Movatterモバイル変換


[0]ホーム

URL:


US8369998B2 - Updating demand response settings - Google Patents

Updating demand response settings
Download PDF

Info

Publication number
US8369998B2
US8369998B2US12/644,592US64459209AUS8369998B2US 8369998 B2US8369998 B2US 8369998B2US 64459209 AUS64459209 AUS 64459209AUS 8369998 B2US8369998 B2US 8369998B2
Authority
US
United States
Prior art keywords
appliance
demand response
controller
signals
hem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/644,592
Other versions
US20110153106A1 (en
Inventor
Jeff Donald Drake
Timothy Dale Worthington
Michael F. Finch
Adam Hofmann
John K. Besore
Timothy M. Wetzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier US Appliance Solutions Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CofiledCriticalGeneral Electric Co
Priority to US12/644,592priorityCriticalpatent/US8369998B2/en
Assigned to GENERAL ELECTRIC COMPANYreassignmentGENERAL ELECTRIC COMPANYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: DRAKE, JEFF DONALD, FINCH, MICHAEL F., HOFMANN, ADAM C., BESORE, JOHN K., WETZEL, TIMOTHY M., WORTHINGTON, TIMOTHY DALE
Publication of US20110153106A1publicationCriticalpatent/US20110153106A1/en
Application grantedgrantedCritical
Publication of US8369998B2publicationCriticalpatent/US8369998B2/en
Assigned to HAIER US APPLIANCE SOLUTIONS, INC.reassignmentHAIER US APPLIANCE SOLUTIONS, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: GENERAL ELECTRIC COMPANY
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

An appliance controller is provided comprising an appliance including demand response settings. The settings include threshold variables for determining a reaction of the appliance in response to reaching one or more threshold variables. The controller further comprises a signal from an associated utility to the appliance, wherein the appliance includes a controller in signal communication with the associated utility. The controller receives and processes the signal from the associated utility. The signal is converted and compared to the demand response threshold variables and the appliance is operated in one or more power consuming functions based on the comparison of the signal to the demand response variables.

Description

BACKGROUND
This disclosure relates to energy management, and more particularly to electrical device control methods and electrical energy consumption systems. The disclosure finds particular application to energy management of home appliances, for example, dishwashers, clothes washers, dryers, HVAC systems, etc.
Many utilities are currently experiencing a shortage of electric generating capacity due to increasing consumer demand for electricity. Currently utilities generally charge a flat rate, but with increasing cost of fuel prices and high energy usage at certain parts of the day, utilities have to buy more energy to supply customers during peak demand. Consequently, utilities are charging higher rates during peak demand. If peak demand can be lowered, then a potential huge cost savings can be achieved and the peak load that the utility has to accommodate is lessened. In order to reduce high peak power demand, many utilities have instituted time of use metering and rates which include higher rates for energy usage during on-peak times and lower rates for energy usage during off-peak times. As a result, consumers are provided with an incentive to use electricity at off-peak times rather than on-peak times.
Presently, to take advantage of the lower cost of electricity during off-peak times, a user must manually operate power consuming devices during the off-peak times. This is undesirable because a consumer may not always be present in the home to operate the devices during off-peak hours. This is also undesirable because the consumer is required to manually track the current time to determine what hours are off-peak and on-peak.
One proposed third party solution is to provide a system where a controller “switches” the actual energy supply to the power consuming device on and off. However, there is no active control beyond the mere on/off switching. There are also currently different methods used to determine when variable electricity-pricing schemes go into effect. There are phone lines, schedules, and wireless signals sent by the electrical utility company. One difficulty is that different electrical companies use different methods of communicating periods of high electrical demand to their consumers. Other electrical utility companies simply have rate schedules for different times of day.
Therefore, there is a need to provide a system that can automatically operate power consuming devices during off-peak hours in order to reduce consumer's electric bills and also to reduce the load on generating plants during on-peak hours.
BRIEF DESCRIPTION
The present disclosure reduces power consumption by reducing the energy demand on the power generation facility, and also enabling the user/consumer to pay less to operate appliances on an annual basis.
One advantage of this approach is that customers have complete control of their power. There have been proposals by utilities to shut off customers if they exceed demand limits or increase the number of rolling brownouts. The proposed method also gives a customer finer granulity in their home in terms of control. A customer does not have to load shed a room, or load shed completely an appliance, in order to manage energy savings of a single device.
This disclosure also advantageously provides modes of load shedding in appliances, lighting, or HVAC other than “on/off” to make the situation more acceptable from the perspective of the customer.
In one aspect of the disclosure, an appliance controller is provided comprising an appliance including demand response settings. The settings include threshold variables for determining a reaction of the appliance in response to reaching one or more threshold variables. The controller further comprises a signal from an associated utility to the appliance, wherein the appliance includes a controller in signal communication with the associated utility. The controller receives and processes the signal from the associated utility. The signal is converted and compared to the demand response threshold variables and the appliance is operated in one or more power consuming functions based on the comparison of the signal to the demand response variables.
In another aspect of the disclosure, a method of controlling an appliance is provided comprising establishing demand response settings of an appliance, wherein the settings include threshold variables for determining a reaction of the appliance in response to reaching one or more threshold variables. The method further comprises connecting one or more power consuming functions with a home energy management system (HEM), sending a signal from an associated utility to the HEM, wherein the HEM includes a controller in signal communication with the associated utility. The controller receives and processes a signal from the associated utility. The method further comprises converting and comparing the signal to the demand response threshold variables, and operating the appliance in the one or more power consuming functions based on the comparison of the signal to the demand response variables.
In still a further aspect of the disclosure, a method of controlling an appliance is provided comprising establishing default cycle selections to an energy cycle of an appliance through a home energy management system (HEM), wherein the default cycle selections include a reduced energy consumption to one or more energy cycles. The method further comprises operating the appliance in the reduced energy consumption mode based on a comparison of sensor input values to set sensor values for the default cycle selections. The method still further comprises operating the appliance in the reduced energy consumption mode based on user inputs regarding a desired elapsed completion time.
Another benefit is the increased flexibility with an associated electrical service provider, and the provision of several modes of operation (not simply an on/off mode). The module can be placed or positioned inside or outside the appliance and/or unit to provide demand side management.
Still other benefits relate to modularity, the ability to handle multiple communication methods and protocols without adversely impacting the cost of the appliance, opening up appliances to a variety of protocols, enabling demand side management or energy management, and/or providing for a standard interface to the appliance (for example, offering prechill and/or temperature set change during on-peak hours).
Still other features and benefits of the present disclosure will become apparent from reading and understanding the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an exemplary embodiment of a home energy management system (HEM) for household appliances.
FIG. 2 illustrates an exemplary operational flow chart of managing an appliance based on one exemplary threshold variable.
FIG. 3 illustrates an exemplary embodiment of a communication network between appliances within the HEM.
DETAILED DESCRIPTION
In one embodiment, a system is provided to handle energy management between the utility and the homeowner's appliances. The system can include one or more of the following: a controller, utility meter, communication network, intelligent appliances, local storage, local generator and/or demand server. Some systems may actually allow the appliance to “communicate directly with the utility meter or mesh network through a DSM (Demand Side Management module). The demand server is a computer system that notifies the controller when the utility is in peak demand and what is the utility's current demand limit. A utility meter can also provide the controller the occurrence of peak demand and demand limit. The demand limit can also be set by the home owner. Additionally, the homeowner can choose to force various modes in the appliance control based on the rate the utility is charging at different times of the day. The controller will look at the energy consumption currently used by the home via the utility meter and see if the home is exceeding the demand limit read from the server. If the demand limit is exceeded, the controller will notify the intelligent appliances, lighting and thermostat/HVAC.
Each intelligent appliance has a communication interface that links itself to the controller. This interface can be power-line carrier, wireless, and/or wired. The controller will interact with the appliance and lighting controls as well as thermostat (for HVAC) to execute the users preferences/settings.
Enabled appliances receive signals from the utility meter and help lower the peak load on the utility and lower the amount of energy that the consumer uses during high energy cost periods of the day. There are several ways to accomplish this, through wireless communication (ZigBee, WiFi, etc) or through PLC (power line carrier) communication. Alternatively, using passive RFID tags that resonate at different frequencies resonated by the master, or one or more active RFID tags that can store data that can be manipulated by the master device and read by the slave devices(s) is an effective and potentially lower cost communication solution since there is no protocol. Rather, a pulse of energy at a particular frequency will allow a low cost method with an open protocol for transmitting/communicating between a master device and one or more slave devices, and appropriate functions/actions can be taken based upon these signals.
The central controller handles energy management between the utility and home appliances, lighting, thermostat/HVAC, etc. with customer choices incorporated in the decision making process. The controller may include notification of an energy saving mode based on demand limit read from one or more of a utility meter, utility, demand server or user. An energy savings mode of an appliance can thereby be controlled or regulated based on priority and energy need level sent from the controller and/or the customer. Likewise, consideration to use of local energy storage and use of a local generator to offset peak demand limit can be incorporated into the energy management considerations, or provide the ability to override mode of energy savings through the controller or at the appliance, lighting, or thermostat/HVAC.
The present disclosure has the ability for the home to shed loads in pending brown-out or black-out situations, yet have intelligence to prevent an improper action such as shutting down the refrigerator for extended timeframes that might compromise food storage safety.
How much energy the appliance consumes in peak demand and/or in a demand response setting is based on priority of the device and the energy need level. If the appliance's priority is high, then the appliance will most likely not go into a saving mode. The energy need level is based on how little energy the appliance can consume during peak demand and still provide the function setting it is in (i.e. in a refrigerator, ensuring that the temperature is cool enough to prevent spoiling). It will also be appreciated that an appliance may have multiple energy need levels.
A method of communicating data between a master device and one or more slave devices may advantageously use continuous tone-coded transmission system. This can be a number of states or signals, either using one or more continuous tones that signify different rate states coming from the home area network (from meter) or the utility. Additionally, one could send a combination of tones to transmit binary messages using a few tones. The slave devices will incorporate a receiver that receives the carrier frequency and then decodes the continuous tone which corresponds to the particular state of the utility rate. Once the “receiver board” detects the tone, then the downstream circuitry will trigger the appropriate response in the appliance. The carrier frequency in this scheme can be numerous spectrums, one being the FM broadcast band or a specific FM band allocated by the FCC for low level power output. The advantage of broadcast band FM is the low cost of such devices and the potential to penetrate walls, etc. within a home with very low levels of power due to the long wavelength of the 89-106 MHz carrier. This process is used today in 2-way radio communications to reduce the annoyance of listening to multiple users on shared 2-way radio frequencies. The process in these radios is referred to as CTCSS (continuous tone-coded squelch system) and would find application in this end use.
Generally, it is not known to have modular interfaces that can receive signals from a control source. Also, no prior arrangements have functioned by addressing the control board of the appliance with a signal that directs the appliance to respond.
The user interface can also incorporate suggested energy saving tips or show energy usage, or provide an indicator during on-peak mode, or provide a counter to illustrate the energy impact of door opening, or showing an energy calculator to the consumer to serve as a reminder of the impact of certain selections/actions on energy use or energy conservation.
One path that is being pursued from the appliance perspective is to allow the onboard CPU (microprocessor) of the appliance to determine how to respond to an incoming signal asking for a load shedding response. For example, the CPU will turn on, turn off, throttle, delay, adjust, or modify specific functions and features in the appliance to provide a turndown in power consumption. The features, to be described hereinafter, enable the main board microprocessor or CPU to execute actions in the appliance to deliver load shedding (lowering power consumption at that instant). The actions available in each appliance are only limited to the devices that the CPU has control over, which are nearly all of the electrical consuming devices in an appliance. This may work better where the appliance has an electronic control versus an electromechanical control.
Although these concepts have been described with respect to appliances, they may find application in areas other than appliances and other than electricity usage. For example, a controller that acts as an intermediary between the utilities meter and the appliance interprets the utility signal, processes it and then submits this signal to the appliance for the prescribed reaction. In a similar fashion, the controller may find application to other household utilities, for example, natural gas and water within the home. One can equip the water and gas meters to measure flow rates and then drive responses to a gas water heater or gas furnace precisely like the electrical case. This would assume that one might experience variable gas and water rates in the future. Secondly, the flow meters being connected to the controller could provide a consumer with a warning as to broken or leaking water lines by comparing the flow rate when a given appliance or appliances are on to the normal consumption. In cases where safety is a concern, the system could stop the flow of gas or water based on the data analysis.
Another feature that the controller lends itself to is the inclusion of “Remote diagnostics”. This feature would allow the appliance to send a signal or message to the controller indicating that something in the appliance was not up to specifications. The controller could then relay this signal to the utility or to the appliance manufacturer via the various communication avenues included into the controller (i.e., WIFI, WIMAX, Broadband, cell phone, or any other formats that the controller could “speak”).
An exemplary embodiment of a managedappliance system100 is schematically illustrated inFIGS. 1-3. An exemplary embodiment of a homeenergy management system100 having one or managedappliances102 is schematically illustrated inFIG. 1. Theappliances102 each comprise at least one power consuming feature/function104. The home energy management system (HEM)100 is operatively associated with the power consuming features/functions104. TheHEM100 can include a controller ormicro computer108 which is programmed to selectively control the energization of the power consuming features/functions104. TheHEM100 is configured to receive and process asignal106 from an associated utility, whereby theHEM100, through thecontroller108, is in signal communication with the associated utility. Thecontroller108 is configured to receive and process thesignal106 from the associated utility. The HEM can convert thesignal106 through a series of variables and compare to a series of demand response (DR) threshold variables. The appliance can be operated including the one or more power consuming functions based on the comparison of the converted signal to the demand response threshold variables (FIG. 2).
TheHEM100 can operate one or more associatedappliances102 along with respective one or morepower consuming functions104, selectively when the comparison of the converted signals are within the DR threshold variable parameters. The DR threshold variables or parameters can be established by auser interface128 and/or though acomputer112. The threshold variables can comprise the group of variables including dollars per kilowatt hour, carbon usage, maximum criticality level of demand, minimum criticality level of demand, price tiers, et al.
The controller can operate the appliance in one of a normal operating mode and in one or more power consuming functions based on comparisons of converted signals relative to the DR threshold variables. The appliance can include a DR module for receiving signals from the HEM controller wherein receiving the signals includes a USB interface, wireless module, power line carrier, and/or web based application. As one illustrative example, if the converted signal to the HEM results in a dollar per kilowatt hour that is less than an established threshold dollar per kilowatt hour, then the HEM will process a signal to the associated appliance to operate the one or more power consuming functions connected with the respective appliance.
The present disclosure demonstrates a method wherein a user can change and update their appliance DR settings, how it reacts to a utility signal, what features or modules on the appliance are affected by the utility signal, and more. Appliances without a fullinteractive user interface128 can be troublesome to enable the ability to update this information from the consumer aspect. This disclosure allows the user to use, for example, ahome PC112 in different ways to update the appliance DR settings so they can have more control over how their appliance reacts to utility signals sent on the grid.
Four (4) methods, to be described hereinafter, help the user update their DR settings on their appliance or appliance DR module. The DR settings include having the ability, for example, to change what price tiers the appliance reacts to, set currency price information for each appliance level of reaction (could set a maximum dollar amount of $ per KWHr the user would like the appliance to react, same goes for minimum amount), set carbon usage information for each appliance level of reaction (i.e. set a maximum carbon units the user would like the appliance to react, same goes for minimum amount), set maximum or minimum criticality levels of demand response the appliance reacts to, set what features or modules on the appliance that is affected at certain levels from the utility signal, set how an appliance reacts to future price rates, price tiers, criticality levels of demand response, carbon usage, etc.
With reference toFIG. 2, a control method in accordance with the present disclosure comprises communicating with an associated utility and receiving and processing the signal indicative of at least one threshold variable (S200), determining a current value in relation to the one threshold variable (S202), operating the appliance in a first operating mode during one period relative to a first comparison between the current value and the threshold variable (S204), operating the appliance in a second operating mode during another period relative to a second comparison between the current value and the threshold variable (S206), selectively adjusting any number of one or more power consuming features/functions of the appliance to adjust power consumption of the appliance in the second operating mode (S206), and returning to the first operating mode (S210) after the threshold variable is over (S212). The selective adjustment can include adjusting power in the second operating mode, for example, selecting one or more of the operational adjustments described above.
FIG. 3 displays exemplary methods for setting, establishing, and/or updating DR threshold variables either directly or indirectly to the appliances. One exemplary method can use a simple USB interface. The appliance or appliance DR module can contain a radio daughter board or slide out module that allows the user to remove the radio or DR module that receives or interprets the signals from the utility. If this radio daughter board or slide out module is directly inserted into the appliance then the daughter board itself can have a USB connection that can plug into a computer and update settings onto the module or daughter card. The consumer's, or user's, computer would have a program that will send the updated information to the daughter card or module and can be saved so the appliance can use the information. If the radio daughter board or slide out module is input into a DR module that is then attached to an appliance, then there could be a separate daughter card or module that could slide into the DR module that allows a USB connection to the computer. This USB module can then be used on any appliance the consumer has with DR capabilities. The same computer program would be used to update and change the DR settings on to the DR module for the appliance to use.
Another exemplary method can use a wireless interface to set, establish, and/or update the DR threshold variable settings on the appliance or DR module attached to the appliance. One illustrative method can be described as follows. The user can use their computer with an attached wireless module connected to their computer (wireless methods can include many different methods, such as, Zigbee, WiFi, FM, FM RDS, Z Wave, 802.15.4 proprietary methods, Blue tooth, etc.) A means of attaching this wireless module would be to use a USB “stick” which is the wireless transmitter/receiver for the wireless network transmitting information to the appliance or DR module connected to the appliance. The wireless network used to transmit these DR settings could either be the same wireless network the utility is sending signals on or a completely separate network used specifically for transmitting these signals.
Still a further exemplary method can use a Power Line Carrier method (PLC). The user can use a PLC connection with their computer and update the DR settings on their appliance or DR module attached to their appliance. This PLC connection could be connected to the consumers' computer in a variety of ways, from their computer to their home LAN system to the PLC module, directly from their computer to the PLC module, etc. The data and DR settings could then be received by the appliance or DR module on the appliance via the PLC interface to the appliance or DR module on the appliance.
And still a further exemplary method can use an “internet” basedconnection120 to update the DR settings via the in home utility network that the utility is using to send the “signals” or information to the appliance or DR module on the appliance. An internet web server, web site, or general web based application can be accessed by the consumer's computer. The user can use this web server, web site, or web based application to change and update the DR settings on the appliance or DR module on the appliance. This information can be transmitted to the utility network and then sent to the appliance on the network. The appliance or DR module on the appliance would then receive the DR or pricing information from the utility.
With most appliances the user interface is limited and does not make it easy for a user to change DR settings that the appliance reacts to. Appliances can have a default reaction, or DR reaction, to all utility load control or price events and this gives the user the ability to create their own DR settings allowing them to change how the appliance reacts to the utility “signals” or information given on the grid to appliances or load control devices.
The above described methods allow appliances, through user selected controls and threshold variables, the ability to have DR settings that react to the utility signals but also give the user the ability to personalize how the appliance reacts to the utility information.
As one illustrative appliance, a dishwasher (DW) can be in communication with the HEM. HEM would be able to monitor the DW cycle selection. When placed in charge of the DW unit, HEM can set the default cycle selection to an energy cycle or auto wash cycle that uses less water and/or less cycle time. Other cycles can be disabled from unit selection and control and can be reserved for the HEM to change allowances to cycle selections.
Additionally, HEM can have the ability to drop or skip, for example, prewashes and rinses depending on feedback from the DW such as turbidity values, water temperature, running time, or other inputs. The cycle segments can be dropped or skipped when the input values meet certain levels of similar set values stored in the HEM. The above described methods provide a more active controlling of the unit and managing of the energy consumed by the unit through the HEM. This allows HEM to provide a benefit to the consumer by managing the energy consumption of the unit.
For water consuming appliances, heating the water provided to the unit accounts for a large portion of the energy consumed by the unit, therefore, limiting the number of fills to the unit will help reduce the total energy consumed. Key parameters, i.e. turbidity, can be assessed by HEM to make sure a certain level of performance is maintained while conserving energy and limiting the number of fills.
For appliances that run as needed, a user can selectively determine how long until the output (i.e. dishes, clothes, etc.) is needed. If, for example, dishes are not needed for an extended period after last rinse cycle, then the HEM can determine how much calrod usage is needed to dry dishes if “Heated Dry” selected. If user indicates that dishes are not needed until the next day (i.e. overnight), it is possible no calrod ‘on’ time is required. The dishwasher electronic control software can execute an energy saving cycle if it receives information (due to user input) that the user will not need the dishes for a long period of time. For example, if the user is going to start the dishwasher before going to bed and selects the key letting the dishwasher control know that the dishes are going to remain in the dishwasher overnight, then the dishwasher can reduce or eliminate calrod usage during the dry portion of the cycle and possibly during the rinse portion as well.
Thus, if the user is not going to open the door for a long period of time, then using the calrod to dry the dishes may just be using energy that is not required. The concept of the user entering that information on the controller or HEM and using that information to reduce energy usage can provide an advantage for the product.
As described above, appliances can be delayed in their operation, rescheduled for a later start time, and/or altered in their functioning/features in order to reduce energy demands. Some appliances lend themselves to an altered operation due to their functionality. For example, dishwashers, clothes washers, and clothes dryers all have the capacity to run as needed because demand on these appliances is either not constant and/or the functions of these appliances are such that immediate response is not necessary. As one illustrative example, a dishwasher that has been loaded during the daytime, i.e., on-peak demand period hours, can be programmed to start its operations for a later, albeit off-peak demand hours. It is to be appreciated that on-peak and off-peak demand hours can correspond to high utility costs and relatively low utility costs ($/kilowatt), respectively.
The present disclosure provides for an appliance controller comprising an appliance including demand response settings. The settings can include threshold variables for determining a reaction of the appliance in response to reaching one or more of the threshold variables. A signal from an associated utility can be in communication with the appliance, wherein the appliance includes a controller in signal communication with the associated utility. The controller can receive and process the signal from the associated utility. The signal can be converted and compared to the demand response threshold variables. The appliance can be operated in the one or more power consuming functions based on the comparison of the signal to the demand response variables. The threshold variables can be selected from the group of one or more of the following: cost of energy, carbon usage, maximum criticality level of demand, minimum criticality level of demand, total power consumption, and cost of power.
There can be several alternative communication means for receiving signals from the HEM. A demand response module can be used for receiving signals from the HEM controller wherein receiving the signals includes a USB interface, a wireless module, a power line carrier, and/or a web based application, et al.
The user can pre-select an energy consumption maximum, i.e. threshold variable, wherein the power consuming functions are dependent upon the pre-selected energy consumption maximum. Similarly, the user can pre-select a power consumption maximum wherein the power consuming functions are dependent upon the pre-selected power consumption maximum.
The present disclosure further provides a method of controlling an appliance including establishing demand response settings of an appliance. The settings include threshold variables for determining a reaction of the appliance in response to reaching one or more of the threshold variables. The one or more power consuming functions can be connected with a home energy management system (HEM). A signal can be sent from an associated utility to the HEM, wherein the HEM includes a controller in signal communication with the associated utility. The controller receives and processes the signal from the associated utility. The HEM converts and compares the signal to the demand response threshold variables, and operates the appliance in the one or more power consuming functions based on the comparison of the signal to the demand response variables. The method further includes updating the demand response settings including other threshold variables for determining another reaction of the appliance in response to reaching one or more other threshold variables.
As one illustrative example, a method of controlling an appliance can comprise establishing default cycle selections to an energy cycle of an appliance through the HEM. The default cycle selections can include reduced energy consumption to one or more energy cycles. The appliance can be operated in the reduced energy consumption mode based on a comparison of sensor input values to set sensor values for the default cycle selections. The appliance can operate in the reduced energy consumption mode based on user inputs regarding a desired elapsed completion time. The default cycle selections can be selected from the group consisting of reduced water volume, reduced water temperature, reduced dry temperature, reduced cycle time, skipping prewash cycle, and skipping rinse cycle. The sensor input values can be selected from the group consisting of turbidity value, water temperature, dry temperature, and cycle time. One of the sensor input values can be based on a delayed time that dishes within the appliance are to be completed and available. The default cycle selections can be selected from the group consisting of calrod usage, dry cycle duration, reduced temperature, and dry cycle start time. The appliance and the HEM can comprise a wireless module for sending and receiving signals therebetween.
Operation of the appliances may vary as a function of a characteristic of the supplied energy, e.g., availability and/or price. Because some energy suppliers offer what is known as time-of-day pricing in their tariffs, price points could be tied directly to the tariff structure for the energy supplier. If real time pricing is offered by the energy supplier serving the site, this variance could be utilized to generate savings and reduce chain demand. Another load management program offered by energy supplier utilizes price tiers which the utility manages dynamically to reflect the total cost of energy delivery to its customers. These tiers provide the customer a relative indicator of the price of energy and are usually defined as being LOW (level 1), MEDIUM (level 2), HIGH (level 3), and CRITICAL (level 4). The operational and functional adjustments described above, and others, can be initiated and/or dependent upon the tiers. For example, a dishwasher sanitize cycle, and/or other functions, can be prevented or ‘blocked’ from activating if the pricing tier is at level 3 or 4.
The disclosure has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the disclosure be construed as including all such modifications and alterations.

Claims (23)

1. An appliance controller for controlling an appliance, the controller comprising:
a memory in communication with a processor, the memory including program instructions for execution by the processor to:
receive demand response settings from the appliance, the demand response settings comprising demand response threshold variables for determining a reaction of the appliance in response to reaching one or more of the demand response threshold variables;
receive a signal from an associated utility indicative of at least one of the demand response threshold variables, the controller being in signal communication with the associated utility;
convert and compare the signal from the associated utility to the demand response threshold variables; and
control an operation of the appliance in one or more power consuming functions based on the comparison of the signal from the associated utility to the demand response threshold variable, wherein the one or more power consuming functions comprise cycle selections comprising a reduced energy consumption mode to one or more energy cycles.
12. A method of controlling an appliance, the method comprising:
establishing demand response settings of the appliance, the demand response settings comprise demand response threshold variables for determining a reaction of the appliance responsive to reaching one or more of the demand response threshold variables;
connecting one or more power consuming functions with a home energy management system (HEM);
sending a signal indicative of at least one of the demand response threshold variables from an associated utility to the HEM, wherein the HEM includes a controller in signal communication with the associated utility;
the controller receiving and processing the signal indicative of the at least one of the demand response threshold variables from the associated utility;
converting and comparing the signal indicative of the at least one of the demand response threshold variables to the demand response settings; and
operating the appliance in the one or more power consuming functions based on the comparison of the signal to the demand response settings;
wherein the one or more power consuming functions comprises cycle selections comprising a reduced energy consumption mode to one or more energy cycles.
US12/644,5922009-12-222009-12-22Updating demand response settingsActive2030-09-09US8369998B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US12/644,592US8369998B2 (en)2009-12-222009-12-22Updating demand response settings

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US12/644,592US8369998B2 (en)2009-12-222009-12-22Updating demand response settings

Publications (2)

Publication NumberPublication Date
US20110153106A1 US20110153106A1 (en)2011-06-23
US8369998B2true US8369998B2 (en)2013-02-05

Family

ID=44152231

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US12/644,592Active2030-09-09US8369998B2 (en)2009-12-222009-12-22Updating demand response settings

Country Status (1)

CountryLink
US (1)US8369998B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20110264286A1 (en)*2010-04-272011-10-27Jong Soo ParkSmart control device
US20110276289A1 (en)*2010-05-072011-11-10Samsung Electronics Co., Ltd.Power monitoring apparatus for household appliance
US20120101652A1 (en)*2010-10-252012-04-26Samsung Electronics Co., Ltd.Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20120197455A1 (en)*2011-01-312012-08-02Samsung Electronics Co., Ltd.Method and apparatus for managing power of smart appliance
US20130211603A1 (en)*2012-02-152013-08-15Claber S.P.A.Electronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US20130211604A1 (en)*2012-02-152013-08-15Claber S.P.A.Electronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US8583288B1 (en)*2010-05-282013-11-12Comverge, Inc.System and method for using climate controlled spaces as energy storage units for “receiving” surplus energy and for “supplying” energy when needed
US8855793B2 (en)2012-09-122014-10-07Zuli, Inc.System for learning equipment schedules
US9612286B2 (en)2011-02-042017-04-04Bidgely Inc.Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques
US20180131531A1 (en)*2015-06-102018-05-10Cisco Technology, Inc.Dynamic Power Management
US9979337B2 (en)2014-04-242018-05-22Generac Power Systems, Inc.Method of loadshedding for a variable speed, constant frequency generator
US10069331B2 (en)2015-01-092018-09-04Generac Power Systems, Inc.Load shed module
US10114347B2 (en)2012-04-252018-10-30Bidgely Inc.Energy disaggregation techniques for low resolution whole-house energy consumption data
US20230014396A1 (en)*2021-05-112023-01-19Kitu Systems, Inc.System and method for facilitating autonomous operation of a smart energy device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9303878B2 (en)2008-09-152016-04-05General Electric CompanyHybrid range and method of use thereof
WO2010031029A1 (en)2008-09-152010-03-18General Electric CompanyEnergy management of clothes dryer appliance
US8843242B2 (en)2008-09-152014-09-23General Electric CompanySystem and method for minimizing consumer impact during demand responses
US8803040B2 (en)2008-09-152014-08-12General Electric CompanyLoad shedding for surface heating units on electromechanically controlled cooking appliances
US8943845B2 (en)2009-09-152015-02-03General Electric CompanyWindow air conditioner demand supply management response
US8869569B2 (en)2009-09-152014-10-28General Electric CompanyClothes washer demand response with at least one additional spin cycle
US8943857B2 (en)2009-09-152015-02-03General Electric CompanyClothes washer demand response by duty cycling the heater and/or the mechanical action
US8818535B2 (en)*2010-04-222014-08-26General Electric CompanyUpdating thermostat weekly schedule over the air
US9513613B2 (en)*2010-06-222016-12-06Lg Electronics Inc.Method for controlling component for network system
EP3498905B1 (en)*2010-06-252020-03-11LG Electronics Inc.Network system
US8801862B2 (en)*2010-09-272014-08-12General Electric CompanyDishwasher auto hot start and DSM
CA2762395C (en)2010-12-162018-09-04Lennox Industries IncPriority-based energy management
JP5731635B2 (en)*2011-04-222015-06-10京セラ株式会社 Power control apparatus, control system, and control method
DE102011080996B4 (en)*2011-08-162024-02-15Tridonic Gmbh & Co Kg Operation of a lamp with autonomous energy storage
US20130066482A1 (en)*2011-09-132013-03-14Samsung Electronics Co., Ltd.Apparatus and method for executing energy demand response process in an electrical power network
US9125010B2 (en)*2011-10-272015-09-01General Electric CompanySystems and methods to implement demand response events
US8972071B2 (en)2011-10-272015-03-03General Electric CompanySystems and methods to predict a reduction of energy consumption
US8988914B2 (en)2012-04-182015-03-24Strategic Patent Management, LlcVariable input control for improving switched power supplies
US20140025219A1 (en)*2012-07-182014-01-23Jay Andrew BroniakHome energy management system with sabbath compliant functionality
US9188967B2 (en)2012-10-232015-11-17International Business Machines CorporationEnforcing fine-grained demand management in smart grids
US9810442B2 (en)2013-03-152017-11-07Google Inc.Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat
US9807099B2 (en)*2013-03-152017-10-31Google Inc.Utility portals for managing demand-response events
US9595070B2 (en)2013-03-152017-03-14Google Inc.Systems, apparatus and methods for managing demand-response programs and events
US9710863B2 (en)2013-04-192017-07-18Strategic Patent Management, LlcMethod and apparatus for optimizing self-power consumption of a controller-based device
AU2020386528B2 (en)2019-11-222023-06-01Qc Manufacturing, Inc.Fresh air cooling and ventilating system
US11846959B2 (en)*2021-01-132023-12-19Whirlpool CorporationHousehold energy management system utilizing multiple scales of time

Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5560060A (en)*1995-01-101996-10-01General Electric CompanySystem and method for adjusting the operating cycle of a cleaning appliance
US5572438A (en)*1995-01-051996-11-05Teco Energy Management ServicesEngery management and building automation system
US20040098171A1 (en)*2002-11-152004-05-20Horst Gale R.System and method for reducing an instantaneous load in an appliance
US7010363B2 (en)2003-06-132006-03-07Battelle Memorial InstituteElectrical appliance energy consumption control methods and electrical energy consumption systems
US7079967B2 (en)2001-05-112006-07-18Field Diagnostic Services, Inc.Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20070043477A1 (en)*2002-03-282007-02-22Ehlers Gregory ASystem and method of controlling an HVAC system
US20070276547A1 (en)*2005-06-062007-11-29Gridpoint, Inc.Optimized Energy Management System
US20080172804A1 (en)*2007-01-182008-07-24Electrolux Home Products, Inc.Adaptive Automatic Laundry Washer Water Fill
US20080272934A1 (en)*2005-03-082008-11-06Jackson Kit WangSystems and Methods for Modifying Power Usage
US20080315000A1 (en)2007-06-212008-12-25Ravi GorthalaIntegrated Controller And Fault Indicator For Heating And Cooling Systems
US20100070099A1 (en)*2008-09-152010-03-18General Electric CompanyDemand side management module
US20110015797A1 (en)*2009-07-142011-01-20Daniel GilstrapMethod and apparatus for home automation and energy conservation
US7991513B2 (en)*2007-05-082011-08-02Ecodog, Inc.Electric energy bill reduction in dynamic pricing environments
US8103389B2 (en)*2006-05-182012-01-24Gridpoint, Inc.Modular energy control system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5572438A (en)*1995-01-051996-11-05Teco Energy Management ServicesEngery management and building automation system
US5560060A (en)*1995-01-101996-10-01General Electric CompanySystem and method for adjusting the operating cycle of a cleaning appliance
US7079967B2 (en)2001-05-112006-07-18Field Diagnostic Services, Inc.Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20070043477A1 (en)*2002-03-282007-02-22Ehlers Gregory ASystem and method of controlling an HVAC system
US20040098171A1 (en)*2002-11-152004-05-20Horst Gale R.System and method for reducing an instantaneous load in an appliance
US6961642B2 (en)*2002-11-152005-11-01Whirlpool CorporationSystem and method for reducing an instantaneous load in an appliance
US7010363B2 (en)2003-06-132006-03-07Battelle Memorial InstituteElectrical appliance energy consumption control methods and electrical energy consumption systems
US20080272934A1 (en)*2005-03-082008-11-06Jackson Kit WangSystems and Methods for Modifying Power Usage
US7783390B2 (en)*2005-06-062010-08-24Gridpoint, Inc.Method for deferring demand for electrical energy
US20070276547A1 (en)*2005-06-062007-11-29Gridpoint, Inc.Optimized Energy Management System
US8103389B2 (en)*2006-05-182012-01-24Gridpoint, Inc.Modular energy control system
US20080172804A1 (en)*2007-01-182008-07-24Electrolux Home Products, Inc.Adaptive Automatic Laundry Washer Water Fill
US7991513B2 (en)*2007-05-082011-08-02Ecodog, Inc.Electric energy bill reduction in dynamic pricing environments
US20080315000A1 (en)2007-06-212008-12-25Ravi GorthalaIntegrated Controller And Fault Indicator For Heating And Cooling Systems
US20100070099A1 (en)*2008-09-152010-03-18General Electric CompanyDemand side management module
US20110015797A1 (en)*2009-07-142011-01-20Daniel GilstrapMethod and apparatus for home automation and energy conservation

Cited By (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20110264286A1 (en)*2010-04-272011-10-27Jong Soo ParkSmart control device
US8868248B2 (en)*2010-04-272014-10-21Lg Electronics Inc.Smart control device
US20110276289A1 (en)*2010-05-072011-11-10Samsung Electronics Co., Ltd.Power monitoring apparatus for household appliance
US8583288B1 (en)*2010-05-282013-11-12Comverge, Inc.System and method for using climate controlled spaces as energy storage units for “receiving” surplus energy and for “supplying” energy when needed
US9600009B1 (en)*2010-05-282017-03-21Comverge, Inc.System and method for using climate controlled spaces as energy storage units for “receiving” surplus energy and for “supplying”energy when needed
US8918224B2 (en)*2010-10-252014-12-23Samsung Electronics Co., Ltd.Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20120101652A1 (en)*2010-10-252012-04-26Samsung Electronics Co., Ltd.Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20120197455A1 (en)*2011-01-312012-08-02Samsung Electronics Co., Ltd.Method and apparatus for managing power of smart appliance
US9564755B2 (en)*2011-01-312017-02-07Samsung Electronics Co., LtdMethod and apparatus for managing power of smart appliance
US9612286B2 (en)2011-02-042017-04-04Bidgely Inc.Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques
US20130211604A1 (en)*2012-02-152013-08-15Claber S.P.A.Electronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US20130211603A1 (en)*2012-02-152013-08-15Claber S.P.A.Electronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US9215848B2 (en)*2012-02-152015-12-22Claber S.P.AElectronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US9220205B2 (en)*2012-02-152015-12-29Claber S.P.A.Electronic control unit with one or two ways controlled by electrovalves for programmed watering of lawns, gardens, flower boxes and similar spaces
US10114347B2 (en)2012-04-252018-10-30Bidgely Inc.Energy disaggregation techniques for low resolution whole-house energy consumption data
US9432210B2 (en)2012-09-122016-08-30Zuli, Inc.System for monitor and control of equipment
US8855793B2 (en)2012-09-122014-10-07Zuli, Inc.System for learning equipment schedules
US9979337B2 (en)2014-04-242018-05-22Generac Power Systems, Inc.Method of loadshedding for a variable speed, constant frequency generator
US10069331B2 (en)2015-01-092018-09-04Generac Power Systems, Inc.Load shed module
US10554074B2 (en)2015-01-092020-02-04Generac Power Systems, Inc.Load shed system
US11108265B2 (en)2015-01-092021-08-31Generac Power Systems, Inc.Load shed system
US11831197B2 (en)2015-01-092023-11-28Generac Power Systems, Inc.Load shed system
US12119705B2 (en)2015-01-092024-10-15Generac Power Systems, Inc.Load shed system
US20180131531A1 (en)*2015-06-102018-05-10Cisco Technology, Inc.Dynamic Power Management
US10756910B2 (en)*2015-06-102020-08-25Cisco Technology, Inc.Dynamic power management
US20230014396A1 (en)*2021-05-112023-01-19Kitu Systems, Inc.System and method for facilitating autonomous operation of a smart energy device
US12316111B2 (en)*2021-05-112025-05-27Kitu Systems, Inc.System and method for facilitating autonomous operation of a smart energy device

Also Published As

Publication numberPublication date
US20110153106A1 (en)2011-06-23

Similar Documents

PublicationPublication DateTitle
US8369998B2 (en)Updating demand response settings
US9058037B2 (en)Return of appliance state after demand response event
AU2009290591B2 (en)Energy management of clothes washer appliance
US8417393B2 (en)Demand response appliance module

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:GENERAL ELECTRIC COMPANY, NEW YORK

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRAKE, JEFF DONALD;FINCH, MICHAEL F.;WETZEL, TIMOTHY M.;AND OTHERS;SIGNING DATES FROM 20091214 TO 20091216;REEL/FRAME:023689/0166

STCFInformation on status: patent grant

Free format text:PATENTED CASE

CCCertificate of correction
FPAYFee payment

Year of fee payment:4

ASAssignment

Owner name:HAIER US APPLIANCE SOLUTIONS, INC., DELAWARE

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038966/0459

Effective date:20160606

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:8

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp