Movatterモバイル変換


[0]ホーム

URL:


US8488682B2 - System and method for extracting text captions from video and generating video summaries - Google Patents

System and method for extracting text captions from video and generating video summaries
Download PDF

Info

Publication number
US8488682B2
US8488682B2US11/960,424US96042407AUS8488682B2US 8488682 B2US8488682 B2US 8488682B2US 96042407 AUS96042407 AUS 96042407AUS 8488682 B2US8488682 B2US 8488682B2
Authority
US
United States
Prior art keywords
caption
word
frames
video
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/960,424
Other versions
US20080303942A1 (en
Inventor
Shih-Fu Chang
Dongqing Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University in the City of New York
Original Assignee
Columbia University in the City of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University in the City of New YorkfiledCriticalColumbia University in the City of New York
Priority to US11/960,424priorityCriticalpatent/US8488682B2/en
Assigned to THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORKreassignmentTHE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORKASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: CHANG, SHIH-FU, ZHANG, DONGQING
Publication of US20080303942A1publicationCriticalpatent/US20080303942A1/en
Assigned to GENERAL ELECTRIC CAPITAL CORPORATIONreassignmentGENERAL ELECTRIC CAPITAL CORPORATIONSECURITY AGREEMENTAssignors: EKR THERAPEUTICS, INC.
Assigned to EKR THERAPEUTICS, INC.reassignmentEKR THERAPEUTICS, INC.RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: GENERAL ELECTRIC CAPTIAL CORPORATION
Priority to US13/935,183prioritypatent/US20130293776A1/en
Application grantedgrantedCritical
Publication of US8488682B2publicationCriticalpatent/US8488682B2/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Caption boxes which are embedded in video content can be located and the text within the caption boxes decoded. Real time processing is enhanced by locating caption box regions in the compressed video domain and performing pixel based processing operations within the region of the video frame in which a caption box is located. The captions boxes are further refined by identifying word regions within the caption boxes and then applying character and word recognition processing to the identified word regions. Domain based models are used to improve text recognition results. The extracted caption box text can be used to detect events of interest in the video content and a semantic model applied to extract a segment of video of the event of interest.

Description

This application is a continuation of U.S. application Ser. No. 10/494,739, filed May 8, 2004 now U.S. Pat. No. 7,339,992, entitled “System and Method for Extracting Text Captions From Video and Generating Video Summaries,” which is a 371 of International Application No. PCT/US02/39247, filed Dec. 6, 2002, published Jun. 19, 2003, which claims the benefit of U.S. Provisional Application No. 60/337,911, filed Dec. 6, 2001, all of which are incorporated by reference in their entireties herein, and from which priority is claimed.
FIELD OF THE INVENTION
The present invention relates generally to text recognition, and more particularly relates to the detection and decoding of caption regions embedded in video content and using the extracted text to generate video summaries.
BACKGROUND OF THE INVENTION
There exists a substantial volume of video and multimedia content which is available both online, such as via the Internet, and offline, such as in libraries. In such video and multimedia content, it is common for a text caption box to be embedded in the video to provide further information about the video content. For example, as illustrated inFIG. 10, a video recording of a baseball game typically includes acaption box1010 which displays game statistics such as the score, inning, ball/strike count, number of outs, etc. The detection and recognition of the text captions embedded in the video frames can be an important component for video summarization, retrieval, storage and indexing. For example, by extracting a short video segment preceding certain changes in the text of the baseball caption box, such as score or number of outs, a “highlight” summary can be automatically generated.
Text recognition in video has been the subject of current research. For example, the article “Video OCR: Indexing Digital News Libraries by Recognition of Superimposed Captions,” by T. Sato, et al., Multimedia Systems, 7:385-394, 1999 discloses a system for detecting and recognizing text in news video. This system is described as using a line filter to enhance the text characters and a projection histogram to segment the characters. A dynamic programming algorithm is used to combine the segmentation and recognition processes to reduce the false alarms of character segmentation.
Past approaches to text detection in video do not adequately account for disturbances in the background areas. As a result, previous approaches are often sensitive to cluttered backgrounds, which diminish text recognition accuracy. Therefore, there remains a need for improved methods of extracting text embedded in video content. There also remains a need to improve automatic video summary generation methods using text which is extracted from the video content.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a system and method for location and recognition of text embedded within video content.
It is a further object of the present invention to provide a method of locating a caption box within video content and recognizing the text within the caption box.
It is another object of the present invention to provide a system and method for identifying a caption box in video content in the sports domain and detecting changes in the game state based on the text in the caption box.
It is yet another object of the present invention to provide a method of generating a summary of video content by detecting a caption box and selecting video segments for the summary based on changes within the caption box.
In accordance with the present invention, a method of decoding a caption box in video content is provided. In the method, the expected location of a caption box in a frame of the video content is determined. At least one caption box mask within the expected location is also determined. A caption box mask is applied to frames of the video content and those frames exhibiting a substantial correlation to the caption box mask within the expected caption box location are identified as caption frames. For at least a portion of the caption frames, word regions within the confines of the expected location are identified and within each word region, text characters are identified. The text characters in the word region are compared against a domain specific model to enhance word recognition.
In the present method, determining an expected location of a caption box can include evaluating motion features and texture features of the video frame in the compressed domain and identifying regions having low motion features and high texture features as candidate caption box regions.
To enhance processing efficiency, it is desirable to remove duplicate caption frames from word region processing. Therefore, the method can further include evaluating the identified caption frames, within the caption box location, for changes in content; and removing caption frames from word region processing which do not exhibit a change in content. Alternatively, a subset of the caption frames can be selected for word region processing by selecting caption frames spaced over a predetermined time period.
In one embodiment, the operation of identifying text characters includes generating a vertical projection profile for each word region and identifying local inflection points, such as minima, in the vertical projection profile. Character regions can then be defined by selecting those minima which are below a threshold value as the position of character boundaries in the word region. A character recognition algorithm is then used to evaluate the defined character regions.
Also in accordance with the present invention is a method of generating an event based summary of video content which includes caption boxes embedded therein. The summarization method begins by extracting caption boxes from at least a portion of the frames of the video content and identifying changes in the content of the extracted caption boxes which are indicative of an event of interest. For each identified change in the content of the caption box, a semantic model is applied to select a portion of the video content, preceding the change in the content of the extracted caption box, which includes the event of interest.
The above described method of caption box extraction and decoding can be used in the summarization method to identify changes in the content of the extracted caption boxes
In one embodiment of the summarization method, the video content is of a baseball game. In this domain, the semantic model can identify the portion of the video content of the event of interest as residing between a pitching event and a non-active view. In this regard, the pitching event can be identified using color model matching and object layout verification, such as the typical arrangement of the pitcher, batter and field. Non-active view frames, which generally include views of the audience or non-active players, can be identified by a reduction in the number of green pixels as compared to a preceding frame as well as a decrease in motion intensity.
BRIEF DESCRIPTION OF THE DRAWING
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
FIG. 1 is a pictorial representation of a frame of sports video content which includes a text caption box;
FIG. 2 is a simplified operational block diagram of an embodiment of the present system for locating a caption box in video content and extracting text therefrom;
FIG. 3 is a simplified flow diagram illustrating the process of determining the caption box location within the video frames;
FIG. 4 is a pictorial representation of a block level mask used to identify frames having caption boxes located therein;
FIG. 5 is a pictorial representation of an exemplary average image of a caption box region;
FIG. 6 is a pictorial representation of a text area mask derived from the average image ofFIG. 5.
FIG. 7 is a flow diagram further illustrating a process of identifying caption frames in video content;
FIG. 8A is a pictorial representation of a word region extracted in accordance with the present invention;
FIG. 8B is a pictorial representation of the word region ofFIG. 8A following intensity segmentation;
FIG. 8C is a graph illustrating a vertical intensity profile versus pixel position for the word region ofFIG. 8A;
FIG. 9 is a transition graph illustrating expected state transitions in a ball-strike count encountered in video content of a baseball game;
FIG. 10 is a pictorial diagram illustrating a frame of video with a caption box embedded therein, which is known in the prior art.
FIG. 11 is a temporal flow diagram illustrating a sequence of semantic events which occur in baseball video content;
FIG. 12 is a pictorial representation of a caption box and further illustrating word region types in a baseball video domain;
FIG. 13 is a flow diagram illustrating the process of identifying scoring events and last pitch events for generating a summary of a baseball video content from extracted caption box text; and
FIG. 14 is a pictorial representation of an exemplary computer display of a video summary browser generated in accordance with the present invention.
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention is directed to systems and methods of locating a caption box within video content and then applying methods of optical character recognition to extract the text from the caption box. Domain knowledge can be applied to the extracted text to enhance the character recognition results. By identifying changes in the detected text which represent events of interest, the extracted caption box text can be used to form a text based and/or a video based summary of the video content.
Referring toFIG. 1, video content can be represented as a sequence ofdiscrete frames100 through100-N which are displayed over time. The video content can be provided in compressed form, such as using MPEG compression, as well as in high resolution pixel based form. Those frames which include a caption box displayed therein are referred to herein as caption frames. Those caption frames where the content within the caption box undergoes a cognizable change from the previous caption frame are referred to as keyframes.
An overview of the operation of the present invention is provided in connection withFIG. 1, which is a pictorial representation of a segment of video content having a number offrames100 sequenced in time (100-1 through100-N). Inframe100, a caption box region, referred to as a blocklevel bounding box105 is identified. As is described in greater detail below, the blocklevel bounding box105 is located during an initialization procedure and is used to confine processing of subsequent frames100-1 through100-N to this portion of the video frame. Within thebounding box105, one or more templates will be defined to identify and process thecaption box image110. Within thecaption box image110,word regions115 will be identified. Theword regions115 will be further processed to define character boundaries which definecharacter regions120 within the word regions. The pixels within thecharacter regions120 will preferably be subjected to character recognition processing and the word regions will be subjected to a domain specific model for word level verification, word region type identification and correction.
FIG. 2 is a simplified operational block diagram of a system for locating acaption bounding box105 in thevideo frame100, identifying frames having a caption box therein, and extracting text from at least a portion of the video frames which include a caption box. It is assumed that the caption box will be consistently placed in the same region of the video frame throughout a particular piece of video content. However, because there is no predefined standard for the placement of a caption box within the frame, different video sources may place a text caption box in various locations in the video frame and may place the text within the caption box differently. Therefore, the present method begins with an initialization process which determines the location of candidate caption box bearing areas and defines masks for processing the caption boxes (step210).
The present method for caption bounding box detection relies on two image characteristics of a caption box. First, the position of a caption box from frame to frame, when it is displayed, will remain essentially constant. Therefore, motion vectors for the DCT blocks in the compressed domain (MPEG) for caption box regions of the video frame will be small. Second, text is generally displayed with relatively high contrast against a background. Thus, if a text region is mapped with pixel location in the X-Y plane and pixel intensity in the Z-axis, text regions generally result in rapid and extreme changes along the Z-axis, and therefore can be considered as highly textured regions. Thus, regions within a video frame which exhibit low motion and high texture will be candidates for caption box regions.
FIG. 3 is a flow diagram which further illustrates the operation of theinitialization processing block210 which includes determining the location of acaption bounding box115 in avideo frame100. Referring toFIG. 3, video content, preferably in the compressed domain, is used to identify abounding box115 around candidate caption box regions. The most common compressed domain video format follows the MPEG compression standard, such as MPEG-1, although other compression schemes can be used in the practice of the present invention. In MPEG-1 compressed video, pixels of the uncompressed video are represented by blocks, which represent a discrete portion of the uncompressed video (such as 1 block=8 pixel×8 pixel region). The blocks are further grouped as macro-blocks which contain four blocks (2 blocks×2 blocks). The macro-blocks include motion vectors. Motion vectors, macro-blocks and blocks are set forth in the MPEG-1 standard and are well understood in the art.
Instep300, the motion vectors from the compressed MPEG video data are converted into a macro-block level motion energy image for thevideo frame100. After forming the motion energy image, the motion energy image can be upscaled in width and height by the corresponding number of blocks in the macro-block width and height respectively. This upscaling operation translates the macro-block level motion energy image into the same size as a block level image. As noted above, caption box regions within the frame are generally static. Therefore regions exhibiting low motion energy are indicative of caption box regions. Using thresholding, the block level motion energy image can be converted to a binary motion image that indicates which regions in the frame have motion values below the threshold.
In addition to motion, texture is also an indicator of text regions. The discrete cosine transform (DCT) coefficients on I frames in the compressed domain MPEG video can be used to extract the texture features of the video frame (step310). A texture energy image is preferably generated on a block level of the MPEG video. The texture features indicate how rapidly the contrast is changing in that block over successive frames. As noted above, text regions are generally characterized as highly textured. Using thresholding, the texture energy images can be binarized into binary texture images which distinguish between high texture regions and lower texture regions. The result is a binary texture image.
Instep320 the binary motion energy image fromstep300 and the binary texture image fromstep310 are combined to form a joint motion-texture binary map. The images can be combined over neighboring I and B/P frames in the MPEG video data. The binary images are preferably combined using a Boolean logic AND function which removes regions that do not exhibit both low motion and high texture. In the resulting joint motion-texture map, the binary value “1” corresponds to blocks in the compressed domain which are candidate text blocks, i.e., blocks exhibiting substantially no motion and high texture.
The candidate text blocks in the compressed video frame are then evaluated to form contiguous candidate caption box regions (step330). Many known forms of connected component analysis can be applied to form such regions. For example, a candidate text block can be selected in the motion-texture map as a seed block. The neighbors of the seed block can then be evaluated to determine if they represent candidate text blocks or boundary blocks. Neighboring candidate text blocks are added to the region whereas neighboring blocks which are not candidate text blocks represent the boundary of the region which terminate region growing in that direction. The region growing process continues until each neighbor has been evaluated and either added to the region or boundary.
The process of forming contiguous regions is repeated throughout the video frame by selecting additional seed blocks that are not already part of a region and performing the region growing analysis until all candidate text blocks in the frame have been processed. Morphological filtering can be applied to the regions in order to remove spurious areas from the candidate regions. It will be appreciated that this form of seed based region growing is but one example of connected component analysis which can be used to identify groups of contiguous regions of candidate text blocks.
The candidate text regions will generally include a number of regions which do not represent likely caption box locations. In order to reduce the number of false alarms resulting from these candidates, the candidate text regions can be evaluated over a number of frames over a time window and an incremental clustering method can be applied. For example, the candidate regions in each frame can be mapped to region clusters based on the following area overlap metric:
Sr(R1,R2)=1−{a(R1−R1∩R2)+a(R2−R2∩R1)}/{a(R1)+a(R2)}  EQ 1
where R1, R2are the two regions in consecutive frames and α(R) is the area of the region R. A new region is mapped to an existing cluster if the above metric is less than a threshold value, otherwise a new cluster is formed. The clustering process stops when a dominant cluster is identified. A dominant cluster is one in which at least a predetermined minimum number (such as 40%) of the frames in a continuous sliding window (e.g. 30 seconds) are mapped to the cluster.
The dominant cluster is used to generate a block level mask in the compressed video domain which is referred to as a Median Binary Mask (MBM)410, such as is illustrated inFIG. 4. TheMBM410 is generated by taking the median value of the member binary images forming the dominant cluster. A rectangular bounding box around the MBM, referred to as a Block-level Bounding Box (BBB), is also defined (step340). An example of a BBB is illustrated by boundingbox105 inFIG. 1 as well as by the outerrectangular extent400 of theMBM410. TheMBM410 andBBB400 are outputs of the captionbox localization process210 which are passed to a caption frameextraction processing block220.
TheBBB105 is used to constrain processing operations in subsequent video frames (100-1 to N) to the region of the frame in which the caption box is expected to reside. The MBM is applied within this region to determine if the caption box is present in a current frame. Those frames in which a caption box is present are referred to as caption frames. By limiting post-initialization processing to the region within the BBB, processing efficiency is improved.
Returning toFIG. 3, in addition to compressed domain block level operations which generate the MBM and BBB, the caption box localization and maskextraction processing block210 also includes pixel domain processing within the BBB. Instep350, an averaging operation is applied to the pixels within the image constrained by the BBB, referred to as a caption image, to obtain a Representative Average Image (RAI).FIG. 5 is a pictorial example of an RAI.
Since text pixels and text background remain generally static from frame to frame while the image pixels outside a caption box generally vary over time, the averaging operation tends to reinforce the caption box pixels while smoothing out temporal variations in the surrounding image pixels. Instep360, the RAI is subjected to edge detection in order to extract the outer contour of the text area and define a Text Area Mask (TAM)610, an example of which is illustrated inFIG. 6. Various forms of edge detection which are known to those skilled in the art of image processing can be used to define theTAM610. The RAI and TAM are outputs from the initialization process that are provided from the caption box localization and maskextraction processing block210 to a caption keyframeextraction processing block230.
The initialization processing of the caption box localization andmask extraction block210 generally takes on the order of 30-60 seconds of video content, after which the outputs BBM, MBM, RAI, and TAM are used in a continues process to identify caption frames and extract the caption box text from the video content data which is input into the caption frameextraction processing block220.
Retuning toFIG. 2, after initialization processing is complete inblock210, the video content is applied to the caption frameextraction processing block220 and is analyzed to detect frames that are caption frames. The caption frameextraction processing block220 performs processing of the video content in the compressed domain in a portion of the video frame constrained by the BBB. Constraining the caption frame extraction processing operations allows for efficient real time processing since only a relatively small portion of the video frame is subjected to processing.
The operation of the captionextraction processing block220 is further described in connection with the flow chart ofFIG. 7. Processingoperations710 through760 are preferably performed in the compressed video domain. Processing is limited in each frame to the region defined by the BBB.Steps710 through740 are analogous tosteps300 through330 described in connection withFIG. 3. Instep710, the motion vectors of the compressed video blocks within the BBB are used to form a binary motion energy image. In addition, a binary texture image is generated for the area within the BBB to identify blocks exhibiting high texture levels which are indicative of text (step720). The binary texture image and the motion energy image are combined instep730 to generate a motion-texture binary map for the region of the current frame within the BBB. Contiguous regions within the motion-texture binary map are formed using region growing or other connected component analysis techniques to identify a dominant cluster instep740. The overlap metric ofEquation 1 can then be used to compare the dominant cluster of the current frame to the MBM generated during initialization (step750). If the overlap metric indicates that there is a high correlation between the dominant cluster in the current frame and that of the MBM, then the frame is identified as a caption frame instep760.
Word region detection and character recognition are processing intense operations. Thus it is desirable to minimize not only the area within a frame which is subjected to such processing but also to minimize the number of frames which are subjected to such processing.
Returning toFIG. 2, after caption frames are identified, it is often desirable to further identity those caption frames in which the content of the caption box changes, since these frames will generally provide the most valuable information regarding state changes in the video content. Such caption frames are referred to as keyframes. Keyframe extraction from the set of caption frames identified instep220 is performed in the captionkeyframe extraction block230.
Keyframe extraction is further illustrated in connection withFIG. 7. For a frame identified as a caption frame instep760, the region within the BBB is decoded from the compressed domain into the pixel domain (step770). The pixel domain caption image data is then compared against the RAI to eliminate false alarms. For example, a pixel-wise Euclidean distance in the RGB space between the caption image of the current frame and the RAI can be computed and compared against a predetermined threshold value (step770). If instep780 the distance exceeds the threshold value, the frame can be discarded as a false alarm (step785). Duplicate caption frames are identified and discarded instep790 such that the caption frames which remain are a set of caption frames in which the content changes.
Duplicate caption frames can be identified by comparing the caption image of a current caption frame against the caption image of the preceding caption frame and determining the number of pixels which have changed from high intensity values to low intensity pixel values. Alternatively, comparing the caption images in consecutive frames and calculating a pixel-wise Euclidean distance in successive caption frames can be used to identify and eliminate caption frames having duplicate content. Those frames which remain will represent caption keyframes.
As an alternative, it has been found that keyframe identification processing can be eliminated and that satisfactory results obtained by simply selecting every nth caption frame for subsequent word region extraction processing. The time between selected nth caption frames will depend on the content and the expected rate of change in the caption frames for the particular domain.
Returning once more toFIG. 2, after keyframes are identified or a subset of the caption frames are selected inprocessing block230, word region extraction processing and character regionsegmentation processing block240 is applied to identifyword regions115 within the caption box (FIG. 1). Word region extraction is performed on the selected caption frames or keyframes in the pixel domain in a region confined to the TAM.FIG. 8A is a pictorial representation of a word region in the pixel domain which includes the characters NY. To identify word regions, the grayscale values of the caption image are converted to a binary image by applying a suitable thresholding operation. Pixels having an intensity value higher than the threshold are considered to be text pixels. Connected component analysis, such as region growing, can be applied to the text pixels in the binary image to form contiguous candidate word regions. Size constraints can then be applied to the candidate regions to eliminate those regions which are either too large or too small to be considered valid word regions. Conditions can also be placed on the aspect ratio of valid word regions.
It has been found that graphic objects within a caption box in the proximity of the text, such as lines, boxes, logos and the like, may interfere with spatial segmentation used to identify word regions and can result in improper identification, or non-identification, of word regions in the vicinity of such objects. To correct for this potential source of error, a temporal filtering operation can be used. In one form of temporal filtering, a temporal variance of the intensity of each pixel in the word regions is calculated using buffered caption images over a predetermined time window. The resulting variance map is subjected to thresholding and region growing to identify those word regions which exhibit changes over time (such as the score or ball-strike count). The temporal filtering can remove regions with static values by thresholding temporal variances of the image. However, as certain desired fields will remain static, such as team names, temporal filtering should be used with constraints that do not negatively impact such desired regions. Also, since temporal filtering requires buffering a large number of caption images, it may be too processing intense for many real time applications. In these cases, careful selection of the binarization threshold value used to identify the word regions can substantially eliminate problems arising from static graphic elements in the caption box.
Referring toFIG. 1, within theword regions115, character segmentation is applied to identify character boundaries which definecharacter regions120 within theword region115. In this regard, eachword region115 is traversed in a pixel wise fashion across the width of the word region. At each pixel (column) location along the width of the word region, a vertical projection profile value is determined by summing the pixel values at that pixel location along the word region height.
FIG. 8C illustrates an example of a graph of vertical projection profile values versus pixel position for the word region ofFIG. 8A. The graph exhibitslocal minima810 and820.Local minimum810, which has a value higher thanthreshold value830, represents the diagonal stroke connecting the two vertical strokes in the letter N. Assuming that the text characters are presented as light text against a darker background (such as white text on a black background), local minima in the vertical projection profile graph, which are below a threshold value illustrated byline830, such asminimum820, represent dark regions between characters. Such local minima can be used to partition the word region into individual character regions. Thus,local minimum820 establishes the location ofcharacter partition840 between the characters N and Y in the word region illustrated inFIG. 8A. It will be appreciated that in the event of dark characters against a light background, local maxima of the vertical projection profile graph would provide the same character partition information as is provided by the local minima inFIG. 8C. Local minima and local maxima can collectively be referred to as local inflection points.
In addition to evaluating the vertical projection profile of the word regions, a pixel intensity histogram can be calculated within the word regions and this histogram used to classify the pixels within the word regions.FIG. 8B illustrates the result of a three level histogram thresholding applied to the image ofFIG. 8A. Those pixels exhibiting values in the highest intensity portion of the histogram can be consideredcharacter pixels850 whereas the pixels exhibiting values in the lowest portion of the histogram can be consideredbackground pixels870. Pixels exhibiting an intermediate value can be considered as “other”pixels860.
For each of the character regions that are identified, thecharacter type pixels850 are subjected to a character recognition processing operation. There are many known methods for performing character recognition which are suitable for use in the present system. A preferred method uses Zernike moments, such as is described in “Feature Extraction Methods for Character Recognition—A Survey,” by Trier, et al., Pattern Recognition, vol. 29, pp. 641-662, 1996, the disclosure of which is hereby incorporated by reference. Zernike moments are calculated based on a set of complex polynomials that form a complete orthogonal set inside the unit circle. The Zernike moments are the projection of the image onto these complex bases.
Prior to calculating the Zernike moments, it is preferable to convert the character image into three binary images using the threshold values established in connection with the intensity histogram for each word region which identifies pixels as character, background or other pixels. The first binary image distinguishes background pixels vs. other pixels. The second binary image distinguishes other pixels vs. character pixels. The third binary image is formed using the average value of the two thresholding values. Zernike feature vectors are then calculated for each of the three images. The use of three binary images enhances the robustness of the character recognition process with respect to variations in character line width and font type.
For eachcharacter region120, the image of the character is projected to the complex bases to form a character feature vector. To calculate Zernike moments, the coordinate of each character pixel is normalized into the interior of the unit circle, i.e., x2+y2≦1. Since the output of the Zernike filter is a complex vector, each component of the vector includes a real and an imaginary component. The real and imaginary components can be converted to the magnitude and phase of the Zernike moments. It has been found that using nineteen (19) as the maximum order of Zernike moment and 220 as the dimension of the character feature vector provides satisfactory results.
Accuracy in the character recognition process can be improved by employing one or more domain models to verify conventional character recognition processing. Domain models can include specialized dictionaries and state transition models which represent expected state changes in the text regions. In addition, various word regions can be identified by a semantic word type, such as team name, score, inning and the like, and specific models applied to the individual word regions based on the word type. For example, in a baseball video, the number of team names or abbreviations is known and can be used to identify and verify a team name word region.
For each entry in the domain specific library, the Zernike feature vectors for each character in the word can be concatenated to generate word-level Zernike feature vectors for the dictionary entries. During word region recognition, for each word region identified in the caption box, the Zernike character feature vectors can be concatenated to generate word-level feature vectors which can be tested against the feature vectors for the library entries. For example, a cosine distance metric can be used to compare the input word feature vector against the feature vectors for words in the dictionary which are of the same length. The closest match to the detected input word can then be selected from the dictionary.
In addition to domain specific dictionary models, certain domains can include text fields that follow an expected state transition model or heuristic. For example, in a video of a baseball game, a caption box generally includes a ball-strike count that must follow certain state relationships which can be used to identify and correct character recognition errors. For example, the ball-strike sequence 0-1, 0-2, 1-1 can be recognized as impermissible and flagged as an error for manual editing or corrected using further probabilistic processing.
To take advantage of such specific transition rules, a transition graph model, such as illustrated inFIG. 9, can be used as a domain specific model. In the transition graph,nodes900 are assigned a node score and thetransitions905 between nodes assigned a transition score. A node score can be defined as the best correlation value between the input word and the template word in the library. The transition score is defined as the conditional probability:
St(nt-1,nt)=p(nt|nt-1)  Eq. 2
where nt, nt-1are the nodes at the time t and the time t−1. The transition conditional probability can be estimated from observations of actual events in the domain, such as actual strike-ball sequences. A small probability is initially assigned to each conditional probability to handle possible misses or false alarms of character detection. A weighting factor λ is then used to combine the node cost and transition cost as an overall cost value at one node:
S(nt)=λSn(nt)+(1−λ)St(nt-1,nt)  Eq. 3
Using this model, character recognition can be performed by searching the paths of the transition graph to identify the longest paths. The weighting factor λ can be used to adjust the balance between the contribution from the image based text recognition methods, such as Zernike moments, and domain specific knowledge-based approach. When λ is small, the character recognition process favors the optical character recognition results. As λ increases, the domain based model becomes more significant. The value of λ is chosen experimentally. In the baseball video domain, a value of λ=0.02 has been found to provide satisfactory results, with the knowledge based domain model improving the character recognition substantially.
The extracted caption box text can be used to generate a text based abstract of the video content which indexes the state changes, such as game statistics throughout the content. In addition, the caption box text can also be used as part of an event based video summarization system. An event based video summarization system can use the caption box text to identify events in the video content and then select a portion of the video content based on the detected events. Recognizing that changes in certain word regions in the caption box reflect important events in the video content, a simplified summary of the content can be generated by detecting the events of interest from the caption box text and selecting a video segment of a predetermined length preceding the event. While this approach may lead to satisfactory results, use of a recognized syntactic structure of the event depicted in the video content can result in improved summary generation.
A summary generation system for baseball video content will now be described to illustrate the use syntactic structure of video content to refine the selection of video segments for inclusion in a summary. Events in a baseball game can be classified into categories, such as score, last pitch (batter change) and base change. A score event is one in which the score for either team changes. A last pitch event is associated with a change in the current batter. This can be the result of a hit where the batter advances to base, a walk where the runner advances to base or an out.
FIG. 11 is a flow diagram which illustrates a sequence of semantic events that have been consistently observed in baseball video content. Thecaption change1110 which is determined from the caption box text extraction and decoding generally represents the end of an event sequence. An event ofinterest1120 is preceded by apitching event1130. As described in the article “Structure Analysis of Sports Video using Domain Models,” by D. Zhong and S. F. Chang, IEEE International Conference on Multimedia and Expo, Aug. 22-25, 2001, Tokyo, Japan, the disclosure of which is hereby incorporated by reference in its entirety, a pitching event is recognizable based on the camera view which generally includes the pitcher and batter in the frame.
The event ofinterest1120 is generally characterized by a change in camera view to one which includes a substantial view of the playing field and a resulting increase in the number of green pixels in the video frame. Theevent1120 is generally followed by a view of the player's dugout or the stands to illustrate reaction to the event. This view, referred to as anon-active view1140, is characterized by a marked decrease in both the motion intensity and the number of green pixels in the frame since the playing field is no longer the predominant feature in the frame. A replay of theevent1150 will generally be presented followed by the change in the caption box reflecting the occurrence of the event. Using this syntactic model, a video segment of theevent1120 can be selected using the transition from thepitching event1130 as the beginning of the segment and the transition to thenon-active view1140 as the end of the segment. If desired, the pitching event and a portion of the non-active view can also be included in the selected event segment to place the event in context in the resulting summary.
In order to determine those changes in the caption box which relate to an event of interest, semantic knowledge of the caption box text is beneficial. In this regard, a word region type determination is made for the word regions in the caption box.FIG. 12 illustrates an exemplary caption box for baseball video content and the word types therein. Typical word types includeteam name1210,score1220,inning1230, outcount1240 and ball-strike count. Domain based knowledge of the video content can be used to determine the word type for the word regions. In general, the word region type determination need be made only once during the video content since the arrangement of the caption box remains constant throughout the content.
Thescore word region1220 is generally represented by numeric characters in the word regions in the caption box which are adjacent to the teamname word regions1210. Theteam name regions1210 can be identified using a domain specific library which includes the set of team names and expected abbreviations for such names. The spatial proximity and arrangement of the numeric characters also provides an indication that the numeric characters represent a score type region. For example, as illustrated inFIG. 12, the scores for the two teams generally are vertically aligned with respect to one another.
The ball-strike region can be identified by the relatively frequent changes in this word region compared to other word regions as well as compliance with an expected state transition which is described above in connection withFIG. 9. Similarly, a transition model recognizing that the out count word region follows the transition 0-1-2-3-0 can be used to identify such a word region.
In a preferred embodiment, summaries of baseball video content are generated using score and last pitch as events of interest. Changes in score are determined by detecting changes in the score word regions in the caption box text. Last pitch events can be detected using a decision tree model which evaluates changes in ball count and out count to identify the event.
FIG. 13 illustrates an event decision tree which evaluates changes in caption text to determine if a score or last pitch event have taken place. For each change in the caption box text detected instep1305, the score type word region is evaluated to determine if a score change event has taken place. If the score has changed instep1310, than the caption change represents a score event ofinterest1315. Instep1320 the ball-strike count region is evaluated to determine if the ball-strike count has been reset. Counts such as 0-0, 0-1 or 1-0 can be used as indicators that the ball-strike count has been reset. The use of 0-1 and 1-0 reduces the possibility of inadvertently overlooking a reset event which may arise due to character recognition errors and the like. If the ball-strike count has been reset, alast pitch event1330 is detected. If the ball-strike count has not been reset, the out count region is evaluated to determine if the number of outs has changed (step1340). If so, than a last pitch event is detected instep1350, otherwise the change in caption text does not represent alast pitch1355 or score event and is not considered an event of interest. For each caption change representing a score event or a last pitch event, a video segment of theevent1120 can be extracted as described in connection withFIG. 11.
FIG. 14 illustrates an exemplary screen view of a computer-based video summary browser in accordance with the present invention. The computer-based summary browser is generally implemented in software installed on a conventional computer system, such as an IBM compatible personal computer or Apple Macintosh computer system. In such a system, the video summary content is generally stored in computer readable media, such as a compact disk or magnetic disk storage. A graphical user interface is provided which uses a digital pointer, such as a mouse, to move a selector icon on a display unit in order to control the summary browser.
The exemplary display ofFIG. 14 provides four viewing panels which include atext window1410 listing scoring event highlights along with avideo window1420 on which a selected scoring highlight video segment can be displayed. Asecond text window1430 lists last pitch events adjacent to avideo window1440 for viewing a selected last pitch event. The text windows list the scoring and last pitch events of interest identified inFIG. 13 and include anactivation icon1450 for selecting the video segment associated with that event, such as can be selected using the method ofFIG. 11. A user can scroll through the entries in the text window and then select and view those video segments which are of interest to the viewer by clicking onicon1450 in a manner well known with respect to graphical user interfaces (GUI).
The specific selection and arrangement of thewindows1410,1420,1430 and1440 inFIG. 14 is not critical to the practice of the present invention. For example, the display can be partitioned into a single text window and a single video window rather than the four windows as shown. In addition, the text window and video window can take on various sizes and shapes as desired by the viewer.
Although the present invention has been described in connection with specific exemplary embodiments, it should be understood that various changes, substitutions and alterations can be made to the disclosed embodiments without departing from the spirit and scope of the invention as set forth in the appended claims.

Claims (15)

What is claimed is:
1. A method of decoding a caption box in video content comprising:
determining at least one expected location of a caption box in a frame of the video content;
determining at least one caption box mask within the expected location;
identifying frames in the video content as caption frames if the current frame exhibits substantial correlation to the at least one caption box mask within the expected caption box location;
for at least a portion of the caption frames, identifying word regions within the confines of the expected location; for each word region,
identifying text characters within the region; and
processing the identified text characters.
2. The method of decoding a caption box according toclaim 1 further comprising:
comparing the text characters in the word region against a domain specific model to enhance word recognition,
determining a word region type for at least one of the identified word regions;
wherein the video content is of a sporting event and wherein the word region types are selected from the group consisting of data points that indicate the current state of the event.
3. The method of decoding a caption box according toclaim 2 wherein the data point is a period.
4. The method of decoding a caption box according toclaim 2 wherein the data point is a quarter.
5. The method of decoding a caption box according toclaim 2 wherein the data point is field position.
6. The method of decoding a caption box according toclaim 2 wherein the data point is the number of shots on goal.
7. A non-transitory computer-readable storage medium storing a program for causing a computer to implement a method of decoding a caption box in video content comprising:
determining at least one expected location of a caption box in a frame of the video content;
determining at least one caption box mask within the expected location;
identifying frames in the video content as caption frames if the current frame exhibits substantial correlation to the at least one caption box mask within the expected caption box location;
for at least a portion of the caption frames, identifying word regions within the confines of the expected location;
for each word region, identifying text characters within the region;
and processing the identified text characters.
8. The non-transitory computer-readable storage medium ofclaim 7 wherein the method includes the step of comparing the text characters in the word region against a domain specific model to enhance word recognition.
9. A system for decoding a caption box in video content comprising:
location means for determining at least one expected location of a caption box in a frame of the video content;
determining means, coupled to the location means and receiving the at least one expected location therefrom, for determining at least one caption box mask within the expected location;
frame identifying means, coupled to the determining means and location means and receiving the at least one caption box mask and the at least one expected location therefrom, for identifying frames in the video content as caption frames if the current frame exhibits substantial correlation to the at least one caption box mask within the expected caption box location;
word region identifying means, coupled to the frame identifying means and receiving the identified caption frames therefrom, for at least a portion of the caption frames, identifying word regions within the confines of the expected location;
text character means, coupled to the word region identifying means and receiving the word regions therefrom, for each word region, identifying text characters within the region; and processing the identified text characters.
10. The system ofclaim 9 wherein the system includes a comparing means, coupled to the text character means and receiving the text characters therefrom, for comparing the text characters in the word region against a domain specific model to enhance word recognition.
11. The system ofclaim 9 wherein the location means includes a features means for evaluating motion features of the video frame in the compressed domain, evaluating texture features of the video frame in the compressed domain, and identifying regions having low motion features and high texture features as candidate caption box regions.
12. The system ofclaim 10 wherein the location means includes a features means for evaluating motion features of the video frame in the compressed domain, evaluating texture features of the video frame in the compressed domain, and identifying regions having low motion features and high texture features as candidate caption box regions.
13. The system ofclaim 9 wherein the system includes a removal means, coupled to the frame identifying means, the determining means and the location means and receiving the identified caption frames, the at least one caption box mask and the at least one expected location therefrom, for evaluating the identified caption frames, within the caption box location, for changes in content and removing caption frames from word region processing which do not exhibit a change in content.
14. The system ofclaim 9 wherein the system includes an interval means, coupled to the frame identifying means and receiving the identified caption frames therefrom, for selecting a subset of caption frames based on a predetermined time interval and sending that subset to the word region identifying means.
15. The system ofclaim 9 wherein the system includes a number means, coupled to the frame identifying means and receiving the identified caption frames therefrom, for determining a subset of caption frames by selecting caption frames based on a predetermined number of intervening caption frames and sending that subset to the word region identifying means.
US11/960,4242001-12-062007-12-19System and method for extracting text captions from video and generating video summariesExpired - Fee RelatedUS8488682B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US11/960,424US8488682B2 (en)2001-12-062007-12-19System and method for extracting text captions from video and generating video summaries
US13/935,183US20130293776A1 (en)2001-12-062013-07-03System and method for extracting text captions from video and generating video summaries

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US33791101P2001-12-062001-12-06
US10/494,739US7339992B2 (en)2001-12-062002-12-06System and method for extracting text captions from video and generating video summaries
PCT/US2002/039247WO2003051031A2 (en)2001-12-062002-12-06Method and apparatus for planarization of a material by growing and removing a sacrificial film
US11/960,424US8488682B2 (en)2001-12-062007-12-19System and method for extracting text captions from video and generating video summaries

Related Parent Applications (3)

Application NumberTitlePriority DateFiling Date
US10494739Continuation2002-12-06
US10/494,739ContinuationUS7339992B2 (en)2001-12-062002-12-06System and method for extracting text captions from video and generating video summaries
PCT/US2002/039247ContinuationWO2003051031A2 (en)2001-12-062002-12-06Method and apparatus for planarization of a material by growing and removing a sacrificial film

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US13/935,183DivisionUS20130293776A1 (en)2001-12-062013-07-03System and method for extracting text captions from video and generating video summaries

Publications (2)

Publication NumberPublication Date
US20080303942A1 US20080303942A1 (en)2008-12-11
US8488682B2true US8488682B2 (en)2013-07-16

Family

ID=23322541

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US10/494,739Expired - Fee RelatedUS7339992B2 (en)2001-12-062002-12-06System and method for extracting text captions from video and generating video summaries
US11/960,424Expired - Fee RelatedUS8488682B2 (en)2001-12-062007-12-19System and method for extracting text captions from video and generating video summaries
US13/935,183AbandonedUS20130293776A1 (en)2001-12-062013-07-03System and method for extracting text captions from video and generating video summaries

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US10/494,739Expired - Fee RelatedUS7339992B2 (en)2001-12-062002-12-06System and method for extracting text captions from video and generating video summaries

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US13/935,183AbandonedUS20130293776A1 (en)2001-12-062013-07-03System and method for extracting text captions from video and generating video summaries

Country Status (3)

CountryLink
US (3)US7339992B2 (en)
AU (1)AU2002351310A1 (en)
WO (1)WO2003051031A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20130266073A1 (en)*2012-04-082013-10-10Broadcom CorporationPower saving techniques for wireless delivery of video
US20130268621A1 (en)*2012-04-082013-10-10Broadcom CorporationTransmission of video utilizing static content information from video source
US10007679B2 (en)2008-08-082018-06-26The Research Foundation For The State University Of New YorkEnhanced max margin learning on multimodal data mining in a multimedia database
JP2018102898A (en)*2016-07-222018-07-05ジョセフ プローグマンJoseph Ploegman System and method for displaying baseball batter count
US10319035B2 (en)2013-10-112019-06-11Ccc Information ServicesImage capturing and automatic labeling system
US10963504B2 (en)*2016-02-122021-03-30Sri InternationalZero-shot event detection using semantic embedding

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6735253B1 (en)*1997-05-162004-05-11The Trustees Of Columbia University In The City Of New YorkMethods and architecture for indexing and editing compressed video over the world wide web
US7143434B1 (en)1998-11-062006-11-28Seungyup PaekVideo description system and method
US6263503B1 (en)1999-05-262001-07-17Neal MargulisMethod for effectively implementing a wireless television system
US8266657B2 (en)2001-03-152012-09-11Sling Media Inc.Method for effectively implementing a multi-room television system
US7339992B2 (en)2001-12-062008-03-04The Trustees Of Columbia University In The City Of New YorkSystem and method for extracting text captions from video and generating video summaries
US7120873B2 (en)*2002-01-282006-10-10Sharp Laboratories Of America, Inc.Summarization of sumo video content
JP3744464B2 (en)*2002-05-202006-02-08ソニー株式会社 Signal recording / reproducing apparatus and method, signal reproducing apparatus and method, program, and recording medium
US7577841B2 (en)*2002-08-152009-08-18Digimarc CorporationWatermark placement in watermarking of time varying media signals
US20040152055A1 (en)*2003-01-302004-08-05Gliessner Michael J.G.Video based language learning system
KR101058054B1 (en)*2003-08-182011-08-19코닌클리케 필립스 일렉트로닉스 엔.브이. Extract video
JP4233982B2 (en)*2003-11-062009-03-04パイオニア株式会社 Image processing apparatus, image processing method, image processing program, and information recording medium recording the same
US7882436B2 (en)*2004-03-102011-02-01Trevor Burke Technology LimitedDistribution of video data
WO2005107244A1 (en)*2004-04-292005-11-10Koninklijke Philips Electronics N.V.Method and receiver for controlling broadcast data
CN101243688A (en)2004-06-072008-08-13斯灵媒体公司 Personal Media Broadcasting System
US7917932B2 (en)2005-06-072011-03-29Sling Media, Inc.Personal video recorder functionality for placeshifting systems
US9998802B2 (en)2004-06-072018-06-12Sling Media LLCSystems and methods for creating variable length clips from a media stream
US8346605B2 (en)2004-06-072013-01-01Sling Media, Inc.Management of shared media content
US7975062B2 (en)2004-06-072011-07-05Sling Media, Inc.Capturing and sharing media content
US7769756B2 (en)2004-06-072010-08-03Sling Media, Inc.Selection and presentation of context-relevant supplemental content and advertising
US8099755B2 (en)2004-06-072012-01-17Sling Media Pvt. Ltd.Systems and methods for controlling the encoding of a media stream
FR2872660B1 (en)*2004-07-052006-12-22Eastman Kodak Co SHOOTING APPARATUS AND METHOD FOR FORMATION OF ANNOTATED IMAGES
US7765218B2 (en)*2004-09-302010-07-27International Business Machines CorporationDetermining a term score for an animated graphics file
WO2006072897A1 (en)*2005-01-042006-07-13Koninklijke Philips Electronics N.V.Method and device for detecting transparent regions
WO2006096612A2 (en)2005-03-042006-09-14The Trustees Of Columbia University In The City Of New YorkSystem and method for motion estimation and mode decision for low-complexity h.264 decoder
US8064516B2 (en)*2005-06-022011-11-22Broadcom CorporationText recognition during video compression
WO2007005790A2 (en)2005-06-302007-01-11Sling Media, Inc.Firmware update for consumer electronic device
US20070011012A1 (en)*2005-07-112007-01-11Steve YurickMethod, system, and apparatus for facilitating captioning of multi-media content
US8874477B2 (en)2005-10-042014-10-28Steven Mark HoffbergMultifactorial optimization system and method
US7752543B2 (en)*2006-02-172010-07-06Microsoft CorporationApplying effects to a merged text path
JP2007228220A (en)*2006-02-232007-09-06Funai Electric Co LtdBuilt-in hard diskdrive television receiver and television receiver
KR100764175B1 (en)*2006-02-272007-10-08삼성전자주식회사 Apparatus and method for detecting important subtitles of video for customized broadcasting service
EP1999646A1 (en)*2006-03-032008-12-10Koninklijke Philips Electronics N.V.Method and device for automatic generation of summary of a plurality of images
US7734092B2 (en)*2006-03-072010-06-08Ancestry.Com Operations Inc.Multiple image input for optical character recognition processing systems and methods
US20070242926A1 (en)*2006-04-132007-10-18Huang Chen-HsiuVideo Program Processing Method and System
US8392183B2 (en)2006-04-252013-03-05Frank Elmo WeberCharacter-based automated media summarization
US7532767B2 (en)*2006-05-312009-05-12Xerox CorporationRemoving ringing and blocking artifacts from JPEG compressed document images
US8004608B2 (en)*2006-06-082011-08-23Shenzhen Tcl New Technology LtdClosed captioning data detection system and method
GB2441010A (en)*2006-08-172008-02-20Green Cathedral PlcCreating a subtitle database
US20080111822A1 (en)*2006-09-222008-05-15Yahoo, Inc.!Method and system for presenting video
US7966552B2 (en)2006-10-162011-06-21Sony CorporationTrial selection of STB remote control codes
US7814524B2 (en)2007-02-142010-10-12Sony CorporationCapture of configuration and service provider data via OCR
US8077263B2 (en)2006-10-232011-12-13Sony CorporationDecoding multiple remote control code sets
US7991271B2 (en)2007-02-142011-08-02Sony CorporationTransfer of metadata using video frames
US7689613B2 (en)*2006-10-232010-03-30Sony CorporationOCR input to search engine
KR100836197B1 (en)*2006-12-142008-06-09삼성전자주식회사 Video caption detection device and method
US8763038B2 (en)2009-01-262014-06-24Sony CorporationCapture of stylized TV table data via OCR
CN105263012A (en)*2007-03-162016-01-20汤姆森许可贸易公司System and method for combining text with three-dimensional content
US8438589B2 (en)2007-03-282013-05-07Sony CorporationObtaining metadata program information during channel changes
JP4945739B2 (en)*2007-03-302012-06-06日本電産サンキョー株式会社 Character string recognition method and character string recognition apparatus
US8238719B2 (en)*2007-05-082012-08-07Cyberlink Corp.Method for processing a sports video and apparatus thereof
US8094202B2 (en)*2007-05-172012-01-10Canon Kabushiki KaishaMoving image capture apparatus and moving image capture method
US9524072B1 (en)*2007-08-292016-12-20The Directv Group, Inc.Method and system for forming content in a fantasy sporting event
CN101382934B (en)*2007-09-062010-08-18华为技术有限公司Search method for multimedia model, apparatus and system
US8477793B2 (en)2007-09-262013-07-02Sling Media, Inc.Media streaming device with gateway functionality
US8350971B2 (en)2007-10-232013-01-08Sling Media, Inc.Systems and methods for controlling media devices
US8060609B2 (en)*2008-01-042011-11-15Sling Media Inc.Systems and methods for determining attributes of media items accessed via a personal media broadcaster
WO2009126785A2 (en)2008-04-102009-10-15The Trustees Of Columbia University In The City Of New YorkSystems and methods for image archaeology
US8079054B1 (en)*2008-04-142011-12-13Adobe Systems IncorporatedLocation for secondary content based on data differential
US9326004B2 (en)2008-06-032016-04-26Broadcom CorporationReduced memory mode video decode
WO2009155281A1 (en)2008-06-172009-12-23The Trustees Of Columbia University In The City Of New YorkSystem and method for dynamically and interactively searching media data
US8667279B2 (en)2008-07-012014-03-04Sling Media, Inc.Systems and methods for securely place shifting media content
US8381310B2 (en)2009-08-132013-02-19Sling Media Pvt. Ltd.Systems, methods, and program applications for selectively restricting the placeshifting of copy protected digital media content
US8320674B2 (en)2008-09-032012-11-27Sony CorporationText localization for image and video OCR
US8667163B2 (en)*2008-09-082014-03-04Sling Media Inc.Systems and methods for projecting images from a computer system
US8396004B2 (en)*2008-11-102013-03-12At&T Intellectual Property Ii, L.P.Video share model-based video fixing
US9141859B2 (en)2008-11-172015-09-22Liveclips LlcMethod and system for segmenting and transmitting on-demand live-action video in real-time
US8035656B2 (en)2008-11-172011-10-11Sony CorporationTV screen text capture
US9141860B2 (en)2008-11-172015-09-22Liveclips LlcMethod and system for segmenting and transmitting on-demand live-action video in real-time
US9191610B2 (en)2008-11-262015-11-17Sling Media Pvt Ltd.Systems and methods for creating logical media streams for media storage and playback
US8671069B2 (en)2008-12-222014-03-11The Trustees Of Columbia University, In The City Of New YorkRapid image annotation via brain state decoding and visual pattern mining
US20100188457A1 (en)*2009-01-052010-07-29Madigan Connor FMethod and apparatus for controlling the temperature of an electrically-heated discharge nozzle
US8438602B2 (en)2009-01-262013-05-07Sling Media Inc.Systems and methods for linking media content
US8425325B2 (en)*2009-02-062013-04-23Apple Inc.Automatically generating a book describing a user's videogame performance
JP5421627B2 (en)*2009-03-192014-02-19キヤノン株式会社 Video data display apparatus and method
US8559720B2 (en)*2009-03-302013-10-15Thomson Licensing S.A.Using a video processing and text extraction method to identify video segments of interest
US8171148B2 (en)2009-04-172012-05-01Sling Media, Inc.Systems and methods for establishing connections between devices communicating over a network
US8406431B2 (en)2009-07-232013-03-26Sling Media Pvt. Ltd.Adaptive gain control for digital audio samples in a media stream
US9479737B2 (en)*2009-08-062016-10-25Echostar Technologies L.L.C.Systems and methods for event programming via a remote media player
US20110032986A1 (en)*2009-08-072011-02-10Sling Media Pvt LtdSystems and methods for automatically controlling the resolution of streaming video content
US9525838B2 (en)2009-08-102016-12-20Sling Media Pvt. Ltd.Systems and methods for virtual remote control of streamed media
US20110035466A1 (en)*2009-08-102011-02-10Sling Media Pvt LtdHome media aggregator system and method
US9565479B2 (en)2009-08-102017-02-07Sling Media Pvt Ltd.Methods and apparatus for seeking within a media stream using scene detection
US8966101B2 (en)2009-08-102015-02-24Sling Media Pvt LtdSystems and methods for updating firmware over a network
US20110035765A1 (en)*2009-08-102011-02-10Sling Media Pvt LtdSystems and methods for providing programming content
US8799408B2 (en)*2009-08-102014-08-05Sling Media Pvt LtdLocalization systems and methods
US8532472B2 (en)*2009-08-102013-09-10Sling Media Pvt LtdMethods and apparatus for fast seeking within a media stream buffer
KR20110021195A (en)*2009-08-252011-03-04삼성전자주식회사 Method and apparatus for detecting important information in video
US9160974B2 (en)*2009-08-262015-10-13Sling Media, Inc.Systems and methods for transcoding and place shifting media content
US8314893B2 (en)2009-08-282012-11-20Sling Media Pvt. Ltd.Remote control and method for automatically adjusting the volume output of an audio device
US8922718B2 (en)*2009-10-212014-12-30Disney Enterprises, Inc.Key generation through spatial detection of dynamic objects
US8327407B2 (en)2009-10-272012-12-04Sling Media, Inc.Determination of receiving live versus time-shifted media content at a communication device
US20110113354A1 (en)*2009-11-122011-05-12Sling Media Pvt LtdAlways-on-top media player launched from a web browser
US9015225B2 (en)2009-11-162015-04-21Echostar Technologies L.L.C.Systems and methods for delivering messages over a network
US8799485B2 (en)*2009-12-182014-08-05Sling Media, Inc.Methods and apparatus for establishing network connections using an inter-mediating device
US8626879B2 (en)2009-12-222014-01-07Sling Media, Inc.Systems and methods for establishing network connections using local mediation services
US9178923B2 (en)*2009-12-232015-11-03Echostar Technologies L.L.C.Systems and methods for remotely controlling a media server via a network
US9275054B2 (en)2009-12-282016-03-01Sling Media, Inc.Systems and methods for searching media content
EP2471025B1 (en)*2009-12-312019-06-05Tata Consultancy Services LimitedA method and system for preprocessing the region of video containing text
US8856349B2 (en)2010-02-052014-10-07Sling Media Inc.Connection priority services for data communication between two devices
US20120008693A1 (en)*2010-07-082012-01-12Echostar Technologies L.L.C.Substituting Embedded Text for Video Text Images
JP2012038239A (en)*2010-08-112012-02-23Sony CorpInformation processing equipment, information processing method and program
US20120206567A1 (en)*2010-09-132012-08-16Trident Microsystems (Far East) Ltd.Subtitle detection system and method to television video
US8023697B1 (en)2011-03-292011-09-20Kaspersky Lab ZaoSystem and method for identifying spam in rasterized images
US9373039B2 (en)*2011-04-182016-06-21Supponor OyDetection of graphics added to a video signal
RU2013149995A (en)*2011-04-182015-05-27Суппонор Ой DEFINITION OF GRAPHIC INFORMATION ADDED TO THE VIDEO SIGNAL
TWI431516B (en)*2011-06-212014-03-21Quanta Comp IncMethod and electronic device for tactile feedback
KR101975247B1 (en)*2011-09-142019-08-23삼성전자주식회사Image processing apparatus and image processing method thereof
US9704111B1 (en)2011-09-272017-07-113Play Media, Inc.Electronic transcription job market
US8918311B1 (en)*2012-03-212014-12-233Play Media, Inc.Intelligent caption systems and methods
US9367745B2 (en)2012-04-242016-06-14Liveclips LlcSystem for annotating media content for automatic content understanding
US20130283143A1 (en)2012-04-242013-10-24Eric David PetajanSystem for Annotating Media Content for Automatic Content Understanding
WO2013177663A1 (en)2012-06-012013-12-05Research In Motion LimitedMethods and devices for providing companion services to video
US8819759B2 (en)*2012-06-272014-08-26Google Technology Holdings LLCDetermining the location of a point of interest in a media stream that includes caption data
US9087030B2 (en)*2012-07-162015-07-21International Business Machines CorporationHandling excessive input characters in a field
US9607053B2 (en)*2012-08-222017-03-28Expert System FranceMethods and systems for searching and displaying a plurality of entities within an interactive user interface
IL223381B (en)*2012-12-022018-01-31Berale Of Teldan Group LtdAutomatic summarising of media content
KR102123062B1 (en)2013-08-062020-06-15삼성전자주식회사Method of aquiring information about contents, image display apparatus using thereof and server system of providing information about contents
US9693030B2 (en)2013-09-092017-06-27Arris Enterprises LlcGenerating alerts based upon detector outputs
CA2924065C (en)2013-09-132018-05-15Arris Enterprises, Inc.Content based video content segmentation
US9456170B1 (en)2013-10-082016-09-273Play Media, Inc.Automated caption positioning systems and methods
WO2015126830A1 (en)*2014-02-212015-08-27Liveclips LlcSystem for annotating media content for automatic content understanding
CN103761345A (en)*2014-02-272014-04-30苏州千视通信科技有限公司Video retrieval method based on OCR character recognition technology
KR102217186B1 (en)*2014-04-112021-02-19삼성전자주식회사Broadcasting receiving apparatus and method for providing summary contents service
JP6464616B2 (en)*2014-08-272019-02-06富士通株式会社 Information processing program, method, and apparatus
JP6394184B2 (en)*2014-08-272018-09-26富士通株式会社 Judgment program, method, and apparatus
US9639762B2 (en)*2014-09-042017-05-02Intel CorporationReal time video summarization
US9330084B1 (en)2014-12-102016-05-03International Business Machines CorporationAutomatically generating question-answer pairs during content ingestion by a question answering computing system
US9582727B2 (en)*2015-01-162017-02-28Sony CorporationText recognition system with feature recognition and method of operation thereof
US11076198B2 (en)*2015-05-282021-07-27Idomoo Ltd.System and method to generate an interactive video on the fly
US9471990B1 (en)*2015-10-202016-10-18Interra Systems, Inc.Systems and methods for detection of burnt-in text in a video
US9818032B2 (en)*2015-10-282017-11-14Intel CorporationAutomatic video summarization
CN105528606B (en)2015-10-302019-08-06小米科技有限责任公司Area recognizing method and device
US9805269B2 (en)*2015-11-202017-10-31Adobe Systems IncorporatedTechniques for enhancing content memorability of user generated video content
WO2017088478A1 (en)*2015-11-242017-06-01乐视控股(北京)有限公司Number separating method and device
CN105868683A (en)*2015-11-242016-08-17乐视致新电子科技(天津)有限公司Channel logo identification method and apparatus
US10575036B2 (en)*2016-03-022020-02-25Google LlcProviding an indication of highlights in a video content item
CN106162223B (en)*2016-05-272020-06-05北京奇虎科技有限公司 A kind of news video segmentation method and device
US9972360B2 (en)*2016-08-302018-05-15Oath Inc.Computerized system and method for automatically generating high-quality digital content thumbnails from digital video
GB2558868A (en)*2016-09-292018-07-25British Broadcasting CorpVideo search system & method
US20190311744A1 (en)*2018-04-062019-10-10Deluxe One LlcComparing frame data to generate a textless version of a multimedia production
US11373404B2 (en)2018-05-182022-06-28Stats LlcMachine learning for recognizing and interpreting embedded information card content
CN109583443B (en)*2018-11-152022-10-18四川长虹电器股份有限公司Video content judgment method based on character recognition
CN111368838A (en)*2018-12-262020-07-03珠海金山网络游戏科技有限公司Method and device for identifying reported screenshot
US10701434B1 (en)*2019-01-212020-06-30Adobe Inc.Extracting session information from video content to facilitate seeking
US10997424B2 (en)2019-01-252021-05-04Gracenote, Inc.Methods and systems for sport data extraction
US11036995B2 (en)*2019-01-252021-06-15Gracenote, Inc.Methods and systems for scoreboard region detection
US11010627B2 (en)2019-01-252021-05-18Gracenote, Inc.Methods and systems for scoreboard text region detection
US11087161B2 (en)2019-01-252021-08-10Gracenote, Inc.Methods and systems for determining accuracy of sport-related information extracted from digital video frames
US11805283B2 (en)2019-01-252023-10-31Gracenote, Inc.Methods and systems for extracting sport-related information from digital video frames
CN110083741B (en)*2019-04-112022-10-28中国科学技术大学Character-oriented video abstract extraction method based on text and image combined modeling
CN110197177B (en)*2019-04-222024-03-19平安科技(深圳)有限公司Method, device, computer equipment and storage medium for extracting video captions
CN110222168B (en)*2019-05-202023-08-18平安科技(深圳)有限公司Data processing method and related device
CN111988652B (en)*2019-05-232022-06-03北京地平线机器人技术研发有限公司Method and device for extracting lip language training data
US11087162B2 (en)*2019-08-012021-08-10Nvidia CorporationDetermining relative regions of interest in images using object detection
CN110929094B (en)*2019-11-202023-05-16北京香侬慧语科技有限责任公司Video title processing method and device
EP3923189A1 (en)*2020-06-082021-12-15Interdigital Ce Patent Holdings, SASGeneration of metadata from graphical inlays inserted in video frames
CN111491180B (en)*2020-06-242021-07-09腾讯科技(深圳)有限公司Method and device for determining key frame
US11554324B2 (en)*2020-06-252023-01-17Sony Interactive Entertainment LLCSelection of video template based on computer simulation metadata
CN113762016B (en)*2021-01-052025-03-21北京沃东天骏信息技术有限公司 Key frame selection method and device
CN112765460A (en)*2021-01-082021-05-07北京字跳网络技术有限公司Conference information query method, device, storage medium, terminal device and server
US11735186B2 (en)2021-09-072023-08-223Play Media, Inc.Hybrid live captioning systems and methods
CN114615520B (en)*2022-03-082024-01-02北京达佳互联信息技术有限公司Subtitle positioning method, subtitle positioning device, computer equipment and medium

Citations (256)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4649380A (en)1983-06-151987-03-10U. S. Philips CorporationVideo display system comprising an index store for storing reduced versions of pictures to be displayed
US4712248A (en)1984-03-281987-12-08Fuji Electric Company, Ltd.Method and apparatus for object identification
US5144685A (en)1989-03-311992-09-01Honeywell Inc.Landmark recognition for autonomous mobile robots
US5191645A (en)1991-02-281993-03-02Sony Corporation Of AmericaDigital signal processing system employing icon displays
US5204706A (en)1990-11-301993-04-20Kabushiki Kaisha ToshibaMoving picture managing device
US5208857A (en)1990-04-251993-05-04Telediffusion De FranceMethod and device for scrambling-unscrambling digital image data
US5262856A (en)1992-06-041993-11-16Massachusetts Institute Of TechnologyVideo image compositing techniques
EP0587329A2 (en)1992-09-051994-03-16International Business Machines CorporationImage processing system
US5408274A (en)1993-03-111995-04-18The Regents Of The University Of CaliforniaMethod and apparatus for compositing compressed video data
US5428774A (en)1992-03-241995-06-27International Business Machines CorporationSystem of updating an index file of frame sequences so that it indexes non-overlapping motion image frame sequences
US5461679A (en)1991-05-241995-10-24Apple Computer, Inc.Method and apparatus for encoding/decoding image data
US5465353A (en)1994-04-011995-11-07Ricoh Company, Ltd.Image matching and retrieval by multi-access redundant hashing
US5488664A (en)1994-04-221996-01-30Yeda Research And Development Co., Ltd.Method and apparatus for protecting visual information with printed cryptographic watermarks
US5493677A (en)1994-06-081996-02-20Systems Research & Applications CorporationGeneration, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface
US5530759A (en)1995-02-011996-06-25International Business Machines CorporationColor correct digital watermarking of images
US5546572A (en)1991-08-281996-08-13Hitachi, Ltd.Method for retrieving database of image information
US5546571A (en)1988-12-191996-08-13Hewlett-Packard CompanyMethod of recursively deriving and storing data in, and retrieving recursively-derived data from, a computer database system
US5555378A (en)1994-03-021996-09-10Bell Communications Research, Inc.Scheduling transmission multimedia information in broadband networks using a token passing scheme
US5555354A (en)1993-03-231996-09-10Silicon Graphics Inc.Method and apparatus for navigation within three-dimensional information landscape
US5557728A (en)1991-08-151996-09-17International Business Machines CorporationAutomated image retrieval and scaling into windowed displays
US5566089A (en)1994-10-261996-10-15General Instrument Corporation Of DelawareSyntax parser for a video decompression processor
US5572260A (en)1995-03-201996-11-05Mitsubishi Electric Semiconductor Software Co. Ltd.Closed caption decoder having pause function suitable for learning language
US5579471A (en)1992-11-091996-11-26International Business Machines CorporationImage query system and method
US5579444A (en)1987-08-281996-11-26Axiom Bildverarbeitungssysteme GmbhAdaptive vision-based controller
US5606655A (en)1994-03-311997-02-25Siemens Corporate Research, Inc.Method for representing contents of a single video shot using frames
US5613032A (en)1994-09-021997-03-18Bell Communications Research, Inc.System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US5615112A (en)1993-01-291997-03-25Arizona Board Of RegentsSynthesized object-oriented entity-relationship (SOOER) model for coupled knowledge-base/database of image retrieval expert system (IRES)
US5623690A (en)1992-06-031997-04-22Digital Equipment CorporationAudio/video storage and retrieval for multimedia workstations by interleaving audio and video data in data file
US5630121A (en)1993-02-021997-05-13International Business Machines CorporationArchiving and retrieving multimedia objects using structured indexes
US5642477A (en)1994-09-221997-06-24International Business Machines CorporationMethod and apparatus for selectably retrieving and outputting digitally stored multimedia presentations with real-time non-interrupting, dynamically selectable introduction of output processing
US5655117A (en)1994-11-181997-08-05Oracle CorporationMethod and apparatus for indexing multimedia information streams
US5664177A (en)1988-04-131997-09-02Digital Equipment CorporationData processing system having a data structure with a single, simple primitive
US5664018A (en)1996-03-121997-09-02Leighton; Frank ThomsonWatermarking process resilient to collusion attacks
US5668897A (en)1994-03-151997-09-16Stolfo; Salvatore J.Method and apparatus for imaging, image processing and data compression merge/purge techniques for document image databases
US5684715A (en)1995-06-071997-11-04Canon Information Systems, Inc.Interactive video system with dynamic video object descriptors
US5694334A (en)1994-09-081997-12-02Starguide Digital Networks, Inc.Method and apparatus for electronic distribution of digital multi-media information
US5696964A (en)1996-04-161997-12-09Nec Research Institute, Inc.Multimedia database retrieval system which maintains a posterior probability distribution that each item in the database is a target of a search
US5694945A (en)1993-07-201997-12-09Biosense, Inc.Apparatus and method for intrabody mapping
US5701510A (en)1991-11-141997-12-23International Business Machines CorporationMethod and system for efficient designation and retrieval of particular segments within a multimedia presentation utilizing a data processing system
US5708805A (en)1992-10-091998-01-13Matsushita Electric Industrial Co., Ltd.Image retrieving apparatus using natural language
US5713021A (en)1995-06-281998-01-27Fujitsu LimitedMultimedia data search system that searches for a portion of multimedia data using objects corresponding to the portion of multimedia data
US5721815A (en)1995-06-071998-02-24International Business Machines CorporationMedia-on-demand communication system and method employing direct access storage device
US5724484A (en)1991-03-201998-03-03Hitachi, Ltd.Data processing methods and apparatus for supporting analysis/judgement
US5734752A (en)1996-09-241998-03-31Xerox CorporationDigital watermarking using stochastic screen patterns
US5734893A (en)1995-09-281998-03-31Ibm CorporationProgressive content-based retrieval of image and video with adaptive and iterative refinement
EP0579319B1 (en)1992-07-161998-04-08Philips Electronics Uk LimitedTracking moving objects
US5742283A (en)1993-09-271998-04-21International Business Machines CorporationHyperstories: organizing multimedia episodes in temporal and spatial displays
US5758076A (en)1995-07-191998-05-26International Business Machines CorporationMultimedia server system having rate adjustable data retrieval based on buffer capacity
US5768578A (en)1994-02-281998-06-16Lucent Technologies Inc.User interface for information retrieval system
US5767922A (en)1996-04-051998-06-16Cornell Research Foundation, Inc.Apparatus and process for detecting scene breaks in a sequence of video frames
US5790703A (en)1997-01-211998-08-04Xerox CorporationDigital watermarking using conjugate halftone screens
US5794178A (en)1993-09-201998-08-11Hnc Software, Inc.Visualization of information using graphical representations of context vector based relationships and attributes
US5794242A (en)1995-02-071998-08-11Digital Equipment CorporationTemporally and spatially organized database
US5802361A (en)1994-09-301998-09-01Apple Computer, Inc.Method and system for searching graphic images and videos
US5805733A (en)1994-12-121998-09-08Apple Computer, Inc.Method and system for detecting scenes and summarizing video sequences
US5805804A (en)1994-11-211998-09-08Oracle CorporationMethod and apparatus for scalable, high bandwidth storage retrieval and transportation of multimedia data on a network
US5809139A (en)1996-09-131998-09-15Vivo Software, Inc.Watermarking method and apparatus for compressed digital video
US5809160A (en)1992-07-311998-09-15Digimarc CorporationMethod for encoding auxiliary data within a source signal
US5822524A (en)1995-07-211998-10-13Infovalue Computing, Inc.System for just-in-time retrieval of multimedia files over computer networks by transmitting data packets at transmission rate determined by frame size
US5821945A (en)1995-02-031998-10-13The Trustees Of Princeton UniversityMethod and apparatus for video browsing based on content and structure
US5825892A (en)1996-10-281998-10-20International Business Machines CorporationProtecting images with an image watermark
US5848155A (en)1996-09-041998-12-08Nec Research Institute, Inc.Spread spectrum watermark for embedded signalling
US5852435A (en)1996-04-121998-12-22Avid Technology, Inc.Digital multimedia editing and data management system
US5852823A (en)1996-10-161998-12-22MicrosoftImage classification and retrieval system using a query-by-example paradigm
US5870754A (en)1996-04-251999-02-09Philips Electronics North America CorporationVideo retrieval of MPEG compressed sequences using DC and motion signatures
US5873080A (en)1996-09-201999-02-16International Business Machines CorporationUsing multiple search engines to search multimedia data
US5884298A (en)1996-03-291999-03-16Cygnet Storage Solutions, Inc.Method for accessing and updating a library of optical discs
US5887061A (en)1996-05-011999-03-23Oki Electric Industry Co., Ltd.Compression coding device with scrambling function and expansion reproducing device with descrambling function
US5893095A (en)1996-03-291999-04-06Virage, Inc.Similarity engine for content-based retrieval of images
US5915027A (en)1996-11-051999-06-22Nec Research InstituteDigital watermarking
US5930783A (en)1997-02-211999-07-27Nec Usa, Inc.Semantic and cognition based image retrieval
US5937422A (en)1997-04-151999-08-10The United States Of America As Represented By The National Security AgencyAutomatically generating a topic description for text and searching and sorting text by topic using the same
US5943422A (en)1996-08-121999-08-24Intertrust Technologies Corp.Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US5949885A (en)1996-03-121999-09-07Leighton; F. ThomsonMethod for protecting content using watermarking
US5960081A (en)1997-06-051999-09-28Cray Research, Inc.Embedding a digital signature in a video sequence
US5963203A (en)1997-07-031999-10-05Obvious Technology, Inc.Interactive video icon with designated viewing position
US5969755A (en)1996-02-051999-10-19Texas Instruments IncorporatedMotion based event detection system and method
US5983218A (en)1997-06-301999-11-09Xerox CorporationMultimedia database for use over networks
US5987459A (en)1996-03-151999-11-16Regents Of The University Of MinnesotaImage and document management system for content-based retrieval
US5995095A (en)1997-12-191999-11-30Sharp Laboratories Of America, Inc.Method for hierarchical summarization and browsing of digital video
US5995978A (en)1997-09-241999-11-30Ricoh Company, Ltd.Navigation system for document image database
US6031914A (en)1996-08-302000-02-29Regents Of The University Of MinnesotaMethod and apparatus for embedding data, including watermarks, in human perceptible images
US6037984A (en)1997-12-242000-03-14Sarnoff CorporationMethod and apparatus for embedding a watermark into a digital image or image sequence
US6041079A (en)1998-06-302000-03-21Thomson Consumer Electronics, Inc,Field/frame conversion of DCT domain mixed field/frame mode macroblocks using 1-dimensional DCT/IDCT
US6047374A (en)1994-12-142000-04-04Sony CorporationMethod and apparatus for embedding authentication information within digital data
US6058186A (en)1990-04-232000-05-02Canon Kabushiki KaishaInformation signal transmission system
US6058205A (en)1997-01-092000-05-02International Business Machines CorporationSystem and method for partitioning the feature space of a classifier in a pattern classification system
US6064764A (en)1998-03-302000-05-16Seiko Epson CorporationFragile watermarks for detecting tampering in images
US6070167A (en)1997-09-292000-05-30Sharp Laboratories Of America, Inc.Hierarchical method and system for object-based audiovisual descriptive tagging of images for information retrieval, editing, and manipulation
US6070228A (en)1997-09-302000-05-30International Business Machines Corp.Multimedia data storage system and method for operating a media server as a cache device and controlling a volume of data in the media server based on user-defined parameters
US6072542A (en)1997-11-252000-06-06Fuji Xerox Co., Ltd.Automatic video segmentation using hidden markov model
US6075875A (en)1996-09-302000-06-13Microsoft CorporationSegmentation of image features using hierarchical analysis of multi-valued image data and weighted averaging of segmentation results
US6078664A (en)1996-12-202000-06-20Moskowitz; Scott A.Z-transform implementation of digital watermarks
US6079566A (en)1997-04-072000-06-27At&T CorpSystem and method for processing object-based audiovisual information
US6081278A (en)1998-06-112000-06-27Chen; Shenchang EricAnimation object having multiple resolution format
US6092072A (en)1998-04-072000-07-18Lucent Technologies, Inc.Programmed medium for clustering large databases
US6100930A (en)1997-12-192000-08-08Thomson Consumer Electronics, Inc.Process and apparatus for performing wipes on compressed MPEG video bitstreams
US6104411A (en)1997-04-162000-08-15Sharp Kabushiki KaishaElectronic computing apparatus having graph displaying function and method for displaying graph
US6108434A (en)1997-09-122000-08-22Signafy, Inc.Counteracting geometric distortions for DCT based watermarking
US6115717A (en)1997-01-232000-09-05Eastman Kodak CompanySystem and method for open space metadata-based storage and retrieval of images in an image database
US6122403A (en)1995-07-272000-09-19Digimarc CorporationComputer system linked by using information in data objects
US6125229A (en)1997-06-022000-09-26Philips Electronics North America CorporationVisual indexing system
US6154755A (en)1996-07-312000-11-28Eastman Kodak CompanyIndex imaging system
US6157746A (en)1997-02-122000-12-05Sarnoff CorporationApparatus and method for encoding wavelet trees generated by a wavelet-based coding method
US6172675B1 (en)1996-12-052001-01-09Interval Research CorporationIndirect manipulation of data using temporally related data, with particular application to manipulation of audio or audiovisual data
US6178416B1 (en)1998-06-152001-01-23James U. ParkerMethod and apparatus for knowledgebase searching
US6185329B1 (en)1998-10-132001-02-06Hewlett-Packard CompanyAutomatic caption text detection and processing for digital images
US6195458B1 (en)1997-07-292001-02-27Eastman Kodak CompanyMethod for content-based temporal segmentation of video
US6208745B1 (en)1997-12-302001-03-27Sarnoff CorporationMethod and apparatus for imbedding a watermark into a bitstream representation of a digital image sequence
US6208735B1 (en)1997-09-102001-03-27Nec Research Institute, Inc.Secure spread spectrum watermarking for multimedia data
US6223183B1 (en)1999-01-292001-04-24International Business Machines CorporationSystem and method for describing views in space, time, frequency, and resolution
US6222932B1 (en)1997-06-272001-04-24International Business Machines CorporationAutomatic adjustment of image watermark strength based on computed image texture
US20010000962A1 (en)1998-06-262001-05-10Ganesh RajanTerminal for composing and presenting MPEG-4 video programs
US6236395B1 (en)1999-02-012001-05-22Sharp Laboratories Of America, Inc.Audiovisual information management system
US6240424B1 (en)1998-04-222001-05-29Nbc Usa, Inc.Method and system for similarity-based image classification
US6243419B1 (en)1996-05-272001-06-05Nippon Telegraph And Telephone CorporationScheme for detecting captions in coded video data without decoding coded video data
US6246804B1 (en)1994-11-152001-06-12Canon Kabushiki KaishaImage retrieval method and apparatus using a compound image formed from a plurality of detected regions
US6252975B1 (en)1998-12-172001-06-26Xerox CorporationMethod and system for real time feature based motion analysis for key frame selection from a video
US6275599B1 (en)1998-08-282001-08-14International Business Machines CorporationCompressed image authentication and verification
US6282299B1 (en)1996-08-302001-08-28Regents Of The University Of MinnesotaMethod and apparatus for video watermarking using perceptual masks
US6282300B1 (en)2000-01-212001-08-28Signafy, Inc.Rotation, scale, and translation resilient public watermarking for images using a log-polar fourier transform
US6285995B1 (en)1998-06-222001-09-04U.S. Philips CorporationImage retrieval system using a query image
US6297797B1 (en)1997-10-302001-10-02Kabushiki Kaisha ToshibaComputer system and closed caption display method
US6327390B1 (en)1999-01-142001-12-04Mitsubishi Electric Research Laboratories, Inc.Methods of scene fade detection for indexing of video sequences
US6332030B1 (en)1998-01-152001-12-18The Regents Of The University Of CaliforniaMethod for embedding and extracting digital data in images and video
US6339450B1 (en)1999-09-212002-01-15At&T CorpError resilient transcoding for video over wireless channels
US20020021828A1 (en)2000-08-012002-02-21Arthur PapierSystem and method to aid diagnoses using cross-referenced knowledge and image databases
US6356309B1 (en)1995-08-022002-03-12Matsushita Electric Industrial Co., Ltd.Video coding device and video transmission system using the same, quantization control method and average throughput calculation method used therein
US6360234B2 (en)1997-08-142002-03-19Virage, Inc.Video cataloger system with synchronized encoders
US6366701B1 (en)1999-01-282002-04-02Sarnoff CorporationApparatus and method for describing the motion parameters of an object in an image sequence
US6366314B1 (en)1997-12-172002-04-02Telediffusion De FranceMethod and system for measuring the quality of digital television signals
US6385329B1 (en)2000-02-142002-05-07Digimarc CorporationWavelet domain watermarks
US6385602B1 (en)1998-11-032002-05-07E-Centives, Inc.Presentation of search results using dynamic categorization
US6393394B1 (en)1999-07-192002-05-21Qualcomm IncorporatedMethod and apparatus for interleaving line spectral information quantization methods in a speech coder
US6404925B1 (en)1999-03-112002-06-11Fuji Xerox Co., Ltd.Methods and apparatuses for segmenting an audio-visual recording using image similarity searching and audio speaker recognition
US6418232B1 (en)1998-08-282002-07-09Hitachi, Ltd.Method of authenticating digital-watermark pictures
US6418421B1 (en)1998-08-132002-07-09International Business Machines CorporationMultimedia player for an electronic content delivery system
US6442538B1 (en)1998-05-272002-08-27Hitachi, Ltd.Video information retrieval method and apparatus
US20020118748A1 (en)2000-06-272002-08-29Hideki InomataPicture coding apparatus, and picture coding method
US6453053B1 (en)1996-12-252002-09-17Nec CorporationIdentification data insertion and detection system for digital data
US6466940B1 (en)1997-02-212002-10-15Dudley John MillsBuilding a database of CCG values of web pages from extracted attributes
US20020157116A1 (en)2000-07-282002-10-24Koninklijke Philips Electronics N.V.Context and content based information processing for multimedia segmentation and indexing
US6473459B1 (en)1998-03-052002-10-29Kdd CorporationScene change detector
US6476814B1 (en)1998-06-252002-11-05Wordgraph, Inc.Display structure for representation of complex systems
US20020169771A1 (en)2001-05-092002-11-14Melmon Kenneth L.System & method for facilitating knowledge management
US6487301B1 (en)1998-04-302002-11-26Mediasec Technologies LlcDigital authentication with digital and analog documents
US6499105B1 (en)1997-06-052002-12-24Hitachi, Ltd.Digital data authentication method
US20030013951A1 (en)2000-09-212003-01-16Dan StefanescuDatabase organization and searching
US6526099B1 (en)1996-10-252003-02-25Telefonaktiebolaget Lm Ericsson (Publ)Transcoder
US20030046018A1 (en)2001-04-202003-03-06Fraunhofer-Gesellschaft Zur Foerderung Der Angewandeten Forschung E.VMethod for segmentation and identification of nonstationary time series
US6532541B1 (en)1999-01-222003-03-11The Trustees Of Columbia University In The City Of New YorkMethod and apparatus for image authentication
US6546135B1 (en)1999-08-302003-04-08Mitsubishi Electric Research Laboratories, IncMethod for representing and comparing multimedia content
US6549911B2 (en)1998-11-022003-04-15Survivors Of The Shoah Visual History FoundationMethod and apparatus for cataloguing multimedia data
US6556695B1 (en)1999-02-052003-04-29Mayo Foundation For Medical Education And ResearchMethod for producing high resolution real-time images, of structure and function during medical procedures
US6556958B1 (en)1999-04-232003-04-29Microsoft CorporationFast clustering with sparse data
US6560284B1 (en)1997-09-122003-05-06Netergy Microelectronics, Inc.Video coder/decoder
US6567805B1 (en)2000-05-152003-05-20International Business Machines CorporationInteractive automated response system
US6581058B1 (en)1998-05-222003-06-17Microsoft CorporationScalable system for clustering of large databases having mixed data attributes
US6606329B1 (en)1998-07-172003-08-12Koninklijke Philips Electronics N.V.Device for demultiplexing coded data
US6606393B1 (en)1999-12-022003-08-12Verizon Laboratories Inc.Message authentication code using image histograms
US6628824B1 (en)1998-03-202003-09-30Ken BelangerMethod and apparatus for image identification and comparison
US20030195883A1 (en)2002-04-152003-10-16International Business Machines CorporationSystem and method for measuring image similarity based on semantic meaning
US6643387B1 (en)1999-01-282003-11-04Sarnoff CorporationApparatus and method for context-based indexing and retrieval of image sequences
US6654931B1 (en)1998-01-272003-11-25At&T Corp.Systems and methods for playing, browsing and interacting with MPEG-4 coded audio-visual objects
US20030229278A1 (en)2002-06-062003-12-11Usha SinhaMethod and system for knowledge extraction from image data
US6678389B1 (en)1998-12-292004-01-13Kent Ridge Digital LabsMethod and apparatus for embedding digital information in digital multimedia data
US6683966B1 (en)2000-08-242004-01-27Digimarc CorporationWatermarking recursive hashes into frequency domain regions
JP2004049471A (en)2002-07-182004-02-19Paloma Ind LtdRice cooker
US6700935B2 (en)2002-02-082004-03-02Sony Electronics, Inc.Stream based bitrate transcoder for MPEG coded video
US6701309B1 (en)2000-04-212004-03-02Lycos, Inc.Method and system for collecting related queries
US6708055B2 (en)1998-08-252004-03-16University Of FloridaMethod for automated analysis of apical four-chamber images of the heart
US20040057081A1 (en)2002-09-202004-03-25Fuji Xerox Co., Ltd.Image processing method, manipulation detection method, image processing device, manipulation detection device, image processing program, manipulation detection program, and image formation medium
US6714909B1 (en)1998-08-132004-03-30At&T Corp.System and method for automated multimedia content indexing and retrieval
US6716175B2 (en)1998-08-252004-04-06University Of FloridaAutonomous boundary detection system for echocardiographic images
US6718047B2 (en)1995-05-082004-04-06Digimarc CorporationWatermark embedder and reader
US6721733B2 (en)1997-10-272004-04-13Massachusetts Institute Of TechnologyInformation search and retrieval system
US6725372B1 (en)1999-12-022004-04-20Verizon Laboratories Inc.Digital watermarking
US6735253B1 (en)1997-05-162004-05-11The Trustees Of Columbia University In The City Of New YorkMethods and architecture for indexing and editing compressed video over the world wide web
US6741655B1 (en)1997-05-052004-05-25The Trustees Of Columbia University In The City Of New YorkAlgorithms and system for object-oriented content-based video search
US6757407B2 (en)1998-05-122004-06-29Lucent Technologies Inc.Transform domain image watermarking method and system
US20040131121A1 (en)2003-01-082004-07-08Adriana DumitrasMethod and apparatus for improved coding mode selection
US6778223B2 (en)1997-04-062004-08-17Sony CorporationImage display apparatus and method
US6792434B2 (en)2001-04-202004-09-14Mitsubishi Electric Research Laboratories, Inc.Content-based visualization and user-modeling for interactive browsing and retrieval in multimedia databases
US6807231B1 (en)1997-09-122004-10-198×8, Inc.Multi-hypothesis motion-compensated video image predictor
US20040210819A1 (en)2001-06-152004-10-21Alonso Antonio UsedDynamic browser interface
US6816836B2 (en)1999-08-062004-11-09International Business Machines CorporationMethod and apparatus for audio-visual speech detection and recognition
US6847980B1 (en)1999-07-032005-01-25Ana B. BenitezFundamental entity-relationship models for the generic audio visual data signal description
US20050076055A1 (en)2001-08-282005-04-07Benoit MoryAutomatic question formulation from a user selection in multimedia content
US6879703B2 (en)2001-01-102005-04-12Trustees Of Columbia University Of The City Of New YorkMethod and apparatus for watermarking images
US6886013B1 (en)1997-09-112005-04-26International Business Machines CorporationHTTP caching proxy to filter and control display of data in a web browser
US6941325B1 (en)1999-02-012005-09-06The Trustees Of Columbia UniversityMultimedia archive description scheme
US6940910B2 (en)2000-03-072005-09-06Lg Electronics Inc.Method of detecting dissolve/fade in MPEG-compressed video environment
US20050201619A1 (en)2002-12-262005-09-15Fujitsu LimitedVideo text processing apparatus
US20050210043A1 (en)2004-03-222005-09-22Microsoft CorporationMethod for duplicate detection and suppression
US6950542B2 (en)2000-09-262005-09-27Koninklijke Philips Electronics, N.V.Device and method of computing a transformation linking two images
US20050238238A1 (en)2002-07-192005-10-27Li-Qun XuMethod and system for classification of semantic content of audio/video data
US6970602B1 (en)1998-10-062005-11-29International Business Machines CorporationMethod and apparatus for transcoding multimedia using content analysis
US20060026588A1 (en)2004-06-082006-02-02Daniel IllowskySystem device and method for configuring and operating interoperable device having player and engine
US7010751B2 (en)2000-02-182006-03-07University Of Maryland, College ParkMethods for the electronic annotation, retrieval, and use of electronic images
US7072398B2 (en)2000-12-062006-07-04Kai-Kuang MaSystem and method for motion vector generation and analysis of digital video clips
US20060167784A1 (en)2004-09-102006-07-27Hoffberg Steven MGame theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
US7103225B2 (en)2002-11-072006-09-05Honda Motor Co., Ltd.Clustering appearances of objects under varying illumination conditions
US20060200260A1 (en)1991-12-232006-09-07Steven HoffbergSystem and method for intermachine markup language communications
US20060258419A1 (en)2005-05-112006-11-16Planetwide Games, Inc.Creating publications using gaming-based media content
US7143434B1 (en)1998-11-062006-11-28Seungyup PaekVideo description system and method
US7145946B2 (en)2001-07-272006-12-05Sony CorporationMPEG video drift reduction
US7154560B1 (en)1997-10-272006-12-26Shih-Fu ChangWatermarking of digital image data
US20060293921A1 (en)2000-10-192006-12-28Mccarthy JohnInput device for web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20070033170A1 (en)2000-07-242007-02-08Sanghoon SullMethod For Searching For Relevant Multimedia Content
US7185049B1 (en)1999-02-012007-02-27At&T Corp.Multimedia integration description scheme, method and system for MPEG-7
US20070078846A1 (en)2005-09-302007-04-05Antonino GulliSimilarity detection and clustering of images
US20070087756A1 (en)2005-10-042007-04-19Hoffberg Steven MMultifactorial optimization system and method
US20070174790A1 (en)2006-01-232007-07-26Microsoft CorporationUser interface for viewing clusters of images
US7254285B1 (en)1998-11-062007-08-07Seungup PaekImage description system and method
US20070195106A1 (en)2006-02-172007-08-23Microsoft CorporationDetecting Doctored JPEG Images
US20070237426A1 (en)2006-04-042007-10-11Microsoft CorporationGenerating search results based on duplicate image detection
US7308443B1 (en)2004-12-232007-12-11Ricoh Company, Ltd.Techniques for video retrieval based on HMM similarity
US7313269B2 (en)2003-12-122007-12-25Mitsubishi Electric Research Laboratories, Inc.Unsupervised learning of video structures in videos using hierarchical statistical models to detect events
US7327885B2 (en)2003-06-302008-02-05Mitsubishi Electric Research Laboratories, Inc.Method for detecting short term unusual events in videos
US7339992B2 (en)2001-12-062008-03-04The Trustees Of Columbia University In The City Of New YorkSystem and method for extracting text captions from video and generating video summaries
US20080055479A1 (en)2006-09-012008-03-06Texas Instruments IncorporatedColor Space Appearance Model Video Processor
US20080097939A1 (en)1998-05-012008-04-24Isabelle GuyonData mining platform for bioinformatics and other knowledge discovery
US7386806B2 (en)2005-01-052008-06-10Hillcrest Laboratories, Inc.Scaling and layout methods and systems for handling one-to-many objects
US7398275B2 (en)2000-10-202008-07-08Sony CorporationEfficient binary coding scheme for multimedia content descriptions
US7403302B2 (en)2003-08-062008-07-22Hewlett-Packard Development Company, L.P.Method and a system for indexing and tracking digital images
US7406409B2 (en)2004-01-142008-07-29Mitsubishi Electric Research Laboratories, Inc.System and method for recording and reproducing multimedia based on an audio signal
US20080181308A1 (en)2005-03-042008-07-31Yong WangSystem and method for motion estimation and mode decision for low-complexity h.264 decoder
US7409144B2 (en)2000-12-072008-08-05Sony United Kingdom LimitedVideo and audio information processing
US20080193016A1 (en)2004-02-062008-08-14Agency For Science, Technology And ResearchAutomatic Video Event Detection and Indexing
US20080222670A1 (en)2007-03-072008-09-11Lee Hans CMethod and system for using coherence of biological responses as a measure of performance of a media
US7437004B2 (en)1999-12-142008-10-14Definiens AgMethod for processing data structures with networked semantic units
US20080266300A1 (en)2002-03-222008-10-30Michael F. DeeringScalable High Performance 3D Graphics
US20080298464A1 (en)2003-09-032008-12-04Thompson Licensing S.A.Process and Arrangement for Encoding Video Pictures
US7496830B2 (en)1999-12-072009-02-24Microsoft CorporationComputer user interface architecture that saves a user's non-linear navigation history and intelligently maintains that history
US20090055094A1 (en)2007-06-072009-02-26Sony CorporationNavigation device and nearest point search method
US7519217B2 (en)2004-11-232009-04-14Microsoft CorporationMethod and system for generating a classifier using inter-sample relationships
EP0953938B1 (en)1998-04-302009-04-29Hewlett-Packard Company, A Delaware CorporationA method and apparatus for digital watermarking of images
US20090290635A1 (en)2002-04-262009-11-26Jae-Gon KimMethod and system for optimal video transcoding based on utility function descriptors
US7636662B2 (en)2003-09-302009-12-22Koninklijke Philips Electronics N.V.System and method for audio-visual content synthesis
US7653635B1 (en)1998-11-062010-01-26The Trustees Of Columbia University In The City Of New YorkSystems and methods for interoperable multimedia content descriptions
US7676820B2 (en)2003-01-062010-03-09Koninklijke Philips Electronics N.V.Method and apparatus for similar video content hopping
US7720851B2 (en)2006-05-162010-05-18Eastman Kodak CompanyActive context-based concept fusion
US7733956B1 (en)1996-12-172010-06-08Oracle International CorporationMethod and apparatus for storing base and additive streams of video
US7738550B2 (en)2000-03-132010-06-15Sony CorporationMethod and apparatus for generating compact transcoding hints metadata
US20100172591A1 (en)2007-05-252010-07-08Masumi IshikawaImage-sound segment corresponding apparatus, method and program
US7756338B2 (en)2007-02-142010-07-13Mitsubishi Electric Research Laboratories, Inc.Method for detecting scene boundaries in genre independent videos
US7773813B2 (en)2005-10-312010-08-10Microsoft CorporationCapture-intention detection for video content analysis
US7809192B2 (en)2005-05-092010-10-05Like.ComSystem and method for recognizing objects from images and identifying relevancy amongst images and information
US7817855B2 (en)2005-09-022010-10-19The Blindsight CorporationSystem and method for detecting text in real-world color images
US20110025710A1 (en)2008-04-102011-02-03The Trustees Of Columbia University In The City Of New YorkSystems and methods for image archeology
US20110145232A1 (en)2008-06-172011-06-16The Trustees Of Columbia University In The City Of New YorkSystem and method for dynamically and interactively searching media data
US7996762B2 (en)2007-09-212011-08-09Microsoft CorporationCorrelative multi-label image annotation
US8010296B2 (en)2002-12-192011-08-30Drexel UniversityApparatus and method for removing non-discriminatory indices of an indexed dataset
US20110314367A1 (en)2008-12-222011-12-22The Trustees Of Columbia University In The City Of New YorkSystem And Method For Annotating And Searching Media
US8135221B2 (en)2009-10-072012-03-13Eastman Kodak CompanyVideo concept classification using audio-visual atoms
US20120089552A1 (en)2008-12-222012-04-12Shih-Fu ChangRapid image annotation via brain state decoding and visual pattern mining

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TW259725B (en)*1994-04-111995-10-11Mitsubishi Heavy Ind Ltd
US6208746B1 (en)*1997-05-092001-03-27Gte Service CorporationBiometric watermarks

Patent Citations (271)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4649380A (en)1983-06-151987-03-10U. S. Philips CorporationVideo display system comprising an index store for storing reduced versions of pictures to be displayed
US4712248A (en)1984-03-281987-12-08Fuji Electric Company, Ltd.Method and apparatus for object identification
US5579444A (en)1987-08-281996-11-26Axiom Bildverarbeitungssysteme GmbhAdaptive vision-based controller
US5664177A (en)1988-04-131997-09-02Digital Equipment CorporationData processing system having a data structure with a single, simple primitive
US5546571A (en)1988-12-191996-08-13Hewlett-Packard CompanyMethod of recursively deriving and storing data in, and retrieving recursively-derived data from, a computer database system
US5144685A (en)1989-03-311992-09-01Honeywell Inc.Landmark recognition for autonomous mobile robots
US6058186A (en)1990-04-232000-05-02Canon Kabushiki KaishaInformation signal transmission system
US5208857A (en)1990-04-251993-05-04Telediffusion De FranceMethod and device for scrambling-unscrambling digital image data
US5204706A (en)1990-11-301993-04-20Kabushiki Kaisha ToshibaMoving picture managing device
US5191645A (en)1991-02-281993-03-02Sony Corporation Of AmericaDigital signal processing system employing icon displays
US5724484A (en)1991-03-201998-03-03Hitachi, Ltd.Data processing methods and apparatus for supporting analysis/judgement
US5461679A (en)1991-05-241995-10-24Apple Computer, Inc.Method and apparatus for encoding/decoding image data
US5557728A (en)1991-08-151996-09-17International Business Machines CorporationAutomated image retrieval and scaling into windowed displays
US5546572A (en)1991-08-281996-08-13Hitachi, Ltd.Method for retrieving database of image information
US5701510A (en)1991-11-141997-12-23International Business Machines CorporationMethod and system for efficient designation and retrieval of particular segments within a multimedia presentation utilizing a data processing system
US20060200260A1 (en)1991-12-232006-09-07Steven HoffbergSystem and method for intermachine markup language communications
US5428774A (en)1992-03-241995-06-27International Business Machines CorporationSystem of updating an index file of frame sequences so that it indexes non-overlapping motion image frame sequences
US5623690A (en)1992-06-031997-04-22Digital Equipment CorporationAudio/video storage and retrieval for multimedia workstations by interleaving audio and video data in data file
US5262856A (en)1992-06-041993-11-16Massachusetts Institute Of TechnologyVideo image compositing techniques
EP0579319B1 (en)1992-07-161998-04-08Philips Electronics Uk LimitedTracking moving objects
US5809160A (en)1992-07-311998-09-15Digimarc CorporationMethod for encoding auxiliary data within a source signal
EP0587329A2 (en)1992-09-051994-03-16International Business Machines CorporationImage processing system
US5708805A (en)1992-10-091998-01-13Matsushita Electric Industrial Co., Ltd.Image retrieving apparatus using natural language
US5751286A (en)1992-11-091998-05-12International Business Machines CorporationImage query system and method
US5579471A (en)1992-11-091996-11-26International Business Machines CorporationImage query system and method
US5615112A (en)1993-01-291997-03-25Arizona Board Of RegentsSynthesized object-oriented entity-relationship (SOOER) model for coupled knowledge-base/database of image retrieval expert system (IRES)
US5630121A (en)1993-02-021997-05-13International Business Machines CorporationArchiving and retrieving multimedia objects using structured indexes
US5408274A (en)1993-03-111995-04-18The Regents Of The University Of CaliforniaMethod and apparatus for compositing compressed video data
US5555354A (en)1993-03-231996-09-10Silicon Graphics Inc.Method and apparatus for navigation within three-dimensional information landscape
US5694945A (en)1993-07-201997-12-09Biosense, Inc.Apparatus and method for intrabody mapping
US5794178A (en)1993-09-201998-08-11Hnc Software, Inc.Visualization of information using graphical representations of context vector based relationships and attributes
US5742283A (en)1993-09-271998-04-21International Business Machines CorporationHyperstories: organizing multimedia episodes in temporal and spatial displays
US5768578A (en)1994-02-281998-06-16Lucent Technologies Inc.User interface for information retrieval system
US5555378A (en)1994-03-021996-09-10Bell Communications Research, Inc.Scheduling transmission multimedia information in broadband networks using a token passing scheme
US5668897A (en)1994-03-151997-09-16Stolfo; Salvatore J.Method and apparatus for imaging, image processing and data compression merge/purge techniques for document image databases
US5606655A (en)1994-03-311997-02-25Siemens Corporate Research, Inc.Method for representing contents of a single video shot using frames
US5465353A (en)1994-04-011995-11-07Ricoh Company, Ltd.Image matching and retrieval by multi-access redundant hashing
US5488664A (en)1994-04-221996-01-30Yeda Research And Development Co., Ltd.Method and apparatus for protecting visual information with printed cryptographic watermarks
US5617119A (en)1994-06-081997-04-01Systems Research & Applications CorporationProtection of an electronically stored image in a first color space by the alteration of a digital component in a second color space
US5493677A (en)1994-06-081996-02-20Systems Research & Applications CorporationGeneration, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface
US5613032A (en)1994-09-021997-03-18Bell Communications Research, Inc.System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US5694334A (en)1994-09-081997-12-02Starguide Digital Networks, Inc.Method and apparatus for electronic distribution of digital multi-media information
US5642477A (en)1994-09-221997-06-24International Business Machines CorporationMethod and apparatus for selectably retrieving and outputting digitally stored multimedia presentations with real-time non-interrupting, dynamically selectable introduction of output processing
US5802361A (en)1994-09-301998-09-01Apple Computer, Inc.Method and system for searching graphic images and videos
US5566089A (en)1994-10-261996-10-15General Instrument Corporation Of DelawareSyntax parser for a video decompression processor
US6246804B1 (en)1994-11-152001-06-12Canon Kabushiki KaishaImage retrieval method and apparatus using a compound image formed from a plurality of detected regions
US5655117A (en)1994-11-181997-08-05Oracle CorporationMethod and apparatus for indexing multimedia information streams
US5805804A (en)1994-11-211998-09-08Oracle CorporationMethod and apparatus for scalable, high bandwidth storage retrieval and transportation of multimedia data on a network
US5805733A (en)1994-12-121998-09-08Apple Computer, Inc.Method and system for detecting scenes and summarizing video sequences
US6047374A (en)1994-12-142000-04-04Sony CorporationMethod and apparatus for embedding authentication information within digital data
US5530759A (en)1995-02-011996-06-25International Business Machines CorporationColor correct digital watermarking of images
US5821945A (en)1995-02-031998-10-13The Trustees Of Princeton UniversityMethod and apparatus for video browsing based on content and structure
US5794242A (en)1995-02-071998-08-11Digital Equipment CorporationTemporally and spatially organized database
US5572260A (en)1995-03-201996-11-05Mitsubishi Electric Semiconductor Software Co. Ltd.Closed caption decoder having pause function suitable for learning language
US6718047B2 (en)1995-05-082004-04-06Digimarc CorporationWatermark embedder and reader
US5721815A (en)1995-06-071998-02-24International Business Machines CorporationMedia-on-demand communication system and method employing direct access storage device
US5684715A (en)1995-06-071997-11-04Canon Information Systems, Inc.Interactive video system with dynamic video object descriptors
US5713021A (en)1995-06-281998-01-27Fujitsu LimitedMultimedia data search system that searches for a portion of multimedia data using objects corresponding to the portion of multimedia data
US5758076A (en)1995-07-191998-05-26International Business Machines CorporationMultimedia server system having rate adjustable data retrieval based on buffer capacity
US5822524A (en)1995-07-211998-10-13Infovalue Computing, Inc.System for just-in-time retrieval of multimedia files over computer networks by transmitting data packets at transmission rate determined by frame size
US6122403A (en)1995-07-272000-09-19Digimarc CorporationComputer system linked by using information in data objects
US6356309B1 (en)1995-08-022002-03-12Matsushita Electric Industrial Co., Ltd.Video coding device and video transmission system using the same, quantization control method and average throughput calculation method used therein
US5734893A (en)1995-09-281998-03-31Ibm CorporationProgressive content-based retrieval of image and video with adaptive and iterative refinement
US5969755A (en)1996-02-051999-10-19Texas Instruments IncorporatedMotion based event detection system and method
US5949885A (en)1996-03-121999-09-07Leighton; F. ThomsonMethod for protecting content using watermarking
US5664018A (en)1996-03-121997-09-02Leighton; Frank ThomsonWatermarking process resilient to collusion attacks
US5987459A (en)1996-03-151999-11-16Regents Of The University Of MinnesotaImage and document management system for content-based retrieval
US5884298A (en)1996-03-291999-03-16Cygnet Storage Solutions, Inc.Method for accessing and updating a library of optical discs
US5893095A (en)1996-03-291999-04-06Virage, Inc.Similarity engine for content-based retrieval of images
US5767922A (en)1996-04-051998-06-16Cornell Research Foundation, Inc.Apparatus and process for detecting scene breaks in a sequence of video frames
US5852435A (en)1996-04-121998-12-22Avid Technology, Inc.Digital multimedia editing and data management system
US5696964A (en)1996-04-161997-12-09Nec Research Institute, Inc.Multimedia database retrieval system which maintains a posterior probability distribution that each item in the database is a target of a search
US5870754A (en)1996-04-251999-02-09Philips Electronics North America CorporationVideo retrieval of MPEG compressed sequences using DC and motion signatures
US5887061A (en)1996-05-011999-03-23Oki Electric Industry Co., Ltd.Compression coding device with scrambling function and expansion reproducing device with descrambling function
US6243419B1 (en)1996-05-272001-06-05Nippon Telegraph And Telephone CorporationScheme for detecting captions in coded video data without decoding coded video data
US6154755A (en)1996-07-312000-11-28Eastman Kodak CompanyIndex imaging system
US5943422A (en)1996-08-121999-08-24Intertrust Technologies Corp.Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US6031914A (en)1996-08-302000-02-29Regents Of The University Of MinnesotaMethod and apparatus for embedding data, including watermarks, in human perceptible images
US6282299B1 (en)1996-08-302001-08-28Regents Of The University Of MinnesotaMethod and apparatus for video watermarking using perceptual masks
US5848155A (en)1996-09-041998-12-08Nec Research Institute, Inc.Spread spectrum watermark for embedded signalling
US5809139A (en)1996-09-131998-09-15Vivo Software, Inc.Watermarking method and apparatus for compressed digital video
US5873080A (en)1996-09-201999-02-16International Business Machines CorporationUsing multiple search engines to search multimedia data
US5734752A (en)1996-09-241998-03-31Xerox CorporationDigital watermarking using stochastic screen patterns
US6075875A (en)1996-09-302000-06-13Microsoft CorporationSegmentation of image features using hierarchical analysis of multi-valued image data and weighted averaging of segmentation results
US5852823A (en)1996-10-161998-12-22MicrosoftImage classification and retrieval system using a query-by-example paradigm
US6526099B1 (en)1996-10-252003-02-25Telefonaktiebolaget Lm Ericsson (Publ)Transcoder
US5825892A (en)1996-10-281998-10-20International Business Machines CorporationProtecting images with an image watermark
US5915027A (en)1996-11-051999-06-22Nec Research InstituteDigital watermarking
US6172675B1 (en)1996-12-052001-01-09Interval Research CorporationIndirect manipulation of data using temporally related data, with particular application to manipulation of audio or audiovisual data
US7733956B1 (en)1996-12-172010-06-08Oracle International CorporationMethod and apparatus for storing base and additive streams of video
US6078664A (en)1996-12-202000-06-20Moskowitz; Scott A.Z-transform implementation of digital watermarks
US6453053B1 (en)1996-12-252002-09-17Nec CorporationIdentification data insertion and detection system for digital data
US6058205A (en)1997-01-092000-05-02International Business Machines CorporationSystem and method for partitioning the feature space of a classifier in a pattern classification system
US5790703A (en)1997-01-211998-08-04Xerox CorporationDigital watermarking using conjugate halftone screens
US6115717A (en)1997-01-232000-09-05Eastman Kodak CompanySystem and method for open space metadata-based storage and retrieval of images in an image database
US6157746A (en)1997-02-122000-12-05Sarnoff CorporationApparatus and method for encoding wavelet trees generated by a wavelet-based coding method
US6466940B1 (en)1997-02-212002-10-15Dudley John MillsBuilding a database of CCG values of web pages from extracted attributes
US5930783A (en)1997-02-211999-07-27Nec Usa, Inc.Semantic and cognition based image retrieval
US6778223B2 (en)1997-04-062004-08-17Sony CorporationImage display apparatus and method
US6079566A (en)1997-04-072000-06-27At&T CorpSystem and method for processing object-based audiovisual information
US5937422A (en)1997-04-151999-08-10The United States Of America As Represented By The National Security AgencyAutomatically generating a topic description for text and searching and sorting text by topic using the same
US6104411A (en)1997-04-162000-08-15Sharp Kabushiki KaishaElectronic computing apparatus having graph displaying function and method for displaying graph
US6741655B1 (en)1997-05-052004-05-25The Trustees Of Columbia University In The City Of New YorkAlgorithms and system for object-oriented content-based video search
US7817722B2 (en)1997-05-162010-10-19The Trustees Of Columbia University In The City Of New YorkMethods and architecture for indexing and editing compressed video over the world wide web
US20110255605A1 (en)1997-05-162011-10-20Shih-Fu ChangMethods and architecture for indexing and editing compressed video over the world wide web
US20110064136A1 (en)1997-05-162011-03-17Shih-Fu ChangMethods and architecture for indexing and editing compressed video over the world wide web
US6735253B1 (en)1997-05-162004-05-11The Trustees Of Columbia University In The City Of New YorkMethods and architecture for indexing and editing compressed video over the world wide web
US6125229A (en)1997-06-022000-09-26Philips Electronics North America CorporationVisual indexing system
US6499105B1 (en)1997-06-052002-12-24Hitachi, Ltd.Digital data authentication method
US5960081A (en)1997-06-051999-09-28Cray Research, Inc.Embedding a digital signature in a video sequence
US6222932B1 (en)1997-06-272001-04-24International Business Machines CorporationAutomatic adjustment of image watermark strength based on computed image texture
US5983218A (en)1997-06-301999-11-09Xerox CorporationMultimedia database for use over networks
US5963203A (en)1997-07-031999-10-05Obvious Technology, Inc.Interactive video icon with designated viewing position
US6195458B1 (en)1997-07-292001-02-27Eastman Kodak CompanyMethod for content-based temporal segmentation of video
US6360234B2 (en)1997-08-142002-03-19Virage, Inc.Video cataloger system with synchronized encoders
US6208735B1 (en)1997-09-102001-03-27Nec Research Institute, Inc.Secure spread spectrum watermarking for multimedia data
US6886013B1 (en)1997-09-112005-04-26International Business Machines CorporationHTTP caching proxy to filter and control display of data in a web browser
US6807231B1 (en)1997-09-122004-10-198×8, Inc.Multi-hypothesis motion-compensated video image predictor
US6560284B1 (en)1997-09-122003-05-06Netergy Microelectronics, Inc.Video coder/decoder
US6108434A (en)1997-09-122000-08-22Signafy, Inc.Counteracting geometric distortions for DCT based watermarking
US5995978A (en)1997-09-241999-11-30Ricoh Company, Ltd.Navigation system for document image database
US6070167A (en)1997-09-292000-05-30Sharp Laboratories Of America, Inc.Hierarchical method and system for object-based audiovisual descriptive tagging of images for information retrieval, editing, and manipulation
US6070228A (en)1997-09-302000-05-30International Business Machines Corp.Multimedia data storage system and method for operating a media server as a cache device and controlling a volume of data in the media server based on user-defined parameters
US6721733B2 (en)1997-10-272004-04-13Massachusetts Institute Of TechnologyInformation search and retrieval system
US7154560B1 (en)1997-10-272006-12-26Shih-Fu ChangWatermarking of digital image data
US6297797B1 (en)1997-10-302001-10-02Kabushiki Kaisha ToshibaComputer system and closed caption display method
US6072542A (en)1997-11-252000-06-06Fuji Xerox Co., Ltd.Automatic video segmentation using hidden markov model
US6366314B1 (en)1997-12-172002-04-02Telediffusion De FranceMethod and system for measuring the quality of digital television signals
US5995095A (en)1997-12-191999-11-30Sharp Laboratories Of America, Inc.Method for hierarchical summarization and browsing of digital video
US6100930A (en)1997-12-192000-08-08Thomson Consumer Electronics, Inc.Process and apparatus for performing wipes on compressed MPEG video bitstreams
US6037984A (en)1997-12-242000-03-14Sarnoff CorporationMethod and apparatus for embedding a watermark into a digital image or image sequence
US6208745B1 (en)1997-12-302001-03-27Sarnoff CorporationMethod and apparatus for imbedding a watermark into a bitstream representation of a digital image sequence
US6332030B1 (en)1998-01-152001-12-18The Regents Of The University Of CaliforniaMethod for embedding and extracting digital data in images and video
US6654931B1 (en)1998-01-272003-11-25At&T Corp.Systems and methods for playing, browsing and interacting with MPEG-4 coded audio-visual objects
US6473459B1 (en)1998-03-052002-10-29Kdd CorporationScene change detector
US6628824B1 (en)1998-03-202003-09-30Ken BelangerMethod and apparatus for image identification and comparison
US6064764A (en)1998-03-302000-05-16Seiko Epson CorporationFragile watermarks for detecting tampering in images
US6092072A (en)1998-04-072000-07-18Lucent Technologies, Inc.Programmed medium for clustering large databases
US6269358B1 (en)1998-04-222001-07-31Nec Usa IncMethod and system for similarity-based image classification
US6240424B1 (en)1998-04-222001-05-29Nbc Usa, Inc.Method and system for similarity-based image classification
EP0953938B1 (en)1998-04-302009-04-29Hewlett-Packard Company, A Delaware CorporationA method and apparatus for digital watermarking of images
US6487301B1 (en)1998-04-302002-11-26Mediasec Technologies LlcDigital authentication with digital and analog documents
US20080097939A1 (en)1998-05-012008-04-24Isabelle GuyonData mining platform for bioinformatics and other knowledge discovery
US6757407B2 (en)1998-05-122004-06-29Lucent Technologies Inc.Transform domain image watermarking method and system
US6581058B1 (en)1998-05-222003-06-17Microsoft CorporationScalable system for clustering of large databases having mixed data attributes
US6442538B1 (en)1998-05-272002-08-27Hitachi, Ltd.Video information retrieval method and apparatus
US6081278A (en)1998-06-112000-06-27Chen; Shenchang EricAnimation object having multiple resolution format
US6178416B1 (en)1998-06-152001-01-23James U. ParkerMethod and apparatus for knowledgebase searching
US6285995B1 (en)1998-06-222001-09-04U.S. Philips CorporationImage retrieval system using a query image
US6476814B1 (en)1998-06-252002-11-05Wordgraph, Inc.Display structure for representation of complex systems
US20010000962A1 (en)1998-06-262001-05-10Ganesh RajanTerminal for composing and presenting MPEG-4 video programs
US6041079A (en)1998-06-302000-03-21Thomson Consumer Electronics, Inc,Field/frame conversion of DCT domain mixed field/frame mode macroblocks using 1-dimensional DCT/IDCT
US6606329B1 (en)1998-07-172003-08-12Koninklijke Philips Electronics N.V.Device for demultiplexing coded data
US6714909B1 (en)1998-08-132004-03-30At&T Corp.System and method for automated multimedia content indexing and retrieval
US7184959B2 (en)1998-08-132007-02-27At&T Corp.System and method for automated multimedia content indexing and retrieval
US6418421B1 (en)1998-08-132002-07-09International Business Machines CorporationMultimedia player for an electronic content delivery system
US6716175B2 (en)1998-08-252004-04-06University Of FloridaAutonomous boundary detection system for echocardiographic images
US6708055B2 (en)1998-08-252004-03-16University Of FloridaMethod for automated analysis of apical four-chamber images of the heart
US6275599B1 (en)1998-08-282001-08-14International Business Machines CorporationCompressed image authentication and verification
US6418232B1 (en)1998-08-282002-07-09Hitachi, Ltd.Method of authenticating digital-watermark pictures
US6970602B1 (en)1998-10-062005-11-29International Business Machines CorporationMethod and apparatus for transcoding multimedia using content analysis
US6185329B1 (en)1998-10-132001-02-06Hewlett-Packard CompanyAutomatic caption text detection and processing for digital images
US6549911B2 (en)1998-11-022003-04-15Survivors Of The Shoah Visual History FoundationMethod and apparatus for cataloguing multimedia data
US6385602B1 (en)1998-11-032002-05-07E-Centives, Inc.Presentation of search results using dynamic categorization
US7143434B1 (en)1998-11-062006-11-28Seungyup PaekVideo description system and method
US7653635B1 (en)1998-11-062010-01-26The Trustees Of Columbia University In The City Of New YorkSystems and methods for interoperable multimedia content descriptions
US7254285B1 (en)1998-11-062007-08-07Seungup PaekImage description system and method
US20070245400A1 (en)1998-11-062007-10-18Seungyup PaekVideo description system and method
US6252975B1 (en)1998-12-172001-06-26Xerox CorporationMethod and system for real time feature based motion analysis for key frame selection from a video
US6678389B1 (en)1998-12-292004-01-13Kent Ridge Digital LabsMethod and apparatus for embedding digital information in digital multimedia data
US6327390B1 (en)1999-01-142001-12-04Mitsubishi Electric Research Laboratories, Inc.Methods of scene fade detection for indexing of video sequences
US6532541B1 (en)1999-01-222003-03-11The Trustees Of Columbia University In The City Of New YorkMethod and apparatus for image authentication
US6643387B1 (en)1999-01-282003-11-04Sarnoff CorporationApparatus and method for context-based indexing and retrieval of image sequences
US6366701B1 (en)1999-01-282002-04-02Sarnoff CorporationApparatus and method for describing the motion parameters of an object in an image sequence
US6223183B1 (en)1999-01-292001-04-24International Business Machines CorporationSystem and method for describing views in space, time, frequency, and resolution
US6941325B1 (en)1999-02-012005-09-06The Trustees Of Columbia UniversityMultimedia archive description scheme
US6236395B1 (en)1999-02-012001-05-22Sharp Laboratories Of America, Inc.Audiovisual information management system
US7185049B1 (en)1999-02-012007-02-27At&T Corp.Multimedia integration description scheme, method and system for MPEG-7
US6556695B1 (en)1999-02-052003-04-29Mayo Foundation For Medical Education And ResearchMethod for producing high resolution real-time images, of structure and function during medical procedures
US6404925B1 (en)1999-03-112002-06-11Fuji Xerox Co., Ltd.Methods and apparatuses for segmenting an audio-visual recording using image similarity searching and audio speaker recognition
US6556958B1 (en)1999-04-232003-04-29Microsoft CorporationFast clustering with sparse data
US6847980B1 (en)1999-07-032005-01-25Ana B. BenitezFundamental entity-relationship models for the generic audio visual data signal description
US6393394B1 (en)1999-07-192002-05-21Qualcomm IncorporatedMethod and apparatus for interleaving line spectral information quantization methods in a speech coder
US6816836B2 (en)1999-08-062004-11-09International Business Machines CorporationMethod and apparatus for audio-visual speech detection and recognition
US6546135B1 (en)1999-08-302003-04-08Mitsubishi Electric Research Laboratories, IncMethod for representing and comparing multimedia content
US6339450B1 (en)1999-09-212002-01-15At&T CorpError resilient transcoding for video over wireless channels
US6725372B1 (en)1999-12-022004-04-20Verizon Laboratories Inc.Digital watermarking
US6606393B1 (en)1999-12-022003-08-12Verizon Laboratories Inc.Message authentication code using image histograms
US7496830B2 (en)1999-12-072009-02-24Microsoft CorporationComputer user interface architecture that saves a user's non-linear navigation history and intelligently maintains that history
US7437004B2 (en)1999-12-142008-10-14Definiens AgMethod for processing data structures with networked semantic units
US6282300B1 (en)2000-01-212001-08-28Signafy, Inc.Rotation, scale, and translation resilient public watermarking for images using a log-polar fourier transform
US6385329B1 (en)2000-02-142002-05-07Digimarc CorporationWavelet domain watermarks
US7010751B2 (en)2000-02-182006-03-07University Of Maryland, College ParkMethods for the electronic annotation, retrieval, and use of electronic images
US6940910B2 (en)2000-03-072005-09-06Lg Electronics Inc.Method of detecting dissolve/fade in MPEG-compressed video environment
US7738550B2 (en)2000-03-132010-06-15Sony CorporationMethod and apparatus for generating compact transcoding hints metadata
US6701309B1 (en)2000-04-212004-03-02Lycos, Inc.Method and system for collecting related queries
US6567805B1 (en)2000-05-152003-05-20International Business Machines CorporationInteractive automated response system
US20020118748A1 (en)2000-06-272002-08-29Hideki InomataPicture coding apparatus, and picture coding method
US20070033170A1 (en)2000-07-242007-02-08Sanghoon SullMethod For Searching For Relevant Multimedia Content
US20070038612A1 (en)2000-07-242007-02-15Sanghoon SullSystem and method for indexing, searching, identifying, and editing multimedia files
US20070044010A1 (en)2000-07-242007-02-22Sanghoon SullSystem and method for indexing, searching, identifying, and editing multimedia files
US20110093492A1 (en)2000-07-242011-04-21Sanghoon SullSystem and Method for Indexing, Searching, Identifying, and Editing Multimedia Files
US7624337B2 (en)2000-07-242009-11-24Vmark, Inc.System and method for indexing, searching, identifying, and editing portions of electronic multimedia files
US20020157116A1 (en)2000-07-282002-10-24Koninklijke Philips Electronics N.V.Context and content based information processing for multimedia segmentation and indexing
US20020021828A1 (en)2000-08-012002-02-21Arthur PapierSystem and method to aid diagnoses using cross-referenced knowledge and image databases
US6683966B1 (en)2000-08-242004-01-27Digimarc CorporationWatermarking recursive hashes into frequency domain regions
US20030013951A1 (en)2000-09-212003-01-16Dan StefanescuDatabase organization and searching
US6950542B2 (en)2000-09-262005-09-27Koninklijke Philips Electronics, N.V.Device and method of computing a transformation linking two images
US20060293921A1 (en)2000-10-192006-12-28Mccarthy JohnInput device for web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US7398275B2 (en)2000-10-202008-07-08Sony CorporationEfficient binary coding scheme for multimedia content descriptions
US7072398B2 (en)2000-12-062006-07-04Kai-Kuang MaSystem and method for motion vector generation and analysis of digital video clips
US7409144B2 (en)2000-12-072008-08-05Sony United Kingdom LimitedVideo and audio information processing
US6879703B2 (en)2001-01-102005-04-12Trustees Of Columbia University Of The City Of New YorkMethod and apparatus for watermarking images
US20030046018A1 (en)2001-04-202003-03-06Fraunhofer-Gesellschaft Zur Foerderung Der Angewandeten Forschung E.VMethod for segmentation and identification of nonstationary time series
US6792434B2 (en)2001-04-202004-09-14Mitsubishi Electric Research Laboratories, Inc.Content-based visualization and user-modeling for interactive browsing and retrieval in multimedia databases
US20020169771A1 (en)2001-05-092002-11-14Melmon Kenneth L.System & method for facilitating knowledge management
US20040210819A1 (en)2001-06-152004-10-21Alonso Antonio UsedDynamic browser interface
US7145946B2 (en)2001-07-272006-12-05Sony CorporationMPEG video drift reduction
US20050076055A1 (en)2001-08-282005-04-07Benoit MoryAutomatic question formulation from a user selection in multimedia content
US7339992B2 (en)2001-12-062008-03-04The Trustees Of Columbia University In The City Of New YorkSystem and method for extracting text captions from video and generating video summaries
US6700935B2 (en)2002-02-082004-03-02Sony Electronics, Inc.Stream based bitrate transcoder for MPEG coded video
US20080266300A1 (en)2002-03-222008-10-30Michael F. DeeringScalable High Performance 3D Graphics
US20030195883A1 (en)2002-04-152003-10-16International Business Machines CorporationSystem and method for measuring image similarity based on semantic meaning
US20090290635A1 (en)2002-04-262009-11-26Jae-Gon KimMethod and system for optimal video transcoding based on utility function descriptors
US8218617B2 (en)2002-04-262012-07-10The Trustees Of Columbia University In The City Of New YorkMethod and system for optimal video transcoding based on utility function descriptors
US20090316778A1 (en)2002-04-262009-12-24Jae-Gon KimMethod And System For Optimal Video Transcoding Based On Utility Function Descriptors
US20030229278A1 (en)2002-06-062003-12-11Usha SinhaMethod and system for knowledge extraction from image data
JP2004049471A (en)2002-07-182004-02-19Paloma Ind LtdRice cooker
US20050238238A1 (en)2002-07-192005-10-27Li-Qun XuMethod and system for classification of semantic content of audio/video data
US20040057081A1 (en)2002-09-202004-03-25Fuji Xerox Co., Ltd.Image processing method, manipulation detection method, image processing device, manipulation detection device, image processing program, manipulation detection program, and image formation medium
US7103225B2 (en)2002-11-072006-09-05Honda Motor Co., Ltd.Clustering appearances of objects under varying illumination conditions
US8010296B2 (en)2002-12-192011-08-30Drexel UniversityApparatus and method for removing non-discriminatory indices of an indexed dataset
US20050201619A1 (en)2002-12-262005-09-15Fujitsu LimitedVideo text processing apparatus
US7676820B2 (en)2003-01-062010-03-09Koninklijke Philips Electronics N.V.Method and apparatus for similar video content hopping
US20040131121A1 (en)2003-01-082004-07-08Adriana DumitrasMethod and apparatus for improved coding mode selection
US7327885B2 (en)2003-06-302008-02-05Mitsubishi Electric Research Laboratories, Inc.Method for detecting short term unusual events in videos
US7403302B2 (en)2003-08-062008-07-22Hewlett-Packard Development Company, L.P.Method and a system for indexing and tracking digital images
US20080298464A1 (en)2003-09-032008-12-04Thompson Licensing S.A.Process and Arrangement for Encoding Video Pictures
US7636662B2 (en)2003-09-302009-12-22Koninklijke Philips Electronics N.V.System and method for audio-visual content synthesis
US7313269B2 (en)2003-12-122007-12-25Mitsubishi Electric Research Laboratories, Inc.Unsupervised learning of video structures in videos using hierarchical statistical models to detect events
US7406409B2 (en)2004-01-142008-07-29Mitsubishi Electric Research Laboratories, Inc.System and method for recording and reproducing multimedia based on an audio signal
US20080193016A1 (en)2004-02-062008-08-14Agency For Science, Technology And ResearchAutomatic Video Event Detection and Indexing
US20050210043A1 (en)2004-03-222005-09-22Microsoft CorporationMethod for duplicate detection and suppression
US20060206882A1 (en)2004-06-082006-09-14Daniel IllowskyMethod and system for linear tasking among a plurality of processing units
US20060026588A1 (en)2004-06-082006-02-02Daniel IllowskySystem device and method for configuring and operating interoperable device having player and engine
US20060167784A1 (en)2004-09-102006-07-27Hoffberg Steven MGame theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
US7519217B2 (en)2004-11-232009-04-14Microsoft CorporationMethod and system for generating a classifier using inter-sample relationships
US7308443B1 (en)2004-12-232007-12-11Ricoh Company, Ltd.Techniques for video retrieval based on HMM similarity
US7386806B2 (en)2005-01-052008-06-10Hillcrest Laboratories, Inc.Scaling and layout methods and systems for handling one-to-many objects
US20080181308A1 (en)2005-03-042008-07-31Yong WangSystem and method for motion estimation and mode decision for low-complexity h.264 decoder
US7809192B2 (en)2005-05-092010-10-05Like.ComSystem and method for recognizing objects from images and identifying relevancy amongst images and information
US20060258419A1 (en)2005-05-112006-11-16Planetwide Games, Inc.Creating publications using gaming-based media content
US7817855B2 (en)2005-09-022010-10-19The Blindsight CorporationSystem and method for detecting text in real-world color images
US20070078846A1 (en)2005-09-302007-04-05Antonino GulliSimilarity detection and clustering of images
US20070087756A1 (en)2005-10-042007-04-19Hoffberg Steven MMultifactorial optimization system and method
US7773813B2 (en)2005-10-312010-08-10Microsoft CorporationCapture-intention detection for video content analysis
US20070174790A1 (en)2006-01-232007-07-26Microsoft CorporationUser interface for viewing clusters of images
US20070195106A1 (en)2006-02-172007-08-23Microsoft CorporationDetecting Doctored JPEG Images
US20070237426A1 (en)2006-04-042007-10-11Microsoft CorporationGenerating search results based on duplicate image detection
US7720851B2 (en)2006-05-162010-05-18Eastman Kodak CompanyActive context-based concept fusion
US20080055479A1 (en)2006-09-012008-03-06Texas Instruments IncorporatedColor Space Appearance Model Video Processor
US7756338B2 (en)2007-02-142010-07-13Mitsubishi Electric Research Laboratories, Inc.Method for detecting scene boundaries in genre independent videos
US20080222670A1 (en)2007-03-072008-09-11Lee Hans CMethod and system for using coherence of biological responses as a measure of performance of a media
US20100172591A1 (en)2007-05-252010-07-08Masumi IshikawaImage-sound segment corresponding apparatus, method and program
US20090055094A1 (en)2007-06-072009-02-26Sony CorporationNavigation device and nearest point search method
US7996762B2 (en)2007-09-212011-08-09Microsoft CorporationCorrelative multi-label image annotation
US20110025710A1 (en)2008-04-102011-02-03The Trustees Of Columbia University In The City Of New YorkSystems and methods for image archeology
US20110145232A1 (en)2008-06-172011-06-16The Trustees Of Columbia University In The City Of New YorkSystem and method for dynamically and interactively searching media data
US20110314367A1 (en)2008-12-222011-12-22The Trustees Of Columbia University In The City Of New YorkSystem And Method For Annotating And Searching Media
US20120089552A1 (en)2008-12-222012-04-12Shih-Fu ChangRapid image annotation via brain state decoding and visual pattern mining
US8135221B2 (en)2009-10-072012-03-13Eastman Kodak CompanyVideo concept classification using audio-visual atoms

Non-Patent Citations (312)

* Cited by examiner, † Cited by third party
Title
A. M. Tourapis, F. Wu, S. Li, "Direct mode coding for bi-predictive pictures in the JVT standard", ISCAS2003, vol. 2, 700-703, Thailand, 2003.
A. M. Tourapis. "Enhanced Predictive Zonal Search for Single and Multiple Frame Motion Estimation," Proceedings of Visual Communications and Image Processing 2002 (VCIP-2002), San Jose, CA, Jan 2002, pp. 1069-1079.
A. Ray and H. Radha, "Complexity-Distortion Analysis of H.264/JVT Decoder on Mobile Devices," Picture Coding Symposium (PCS), Dec. 2004.
Akutsu et al., "Video indexing using motion vectors", SPIE Visual communications and Image Processing 1992, vol. 1818, pp. 1522-1530.
Amir et al., "IBM research TRECVID-2003 video retrieval system", Proc. NIST Text Retrieval Conf. (TREC), 2003.
AMOS: An Active System for MPEG-4 Video Object Segmentation, Di Zhong and Shih-Chang, 647-651, o-8186-8821-1/98 (c) 1998 IEEE.
Anemueller et al., "Biologically motivated audio-visual cue integration for object categorization", Proc. International Conference on Cognitive Systems, 2008.
Arman et al., "Image processing on compressed data for large video databases", Proceedings of ACM Multimedia '93, Jun. 1993, pp. 267-272.
B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero , "Distributed video coding," Proc. of the IEEE, Special Issue on Video Coding and Delivery, 2005; pp. 1-12.
Barzelay et al., "Harmony in motion", Proc. IEEE Conference Computer Vision and Pattern Recognition, pp. 1-8, 2007.
Bayram et al.: "Image Manipulation Detection,", Journal of Electronic Imaging 15(4), 041102, (Oct.-Dec. 2006).
Beal et al., "A graphical model for audiovisual object tracking", IEEE Trans. Pattern Analysis and Machine Intelligence, 25:828-836, 2003.
Chabane Djeraba and Marinette Bouet "Digital Information Retrieval," Copyright 1997 ACM 0-89791-970-x/97/11 pp. 185-192.
Chang et al., "Large-scale multimodal semantic concept detection for consumer video", Proc. 9th ACM SIGMM International Workshop on Multimedia Information Retrieval, 2007.
Chang et al., "Multimedia Search and Retrieval", Published as a chapter in Advances in Multimedia: System, Standard, and Networks, A. Puri and T. Chen (eds.). New York: Marcel Dekker, 1999; pp. 559-584.
Chang, S.-F. Content-Based Indexing and Retrieval of Visual Information. IEEE Signal Processing Magazine. Jul. 1997, vol. 14, No. 4, pp. 45-48.
Chang, S.-F. et al. VideoQ: An Automated Content-Based Video Search System Using Visual Cues. Proceedings ACM Multimedia 97, Seattle, WA, Nov. 9-13, 1997, pp. 313-324.
Chen et al., "Image categorization by learning and reasoning with regions", Journal of Machine Learning Research, 5:913-939, 2004.
Chung-Sheng Li et al: "Multimedia content descriptioin in the InfoPyramid" Acoustics, Speech and Signal Processing, 1998. Porceedings of the 1998 IEEE International Conference on Seattle, WA, USA May 12-15, 1998, New York, NY USA, IEEE, US, pp. 3789-3792, XP010279595 ISBN: 0-7803-4428-6.
Cox et al., "Secure spread spectrum watermaking for multimedia", NEC Research Institute, Technical Report 95-10, Dec. 4, 1995; pp. 1 of 1 and 1-33.
Cristani et al., "Audio-visual event recognition in surveillance video sequences", IEEE Trans. Multimedia, 9:257-267, 2007.
Dalal et al., "Histograms of oriented gradients for human detection", Proc. IEEE Conference Computer Vision and Pattern Recognition, pp. 886-893, 2005.
Del Bimbo et al., "Visual Image Retrieval by Elastic Matching of User Sketches," 19 IEEE Trans. on PAMI (1997) pp. 121-123.
Deng et al., "Unsupervised segmentation of color-texture regions in images and video", IEEE Trans. Pattern Analysis and Machine Intelligence, 23:800-810, 2001.
Dimitrova et al., "Motion Recovery for Video Contect Classification,", Arizona State University, Temple; Transactions on Information Systems; Oct. 13, 1995; No. 4, pp. 408-439; New York, NY, U.S.A.
Fridich et al.: "Detection of Copy-Move Forgery in Digital Images", Proc. of DFRWS 2003, Cleveland, OH, USA, Aug. 5-8, 2003.
Friedman, et al., "Additive logistic regression: a statistical view of boosting", Annals of Statistics, 28:337-407, 2000.
Friedman, G.L., "The Trustworthy Digital Camera: Restoring Credibility to the Photographic Image", IEEE Transactions on Consumer Electronics, 39(4): 905-910; Nov. 1, 1993, XP000423080.
G. J. Sullivan and T. Wiegand, Rate-Distortion Optimization for Video Compression IEEE Signal Processing Magazine, vol. 15, No. 6, pp. 74-90, Nov. 1998.
Geiger et al., "Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours" IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3): 294-302, Mar. 1, 1995, XP000498121.
Gholamhosein et al., "Semantic Clustering and Querying on Heterogeneous Features for Visual Data", Proceedings of the ACM Multimedia 98, MM '98, Bristol, Sep. 12-16, 1998, ACM International Multimedia Conference, New York, NY: ACM, US, vol. Conf. 6, Sep. 12, 1998, pp. 3-12, XP000977482.
Gong et al. (1995) "Automatic Parsing of TV Soccer Programs," IEEE, pp. 167-174.
Gong Y. et al. A Generic Video Parsing System with a Scene Description Language (SDL). Real-Time Imaging, Feb. 1996, vol. 2, No. 1, pp. 45-49.
Gunsel et al. (1998) "Temporal Video Segmentation Using Unsupervised Clustering and Semantic Object Tracking," Journal of Electronic Imaging 7(3), pp. 592-604.
H. Kim and Y. Altunbasak, "Low-complexity macroblock mode selection for the H.264/AVC encoders," IEEE Int. Conf. on Image Processing, Suntec City, Singapore, Oct. 2004.
H.-Y. Cheong, A. M. Tourapis, "Fast Motion Estimation within the H.264 codec," in proceedings of ICME-2003, Baltimore, MD, Jul. 6-9, 2003.
Han et al. "Incremental density approximation and kernel-based bayesian filtering for object tracking", Proc. IEEE Conference Computer Vision and Pattern Recognition, pp. 638-644, 2004.
Hellman et al., "Probability of error, equivocation, and the chernoff bound", IEEE Trans. on Information Theory, 16(4):368-372, 1970.
Hershey et al., "Audio-vision: using audio-visual synchrony to locate sounds", Proc. Advances in Neural Information Processing Systems, 1999.
Hirata et al., "Query by Visual Example, Content Based Image Retrieval, Advances in Database Technology—EDBT"; Lecture Notes in Computer Science (1992, A. Pirotte et al. eds.)vol. 580; pp. 56-71.
Hjelsvold et al., "Searching and Browsing a Shared Video Database," IEEE, Aug. 1995, pp. 90-98.
Infotouch: An Explorative Multi-Touch Interface for Tagged Photo Collections. Linkoping University. Purportedly posted to Youtube on May 31, 2007 (http://www.youtube.com/watch?v=DHMJJwouq51). p. 1.
International Search Report PCT/US00/018231, Oct. 4, 2000.
International Search Report PCT/US00/02488, May 25, 2000.
International Search Report PCT/US00/34803, Oct. 29, 2001.
International Search Report PCT/US01/22485, May 11, 2003.
International Search Report PCT/US02/16599, Nov. 22, 2002.
International Search Report PCT/US02/31488, Feb. 4, 2003.
International Search Report PCT/US02/39247, Dec. 12, 2003.
International Search Report PCT/US03/12858, Nov. 25, 2003.
International Search Report PCT/US04/28722, Jun. 1, 2005.
International Search Report PCT/US06/007862, Mar. 29, 2007.
International Search Report PCT/US09/047492, Aug. 27, 2009.
International Search Report PCT/US09/069237, Mar. 1, 2010.
International Search Report PCT/US09/40029, May 29, 2009.
International Search Report PCT/US10/023494, Apr. 1, 2000.
International Search Report PCT/US98/09124, Oct. 8, 1998.
International Search Report PCT/US99/022790, Feb. 24, 1999.
International Search Report PCT/US99/04776, May 14, 1999.
International Search Report PCT/US99/22264, Feb. 11, 2000.
International Search Report PCT/US99/26125, Apr. 3, 2000.
International Search Report PCT/US99/26126, May 10, 2000.
International Search Report PCT/US99/26127, Apr. 6, 2000.
Iwano et al., "Audio-visual speech recognition using lip information extracted from side-face images", EURASIP Journal on Audio, Speech, and Music Processing, 2007.
Jacobs et al., "Fast Multiresolution Image Querying," Proc of SIGGRAPH, Los Angeles (Aug. 1995) pp. 277-286.
John R. Smith (1999) "Digital Video Libraries and the Internet," IEEE, pp. 92-97.
K. Lengwehasatit and A. Ortega, " Rate Complexity Distortion Optimization for Quadtree-Based DCT Coding",ICIP 2000, Vancouver,BC, Canada, Sep. 2000.
Kato et al., "Sketch Retrieval Method for Full Color Image Database—Query by Visual Example," Electro Technical Laboratory, MIDI, Tsukuba 305, Japan, IEEE (1992) pp. 530-532.
Kim, et al., "Description of Utility function based on optimum transcoding" ISO/IECJTC1/SC/ WG11 MPEG02/M8319, Apr. 2002.
Kliot et al., "Invariant-Based shape retrieval in pictorial databases", Computer Vision and Image Understanding; Aug. 1998; 71(2): 182-197.
Lee et al., A Watermarking Sequence Using Parities of Error Control Coding for Image Authentication and Correction, IEEE Transactions on Consumer electronics, 46(2): 313-317, May 2000, XP00110026.
Leung et al., "Picture Retrieval by Content description", Journal of Information Science; No. 18, pp. 111-119, 1992.
Li et al., "Issues and solutions for authenticating MPEG video", Columbia University, Department of Electrical Engineering, NY, Jan. 1999; pp. 54-65.
Li et al., "Modeling of moving objects in a video database", Proceeding of IEEE International Conference on Multimedia Computing and systems, pp. 336-343; Jun. 1997.
Li et al., "Modeling video temporal relationships in an object database management system", IS&T/SPIE international Symposium on Electronic Imaging: Multimedia Computing and Networking, pp. 80-91, Feb. 1997.
Li, W. et al. Vision: A Digital Video Library, Proceedings of the 1st ACM International Conference on Digital Libraries, Bethesda, MD, Mar. 20-23, 1996, pp. 19-27.
Lin et al., "A Robust image authentication Method distinguishin JPEG compression form malicious manipulation"; CU/CRT Technical Report 486-97-119, Dec. 1997; pp. 1-43.
Lin et al., "A Robust image authentication Method surviving JPEG lossy compression"; SPIE 1998; pp. 28-30.
Lowe "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, 60:91-110, 2004.
Lucas, et al. "An iterative image registration technique with an application to stereo vision", Proc. Imaging understanding workshop, pp. 121-130, 1981.
M. Bierling, "Displacement Estimation by Hierarchical Block Matching", SPIE Visual Commun. & Image Processing (1988) vol. 1001; pp. 942-951.
M. Schaar, H. Radha, Adaptive motion-compensation fine- granular-scalability (AMC-FGS) for wireless video, IEEE Trans. on CSVT, vol. 12, No. 6, 360-371, 2002.
Mallat et al., "Matching pursuits with time-frequency dictionaries", IEEE Transaction on Signal Processing, 41(2): 3397-3415, 1993.
Maron et al., "A framework for multiple-instance learning", Proc. Advances in Neural Information Processing Systems, pp. 570-576, 1998.
Meng et al., "Scene change detection in a MPEG Compressed video Sequence" IS & T/SPIE Symposium proceedings, vol. 2419, Feb. 1995.
Meng et al., "Tools for Compressed-Domain Video Indexing and Editing", SPIE conference on storage and retrieval for Image and video Database, vol. 2670 (1996).
MPEG-7 Context and Objectives; Oct. 1998.
MPEG-7 Proposal Package Description; Oct. 1998.
MPEG-7 Requirements; Oct. 1998.
Mukherjee, et al., "Structured scalable meta-formsats (SSM) for digital item adaptation" Proceedings of the SPIE, SPIE, Bellingham, VA, US, vol. 5018, Jan. 2003, pp. 148-167.
Naphade et al., "A factor graph fraemwork for semantic video indexing", IEEE Trans on CSVT, 12(1):40-52, 2002.
National's PowerWise™ technology. http://www.national.com/appinfo/power/powerwise.html , Nov. 11, 2002.
Netravali et al., Digital Pictures: Representation, Compression, and Standards, 2d. Ed., Plenum Press, New York and London (1995) pp. 340-344.
Ogle et al., "Fingerprinting to identify repeated sound events in long-duration personal audio recordings", Proc. Int. Conf. Acoustics, Speech and Signal Processing, pp. I-233-I-236, 2007.
Oomoto E et al: "OVID: design and implementation of a video-object database system" IEEE Transactions on Knowledge and Data Engineering, IEEE, Inc. New York, US, vol. 5, No. 4, Aug. 1993, pp. 629-643, XP002134326 ISSN: 1041-4347.
Oria et al., "Modeling images for content-based queried: the DISIMA Approach", Second international Conference on Visual Information Systems, pp. 339-346: Jun. 1997.
Pack et al., "Experiments in constructing belief networks for image classification systems", Proc. ICIP, Vancouver, Canada, 2000.
Q. Zhang, W. Zhu, Zu Ji, and Y. Zhang, "A Power-Optimized Joint Source Channel Coding for Scalable Video Streaming over Wireless Channel", IEEE International Symposium on Circuits and Systems (ISCAS) 2001, May, 2001, Sydney, Australia.
Russ, John C. The Image Processing Handbook. Boca Raton, Florida: CRC Press. 1995, 2nd ed., pp. 361-376.
Saber et al., "Region-based shape matching for automatic image annotation and query-by-example" 8 Visual Comm. and Image Representation (1997) pp. 1-40.
Sajda et al., "In a blink of an eye and a switch of a transistor: Cortically-cuopled computer vision", Journal of Latex Class Files, Jan. 2007, 6(1): 1-14.
Sato et al., "Video OCR: Indexing digital news libraries by recognition of superimposed captions", Multimedia Systems, 7:385-394, 1999.
Sawhney et al., "Model-Based 2D & 3D Dominant Motion Estimation of Mosaicking and Video Representation" Proc. Fifth Int'l Conf. Computer Vision, Los Alamitos, CA, 1995, pp. 583-590.
Schmid et al., "Local grayvalue invariants for image retrieval" IEEE Transaction on Pattern Analysis and Machine Intelligence; May 1997; 19(5): 530-535.v.
Schneider et al., "A Robust content based digital sugnature for image authentication", Columbia University, Image and Advanced Television Laboratory, NY; 1996; pp. 227-230.
Shahraray, B. "Scene Change Detecton and Content-Based sampling of video Sequences" SPIE conf. Digital Image Compression: Algorithms and Technologies 1995, vol. 2419.
Smith et al., "Multimedia semantic indexing using model vectors", Proc. ICME, 3:445-448, 2003.
Smoliar et al., "Content-Based video indexing and Retrieval", IEEE Mulitmedia, Summer 1994, pp. 62-72.
Sorial, et al., "Selective requantization for transcoding of MPEG compressed video." Proceedings of the 2000 IEEE International Conference on Multimrdia and Expo, vol. 1, 2000, pp. 217-220.
Sun, et al., "Architectures for MPEG Compressed Bitstream Scaling." Transactions on Circuits and Systems for Video Technology, vol. 6(2), Apr. 1996.
T. Chiang and Y.-Q. Zhang, "A New Rate Control Scheme Using Quadratic Rate Distortion Model," IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 246-250, Feb. 1997.
T. Minka, "An Image Database Browed that Learns from User Interaction" MIT Media Laboratory Perceptual Computing Section, TR#365 (1996); pp. 1-55.
T. Wedi; H.G. Musmann, Motion- and aliasing-compensated prediction for hybrid video codingPage(s): IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 577-586. Jul. 2003.
T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of the H.264/AVC Video Coding Standard," IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576. Jul. 2003.
T.-C. Chen, Y.-C. Huang and L.-G. Chen, "Full Utilized and Resuable Architecture for Fractional Motion Estimation of H.264/AVC", ICASSP2004, Montreal, Canada, May 17-21, 2004.
Tong et al., "RUBRIC—An Environment for Full Text Information Retrieval," ACM, Jun. 1985, pp. 243-251.
Tonomura et al. (1990) "Content Oriented Visual Interface Using Video Icons for Visual Database Systems," Journal of Visual Languages and Computing, pp. 183-198.
Trier et al.m "Feature extraction methods for character recognition—A survey", Pattern Recognition, vol. 29, pp. 641-662, 1996.
Tse et al., "Global Zoom/Pan estimation and compensation for video compression" Proceedings of ICASSP 1991, pp. 2725-2728.
Tuong Dao, IEEE Proceedings, ISBN: 0-8186-8464-X; pp. 88-97, especially pp. 88-90.
U.S. Appl. No. 09/235,862, Apr. 22, 2002 Final Office Action.
U.S. Appl. No. 09/235,862, Mar. 12, 2002 Response to Non-Final Office Action.
U.S. Appl. No. 09/235,862, Nov. 7, 2001 Non-Final Office Action.
U.S. Appl. No. 09/235,862, Oct. 10, 2002 Advisory Action.
U.S. Appl. No. 09/235,862, Oct. 21, 2002 Supplemental Response to Final Office Action.
U.S. Appl. No. 09/235,862, Oct. 25, 2002 Notice of Allowance.
U.S. Appl. No. 09/235,862, Sep. 30, 2002 Response to Final Office Action.
U.S. Appl. No. 09/359,836 (Abandoned), filed Jul. 23, 1999.
U.S. Appl. No. 09/359,836, Aug. 10, 2007 Final Office Action.
U.S. Appl. No. 09/359,836, Aug. 29, 2003 Non-Final Office Action.
U.S. Appl. No. 09/359,836, Dec. 15, 2006 Non-Final Office Action.
U.S. Appl. No. 09/359,836, Mar. 17, 2008 Notice of Abandonment.
U.S. Appl. No. 09/359,836, Mar. 5, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 09/359,836, May 11, 2007 Response to Non-Final Office Action.
U.S. Appl. No. 09/359,836, May 18, 2004 Final Office Action.
U.S. Appl. No. 09/359,836, Sep. 21, 2006 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 09/423,409, Aug. 7, 2003 Final Office Action.
U.S. Appl. No. 09/423,409, Dec. 10, 2002 Non-Final Office Action.
U.S. Appl. No. 09/423,409, Jun. 2, 2003 Response to Non-Final Office Action.
U.S. Appl. No. 09/423,409, Nov. 21, 2003 Notice of Allowance.
U.S. Appl. No. 09/423,409, Nov. 6, 2003 Response to Final Office Action.
U.S. Appl. No. 09/423,770 (Abandoned), filed Nov. 12, 1999.
U.S. Appl. No. 09/423,770, Feb. 20, 2004 Notice of Abandonment.
U.S. Appl. No. 09/423,770, Jul. 2, 2003 Non-Final Office Action.
U.S. Appl. No. 09/530,308, Apr. 20, 2006 Notice of Allowance.
U.S. Appl. No. 09/530,308, Feb. 9, 2005 Final Office Action.
U.S. Appl. No. 09/530,308, Jan. 12, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 09/530,308, Jan. 23, 2006 Response to Non-Final Office Action.
U.S. Appl. No. 09/530,308, Jul. 11, 2005 Filed Appeal Brief.
U.S. Appl. No. 09/530,308, Jul. 14, 2003 Response to Non-Final Office Action.
U.S. Appl. No. 09/530,308, Mar. 24, 2004 Non-Final Office Action.
U.S. Appl. No. 09/530,308, May 12, 2005 Filed Notice of Appeal.
U.S. Appl. No. 09/530,308, Nov. 20, 2002 Non-Final Office Action.
U.S. Appl. No. 09/530,308, Oct. 2, 2003 Non-Final Office Action.
U.S. Appl. No. 09/530,308, Oct. 20, 2005 Non-Final Office Action.
U.S. Appl. No. 09/530,308, Sep. 27, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 09/607,974, Apr. 26, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 09/607,974, Apr. 4, 2003 Response to Notice of Informality or Non-Responsive Amendment.
U.S. Appl. No. 09/607,974, Dec. 11, 2003 Non-Final Office Action.
U.S. Appl. No. 09/607,974, Feb. 24, 2003 Notice of Informal or Non-Responsive Amendment.
U.S. Appl. No. 09/607,974, Jan. 8, 2003 Response to Non-Final Office Action.
U.S. Appl. No. 09/607,974, Jul. 1, 2002 Non-Final Office Action.
U.S. Appl. No. 09/607,974, Jul. 30, 2003 Response to Final Office Action.
U.S. Appl. No. 09/607,974, Jul. 9, 2004 Notice of Allowance.
U.S. Appl. No. 09/607,974, May 9, 2003 Final Office Action.
U.S. Appl. No. 09/607,974, Nov. 10, 2003 Request for Continued Examination (RCE).
U.S. Appl. No. 09/607,974, Sep. 3, 2003 Advisory Action.
U.S. Appl. No. 09/623,277 (Abandoned), filed Sep. 1, 2000.
U.S. Appl. No. 09/623,277, Aug. 10, 2005 Restriction Requirement.
U.S. Appl. No. 09/623,277, Mar. 23, 2006 Notice of Abandonment.
U.S. Appl. No. 09/830,899, Apr. 13, 2006 Non-Final Office Action.
U.S. Appl. No. 09/830,899, Apr. 5, 2007 Examiner's Answer to Appeal Brief.
U.S. Appl. No. 09/830,899, Aug. 13, 2003 Non-Final Office Action.
U.S. Appl. No. 09/830,899, Dec. 11, 2003 Response to Non-Final Office Action.
U.S. Appl. No. 09/830,899, Dec. 18, 2006 Filed Appeal Brief.
U.S. Appl. No. 09/830,899, Dec. 19, 2005 Filed Appeal Brief.
U.S. Appl. No. 09/830,899, Dec. 22, 2008 Response to Non-Final Office Action.
U.S. Appl. No. 09/830,899, Dec. 27, 2004 Response to Notice of Non-Compliant.
U.S. Appl. No. 09/830,899, Dec. 7, 2004 Notice of Non-Compliant.
U.S. Appl. No. 09/830,899, Feb. 15, 2006 Notice of Defective Appeal Brief.
U.S. Appl. No. 09/830,899, Feb. 2, 2009 Non-Final Office Action.
U.S. Appl. No. 09/830,899, Jul. 15, 2008 Amendment and Request for Continued Examination.
U.S. Appl. No. 09/830,899, Jul. 3, 2006 Final Office Action and Examiner Interview Summary.
U.S. Appl. No. 09/830,899, Jul. 5, 2005 Final Office Action.
U.S. Appl. No. 09/830,899, Jul. 6, 2004 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 09/830,899, Jun. 29, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 09/830,899, Mar. 12, 2004 Final Office Action.
U.S. Appl. No. 09/830,899, Mar. 3, 2006 Filed Appeal Brief.
U.S. Appl. No. 09/830,899, May 16, 2007 Filed Reply Brief.
U.S. Appl. No. 09/830,899, Nov. 3, 2006 Filed Notice of Appeal.
U.S. Appl. No. 09/830,899, Nov. 4, 2009 Notice of Allowance.
U.S. Appl. No. 09/830,899, Nov. 9, 2005 Pre-Appeal Brief Conference Decision.
U.S. Appl. No. 09/830,899, Oct. 1, 2009 Request for Continued Examination (RCE).
U.S. Appl. No. 09/830,899, Oct. 17, 2005 Amendment, Notice of Appeal and Pre-Appeal Brief Request.
U.S. Appl. No. 09/830,899, Oct. 9, 2008 Non-Final Office Action.
U.S. Appl. No. 09/830,899, Sep. 4, 2009 Notice of Allowance.
U.S. Appl. No. 09/831,215, Sep. 6, 2006 Notice of Allowance.
U.S. Appl. No. 09/831,218, Aug. 24, 2005 Non-Final Office Action.
U.S. Appl. No. 09/831,218, Dec. 29, 2005 Final Office Action.
U.S. Appl. No. 09/831,218, Feb. 10, 2006 Response to Final Office Action.
U.S. Appl. No. 09/831,218, Mar. 1, 2006 Notice of Allowance.
U.S. Appl. No. 09/831,218, Nov. 28, 2005 Response to Non-Final Office Action.
U.S. Appl. No. 09/889,859, Jan. 12, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 09/889,859, Mar. 22, 2004 Notice of Allowance.
U.S. Appl. No. 09/889,859, Sep. 10, 2003 Non-Final Office Action.
U.S. Appl. No. 10/149,685 (Abandoned), filed Jun. 13, 2002.
U.S. Appl. No. 10/149,685, Feb. 6, 2007 Non-Final Office Action.
U.S. Appl. No. 10/149,685, Feb. 7, 2008 Notice of Abandonment.
U.S. Appl. No. 10/149,685, Jul. 31, 2007 Non-Final Office Action.
U.S. Appl. No. 10/149,685, May 7, 2007 Response to Non-Final Office Action.
U.S. Appl. No. 10/220,776, Aug. 23, 2004 Notice of Allowance.
U.S. Appl. No. 10/333,030 (Abandoned), filed Jun. 6, 2003.
U.S. Appl. No. 10/333,030, Apr. 10, 2008 Response to Notice of Non-Compliant.
U.S. Appl. No. 10/333,030, Apr. 15, 2008 Supplemental Response to Notice of Non-Compliant.
U.S. Appl. No. 10/333,030, Apr. 30, 2007 Non-Final Office Action.
U.S. Appl. No. 10/333,030, Aug. 28, 2007 Response to Non-Final Office Action.
U.S. Appl. No. 10/333,030, Dec. 20, 2006 Non-Final Office Action.
U.S. Appl. No. 10/333,030, Feb. 15, 2008 Notice of Non-Compliant.
U.S. Appl. No. 10/333,030, Feb. 26, 2009 Final Office Action.
U.S. Appl. No. 10/333,030, Jan. 24, 2008 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 10/333,030, Jul. 9, 2009 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 10/333,030, Jun. 25, 2010 Notice of Abandonment.
U.S. Appl. No. 10/333,030, Mar. 20, 2007 Response to Non-Final Office Action.
U.S. Appl. No. 10/333,030, May 22, 2008 Non-Final Office Action.
U.S. Appl. No. 10/333,030, Nov. 21, 2008 Response to Non-Final Office Action.
U.S. Appl. No. 10/333,030, Oct. 25, 2007 Final Office Action.
U.S. Appl. No. 10/333,030, Sep. 22, 2009 Non-Final Office Action.
U.S. Appl. No. 10/482,074 (Abandoned), filed Dec. 24, 2003.
U.S. Appl. No. 10/482,074, Jun. 18, 2008 Notice of Abandonment.
U.S. Appl. No. 10/482,074, Nov. 14, 2007 Non-Final Office Action.
U.S. Appl. No. 10/491,460 (Abandoned), filed Apr. 1, 2004.
U.S. Appl. No. 10/491,460, Jul. 11, 2006 Notice of Abandonment.
U.S. Appl. No. 10/494,739, Oct. 10, 2007 Notice of Allowance.
U.S. Appl. No. 10/728,345, Apr. 9, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 10/728,345, Dec. 10, 2008 Non-Final Office Action.
U.S. Appl. No. 10/728,345, Dec. 24, 2009 Non-Final Office Action.
U.S. Appl. No. 10/728,345, Jul. 9, 2009 Final Office Action.
U.S. Appl. No. 10/728,345, Jun. 15, 2010 Notice of Allowance.
U.S. Appl. No. 10/728,345, Jun. 30, 2008 Non-Final Office Action.
U.S. Appl. No. 10/728,345, Mar. 10, 2010 Response to Non-Final Office Action.
U.S. Appl. No. 10/728,345, Oct. 5, 2009 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 10/728,345, Sep. 30, 2008 Response to Non-Final Office Action.
U.S. Appl. No. 10/965,040, Aug. 10, 2011 Advisory Action.
U.S. Appl. No. 10/965,040, Aug. 2, 2011 Response to Final Office Action.
U.S. Appl. No. 10/965,040, Feb. 25, 2011 Response to Non-Final Office Action.
U.S. Appl. No. 10/965,040, Jun. 7, 2012 Issue Fee payment.
U.S. Appl. No. 10/965,040, Mar. 15, 2012 Notice of Allowance.
U.S. Appl. No. 10/965,040, May 13, 2011 Final Office Action.
U.S. Appl. No. 10/965,040, Nov. 2, 2011 Notice of Appeal.
U.S. Appl. No. 10/965,040, Oct. 29, 2010 Non-Final Office Action.
U.S. Appl. No. 11/448,114, Apr. 1, 2010 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 11/448,114, Apr. 27, 2011 Response to Non-Final Office Action.
U.S. Appl. No. 11/448,114, Aug. 12, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 11/448,114, Jan. 2, 2013 Issue Fee payment.
U.S. Appl. No. 11/448,114, Jul. 8, 2011 Non-Final Office Action.
U.S. Appl. No. 11/448,114, Jul. 9, 2012 Amendment and Request for Examination (RCE).
U.S. Appl. No. 11/448,114, Mar. 16, 2009 Non-Final Office Action.
U.S. Appl. No. 11/448,114, May 16, 2012 Notice of Appeal.
U.S. Appl. No. 11/448,114, Nov. 21, 2011 Final Office Action.
U.S. Appl. No. 11/448,114, Nov. 25, 2009 Final Office Action.
U.S. Appl. No. 11/448,114, Oct. 19, 2009 Response to Non-Compliant Response.
U.S. Appl. No. 11/448,114, Oct. 2, 2012 Notice of Allowance.
U.S. Appl. No. 11/448,114, Oct. 28, 2010 Non-Final Office Action.
U.S. Appl. No. 11/448,114, Oct. 6, 2009 Notice of Non-Compliant Response.
U.S. Appl. No. 11/506,060 (Abandoned), filed Aug. 16, 2006.
U.S. Appl. No. 11/506,060, Apr. 12, 2011 Response to Non-Final Office Action.
U.S. Appl. No. 11/506,060, Aug. 13, 2009, Response to Non-Final Office Action.
U.S. Appl. No. 11/506,060, Mar. 11, 2009 Non-Final Office Action.
U.S. Appl. No. 11/506,060, Mar. 3, 2010 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 11/506,060, May 10, 2011 Final Office Action.
U.S. Appl. No. 11/506,060, Nov. 18, 2009 Final Office Action.
U.S. Appl. No. 11/506,060, Oct. 19, 2010 Non-Final Office Action.
U.S. Appl. No. 11/615,120, Apr. 6, 2010 Issue Fee payment.
U.S. Appl. No. 11/615,120, Jan. 14, 2010 Notice of Allowance.
U.S. Appl. No. 11/615,120, May 4, 2009 Non-Final Office Action.
U.S. Appl. No. 11/615,120, Sep. 4, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 11/846,088, Jun. 7, 2012 Non-Final Office Action.
U.S. Appl. No. 11/846,088, Nov. 29, 2012 Response to Non-Final Office Action.
U.S. Appl. No. 12/548,199, Feb. 12, 2013 Response to Non-Final Office Action.
U.S. Appl. No. 12/548,199, Oct. 16, 2012 Non-Final Office Action.
U.S. Appl. No. 12/574,716, Feb. 1, 2012 Issue Fee payment.
U.S. Appl. No. 12/574,716, Nov. 10, 2011 Notice of Allowance.
U.S. Appl. No. 12/874,337, Aug. 23, 2012 Restriction Requirement.
U.S. Appl. No. 12/874,337, Feb. 21, 2013 Response to Restriction Requirement.
U.S. Appl. No. 12/969,101, Dec. 21, 2012 Issue Fee payment.
U.S. Appl. No. 12/969,101, May 24, 2012 Non-Final Office Action.
U.S. Appl. No. 12/969,101, Oct. 9, 2012 Notice of Allowance.
U.S. Appl. No. 13/078,626, filed Apr. 1, 2011.
U.S. Appl. No. 13/165,553, filed Jun. 21, 2011.
U.S. Appl. No. 13/165,553, Nov. 23, 2012 Restriction Requirement.
V. Lappalainen, A. Hallapuro, and T.D. Hämäläinen, "Complexity of Optimized H.26L Video Decoder Implementation," IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 717-725. Jul. 2003.
Vasconcelos, eature selection by maximum marginal diversity: optimality and implications for visual recognition, CVPR 1:762-769, 2003.
W. Niblack et al. "The QBIC Project: Querying Images by Content Using Color, Texture and Shape" in Storage and Retrieval for Image and Video Databases, Wayne Niblack, Editor, Proc. SPIE 1908, pp. 173-181 (1993).
Walton, Steven, "Image authentication for a slippery new age, knowing when images have been changed", Dr. Dobb's 1995.
Wang et al., "Columbia TAG System—Transductive Annotation by Graph Version 1.0", Columbia University ADVENT Technical Report #225-2008-3, Oct. 15, 2008, entire document.
Wang et al., "Learning Semantic Scene Models by Trajectory Analysis", Proc. European Conference on Computer Vision, pp. 110-123, 2006.
Wang, et al. "Dynamic rate scaling of coded digital video for IVOD applications." Transactions on Consumer Electronics, vol. 44(3), Aug. 1998, pp. 743-749.
Wee, et al., "Field-to-frame transcoding with spatial and temporal downsampling." Proceedings of the 1999 International Conference on Image Processing, vol. 4, Oct. 1999.
Wee, et al., "Secure scalable streaming enabling transcoding without decryption." Proceedings of the 2001 International Conference on Image Processing, vol. 1 of 3, Oct. 2001.
Wee, et al., "Secure scalable video streaming for wireless networks." Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Process, vol. 4 of 6, May 2001, pp. 2049-2052.
Wu, et al., "Multimodal information fusion for video concept detection," Proc. International Conference Image Processing, pp. 2391-2394, 2004.
X. Lu, E. Erkip, Y. Wang and D. Goodman, "Power efficient multimedia communication over wireless channels", IEEE Journal on Selected Areas on Communications, Special Issue on Recent Advances in Wireless Multimedia, vol. 21, No. 10, pp. 1738-1751, Dec. 2003.
X. Zhou, E. Li, and Y.-K. Chen, "Implementation of H.264 Decoder on General-Purpose Processors with edia Instructions", in Proc. of SPIE Visual Communications and Image Processing, Jan. 2003.
Y. Eisenberg, C. E. Luna, T. N. Pappas, R. Berry, A.K. Katsaggelos, Joint source coding and transmission power management for energy efficient wireless video communications, CirSysVideo(12), No. 6, Jun. 2002, pp. 411-424.
Yang et al., "Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning", Proc. IEEE Conference Computer Vision and Pattern Recognition, pp. 2057-2063, 2006.
Yeung et al., "Video Browsing using clustering and scene transitions on compressed sequences" IS & T/SPIE Symposium Proceedings, Feb. 1995, vol. 2417, pp. 399-413.
Yoshinobu Tonomura (1991) "Video Handling Based on Structured Information for Hypermedia Systems," Proceedings of the International Conference on Multimedia Information Systems, pp. 333-344.
Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, "Power-Rate-Distortion Analysis for Wireless Video Communication under Energy Constraints," IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Integrated Multimedia Platforms, 2004.
Zavesky et al., "Low-Latency Query Formulation and Result Exploration for Concept-Based Visual Search,", ACM Multimedia Information Retrieval Conference, Oct. 2008, Vancouver, Canada; pp. 1-23.
Zhong et al., "Clustering methods for video browsing and annotation" sotrage and retrieval for Still Image and Video Databases IV, IS&T/SPIE's electronic Images: science & Tech. 96, vol. 2670 (1996).
Zhong et al., "Structure analysis of sports video using domain models", IEEE International Conference on Multimedia and Expo., Aug. 22-25, 2001, Tokyo, Japan.
Zhou et al., "Object tracking using sift features and mean shift," Computer Vision and Image Understanding, 113:345-352, 2009.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10007679B2 (en)2008-08-082018-06-26The Research Foundation For The State University Of New YorkEnhanced max margin learning on multimodal data mining in a multimedia database
US20130266073A1 (en)*2012-04-082013-10-10Broadcom CorporationPower saving techniques for wireless delivery of video
US20130268621A1 (en)*2012-04-082013-10-10Broadcom CorporationTransmission of video utilizing static content information from video source
US9154749B2 (en)*2012-04-082015-10-06Broadcom CorporationPower saving techniques for wireless delivery of video
US10319035B2 (en)2013-10-112019-06-11Ccc Information ServicesImage capturing and automatic labeling system
US10963504B2 (en)*2016-02-122021-03-30Sri InternationalZero-shot event detection using semantic embedding
JP2018102898A (en)*2016-07-222018-07-05ジョセフ プローグマンJoseph Ploegman System and method for displaying baseball batter count
US10238949B2 (en)*2016-07-222019-03-26Joe Martin PloegmanSystem and method for displaying a baseball batter count

Also Published As

Publication numberPublication date
US20080303942A1 (en)2008-12-11
US20040255249A1 (en)2004-12-16
US7339992B2 (en)2008-03-04
AU2002351310A8 (en)2003-06-23
AU2002351310A1 (en)2003-06-23
US20130293776A1 (en)2013-11-07
WO2003051031A2 (en)2003-06-19
WO2003051031A3 (en)2004-03-04

Similar Documents

PublicationPublication DateTitle
US8488682B2 (en)System and method for extracting text captions from video and generating video summaries
Yu et al.Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video
JP4643829B2 (en) System and method for analyzing video content using detected text in a video frame
JP5420199B2 (en) Video analysis device, video analysis method, digest automatic creation system and highlight automatic extraction system
Zhang et al.General and domain-specific techniques for detecting and recognizing superimposed text in video
JP2002232840A (en) Video summarization method
Li et al.Automatic detection and analysis of player action in moving background sports video sequences
Oh et al.Content-based scene change detection and classification technique using background tracking
Sevilmiş et al.Automatic detection of salient objects and spatial relations in videos for a video database system
Duan et al.Semantic shot classification in sports video
Kijak et al.Temporal structure analysis of broadcast tennis video using hidden Markov models
Mei et al.Structure and event mining in sports video with efficient mosaic
Mei et al.Sports video mining with mosaic
JP3379453B2 (en) Caption region detection method and device, and moving image search method and device
US20070124678A1 (en)Method and apparatus for identifying the high level structure of a program
Jiang et al.Player detection and tracking in broadcast tennis video
US20070061727A1 (en)Adaptive key frame extraction from video data
Kim et al.Extracting semantic information from basketball video based on audio-visual features
Shih et al.Content extraction and interpretation of superimposed captions for broadcasted sports videos
Lin et al.A feature-based Scheme for detecting and classifying video-shot transitions based on spatio-temporal analysis and fuzzy classification
EP1320992A2 (en)Method for highlighting important information in a video program using visual cues
Assfalg et al.Detection and recognition of football highlights using HMM
Sang et al.Rolling and non-rolling subtitle detection with temporal and spatial analysis for news video
Duan-Yu et al.Motion activity based shot identification and closed caption detection for video structuring
Wang et al.A motion-insensitive dissolve detection method with SURF

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, SHIH-FU;ZHANG, DONGQING;SIGNING DATES FROM 20080502 TO 20080612;REEL/FRAME:021402/0226

Owner name:THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, SHIH-FU;ZHANG, DONGQING;REEL/FRAME:021402/0226;SIGNING DATES FROM 20080502 TO 20080612

ASAssignment

Owner name:GENERAL ELECTRIC CAPITAL CORPORATION,ILLINOIS

Free format text:SECURITY AGREEMENT;ASSIGNOR:EKR THERAPEUTICS, INC.;REEL/FRAME:021976/0780

Effective date:20080307

Owner name:GENERAL ELECTRIC CAPITAL CORPORATION, ILLINOIS

Free format text:SECURITY AGREEMENT;ASSIGNOR:EKR THERAPEUTICS, INC.;REEL/FRAME:021976/0780

Effective date:20080307

ASAssignment

Owner name:EKR THERAPEUTICS, INC., NEW JERSEY

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:GENERAL ELECTRIC CAPTIAL CORPORATION;REEL/FRAME:030565/0791

Effective date:20101028

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

FEPPFee payment procedure

Free format text:MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPSLapse for failure to pay maintenance fees

Free format text:PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FPLapsed due to failure to pay maintenance fee

Effective date:20210716


[8]ページ先頭

©2009-2025 Movatter.jp