A1 (en)2008-11-20
US20100288975A1 (en)2010-11-18
ZA200904056B (en)2010-04-28
US20120282163A1 (en)2012-11-08
NZ577547A (en)2012-05-25
BRPI0719504A2 (en)2017-10-24
AU2007353527B2 (en)2012-12-20
CO6210746A2 (en)2010-10-20
MX2009006509A (en)2009-10-28
KR20090101260A (en)2009-09-24
RU2009121628A (en)2011-01-27
CN101568377A (en)2009-10-28
WO2008140617A2 (en)2008-11-20
EP2111291A2 (en)2009-10-28
AU2007353527A1 (en)2008-11-20

Similar Documents

PublicationPublication DateTitle
US8834587B2 (en)Method of producing gaseous products using a downflow reactor
US20090127512A1 (en)Enhanced process for the production of synthesis gas starting from oxygenated compounds deriving from biomasses
Chattanathan et al.A review on current status of hydrogen production from bio-oil
US6699457B2 (en)Low-temperature hydrogen production from oxygenated hydrocarbons
JP7528243B2 (en) Hydrocarbon Production
MX2009005959A (en) METHOD FOR FORMING A TABLET THAT UNDERSTANDS THE PRE-MIXED IBUPROFEN AND SILICE.
Alipour-Dehkordi et al.Use of a micro-porous membrane multi-tubular fixed-bed reactor for tri-reforming of methane to syngas: CO2, H2O or O2 side-feeding
US20050207971A1 (en)Low-temperature hydrogen production from oxygenated hydrocarbons
Kawi et al.CO2 as an oxidant for high-temperature reactions
CN107646027A (en)The low entry temperature of methane oxidation coupling
US20050232855A1 (en)Reactor with carbon dioxide fixing material
US20170240488A1 (en)Method for converting methane to ethylene and in situ transfer of exothermic heat
BRPI0923621A2 (en) process to produce hydrogen
EP2565155B1 (en)Method of reforming gasification gas
EP3935012A1 (en)Production of synthesis gas and of methanol
JP2025517894A (en) System for producing hydrocarbon products from synthesis gas - Patents.com
SimakovThermocatalytic conversion of CO2
Xie et al.Extracting high-purity hydrogen via sodium looping-based formic acid dehydrogenation
CN113710613A (en)Methanol production process with improved energy efficiency
CN113574040B (en) Methanol production method
ES2796480T3 (en) Method for stable steam reforming of ethanol
EA044713B1 (en) METHOD FOR PRODUCING METHANOL WITH INCREASED ENERGY EFFICIENCY
CN113614025A (en)Process for producing hydrogen-depleted synthesis gas for acetic acid synthesis and dimethyl ether synthesis
EA048165B1 (en) INTEGRATED METHOD OF INDIRECT HEAT TRANSFER FOR SIMULTANEOUS PRODUCTION OF SYNTHESIS GAS AND OLEFINS
EA044653B1 (en) PRODUCTION OF SYNTHESIS GAS AND METHANOL

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:VIRENT ENERGY SYSTEMS, INC., WISCONSIN

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CORTRIGHT, RANDY D.;ROZMIAREK, ROBERT T.;HORNEMANN, CHARLES C.;SIGNING DATES FROM 20100518 TO 20120520;REEL/FRAME:028580/0354

ASAssignment

Owner name:VIRENT, INC., WISCONSIN

Free format text:CHANGE OF NAME;ASSIGNOR:VIRENT ENERGY SYSTEMS, INC.;REEL/FRAME:028597/0354

Effective date:20110817

STCFInformation on status: patent grant

Free format text:PATENTED CASE

ASAssignment

Owner name:ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C

Free format text:CONFIRMATORY LICENSE;ASSIGNOR:VIRENT ENERGY SYSTEMS, INC.;REEL/FRAME:037279/0299

Effective date:20140519

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment:4

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:8


[8]ページ先頭

©2009-2025 Movatter.jp