BACKGROUND1. Technical Field
This disclosure generally relates to computer systems, and more specifically relates to autonomic customization of a virtual appliance by retrieving customization values from various providers to customize the virtual appliance in order to simplify deployment.
2. Background Art
A virtual machine (VM) is a software implementation of a computer that executes software programs like a physical machine. A single physical machine may host one or more virtual machines. Virtual machines allow a physical machine to run multiple operating systems. A virtual appliance is a prebuilt software solution containing virtual machines and software applications that are integrated, managed, and updated as a package. Virtual appliances simplify the development and distribution of software applications, and shorten implementation time. A virtual appliance may be described using Open Virtualization Format (OVF). OVF is a developing platform-independent standard from the Distributed Management Task Force (DMTF) to describe virtual machine metadata and create portable virtual-machine packages.
Deployment of a virtual machine requires that the virtual machine be customized for the specific platform and hardware. The customization includes information such as: minimum, desired, and max memory and CPUs, storage information (amount, location, pools), and network information (DNS server, IP addresses of VMs, hostnames, gateway). The problem with deploying virtual machines is that the customization information can be very technical, and an end user, that is the person who will ultimately use the VMs, may not necessarily have the specialized knowledge of all the low level details required, especially considering that they vary by virtualization platform. Thus deploying a VM requires significant manual intervention by administrators with specialized knowledge.
BRIEF SUMMARYThe disclosure and claims herein are directed to autonomic customization of a virtual appliance by retrieving customization values from various providers to customize the virtual appliance in order to simplify deployment of the virtual appliance. A customizer retrieves customization values for various customizable properties of a virtual machine from customization providers to customize the virtual appliance. The customization properties may include CPU properties, memory properties, storage properties, network properties and properties specific to the software in the virtual appliance. The customizer allows an end user to initiate autonomic customization of the virtual appliance at various times prior to deployment. The customizer also allows the user to provide additional customization upon execution.
The foregoing and other features and advantages will be apparent from the following more particular description, as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)The disclosure will be described in conjunction with the appended drawings, where like designations denote like elements, and:
FIG. 1 is a block diagram of a computer system with a customizer that autonomically customizes a virtual appliance by retrieving customization values from various providers to customize the virtual appliance in order to simplify deployment of the virtual appliance;
FIG. 2 is a block diagram that illustrates a customizer retrieving customization values from appliance customization providers;
FIG. 3 is a table with examples of customizable properties and sources from which to retrieve customization values for the customizable properties;
FIG. 4 illustrates an example of an OVF file used by the customizer for retrieving customization values from appliance customization providers;
FIG. 5 illustrates another example of an OVF file used by the customizer for retrieving customization values from appliance customization providers; and
FIG. 6 is a method flow diagram for a customizer as claimed herein.
DETAILED DESCRIPTIONDescribed herein is a system and method for autonomic customization of a virtual appliance by retrieving customization values from various providers to customize the virtual appliance in order to simplify deployment of the virtual appliance. A customizer retrieves customization values for various customizable properties of a virtual machine from customization providers to customize the virtual appliance. The customization properties may include CPU properties, memory properties, storage properties, network properties and properties specific to the software in the virtual appliance. The customizer allows an end user to initiate autonomic customization of the virtual appliance at various times prior to deployment. The customizer also allows the user to provide additional customization upon execution.
Referring toFIG. 1, acomputer system100 is one suitable implementation of a computer system that includes a customizer as described herein.Computer system100 is an International Business Machines Corporation (IBM®) Power System which can run multiple operating systems including the IBM® i operating system. However, those skilled in the art will appreciate that the disclosure herein applies equally to any computer system capable of being connected in a multi-nodal or distributing computing environment. For example, thecomputer system100 could also represent a single node of a massively parallel computer such as IBM® Corporation's Blue Gene® computer system, or a node of a scalable performance cluster such as a Beowulf cluster. As shown inFIG. 1,computer system100 comprises one ormore processors110, amain memory120, amass storage interface130, adisplay interface140, and anetwork interface150. These system components are interconnected through the use of asystem bus160.Mass storage interface130 is used to connect mass storage devices with a computer readable or computer recordable medium, such as directaccess storage devices155, tocomputer system100. One specific type of directaccess storage device155 is a readable and writable CD-RW drive, which may store data to and read data from a compact disk (CD)195.
Main memory120 preferably contains anoperating system121.Operating system121 is a multitasking operating system known in the industry as IBM® i operating system; however, those skilled in the art will appreciate that the spirit and scope of this disclosure is not limited to any one operating system. The memory further includes adeployment engine122 that deploys a virtual appliance on the computer system or on a related computer system over the network. Thememory120 includes anappliance repository123 with at least onevirtual appliance124. Thememory120 further includes acustomizer125 withcustomization values126 and a customization table127 as described herein. While thedeployment engine122, and thecustomizer125 are shown to reside in the same physical machine inFIG. 1, these components will likely reside in different physical computers similar tocomputer100 as shown but operate in the same manner as described herein. Further, theappliance repository123 will most likely be stored in a block of permanent shared storage assessable tocomputer100 and loaded into local memory120 (most likely volatile memory) as needed. The permanent storage holding theappliance repository123 could be a local directaccess storage device155 or other remote memory storage outside thephysical machine100 but assessable to thecustomizer125 oncomputer100.
Computer system100 utilizes well known virtual addressing mechanisms that allow the programs ofcomputer system100 to behave as if they only have access to a large, single storage entity instead of access to multiple, smaller storage entities such asmain memory120 and direct access storage device (DASD)155. Therefore, whileoperating system121,deployment engine122,appliance repository123,virtual appliance124, thecustomizer125, thecustomization values126, and the customization table127 are shown to reside inmain memory120, those skilled in the art will recognize that these items are not necessarily all completely contained inmain memory120 at the same time. It should also be noted that the term “memory” is used herein generically to refer to the entire virtual memory ofcomputer system100, and may include the virtual memory of other computer systems coupled tocomputer system100.
Processor110 may be constructed from one or more microprocessors and/or integrated circuits.Processor110 executes program instructions stored inmain memory120.Main memory120 stores programs and data thatprocessor110 may access. Whencomputer system100 starts up,processor110 initially executes the program instructions that make upoperating system121 and later executes the program instructions that make up thecustomizer125.
Althoughcomputer system100 is shown to contain only a single processor and a single system bus, those skilled in the art will appreciate that a customizer as described herein may be practiced using a computer system that has multiple processors and/or multiple buses. In addition, the interfaces that are used preferably each include separate, fully programmed microprocessors that are used to off-load compute-intensive processing fromprocessor110. However, those skilled in the art will appreciate that these functions may be performed using I/O adapters as well.
Display interface140 is used to directly connect one ormore displays165 tocomputer system100. Thesedisplays165, which may be non-intelligent (i.e., dumb) terminals or fully programmable workstations, are used to provide system administrators and users the ability to communicate withcomputer system100. Note, however, that whiledisplay interface140 is provided to support communication with one ormore displays165,computer system100 does not necessarily require adisplay165, because all needed interaction with users and other processes may occur vianetwork interface150, e.g. web client based users.
Network interface150 is used to connectcomputer system100 to other computer systems orworkstations175 vianetwork170.Network interface150 broadly represents any suitable way to interconnect electronic devices, regardless of whether thenetwork170 comprises present-day analog and/or digital techniques or via some networking mechanism of the future. In addition, many different network protocols can be used to implement a network. These protocols are specialized computer programs that allow computers to communicate across a network. TCP/IP (Transmission Control Protocol/Internet Protocol) is an example of a suitable network protocol.
FIG. 2 illustrates a block diagram of acustomizer125 retrievingcustomization values126 fromappliance customization providers210. Theappliance customization providers210 may provide one or more related customization values and there may be more than one provider for a single customization property. Several example customization providers are illustrated. These examples are for illustrative purposes only and do not limit the customization values to be provided by any particular source or grouped together in any particular manner. In the example shown inFIG. 2,Provider A212 includes customization values related to the central processing unit (CPU) or processor and memory.Provider B214 provides customization values related to IP address.Provider C216 has customization values related to passwords.Provider D218 has software stack customization values.
FIG. 3 illustrates a customization table127 ofcustomization properties312 andpotential customization providers210 to provide customizable values for thecustomization properties312. The customization properties are listed in the left column with one or two correspondingproviders210 for each customization property in the other two columns. Thecustomizer125 may use the customization table to determine knowncustomization properties312 of an associated virtual appliance. Thecustomizer125 may then use the customization table127 to retrievecustomization values126 fromappliance customization providers210.
Again referring toFIG. 3, thecustomization providers210 for the customization values126 may include any number of sources internal or external to the customizer and the local computer system. For example, the customization provider may include a list of rules or guidelines that reside in the physical host's file system or somewhere else, predefined values hosted over a Web service by the software stack or product providers, a server application with customization values provided by the data center or a system administrator, a web service provided by the Virtual Appliance creator, etc. A customization property could also be a web service or application provided as a service by a third party to provide the customization values as described herein. For example, a third party could provide a service that generates usernames and passwords for the virtual appliance. As used herein, a Web service is a method of communicating between two computers over a network, in this case, the Internet. Also, as used herein, a data center is a facility used to house computer systems and associated components, such as telecommunications and storage systems. It may also include backup power supplies, redundant data communications connections, environmental controls and security devices, etc.
The customizer may be executed at different times to customize a virtual appliance (VA). The customizer primarily will be executed to build, update or launch a VA as described by the examples herein. However, the customizer could also be executed at other times. The customizer may be executed by the user to build aVA124 that is then stored in theappliance repository123 as shown inFIG. 1. The customizer may also be executed as described herein to allow the user to retrieve and update an existing VA stored in theappliance repository123. For example, if a VA is changed by adding a virtual machine or a property is changed then the customizer could be run again to update the customization values. In other cases, the customizer may also be executed just prior to the VA being deployed to customize the VA. When the user deploys the VA with the deployment engine122 (FIG. 1) the user may be given the option to update the autonomic customization values or add any additional customization values.
We will now consider some examples of the customizer retrieving customization values to customize the VA. The customizer (125 inFIG. 2) identifies known customization properties of the VA and potential sources of the corresponding customization values using the customization table (127 inFIG. 3) or similar data stored in any suitable data format. The customizer then requests or otherwise obtains the customization values by contacting the customization source. In a preferred method, the customizer sends an Open Virtualization Format (OVF) file to the customization source to request the customization values. The customization source then responds by sending back the OVF file with the customization values populated in the file. Alternatively, just a section of the OVF could be sent, or just a property name could be sent to signal the provider to return a customization value. Other file formats and communication methods could similarly be used by the customizer to contact the customization sources for customization values.
FIG. 4 illustrates an example of OVF used by the customizer to obtain customization values. This OVF formatted data is metadata for describing the customization values needed to customize the VA. In this example, the customizer uses the data inFIG. 4 to obtain the customization values from a web service. In the OVF code shown inFIG. 4, the properties are “ipaddr”412 and “domainname”414. The “ipaddr” property specifies the IP address that the resulting virtual machine will have when it's created. The end user, the person that is going to use that virtual machine may not want to keep track of a list of IP addresses available for the various virtual machines that may be deployed in his/her datacenter. The customizer contacts a Web service created by the data center administrator that keeps track of all the available IP addresses and sends the OVF file shown inFIG. 4 to obtain the IP address to customize the VA. In this example, thedomainname414 is sent as a context value to give the customization provider a context to provide a corresponding customization value. Thus thedomainname414 tells the customization provider the domain that the VA is operating on so that the web service provided by the data center can provide an appropriate IP address. In this example, it is advantageous for the customizer to run just prior to deploying (as opposed to when the virtual appliance was added to the repository). This ensures that the IP addresses will not be reserved until the last moment before it is needed.
FIG. 5 illustrates another example of OVF code used by the customizer to obtain customization values. The OVF code inFIG. 5 illustrates twoproperties username512 andpassword514 that will be the credential for the MySQL Database that the resulting Virtual Machine will have. In order not to store the username and password for the database in the actual file, which may not be secure, these two properties can be filled out at just the last moment before deployment by having the customizer contact a Web service created in the datacenter by the administrator that will generate a username and password to customize the properties, and send those properties to the deployment engine encrypted or over a secure channel for security.
In another example, the customizer is utilized to customize hardware properties of the VA such as the number ofCPUs314 andmemory316 shown inFIG. 3. TheCPU customization property314 would refer to the number of virtual processors allocated to the VA by the deployment engine upon deployment. The customization providers for this customization property could include a set of rules in the customizer or a server application which calculates the number of CPUs need for the VA. The number of CPUs allocated may depend on the number of physical CPUs in the system and/or a quality of service standard for the VA that indicates a satisfactory response level for the VA. The customizer customizes the memory property in a similar manner as described above for the number of CPUs.
As shown inFIG. 3, the customizer also provides autonomic customization of customization properties for the software stack that makes up the virtual machine. For example the software stack may include antivirus software, or backup software. The optimizer may have a property that specifies how often the antivirus software or the backup software runs. The customizer could contact a web service created by the user's data center that specifies how often and when to run this software. Similarly there could be firewall software that has properties when to update one or more access control lists. As will be readily understood by those skilled in the art there could be many other types of software stack properties that could be autonomically customized by the customizer in a similar manner. The customizer also provides autonomic customization of customization properties for the network configuration of the VA. For example, the customizer could contact a file external to the system or a web service at the data center to obtain customization values such as the IP address and hostnames available for each of the virtual machines in the virtual appliance, the gateway information, and main and back-up domain name system (DNS) servers.
FIG. 6 shows amethod600 for customizing a virtual appliance as claimed herein. The steps inmethod600 are preferably performed by the customizer125 (FIG. 1), but portions of the method may also be performed by other software associated with the computer system. The customizer may be invoked at various times to autonomically customize the VA as described in the paragraphs above. First, import the virtual appliance to be customized (step610). Next, identify known customization properties of the virtual appliance (step620). Then determine a source for the identified customization properties (step630). Contact the determined customization sources and retrieve customization values for the customization properties that are specific to the client and environment of the virtual appliance (step640). Optionally, then save the customization values retrieved from the customization sources in the virtual appliance, where the virtual appliance may be stored in a virtual appliance repository (step650). Allow the end user to deploy the customized virtual appliance and optionally allow the end user to update or add any customization values (step660). The method is then done.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
One skilled in the art will appreciate that many variations are possible within the scope of the claims. Thus, while the disclosure is particularly shown and described above, it will be understood by those skilled in the art that these and other changes in form and details may be made therein without departing from the spirit and scope of the claims.